KR101155575B1 - A manufacturing method of optical film having planar oriented cholesteric liquid crystal layer - Google Patents

A manufacturing method of optical film having planar oriented cholesteric liquid crystal layer Download PDF

Info

Publication number
KR101155575B1
KR101155575B1 KR1020100044628A KR20100044628A KR101155575B1 KR 101155575 B1 KR101155575 B1 KR 101155575B1 KR 1020100044628 A KR1020100044628 A KR 1020100044628A KR 20100044628 A KR20100044628 A KR 20100044628A KR 101155575 B1 KR101155575 B1 KR 101155575B1
Authority
KR
South Korea
Prior art keywords
liquid crystal
cholesteric liquid
polyethylene terephthalate
film
terephthalate film
Prior art date
Application number
KR1020100044628A
Other languages
Korean (ko)
Other versions
KR20110125082A (en
Inventor
정갑하
이몽룡
김성현
송기국
Original Assignee
경희대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경희대학교 산학협력단 filed Critical 경희대학교 산학협력단
Priority to KR1020100044628A priority Critical patent/KR101155575B1/en
Publication of KR20110125082A publication Critical patent/KR20110125082A/en
Application granted granted Critical
Publication of KR101155575B1 publication Critical patent/KR101155575B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13718Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a change of the texture state of a cholesteric liquid crystal
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1396Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the liquid crystal being selectively controlled between a twisted state and a non-twisted state, e.g. TN-LC cell

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

본 발명에 따라 플래너 배향된 콜레스테릭 액정층을 구비한 광학필름을 제조하는 방법은, (S1) 무정형 폴리에틸렌테레프탈레이트 필름을 준비하는 단계; (S2) 상기 무정형 폴리에틸렌테레프탈레이트 필름을 일축 방향으로만 연신하여 일축 배향된 폴리에틸렌테레프탈레이트 필름을 제조하는 단계; 및 (S3) 상기 일축 배향된 폴리에틸렌테레프탈레이트 필름 위에 콜레스테릭 액정을 스핀코팅하는 단계를 포함한다.
본 발명에 따르면, 간단한 방법으로 미세 입자들의 발생 없이 콜레스테릭 액정의 플래너 배향을 유도할 수 있으므로, 양호한 선택반사 특성을 갖는 콜레스테릭 액정층을 구비한 광학필름을 제조할 수 있다.
Method for producing an optical film having a planar oriented cholesteric liquid crystal layer according to the present invention, (S1) preparing an amorphous polyethylene terephthalate film; (S2) preparing the uniaxially oriented polyethylene terephthalate film by stretching the amorphous polyethylene terephthalate film only in the uniaxial direction; And (S3) spin coating a cholesteric liquid crystal on the uniaxially oriented polyethylene terephthalate film.
According to the present invention, it is possible to induce the planar orientation of the cholesteric liquid crystal without the generation of fine particles in a simple manner, it is possible to manufacture an optical film having a cholesteric liquid crystal layer having good selective reflection characteristics.

Description

플래너 배향된 콜레스테릭 액정층을 구비한 광학필름의 제조방법{A manufacturing method of optical film having planar oriented cholesteric liquid crystal layer}A manufacturing method of optical film having planar oriented cholesteric liquid crystal layer

본 발명은 컬러필터 등에 사용되는 광학필름의 제조방법에 관한 것으로서, 보다 상세하게는 플래너 배향된 콜레스테릭 액정층을 구비한 광학필름의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing an optical film used for a color filter, and more particularly, to a method for manufacturing an optical film having a planar oriented cholesteric liquid crystal layer.

카이랄 네마틱 액정(chiral nematic liquid crystal)이라고도 불리우는 콜레스테릭 액정(cholesteric liquid crystal, CLC)은 콜레스테릭 메소젠(mesogen)을 갖는 구조의 액정 또는, 네마틱 액정(nematic liquid crystal : NLC)에 주기적인 나선구조를 유도하는 카이랄 성분의 물질이 더해진 액정 혼합물이다.A cholesteric liquid crystal (CLC), also called a chiral nematic liquid crystal, is a liquid crystal having a cholesteric mesogen or a nematic liquid crystal (NLC). Is a liquid crystal mixture with a chiral substance that induces a periodic spiral structure.

이러한 콜레스테릭 액정은 콜레스테릭 액정의 나선 축 방향이 배열된 형태에 따라 다음의 3가지 배향 구조로 나누어진다. 기판 표면에 대하여 콜레스테릭 액정 나선 축들이 수직으로 배열된 경우를 플래너(planar) 배향, 기판에 수평일 때를 호메오트로픽(homeotropic) 배향, 그리고 나선 축들이 랜덤(random)하게 배열된 형태를 포칼코닉(focal conic) 배향이라고 한다. The cholesteric liquid crystal is divided into the following three alignment structures according to the form in which the axial direction of the cholesteric liquid crystal is arranged. Planar orientation when the cholesteric liquid crystal spiral axes are arranged perpendicular to the substrate surface, homeotropic orientation when horizontal to the substrate, and random arrangement of the spiral axes. It is called focal conic orientation.

이 가운데 콜레스테릭 액정의 배열이 플래너 배향을 이루었을 때는 나선의 꼬인 방향과 반복구조의 피치(pitch, p)에 따라 빛을 선택적으로 반사하는 고유한 특성을 나타낸다. 플래너 배향된 콜레스테릭 액정에 입사하는 빛을 회전 방향이 서로 반대인 두 개의 원편광 빛의 합으로 표시할 때, 콜레스테릭 액정의 꼬인 구조와 같은 방향의 원편광 빛은 반사되고 반대 방향의 원편광 빛은 투과하는 특성을 가진다. 이 때 반사되는 빛의 파장 λ는 액정의 평균 굴절률(

Figure 112010030639534-pat00001
)과 피치의 곱인
Figure 112010030639534-pat00002
으로 표시되므로, 평균굴절률이 다른 재료를 사용하거나 콜레스테릭 액정의 피치를 조절하면 선택 반사되는 파장 영역을 조절할 수 있다. 이러한 콜레스테릭 액정의 선택 반사 특성은 반사형 편광판, 반사형 컬러필터 및 tunable laser 필터 등의 광학필름으로 매우 유용한 응용분야를 갖고 있다.Among them, when the arrangement of cholesteric liquid crystals has a planar orientation, it exhibits a unique characteristic of selectively reflecting light depending on the twist direction of the spiral and the pitch ( p ) of the repeating structure. When the light incident on the planar oriented cholesteric liquid crystal is represented as the sum of two circularly polarized light with opposite directions of rotation, the circularly polarized light in the same direction as the twisted structure of the cholesteric liquid crystal is reflected and Circularly polarized light has the property of transmitting. The wavelength λ of the reflected light at this time is the average refractive index of the liquid crystal (
Figure 112010030639534-pat00001
) Is the product of the pitch
Figure 112010030639534-pat00002
Since it is represented by, it is possible to adjust the wavelength range of the selective reflection by using a material having a different average refractive index or by adjusting the pitch of the cholesteric liquid crystal. The selective reflection characteristics of such cholesteric liquid crystals have very useful applications as optical films such as reflective polarizers, reflective color filters, and tunable laser filters.

종래 플래너 배향된 콜레스테릭 액정층을 구비한 광학필름의 제조방법은 폴리이미드 배향막이 도포된 고분자 필름 위에 콜레스테릭 액정을 코팅하는 방법이 이용되었다. 폴리이미드 배향막은 콜레스테릭 액정의 플래너 배향을 유도하기 위한 막으로서, 폴리이미드 용액을 고분자 필름 위에 도포한 후 고온 열처리 및 러빙 공정을 거쳐 제조된다. 따라서, 폴리이미드 배향막 형성을 위한 고온 열처리 공정 때문에 일정 시간 공정 대기 시간이 발생한다. 또한, 러빙(rubbing)과 같은 물리적인 방법으로 폴리이미드 막을 문질러 주어 액정 배향용 홈을 형성해야 하므로, 이 과정에서 다량의 미세 입자들이 발생되는 문제점을 갖는다. 러빙 공정 중 발생한 미세 입자들은 액정 배향의 결함으로 작용하여 높은 청정도를 요구하는 제조 설비에서의 공정 불량을 유발시킨다. Conventionally, a method of manufacturing an optical film having a planar oriented cholesteric liquid crystal layer is a method of coating a cholesteric liquid crystal on a polymer film coated with a polyimide alignment layer. The polyimide alignment layer is a film for inducing the planar alignment of the cholesteric liquid crystal, and is produced by applying a polyimide solution on the polymer film, followed by a high temperature heat treatment and a rubbing process. Therefore, a process waiting time for a certain time occurs because of the high temperature heat treatment process for forming the polyimide alignment layer. In addition, since the polyimide film must be rubbed to form a groove for liquid crystal alignment by a physical method such as rubbing, a large amount of fine particles are generated in this process. Fine particles generated during the rubbing process act as defects in the liquid crystal alignment, leading to process defects in manufacturing facilities requiring high cleanliness.

본 발명의 기술적 과제는 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 간단한 방법으로 미세 입자들의 발생 없이 콜레스테릭 액정의 플래너 배향을 유도한 콜레스테릭 액정층을 구비한 광학필름의 제조방법을 제공하는데 있다.The technical problem of the present invention was devised to solve the above problems, and a method of manufacturing an optical film having a cholesteric liquid crystal layer inducing a planar alignment of the cholesteric liquid crystal without generating fine particles in a simple manner. To provide.

상기와 같은 목적을 달성하기 위하여, 본 발명에 따라 플래너 배향된 콜레스테릭 액정층을 구비한 광학필름의 제조방법은,In order to achieve the above object, the manufacturing method of an optical film having a planar oriented cholesteric liquid crystal layer according to the present invention,

(S1) 무정형 폴리에틸렌테레프탈레이트 필름을 준비하는 단계;(S1) preparing an amorphous polyethylene terephthalate film;

(S2) 상기 무정형 폴리에틸렌테레프탈레이트 필름을 일축 방향으로만 연신하여 일축 배향된 폴리에틸렌테레프탈레이트 필름을 제조하는 단계; 및(S2) preparing the uniaxially oriented polyethylene terephthalate film by stretching the amorphous polyethylene terephthalate film only in the uniaxial direction; And

(S3) 상기 일축 배향된 폴리에틸렌테레프탈레이트 필름 위에 콜레스테릭 액정을 스핀코팅하는 단계를 포함한다.(S3) spin-coating a cholesteric liquid crystal on the uniaxially oriented polyethylene terephthalate film.

본 발명의 광학필름 제조방법에 있어서, 상기 일축 배향된 폴리에틸렌테레프탈레이트 필름의 연신율은 50% 이상인 것이 바람직하다. In the optical film production method of the present invention, the elongation of the uniaxially oriented polyethylene terephthalate film is preferably 50% or more.

본 발명의 제조방법은 일축으로만 배향된 폴리에틸렌테레프탈레이트 필름을 콜레스테릭 액정의 플래너 배향에 이용한다. 이에 따라, 종래의 폴리이미드 배향막 형성시 필요한 열처리 공정이 생략되어 생산성 향상과 더불어 폴이이미드 배향막이 코팅되는 고분자 필름의 열 손상을 막을 수 있다. The production method of the present invention uses a uniaxially oriented polyethylene terephthalate film for the planar alignment of the cholesteric liquid crystal. Accordingly, the heat treatment process required for forming the conventional polyimide alignment layer may be omitted, thereby improving productivity and preventing thermal damage of the polymer film coated with the polyimide alignment layer.

또한, 폴리이미드 막의 배향홈 형성을 위한 러빙 공정이 생략되므로, 이로 인해 발생하는 미세 입자들에 의한 오염을 원천적으로 제거할 수 있다. 따라서, 콜레스테릭 액정의 플래너 배향을 양호하게 유도할 수 있으므로, 선택반사 특성이 우수한 콜레스테릭 액정층을 구비한 광학필름을 제조할 수 있다. In addition, since the rubbing process for forming the alignment groove of the polyimide film is omitted, it is possible to remove the contamination by the fine particles generated by this. Therefore, since the planar orientation of a cholesteric liquid crystal can be induced favorably, the optical film provided with the cholesteric liquid crystal layer excellent in the selective reflection characteristic can be manufactured.

도 1은 본 발명의 제조방법에 따라 형성된 광학필름의 단면도이다.
도 2는 본 발명의 실시예에서 사용된, 무정형 폴리에틸렌테레프탈레이트 필름(PET)을 일축 방향으로 연신하는 연신 장치의 개략적인 단면도 및 평면도이다.
도 3은 본 발명의 실시예 및 비교예에 따라 제조한 광학필름의 폴리에틸렌테레프탈레이트 필름의 연신율 변화에 따른 E7 액정의 흡수피크 세기 변화를 측정한 그래프이다.
도 4는 본 발명의 실시예 및 비교예에 따라 제조한 광학필름의 폴리에틸렌테레프탈레이트 필름의 연신율 변화에 따른 반사율 변화를 측정한 그래프이다.
1 is a cross-sectional view of an optical film formed according to the manufacturing method of the present invention.
2 is a schematic cross-sectional view and a plan view of a stretching apparatus for stretching an amorphous polyethylene terephthalate film (PET) in a uniaxial direction, used in an embodiment of the present invention.
Figure 3 is a graph measuring the change in absorption peak intensity of the E7 liquid crystals according to the change in elongation of the polyethylene terephthalate film of the optical film prepared according to the Examples and Comparative Examples of the present invention.
Figure 4 is a graph measuring the change in reflectance according to the change in elongation of the polyethylene terephthalate film of the optical film prepared according to Examples and Comparative Examples of the present invention.

이하, 본 발명의 플래너 배향된 콜레스테릭 액정층을 구비한 광학필름의 제조방법에 대하여 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. Hereinafter, a method of manufacturing an optical film having a planar oriented cholesteric liquid crystal layer of the present invention will be described in detail. Prior to this, terms or words used in the specification and claims should not be construed as having a conventional or dictionary meaning, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.

먼저 무정형(amorphous) 폴리에틸렌테레프탈레이트 필름을 준비한다(S1 단계). 폴리에틸렌테레프탈레이트 고분자 사슬은 후술하는 바와 같이 콜레스테릭 액정 분자들과 반 데르 발스 힘과 같은 상호작용에 의해서 콜레스테릭 액정의 플래너 배향에 기여한다. 폴리에틸렌테레프탈레이트 필름은 무정형이어야 한다. 이는 후술하는 연신 공정을 통해 폴리에틸렌테레프탈레이트 고분자 쇄가 연신 방향으로 일축 배열해야만 콜레스테릭 액정의 플래너 배향이 양호하게 되는데, 결정형 폴리에틸렌테레프탈레이트 필름을 사용하게 되면, 폴리에틸렌테레프탈레이트 고분자 쇄의 배향성이 불량하게 되어 본 발명의 목적을 달성할 수 없다.First, prepare an amorphous polyethylene terephthalate film (S1 step). The polyethylene terephthalate polymer chain contributes to the planar orientation of the cholesteric liquid crystal by interactions such as van der Waals forces with the cholesteric liquid crystal molecules as described below. The polyethylene terephthalate film should be amorphous. The planar orientation of the cholesteric liquid crystal is good only when the polyethylene terephthalate polymer chains are uniaxially arranged in the stretching direction through the stretching process described later. It is not possible to achieve the object of the present invention.

이어서, 상기 무정형 폴리에틸렌테레프탈레이트 필름을 일축 방향으로만 연신하여 일축 배향된 폴리에틸렌테레프탈레이트 필름을 제조한다(S2 단계). 일축 배향된 폴리에틸렌테레프탈레이트 필름의 계면에서 다음 공정으로 스핀코팅된 콜레스테릭 액정들이 폴리에틸렌테레프탈레이트 필름의 연신방향을 따라서 늘어서게 된다. 일축 배향된 폴리에틸렌테레프탈레이트 필름의 연신율은 50% 이상인 것이 콜레스테릭 액정의 플래너 배향도 향상에 바람직하다. 무정형 폴리에틸렌테레프탈레이트 필름의 연신은 통상적인 연신 장치 및 공정을 이용하여 수행할 수 있는데, 충분한 연신을 위하여 무정형 폴리에틸렌테레프탈레이트 필름을 폴리에틸렌테레프탈레이트의 유리전이온도인 75℃ 이상, 예를 들어 80℃ 정도에서 어닐링 한 후, 연신을 수행하는 것이 바람직하다.Subsequently, the amorphous polyethylene terephthalate film is stretched only in the uniaxial direction to prepare a uniaxially oriented polyethylene terephthalate film (step S2). At the interface of the uniaxially oriented polyethylene terephthalate film, cholesteric liquid crystals spin-coated in the following process are lined up along the stretching direction of the polyethylene terephthalate film. It is preferable for the elongation of the uniaxially oriented polyethylene terephthalate film to be 50% or more in order to improve the planar orientation of a cholesteric liquid crystal. Stretching of the amorphous polyethylene terephthalate film can be carried out using a conventional stretching apparatus and process, in order to achieve sufficient stretching, the amorphous polyethylene terephthalate film is 75 ℃ or more, for example, about 80 ℃ the glass transition temperature of polyethylene terephthalate After annealing at, it is preferred to carry out stretching.

그런 다음, 일축 배향된 폴리에틸렌테레프탈레이트 필름 위에 콜레스테릭 액정을 스핀코팅한다(S3 단계). 콜레스테릭 액정에는 필요에 따라 용매, 광개시제, 레벨링제 등을 더 첨가할 수 있음은 물론이다. 스핀코팅에 의해 콜레스테릭 액정이 필름 위에 균일하게 도포되며, 도포된 콜레스테릭 액정층은 다음과 같은 작용에 따라 콜레스테릭 액정이 플래너 배향된다.Then, spin-coating the cholesteric liquid crystal on the uniaxially oriented polyethylene terephthalate film (step S3). Of course, the cholesteric liquid crystal can be further added to the solvent, photoinitiator, leveling agent and the like as necessary. The cholesteric liquid crystal is uniformly coated on the film by spin coating, and the applied cholesteric liquid crystal layer has the cholesteric liquid crystal oriented in a planar orientation as follows.

일축 배향된 폴리에틸렌테레프탈레이트 필름의 계면에서 콜레스테릭 액정들은 반 데르 발스 힘과 같은 분자 사이의 상호작용에 의해서 폴리에틸렌테레프탈레이트 필름의 연신방향을 따라서 늘어서게 된다. 즉, 콜레스테릭 액정 분자들과 폴리에틸렌테레프탈레이트 고분자 사슬의 상호작용에 따라, 콜레스테릭 액정 분자들은 폴리에틸렌테레프탈레이트 고분자의 배향 방향과 동일한 평면방향으로 늘어서게 된다. 한편, 폴리에틸렌테레프탈레이트 필름의 계면에서 떨어져 있는 액정분자들은 나선구조를 유도하는 카이랄 성분과 액정 분자들의 분자간 상호작용에 의해서 폴리에틸렌테레프탈레이트 필름에 수직한 방향의 나선축을 따라 액정 분자들이 배열되어, 플래너 배향이 유도된다.The cholesteric liquid crystals at the interface of the uniaxially oriented polyethylene terephthalate film are lined up along the stretching direction of the polyethylene terephthalate film by interaction between molecules such as van der Waals forces. That is, according to the interaction between the cholesteric liquid crystal molecules and the polyethylene terephthalate polymer chain, the cholesteric liquid crystal molecules are lined up in the same plane direction as that of the polyethylene terephthalate polymer. On the other hand, the liquid crystal molecules that are separated from the interface of the polyethylene terephthalate film is arranged by the liquid crystal molecules are arranged along the helix axis of the direction perpendicular to the polyethylene terephthalate film by the intermolecular interaction of the chiral component and the liquid crystal molecules inducing a spiral structure, The orientation is derived.

이렇게 플래너 배향이 유도된 콜레스테릭 액정층은 필요에 따라 건조, 광조사 등의 공정을 거쳐 최종적인 광학필름으로 제조될 수 있다.The planar orientation-induced cholesteric liquid crystal layer can be manufactured into a final optical film through a process such as drying, light irradiation, if necessary.

도 1에 도시된 바와 같이, 이와 같은 공정에 따라 제조된 광학필름(10)은 일축 배향된 폴리에틸렌테레프탈레이트 필름(12) 위에 플래너 배향된 콜레스테릭 액정층(11)을 구비하게 된다. 이러한 광학필름은 컬러필터, 편광판 등의 광학필름으로서 유용하게 사용될 수 있다.
As shown in FIG. 1, the optical film 10 manufactured according to this process includes a planar oriented cholesteric liquid crystal layer 11 on the uniaxially oriented polyethylene terephthalate film 12. Such an optical film can be usefully used as an optical film such as a color filter and a polarizing plate.

이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것으로 해석되어져서는 안 된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되어 지는 것이다.
Hereinafter, examples will be described in detail to help understand the present invention. However, embodiments according to the present invention can be modified in many different forms, the scope of the invention should not be construed as limited to the following examples. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

실시예Example

연신하지 않은 무정형 폴리에틸렌테레프탈레이트(PET) 필름을 도그본(dog-bone) 모양으로 절단하였다. 도 2에 도시된 단면도 및 평면도와 같이, 2개의 고정틀을 구비한 연신기에 PET 필름을 고정시킨 다음, 오븐에서 80℃에서 5분간 어닐링(annealing)한 후 11mm/min의 속도로 연신율을 50%, 100% 및 200%로 각각 조절하여 일축 연신하였다. 일축 연신이 완료된 PET 필름의 중간 부분을 잘라내어 유리기판 위에 붙인 다음, 콜레스테릭 액정 혼합물을 상온에서 500rpm으로 15초 동안 스핀코팅하여 광학필름을 제조하였다. The unstretched amorphous polyethylene terephthalate (PET) film was cut into dog-bone shapes. As shown in the cross-sectional view and the plan view shown in Figure 2, the PET film is fixed to a drawing machine having two fixing frames, and after annealing (annealing) at 80 ℃ for 5 minutes in an oven 50% elongation at a rate of 11mm / min, The uniaxial stretching was performed at 100% and 200%, respectively. The middle portion of the uniaxially stretched PET film was cut out and pasted onto a glass substrate, and then the cholesteric liquid crystal mixture was spin coated at 500 rpm for 15 seconds at room temperature to prepare an optical film.

사용한 콜레스테릭 액정 혼합물은 Merck사의 네마틱 액정인 E7과 카이랄 도판트인 BASF사의 R1011을 95:5의 비율(wt%)로 70℃에서 혼합하여 사용하였다. The cholesteric liquid crystal mixture used was mixed with E7, a nematic liquid crystal from Merck, and R1011, from BASF, a chiral dopant, in a ratio of 95: 5 (wt%) at 70 ° C.

비교예Comparative example

연신하지 않은 무정형 폴리에틸렌테레프탈레이트(PET) 필름 위에 콜레스테릭 액정 혼합물을 스핀코팅한 것을 제외하고는, 실시예와 동일한 방법으로 광학필름을 제조하였다.
An optical film was prepared in the same manner as in Example, except that the cholesteric liquid crystal mixture was spin coated on an unstretched amorphous polyethylene terephthalate (PET) film.

PET 필름의 연신율에 따른 액정의 배향 분포 측정Measurement of Orientation Distribution of Liquid Crystal According to Elongation of PET Film

PET 필름의 연신율에 따른 콜레스테릭 액정의 플레너 배향 정도를 C≡N 그룹의 흡수피크의 변화를 통해 측정하였다.  The degree of planar orientation of the cholesteric liquid crystals according to the elongation of the PET film was measured through the change in absorption peak of the C≡N group.

사용된 E7 네마틱 액정은 액정 분자의 장축 방향과 평행한 방향으로 시아노기(C≡N)가 붙어있으므로, 2226cm-1에서 나타나는 시아노기의 IR 흡수피크가 액정 director의 측정에 많이 사용된다. 진동운동의 흡수피크 세기는

Figure 112010030639534-pat00003
로 나타낼 수 있는데, M은 분자 진동운동의 transition dipole, E는 IR beam의 electric field이며, α는 electric field 와 transition dipole moment가 이루는 각을 의미한다. 콜레스테릭 액정 셀을 FTIR spectrometer로 측정할 때 IR beam은 항상 기판에 수평하게 입사되므로 콜레스테릭 액정의 배열 상태에 따라 IR beam의 electric field와 C≡N 그룹 진동운동 dipole moment가 이루는 각이 달라진다. 플래너 배향된 콜레스테릭 액정은 기판과 E7 액정 축이 수평을 이루어 α값이 0°에 근접하므로 흡수피크는 최대값을 가지게 되며, 호메오트로픽 배열인 경우 α값이 90°이어서 흡수피크의 세기가 최소값을 갖게 된다. 따라서 E7 액정의 시아노기 신축운동 2226cm-1 흡수피크의 세기 변화를 통해 액정의 배향 상태를 확인할 수 있다.Since the E7 nematic liquid crystal used has a cyano group (C≡N) attached in a direction parallel to the long axis direction of the liquid crystal molecules, the IR absorption peak of the cyano group represented by 2226 cm −1 is used for the measurement of the liquid crystal director. Absorption peak intensity of vibration
Figure 112010030639534-pat00003
Where M is the transition dipole of molecular vibration, E is the electric field of the IR beam, and α is the angle between the electric field and the transition dipole moment. When the cholesteric liquid crystal cell is measured by FTIR spectrometer, the IR beam is always incident horizontally on the substrate, so the angle between the electric field of the cholesteric liquid crystal and the C≡N group vibration motion dipole moment depends on the arrangement of the cholesteric liquid crystal. . The planar oriented cholesteric liquid crystal has a maximum absorption value because the substrate and the E7 liquid crystal axis are horizontal and the α value is close to 0 °. In the homeotropic array, the α value is 90 ° and the absorption peak intensity is increased. Will have the minimum value. Therefore, the alignment state of the liquid crystal may be confirmed by changing the intensity of the cyano group stretching movement 2226 cm −1 absorption peak of the E7 liquid crystal.

본 발명의 콜레스테릭 액정의 플래너 배향에 따른 농도 분포를 측정하기 위해, IR 스펙트럼을 얻을 수 있는 IR 테스트를 Perkin-Elmer system 2000 FTIR spectrometer를 사용하여 수행하였다.  In order to measure the concentration distribution according to the planar orientation of the cholesteric liquid crystal of the present invention, an IR test for obtaining an IR spectrum was performed using a Perkin-Elmer system 2000 FTIR spectrometer.

도 3은 연신하지 않는 비교예의 PET 필름(none) 위에서의 콜레스테릭 액정의 플래너 배향과 3가지 연신율(50%, 100%, 200%)로 연신한 PET 필름 위에서의 콜레스테릭 액정의 플래너 배향 변화를 E7의 시아노기 흡수피크의 세기 변화로 나타낸 그래프이다. 무연신된 PET 필름 위에서의 C≡N의 흡수피크인 2226cm-1의 세기는 0.25로 나타났지만, 연신된 PET 필름 위에서의 2226cm-1의 세기는 연신율이 커짐에 따라 함께 증가함을 확인할 수 있다. 특히, 연신율이 200%인 PET 필름 위의 콜레스테릭 액정의 C≡N 흡수피크의 세기는 0.37까지 증가하여 플래너 배향이 매우 양호함을 확인할 수 있다.
FIG. 3 shows the planar orientation of cholesteric liquid crystals on a non-stretched PET film (none) and the planar orientation of cholesteric liquid crystals on a stretched PET film with three elongations (50%, 100%, 200%). The change is a graph showing the change in intensity of the cyano group absorption peak of E7. The intensity of 2226 cm -1 , the absorption peak of C≡N on the unstretched PET film, was found to be 0.25, but the intensity of 2226 cm -1 on the stretched PET film was increased with increasing elongation. In particular, the intensity of the C≡N absorption peak of the cholesteric liquid crystal on the PET film having an elongation of 200% increases to 0.37, indicating that the planar orientation is very good.

PET 필름의 연신율에 따른 반사광 효율 측정Measurement of Reflected Light Efficiency According to Elongation of PET Film

도 4에 도시된 바와 같이, 무연신된 PET 필름 위에 형성된 콜레스테릭 액정층은 선택 반사가 일어나지 않아 반사율이 나타나지 않았으며, 연신된 PET 필름 위에 형성된 콜레스테릭 액정층의 선택 반사율은 연신율이 커짐에 따라 증가함을 확인할 수 있다. 특히, 연신율이 200%인 PET 필름 위의 콜레스테릭 액정층은 약 36%의 선택 반사율을 나타냄을 확인할 수 있다. As shown in FIG. 4, the cholesteric liquid crystal layer formed on the unstretched PET film did not exhibit selective reflection because no selective reflection occurred, and the selective reflectance of the cholesteric liquid crystal layer formed on the stretched PET film was increased in elongation. It can be seen that increases according to. In particular, it can be seen that the cholesteric liquid crystal layer on the PET film having an elongation of 200% exhibits a selective reflectance of about 36%.

Claims (2)

(S1) 무정형 폴리에틸렌테레프탈레이트 필름을 준비하는 단계;
(S2) 상기 무정형 폴리에틸렌테레프탈레이트 필름을 일축 방향으로만 연신하여 일축 배향된 폴리에틸렌테레프탈레이트 필름을 제조하는 단계; 및
(S3) 상기 일축 배향된 폴리에틸렌테레프탈레이트 필름 위에, 콜레스테릭 메소겐을 갖는 구조의 액정 또는 네마틱 액정에 주기적인 나선구조를 유도하는 카이랄 성분의 물질이 더해진 콜레스테릭 액정을 스핀코팅하는 단계를 포함하는,
플래너 배향된 콜레스테릭 액정층을 구비한 광학필름의 제조방법.
(S1) preparing an amorphous polyethylene terephthalate film;
(S2) preparing the uniaxially oriented polyethylene terephthalate film by stretching the amorphous polyethylene terephthalate film only in the uniaxial direction; And
(S3) Spin-coating a cholesteric liquid crystal added with a chiral component to induce a periodic spiral structure to the liquid crystal or nematic liquid crystal having a cholesteric mesogen on the uniaxially oriented polyethylene terephthalate film Comprising the steps,
A method for producing an optical film having a planar oriented cholesteric liquid crystal layer.
제1항에 있어서, 상기 일축 배향된 폴리에틸렌테레프탈레이트 필름의 연신율이 50% 이상인 것을 특징으로 하는, 플래너 배향된 콜레스테릭 액정층을 구비한 광학필름의 제조방법. The method according to claim 1, wherein the elongation of the uniaxially oriented polyethylene terephthalate film is 50% or more.
KR1020100044628A 2010-05-12 2010-05-12 A manufacturing method of optical film having planar oriented cholesteric liquid crystal layer KR101155575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100044628A KR101155575B1 (en) 2010-05-12 2010-05-12 A manufacturing method of optical film having planar oriented cholesteric liquid crystal layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100044628A KR101155575B1 (en) 2010-05-12 2010-05-12 A manufacturing method of optical film having planar oriented cholesteric liquid crystal layer

Publications (2)

Publication Number Publication Date
KR20110125082A KR20110125082A (en) 2011-11-18
KR101155575B1 true KR101155575B1 (en) 2012-06-19

Family

ID=45394664

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100044628A KR101155575B1 (en) 2010-05-12 2010-05-12 A manufacturing method of optical film having planar oriented cholesteric liquid crystal layer

Country Status (1)

Country Link
KR (1) KR101155575B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020036311A (en) * 2000-11-09 2002-05-16 권문구 Fabrication of Quarter-wave Films Using a Liquid Crystal and Application to the CLC Polarizer
KR20030032749A (en) * 2001-10-19 2003-04-26 엘지전선 주식회사 Fabrication Method Of A Retardation Film Using Nematic Liquid Crystals And A Retardation Film Thereby
KR20060092048A (en) * 2005-02-16 2006-08-22 주식회사 엘지화학 A retardation film having a homeotropic alignment liquid crystal film and method for preparing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020036311A (en) * 2000-11-09 2002-05-16 권문구 Fabrication of Quarter-wave Films Using a Liquid Crystal and Application to the CLC Polarizer
KR20030032749A (en) * 2001-10-19 2003-04-26 엘지전선 주식회사 Fabrication Method Of A Retardation Film Using Nematic Liquid Crystals And A Retardation Film Thereby
KR20060092048A (en) * 2005-02-16 2006-08-22 주식회사 엘지화학 A retardation film having a homeotropic alignment liquid crystal film and method for preparing the same

Also Published As

Publication number Publication date
KR20110125082A (en) 2011-11-18

Similar Documents

Publication Publication Date Title
Zhang et al. 4D chiral photonic actuators with switchable hyper‐reflectivity
KR101593796B1 (en) Liquid crystal display device and manufacturing method thereof
CN104046368A (en) Liquid crystal thin film and preparation method thereof, temperature response apparatus and circular polarizer
JP3850554B2 (en) Manufacturing method of multi-domain liquid crystal display device
WO2011007669A1 (en) Liquid crystal display device having phase difference film comprising liquid-crystalline polyimide having photoreactive group
CN102749669A (en) Reflecting polaroid, method for producing same and liquid crystal display device
Nagai et al. Thermal response of cholesteric liquid crystal elastomers
KR20150013033A (en) Stabilized photo-alignment layer for liquid crystal
KR102237291B1 (en) Composition, polymer, liquid crystal aligning agent, liquid crystal aligning film, retardation plate, polarizing plate, manufacturing method of liquid crystal aligning film, and liquid crystal element
US9588391B2 (en) Liquid crystal panel, display device, and process for manufacturing liquid crystal panel
JP7147766B2 (en) Optical film and image display device
CN110724218B (en) Method for preparing single-layer cholesteric liquid crystal film by using washout/refill technology and application
TWI715183B (en) Transmittance-variable device and eyewear comprising the same
WO2012121174A1 (en) Liquid crystal display panel, liquid crystal display device, and liquid crystal display cell
Ruslim et al. Photocontrolled alignment of chiral nematic liquid crystals
JP2013125244A (en) Liquid crystal display device and method of manufacturing the same
Lim et al. Manipulation of structural colors in liquid-crystal helical structures deformed by surface controls
KR101155575B1 (en) A manufacturing method of optical film having planar oriented cholesteric liquid crystal layer
KR100831961B1 (en) Optical film using the reactive mesogen and manufacturing of the same
Teng et al. Flexible homeotropic liquid crystal displays using low-glass-transition-temperature poly (ethylene terephthalate) substrates
JPH11133431A (en) Alignment method of high-polymer thin film, alignment method of liquid crystal using high-polymer alignment layer and liquid crystal display element including high-polymer alignment layer
US8947620B2 (en) Broadband cholesteric liquid crystal film, method for fabricating the same, polarization device, and high light efficiency liquid crystal display employing the same
Boniello et al. Making Smectic Defect Patterns Electrically Reversible and Dynamically Tunable Using In Situ Polymer‐Templated Nematic Liquid Crystals
Jeng et al. Controlling the alignment of polyimide for liquid crystal devices
TWI588575B (en) Liquid crystal structure and its making method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160518

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee