KR101158371B1 - 탈수소효소를 이용한 생태독성 측정방법 - Google Patents

탈수소효소를 이용한 생태독성 측정방법 Download PDF

Info

Publication number
KR101158371B1
KR101158371B1 KR1020100092256A KR20100092256A KR101158371B1 KR 101158371 B1 KR101158371 B1 KR 101158371B1 KR 1020100092256 A KR1020100092256 A KR 1020100092256A KR 20100092256 A KR20100092256 A KR 20100092256A KR 101158371 B1 KR101158371 B1 KR 101158371B1
Authority
KR
South Korea
Prior art keywords
centrifuge tube
dehydrogenase
ecotoxicity
constant temperature
sample
Prior art date
Application number
KR1020100092256A
Other languages
English (en)
Other versions
KR20120030264A (ko
Inventor
조영철
이진필
오경희
Original Assignee
조영철
이손이엔엘 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조영철, 이손이엔엘 (주) filed Critical 조영철
Priority to KR1020100092256A priority Critical patent/KR101158371B1/ko
Publication of KR20120030264A publication Critical patent/KR20120030264A/ko
Application granted granted Critical
Publication of KR101158371B1 publication Critical patent/KR101158371B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/04Investigating sedimentation of particle suspensions
    • G01N15/042Investigating sedimentation of particle suspensions by centrifuging and investigating centrifugates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Dispersion Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 탈수소효소를 이용하여 생태독성을 평가할 수 있도록 된 탈수소효소를 이용한 생태독성 측정방법에 관한 것이다. 개시발명은 (a) 대조시료가 함유된 반응액과 실험하고자 하는 시료가 함유된 반응액을 원심분리관에 각각 넣은 후 항온수조에서 진탕하면서 반응시키는 단계; (b) 상기 각 원심분리관을 항온수조에서 꺼낸 후 각 원심분리관에 INT를 첨가하는 단계; (c) INT가 첨가된 상기 각 원심분리관을 항온수조에서 진탕하면서 반응시키는 단계; (d) 상기 각 원심분리관을 항온수조에서 꺼낸 후 각 원심분리관에 THF를 첨가하는 단계; 및 (e) THF가 첨가된 상기 각 원심분리관을 원심 분리시키후 분광도계로 각 시료의 흡광도를 측정 비교하는 단계를 포함한다. 이와 같은 본 발명에 따른 탈수소효소를 이용한 생태독성 측정방법에 의하면, 탈수소효소의 기질용액으로 INT를 사용함으로써, 다른 기질에 비해 기질전환율이 높으며, 탈산소화와 같은 전처리가 필요 없기 때문에 독성 평가에 소요되는 처리시간을 줄일 수 있다.

Description

탈수소효소를 이용한 생태독성 측정방법{ECOTOXICITY ASSAY METHOD USING INHIBITION OF DEHYDROGENASE}
본 발명은 생태독성 측정방법에 관한 것으로, 특히 탈수소효소를 이용하여 생태독성을 측정할 수 있도록 된 탈수소효소를 이용한 생태독성 측정방법에 관한 것이다.
산업화로 인하여 생태계의 건전성에 영향을 미치는 독성물질의 종류와 양이 지속적으로 증가하고 있다. 현재 국내에서 상업적으로 유통되고 있는 화학물질의 수는 4만종 이상이며, 매년 400여종이 새로이 국내 시장으로 유입되는 등 화학물질의 사용이 꾸준히 증가하고 있다(환경부, 2009).
화학물질들은 다양한 경로를 통하여 환경으로 유입되며, 산업폐수를 통하여 수생태계로 유입된 독성물질은 생물체 내에 축적되어 생태계를 파괴하고 수질 악화를 초래한다. 따라서 산업폐수 처리시설의 방류수에 포함된 독성물질의 양을 상시적으로 측정하여 처리효율을 평가하고 유해성을 저감시키는 적절한 조치를 취해야 한다.
환경시료에서 특정 독성 물질의 농도를 측정하기 위하여 널리 사용되고 있는 방법은 분석기기를 사용하는 것이다. 중금속의 분석은 주로 유도결합 플라스마 질량분석기(ICP-MS)를 이용하며, 기체크로마토그래피 또는 액체크로마토그래피는 휘발성 및 용존성 독성물질의 분석에 널리 사용되고 있다.
하지만, 분석기기는 미지의 독성물질을 검출할 수 없으며, 두 종류 이상 독성물질의 협동작용 또는 길항 작용에 의한 유해성의 증가나 감소를 측정할 수 없는 단점이 있다. 특히, 산업폐수에는 다양한 종류의 생태독성 물질이 포함되어 있으며, 포함된 성분을 예측하기 힘들기 때문에 분석기기를 이용한 독성물질의 정량은 매우 어렵다. 이러한 문제를 해결하기 위하여 효소의 저해도를 평가함으로써 대상 시료에 생태독성 물질의 존재 여부 및 농도를 평가하는 방법이 개발되어 활용되고 있다.
효소를 이용하는 방법은 독성물질에 의한 효소 활성이 저해되는 정도를 측정하여 생태독성 정도를 간접적으로 평가하는 것으로, 수시료, 토양 시료 및 폐수에서 생태 독성을 평가하기 위하여 널리 사용되고 있다. 사용되는 효소의 종류는 탈수소효소 등이 있다.
탈수소효소를 이용한 기존의 연구는 시료에 존재하는 미생물을 사용하기 때문에 효소활성도 변화를 측정하기 위하여 매우 오랜 시간이 걸린다. 또한, 시료에 존재하는 미생물의 종류에 따라 결과가 달라지기 때문에 실험의 재현성이 떨어지고, 표준화시키기 어려운 단점이 있어 산업폐수 처리 방류수의 생태독성 측정법으로 적합하지 않았다.
본 발명의 목적은 상술한 문제점을 해소하기 위해 안출된 것으로, 탈수소효소를 이용한 생태 독성 평가법의 단점을 보완하고 이를 폐수시설 방류수의 독성 평가에 사용하기 위하여 처리시간, 완충용액의 조성 등 독성 평가에 필요한 조건을 최적화시킬 수 있는 탈수소효소를 이용한 생태독성 측정방법을 제공하는데 있다.
상기 목적을 달성하기 위해 본 발명의 일 실시예에 따른 탈수소효소를 이용한 생태독성 측정방법은, (a) 대조시료가 함유된 반응액과 실험하고자 하는 시료가 함유된 반응액을 원심분리관에 각각 넣은 후 항온수조에서 진탕하면서 반응시키는 단계; (b) 상기 각 원심분리관을 항온수조에서 꺼낸 후 각 원심분리관에 INT를 첨가하는 단계; (c) INT가 첨가된 상기 각 원심분리관을 항온수조에서 진탕하면서 반응시키는 단계; (d) 상기 각 원심분리관을 항온수조에서 꺼낸 후 원심분리후 상등액을 제거하는 단계; (e) 상등액이 제거된 불용성 물질을 메탄올에 녹이는 단계; 및 (f) 원심분리 후 상등액만 취해 분광도계로 각 시료의 흡광도를 측정 비교하는 단계를 포함한다.
상기 목적을 달성하기 위해 본 발명의 다른 실시예에 따른 탈수소효소를 이용한 생태독성 측정방법은, (a) 대조시료가 함유된 반응액과 실험하고자 하는 시료가 함유된 반응액을 원심분리관에 각각 넣은 후 항온수조에서 진탕하면서 반응시키는 단계; (b) 상기 각 원심분리관을 항온수조에서 꺼낸 후 각 원심분리관에 INT를 첨가하는 단계; (c) INT가 첨가된 상기 각 원심분리관을 항온수조에서 진탕하면서 반응시키는 단계; (d) 상기 각 원심분리관을 항온수조에서 꺼낸 후 각 원심분리관에 THF를 첨가하는 단계; 및 (e) THF가 첨가된 상기 각 원심분리관을 원심 분리시키후 분광도계로 각 시료의 흡광도를 측정 비교하는 단계를 포함한다.
상기 실시예들에서 상기 반응액은 균이 들어 있는 앰플의 윗부분을 자른 다음, 앰플에 포스페이트 버퍼를 첨가하여 균을 완전히 현탁시켜 현탁액을 만들고, 원심분리관에 포스페이트 버퍼를 넣은 후 원심분리관에 상기 현탁액을 첨가하여 만들어진다.
상기 실시예들에서 분광광도계를 통한 흡광도 측정은 465nm에서 이루어진다.
상기 다른 실시예에서 상기 (a) 단계에서의 각 반응액은 1ml이고, 상기 (b) 단계에서의 INT량은 0.2ml이며, 상기 (d) 단계에서 첨가되는 THF의 양은 0.8ml이다.
이와 같은 본 발명에 따른 탈수소효소를 이용한 생태독성 측정방법에 의하면 다음과 같은 효과들을 갖는다.
첫째, 탈수소효소의 기질용액으로 INT를 사용함으로써, 다른 기질에 비해 기질전환율이 높으며, 탈산소화와 같은 전처리가 필요 없기 때문에 독성 평가에 소요되는 처리시간을 줄일 수 있다.
둘째, 대조시료의 흡광도를 측정하고 이를 실험하고자 하는 시료의 흡광도와 비교함으로써, 실험하고자 하는 시료에 함유된 독성물질의 양을 상대적으로 간편하게 측정할 수 있다.
셋째, INT가 함유된 반응액에 포함되어 있는 불용성 물질을 무색 투명한 액체인 THF에 녹이면 1~2분 안에 전부 녹기 때문에 후속공정없이 바로 원심분리후 흡광도를 측정할 수 있다. 따라서, 독성평가에 소요되는 처리시간을 줄일 수 있다.
도 1은 본 발명의 일 실시예에 따른 탈수소효소를 이용한 생태독성 측정방법을 나타낸 플로우차트.
도 2는 본 발명의 다른 실시예에 따른 탈수소효소를 이용한 생태독성 측정방법을 나타낸 플로우차트.
이하, 본 발명에 따른 바람직한 실시예를 첨부한 도면에 따라 상세하게 설명한다.
도 1은 본 발명에 따른 탈수소효소를 이용한 생태독성 측정방법을 나타낸 플로우차트이다.
본 발명에 따른 탈수소효소를 이용한 생태독성 측정방법은, (a) 반응액을 준비하는 단계(S10), (b) 반응액을 1차 진탕하는 단계(S20), (c) 반응액에 INT를 첨가하는 단계(S30), (d) INT가 첨가된 반응액을 2차 진탕하는 단계(S40), (e) 원심분리후 상등액을 제거하는 단계(S50), (f) 회수된 불용성 물질을 메탈올에 녹이는 단계(S60), 및 (g) 원심분리후 흡광도를 측정하는 단계(S70)를 포함한다.
상기 (a) 단계에서는 독성을 평가하기 위한 반응액을 준비하게 된다(S10). 반응액을 준비하기 위해서는 먼저 균이 들어 있는 앰플의 윗부분을 자른 다음, 앰플에 Phosphate buffer(포스페이트 버퍼) 1ml를 첨가하여 균을 완전히 현탁시켜 현탁액을 만든다. 이어서 2ml 용량의 원심분리관을 시료 갯수에 2를 더한 수만큼 준비한다(만일 실험을 2배수로 하고자 한다면 원심분리관의 수도 2배로 준비한다). 원심분리관에 Phosphate buffer(0.1M, pH7.0~7.6)를 0.4ml씩 분주한다. 이어서 Phosphate buffer가 분주된 각 원심분리관에 현탁액을 0.1ml씩 더한다. 3개의 원심분리관중 어느 하나에는 증류수 0.5ml, 다른 한개의 원심분리관에는 Cu(1ml/L) 0.5ml, 나머지 원심분리관에는 실험하고자 하는 시료를 0.5ml 넣는다. 한편, Phosphate buffer는 완충액으로서 반응액의 산도를 일정하게 유지시키는 기능을 한다.
상기 (b) 단계에서는 반응액이 들어 있는 각각의 원심분리관을 잘 섞은 후 37℃ 항온수조에서 100~150rpm으로 진탕하면서 10~60분간 반응시킨다(S20). 이 때, 진탕시간은 20분이 가장 바람직하다.
상기 (C) 단계에서는 (b) 단계를 통해 진탕시킨 원심분리관을 항온수조에서 꺼낸 후 각각의 원심분리관에 탈수소효소의 기질용액인 0.1% INT(Iodonitrotetrazolium; 이오도니트로테트라졸리움)를 각각 0.2ml씩 첨가한 후 잘 섞어준다. 참고로, 탈수소효소의 기질로는 INT 외에도 TTC(Triphenyl tetrazolium chloride ; 트리페닐 테드라졸리움 클로라이드)가 있으나, TTC에 비해 INT의 기질 전환율이 높으며, INT를 사용할 경우 탈산소화와 같은 전처리가 필요 없기 때문에 이를 기질로 사용하는 것이 적합하다.
상기 (d) 단계에서는 (c) 단계를 거친 각각의 원심분리관을 37℃ 항온수조에서 100~150rpm으로 진탕하면서 1~240분 동안 반응시킨다. 이러한 반응을 통해 불용성 물질이 생성된다. 한편, 진탕시간은 30분이 가장 바람직하다.
상기 (e) 단계에서는 불용성 물질을 수확하기 위해 시료를 5분간 원심 분리한 후 상등액을 완전히 제거하게 된다.
상기 (f) 단계에서는 회수된 불용성 물질의 용해를 위해 2ml의 메탄올(100%)을 첨가한 후, 초음파세척기로 5분간 처리한다.
상기 (g) 단계에서는 각각의 원심분리관을 12,000rpm으로 10분간 원심분리한 후, 원심분리관을 1회용 큐벳에 꽂아서 불용성 물질의 양을 분광광도계를 이용하여 465nm에서 상등액의 흡광도를 측정하여 정량화하게 된다.
상기와 같은 과정을 통해 증류수가 포함된 시료(대조시료1-독성물질이 포함되지 않은 시료)의 흡광도, Cu가 포함된 시료(대조시료2-독성물질의 시료)의 흡광도 및 실험하고자 하는 시료의 흡광도를 각각 구하게 된다. 이 때, 대조시료1의 흡광도(A)는 최대값을 나타내게 되며, 대조시료2의 흡광도(B)는 최소값을 나타내게 된다. 그리고 실험하고자 하는 시료(독성물질이 일부 함유된 시료)의 흡광도(C)는 A값과 B값 사이에 위치하게 된다.
따라서, A, B의 값과 C 값의 차이를 각각 구하여, 실험하고자 하는 시료가 대조시료1에 가까운지 대조시료2에 가까운지를 판단하게 된다. 즉, 대조시료1에 가깝게 되면 독성물질이 적게 함유되었음을 알 수 있으며, 대조시료2에 가깝게 되면 독성물질이 많이 함유되었음을 알 수 있게 된다.
참고로, 상기와 같은 흡광도를 측정하지 않고 각 시료의 색깔을 통해 실험하고자 하는 시료의 독성 함유량을 상대적으로 비교할 수도 있다. 즉, 독성물질인 Cu가 함유된 대조시료2의 경우에는 무색을 띄게 되며, 독성물질이 포함되지 않은 증류수가 함유된 대조시료1의 경우 짙은 황색계통의 색을 띄게 된다. 따라서, 실험하고자 하는 시료가 무색에 가까우면 독성이 많이 함유되었음을 알 수 있으며, 짙은 황색계통에 가깝게 되면 독성이 적게 함유되었음을 알 수 있게 된다.
도 2는 본 발명의 다른 실시예에 따른 탈수소효소를 이용한 생태독성 측정방법을 나타낸 플로우차트이다.
본 발명의 다른 실시예에 따른 탈수소효소를 이용한 생태독성 측정방법은, (a) 반응액을 준비하는 단계(S100), (b) 반응액을 1차 진탕하는 단계(S110), (c) 반응액에 INT를 첨가하는 단계(S120), (d) INT가 첨가된 반응액을 2차 진탕하는 단계(S130), (e) 원심분리관에 THF를 첨가하는 단계(S140), (f) 원심분리후 흡광도를 측정하는 단계(S150)를 포함한다.
상기 (a) 내지 (d) 단계는 본 발명의 일 실시예에서의 (a) 내지 (d) 단계와 동일하므로 그 설명을 생략하기로 한다.
상기 (e) 단계에서는 (d) 단계를 거친 각각의 원심분리관에 THF(Tetrahydro -furan;테트라히트로퓨란)을 각각 0.8ml씩 첨가하고 잘 섞어준다. 무색 투명한 액체인 THF는 INT가 함유된 반응액에 포함되어 있는 불용성 물질을 1~2분 안에 전부 녹여준다.
상기 (f) 단계에서는 (e) 단계를 거친 각각의 원심분리관을 12,000rpm으로 10분간 원심분리한 후, 원심분리관을 1회용 큐벳에 꽂아서 분광도계로 465nm에서 각 시료의 흡광도를 측정한다.
한편, 실험하고자 하는 시료에 함유되어 있는 독성물질의 양을 구하는 방법은 본 발명의 일 실시예서와 동일하므로 그 설명을 생략하기로 한다.
이상에서 설명한 바와 같이, 본 발명에 따른 바람직한 실시예들을 기초로 설명하였으나, 본 발명은 특정 실시예들에 한정되는 것은 아니며, 해당분야 통상의 지식을 가진 자가 특허청구범위 내에서 기재된 범주 내에서 변경할 수 있다.

Claims (5)

  1. (a) 대조시료가 함유된 반응액과 실험하고자 하는 시료가 함유된 반응액을 원심분리관에 각각 넣은 후 항온수조에서 진탕하면서 반응시키는 단계;
    (b) 상기 각 원심분리관을 항온수조에서 꺼낸 후 각 원심분리관에 INT를 첨가하는 단계;
    (c) INT가 첨가된 상기 각 원심분리관을 항온수조에서 진탕하면서 반응시키는 단계;
    (d) 상기 각 원심분리관을 항온수조에서 꺼낸 후 원심분리후 상등액을 제거하는 단계;
    (e) 상등액이 제거된 불용성 물질을 메탄올에 녹이는 단계; 및
    (f) 원심분리 후 상등액만 취해 분광도계로 각 시료의 흡광도를 측정 비교하는 단계를 포함하는 탈수소효소를 이용한 생태독성 측정방법.
  2. (a) 대조시료가 함유된 반응액과 실험하고자 하는 시료가 함유된 반응액을 원심분리관에 각각 넣은 후 항온수조에서 진탕하면서 반응시키는 단계;
    (b) 상기 각 원심분리관을 항온수조에서 꺼낸 후 각 원심분리관에 INT를 첨가하는 단계;
    (c) INT가 첨가된 상기 각 원심분리관을 항온수조에서 진탕하면서 반응시키는 단계;
    (d) 상기 각 원심분리관을 항온수조에서 꺼낸 후 각 원심분리관에 THF를 첨가하는 단계; 및
    (e) THF가 첨가된 상기 각 원심분리관을 원심 분리시키후 분광도계로 각 시료의 흡광도를 측정 비교하는 단계를 포함하는 탈수소효소를 이용한 생태독성 측정방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 반응액은, 균이 들어 있는 앰플의 윗부분을 자른 다음, 앰플에 포스페이트 버퍼를 첨가하여 균을 완전히 현탁시켜 현탁액을 만들고, 원심분리관에 포스페이트 버퍼를 넣은 후 원심분리관에 상기 현탁액을 첨가하여 만들어지는 것을 특징으로 하는 탈수소효소를 이용한 생태독성 측정방법.
  4. 제 1 항 또는 제 2 항에 있어서,
    분광광도계를 통한 흡광도 측정은 465nm에서 이루어지는 것을 특징으로 하는 탈수소효소를 이용한 생태독성 측정방법.
  5. 제 2 항에 있어서,
    상기 (a) 단계에서의 각 반응액은 1ml이고, 상기 (b) 단계에서의 INT량은 0.2ml이며, 상기 (d) 단계에서 첨가되는 THF의 양은 0.8ml인 것을 특징으로 하는 탈수소효소를 이용한 생태독성 측정방법.
KR1020100092256A 2010-09-20 2010-09-20 탈수소효소를 이용한 생태독성 측정방법 KR101158371B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100092256A KR101158371B1 (ko) 2010-09-20 2010-09-20 탈수소효소를 이용한 생태독성 측정방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100092256A KR101158371B1 (ko) 2010-09-20 2010-09-20 탈수소효소를 이용한 생태독성 측정방법

Publications (2)

Publication Number Publication Date
KR20120030264A KR20120030264A (ko) 2012-03-28
KR101158371B1 true KR101158371B1 (ko) 2012-06-22

Family

ID=46134382

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100092256A KR101158371B1 (ko) 2010-09-20 2010-09-20 탈수소효소를 이용한 생태독성 측정방법

Country Status (1)

Country Link
KR (1) KR101158371B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101415951B1 (ko) * 2012-06-22 2014-07-04 이손이엔엘 (주) 이오도니트로테트라졸리움-탈수소효소 저해도를 이용한 생태 독성 측정방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040107902A (ko) * 2003-06-14 2004-12-23 임상빈 감귤박으로부터 베타-크립토잔틴의 추출 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040107902A (ko) * 2003-06-14 2004-12-23 임상빈 감귤박으로부터 베타-크립토잔틴의 추출 방법

Also Published As

Publication number Publication date
KR20120030264A (ko) 2012-03-28

Similar Documents

Publication Publication Date Title
Ricco et al. Toxicity assessment of common xenobiotic compounds on municipal activated sludge: comparison between respirometry and Microtox®
Hanif et al. Chemiluminescence of creatinine/H2O2/Co2+ and its application for selective creatinine detection
CN103765211B (zh) 用于监测并控制废水处理的方法
Marie et al. Comparative evaluation of multiple methods to quantify and characterise granular anammox biomass
Gamboa et al. A renewable copper electrode as an amperometric flow detector for nitrate determination in mineral water and soft drink samples
Bonadonna et al. Innovative analytical methods for monitoring microbiological and virological water quality
Jain et al. Combined liquid phase microextraction and fiber-optics-based cuvetteless micro-spectrophotometry for sensitive determination of ammonia in water and food samples by the indophenol reaction
Cecconi et al. ISE-ammonium sensors in WRRFs: field assessment of their influencing factors
KR101158371B1 (ko) 탈수소효소를 이용한 생태독성 측정방법
CN105018606A (zh) 一种基于dna质量鉴定牛奶新鲜度的方法
CN107167443A (zh) 一种利用紫外光谱仪检测pcb77的方法
Bahramipur et al. Voltammetric determination of captopril using chlorpromazine as a homogeneous mediator
RU2476598C2 (ru) Способ количественного определения дегидрогеназной активности микроорганизмов
Amine et al. How to extend range linearity in enzyme inhibition-based biosensing assays
Khaled et al. Novel enzymatic potentiometric approaches for surfactant analysis
Merritt et al. Rapid and simple analysis of paraquat in tissue homogenate by ultra-high performance liquid chromatography
Michel et al. Rapid and simple As (III) quantification using a turbidimetric test for the monitoring of microbial arsenic bio-transformation
Mainali et al. Electroanalytical method for the detection of phenol: A brief
KR100681410B1 (ko) 해양퇴적물 및 수질 오염 진단키트 및 이를 이용한 오염진단방법
Mohammadi et al. Screening of fish tissue for methyl mercury using the enzyme invertase in a solvent interface
Arduini et al. Screening and confirmatory methods for the detection of heavy metals in foods
EP1700117B1 (en) Method and kit for pesticide analysis
CN102507797B (zh) 一种结合态微囊藻毒素的检测方法
Vyrides et al. Next generation techniques for anaerobic bioprocess optimization
CN107561064A (zh) G‑四联体dna酶在硫离子超微弱化学发光检测中的应用

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee