KR20020036311A - Fabrication of Quarter-wave Films Using a Liquid Crystal and Application to the CLC Polarizer - Google Patents

Fabrication of Quarter-wave Films Using a Liquid Crystal and Application to the CLC Polarizer Download PDF

Info

Publication number
KR20020036311A
KR20020036311A KR1020000066447A KR20000066447A KR20020036311A KR 20020036311 A KR20020036311 A KR 20020036311A KR 1020000066447 A KR1020000066447 A KR 1020000066447A KR 20000066447 A KR20000066447 A KR 20000066447A KR 20020036311 A KR20020036311 A KR 20020036311A
Authority
KR
South Korea
Prior art keywords
film
liquid crystal
nematic liquid
birefringent
alignment
Prior art date
Application number
KR1020000066447A
Other languages
Korean (ko)
Other versions
KR100378529B1 (en
Inventor
류기한
김성태
김인선
황희남
김양국
박종락
Original Assignee
권문구
엘지전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 권문구, 엘지전선 주식회사 filed Critical 권문구
Priority to KR10-2000-0066447A priority Critical patent/KR100378529B1/en
Publication of KR20020036311A publication Critical patent/KR20020036311A/en
Application granted granted Critical
Publication of KR100378529B1 publication Critical patent/KR100378529B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133543Cholesteric polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Polarising Elements (AREA)

Abstract

PURPOSE: A method of fabricating a birefringence film using nematic liquid crystal and a cholesteric liquid crystal polarizer formed using the fabricating method are provided to mass-product films having desired degree of retardation through sequential processes. CONSTITUTION: A birefringence film is fabricated in such a manner that nematic liquid crystal(20) is coated in a desired thickness using a film on which an alignment film is coated. The nematic liquid crystal is aligned and the aligned state is fixed by irradiating ultra-violet rays on the coated nematic liquid crystal. The alignment film is coated on a polymer film such as PET or TAC in order to align the nematic liquid crystal.

Description

네마틱 액정을 이용한 복굴절 필름 제작방법 및 이를 이용한 콜레스테릭 액정 편광막{Fabrication of Quarter-wave Films Using a Liquid Crystal and Application to the CLC Polarizer}Fabrication method of birefringent film using nematic liquid crystal and cholesteric liquid crystal polarizing film using the same {Fabrication of Quarter-wave Films Using a Liquid Crystal and Application to the CLC Polarizer}

본 발명은 네마틱 액정을 이용한 복굴절 필름 제작방법 및 이를 이용한 콜레스테릭 액정 편광막에 관한 것으로, 특히 배향막을 코팅한 PET 필름을 이용하여 경화성 네마틱 액정을 원하는 두께로 코팅하고 배향시킨후 UV광조사에 의해 배상상태를 고정시킴으로서 수평 배향에서부터 수직배향에 이르기까지 다양한 필름을 제조토록 하며, 이를 콜레스테릭 액정 편광막에 적용하여 각도에 따른 급격한 휘도 감소 및 색상의 변화를 보정해 줄 수 있도록 하는 것을 특징으로 하는 네마틱 액정을 이용한 복굴절 필름 제작방법 및 이를 이용한 콜레스테릭 액정 편광막에 관한 것이다.The present invention relates to a method for producing a birefringent film using a nematic liquid crystal and a cholesteric liquid crystal polarizing film using the same, in particular using a PET film coated with an alignment film, the curable nematic liquid crystal is coated and oriented to a desired thickness and then UV light By fixing the reparation state by irradiation, it is possible to manufacture a variety of films from the horizontal orientation to the vertical orientation, and apply it to the cholesteric liquid crystal polarizing film to correct the sudden decrease in brightness and color change according to the angle It relates to a birefringent film production method using a nematic liquid crystal and a cholesteric liquid crystal polarizing film using the same.

일반적으로, 복굴절 retardation 필름은 액정표시장치(LCD)에서 시야각의 보상과 특히 STN mode로 구동되는 LCD의 색을 보상해 주기 위해서 사용되었다.In general, birefringent retardation films have been used to compensate for viewing angles in liquid crystal displays (LCDs) and in particular for the color of LCDs driven in STN mode.

종래의 많은 복굴절 필름들은 US5136635 특허에서처럼 고분자 필름들을 1축 또는 2축으로 연신하여 원하는 복굴절률(birefringence)을 얻을 수 있었다.Many conventional birefringent films can be stretched uniaxially or biaxially to achieve the desired birefringence, as in the US5136635 patent.

또한 US5743980 특허에서는 폴리카보네이트(PC), 폴리비닐 알코올(PVA), 폴로스티렌, 폴리메틸메타크릴레이트와 같은 고분자 물질를 알킬(Alkyle)에 녹인 후 유리판 위에 스핀 코팅을 하고, 열을 가하여 분자를 배열시키고 건조시켜서 retar dation필름을 만들었다.In addition, the US5743980 patent discloses polymer materials such as polycarbonate (PC), polyvinyl alcohol (PVA), polystyrene, and polymethyl methacrylate dissolved in alkyl (Alkyle), followed by spin coating on a glass plate, and heating to arrange molecules. Drying made a retar dation film.

그러나, 이러한 방법은 원하는 retardation 값을 쉽게 얻기가 힘들뿐 아니라연속공정에 의한 대량생산을 하기가 힘들다. 그리고, 물질의 특성상 필름의 두께 방향으로 굴절률이 더 큰 retaration 필름의 제작은 불가능한 문제점이 있다.However, this method is not only difficult to obtain the desired retardation value, but also difficult to mass production by a continuous process. In addition, there is a problem in that it is impossible to manufacture a retaration film having a larger refractive index in the thickness direction of the film due to the properties of the material.

한편, US5853801특허에서는 유기 용제에 녹인 디스코틱 액정을 배향막층을 코팅한 투명한 플라스틱 필름위에 연속적으로 코팅하고 용매를 건조시켜서 디스코틱 액정이 배향막의 정해진 방향으로 정렬해서 고착됨으로써 retardation 필름이 만들어지도록 하고 있다.On the other hand, in the US5853801 patent, a discotic liquid crystal dissolved in an organic solvent is continuously coated on a transparent plastic film coated with an alignment layer, and then the solvent is dried, whereby the discotic liquid crystal is aligned and fixed in a predetermined direction of the alignment layer to form a retardation film. .

그러나, US5853801 특허에서 처럼 디스코틱 액정을 배향막이 코팅된 PET필름에 연속공정으로 코팅하는 경우는 디스코틱 액정의 특성상 positive retardation을 갖는 필름을 제작하기가 불가능한 문제점이 있었다.However, when the discotic liquid crystal is coated on the alignment film coated PET film in a continuous process as in the US5853801 patent, there is a problem in that it is impossible to produce a film having positive retardation due to the characteristics of the discotic liquid crystal.

본 발명은 상기와 같은 문제점을 해결코자 하는 것으로,The present invention is to solve the above problems,

플라스틱 기재 위에도 코팅이 가능한 광배향물질을 사용하여 PET필름 표면에 박막 코팅하고, 배향막의 배향각도를 UV광조사로 조정하여 그 위에 네마틱 액정을 배향막과 같은 방향으로 배열시키고 코팅 두께클 조절함으로써 원하는 크기의 retardation을 갖는 필름을 연속 공정으로 대량 생산할 수 있는 방법을 제공하는데 그 목적이 있다.Using a photo-alignment material that can be coated on a plastic substrate, a thin film is coated on the surface of the PET film, and the alignment angle of the alignment film is adjusted by UV light irradiation, whereby nematic liquid crystals are arranged in the same direction as the alignment film and the coating thickness is adjusted. It is an object of the present invention to provide a method for mass production of a film having a retardation of a size in a continuous process.

또한, 본 발명을 적용함에 있어서 retardation 필름 재료로 네마틱 액정을 사용하기 때문에 배향각도에 따른 필름의 굴절률 분포를 쉽게 알 수가 있는 특징을 제공한다.In addition, since the nematic liquid crystal is used as the retardation film material in applying the present invention, the refractive index distribution of the film according to the orientation angle is easily provided.

즉, 네마틱 액정을 적용하는 본 발명을 이용하게 되면, 모든 네마틱 액정이같은 방향으로 정렬을 하면 굴절률은 액정분자의 굴절률과 같은 값이 되므로 배향막의 각도와 필름의 두께만 설계하면 필요한 retardation을 갖는 필름을 만들 수가 있게 되는 것이다.In other words, when the nematic liquid crystal is applied to the present invention, if all the nematic liquid crystals are aligned in the same direction, the refractive index becomes the same as the refractive index of the liquid crystal molecules. Therefore, only the angle of the alignment layer and the thickness of the film are designed to have the necessary retardation. You will be able to make a film.

또한 플라스틱 필름을 사용하는 종래의 retardation 필름에 비해서 같은 retardation을 가지면서도 더 얇은 필름을 제작할 수 있는 장점을 더 제공한다.In addition, compared to conventional retardation film using a plastic film provides the advantage of producing a thinner film with the same retardation.

도 1은 액정의 배향각도에 따른 필름 Nz값 변화도.1 is a film Nz value change in accordance with the alignment angle of the liquid crystal.

도 2a는 PET 필름 위에서 drawing 방향으로 수평 배향된 네마틱 액정필름 구조도.Figure 2a is a structure of the nematic liquid crystal film oriented horizontally in the drawing direction on the PET film.

도 2b는 수직 배향막이 코팅된 PET 필름 위에 수직 배향된 네마틱 액정필름 구조도.Figure 2b is a structure of the nematic liquid crystal film vertically oriented on the PET film coated with a vertical alignment layer.

도 2c는 기울어진 배향된 네마틱 액정 필름 구조도.2C is a tilted oriented nematic liquid crystal film structure diagram.

도 3a는 네마틱 액정으로 만은 QWP를 실제 CLC 폴로라이저에 적용한 예시도.Figure 3a is an illustration of applying a QWP made of nematic liquid crystal to the actual CLC poloiser.

도 3b는 네마틱 액정으로 만은 QWP와 보상필름을 실제 CLC 폴로라이저에 적용한 예시도.Figure 3b is an illustration of applying a QWP and compensation film made of nematic liquid crystal to the actual CLC poloiser.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10: PET 필름 20: 네마틱 액정10: PET film 20: nematic liquid crystal

30: CLC 필름 40: LC QWF30: CLC film 40: LC QWF

50: 리니어 폴로라이저50: linear poloizer

이하에서 도면을 통해 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명에서는 배향막을 코팅한 PET필름 위에 네마틱 액정을 코팅하고 배향시켜서 원하는 위상차 필름을 연속적으로 제조하는 방법과 제조된 위상차 필름을 CLC Polarizer를 제작할때 λ/4 필름으로 사용하는 것에 관한 기술이다.The present invention relates to a method of continuously producing a desired retardation film by coating and orienting nematic liquid crystals on an alignment film coated PET film, and a technique of using the prepared retardation film as a λ / 4 film when manufacturing a CLC polarizer.

참고로 본 발명에 적용되는 네마틱 액정에 대해 설명하기로 한다.For reference, a nematic liquid crystal applied to the present invention will be described.

일반적으로 네마틱 액정분자는 막대모양 형태로써 막대방향의 굴절률이 원통방향의 굴절률 보다 큰 값을 갖는 양의 복굴절률 물질이다.In general, nematic liquid crystal molecules are rod-shaped and are birefringent materials having a positive refractive index in the rod direction than the refractive index in the cylindrical direction.

상기 네마틱 액정 분자는 액정분자를 어떻게 배열을 시키느냐에 따라서 전체 시스템의 굴절률 분포는 달라지게 되며, 여러 가지로 응용이 가능해진다.The nematic liquid crystal molecules have different refractive index distributions of the entire system depending on how the liquid crystal molecules are arranged, and various applications are possible.

그 예로 액정분자의 막대 방향을 모두 같은 방향으로 면에 평행하게 배열을 시키면 nx > ny = nz 인 위상차필름를 만들 수 있으며, 액정 분자의 막대 방향이 서로 랜덤(random)하게 면에 평행하게 배열하게 되면 nx = ny > nz 위상차 필름을 만들 수 있다.For example, if the bar directions of liquid crystal molecules are all aligned in the same direction and parallel to the plane, a retardation film having nx> ny = nz can be made. If the bar directions of the liquid crystal molecules are randomly arranged in parallel to the plane, nx = ny> nz A retardation film can be made.

그리고 액정 문자의 막대 방향이 면에 수직하게 배열하게 되면 nx = ny < nz인 수직 배향위상차 필름의 제작이 가능하다.And when the bar direction of the liquid crystal character is arranged perpendicular to the plane it is possible to produce a vertical alignment phase difference film of nx = ny <nz.

또한 액정 분자의 막대 방향이 모두 같은 방향으로 배열하지만 면에 수평도 수직도 아닌, 기울어져 배향하게 되면 nx> ny > nz 또는 nz > nx> ny 인 위상차 필름을 만들 수 있다.In addition, when the bar directions of the liquid crystal molecules are all aligned in the same direction but are not aligned horizontally or vertically to the plane, the liquid crystal molecules may be inclined and oriented to form a retardation film having nx> ny> nz or nz> nx> ny.

액정의 배향정도에 따라서 달라지는 필름의 굴절률의 상호관계를 Nz값으로 알 수 있다. 이때, Nz는 다음과 같이 표현되며, Nz = (nx-nz) /(nx - ny), 여기서 nx와 ny는 각각 필름 표면에 평행한 방향으로 측정된 굴절률 값으로 서로 수직 방향으로 측정된 것들이고 nz는 필름 표면에 수직된 방향으로 측정된 굴절률 값이다.The correlation of the refractive index of the film which changes according to the orientation degree of a liquid crystal can be seen by Nz value. Where Nz is expressed as follows, where Nz = (nx-nz) / (nx-ny), where nx and ny are the refractive index values measured in the direction parallel to the film surface, respectively, nz is a refractive index value measured in a direction perpendicular to the film surface.

도 1은 액정문자의 배향각도에 따른 Nz값의 변화를 나타내고 있다. 특히, 배향각도가 45°를 넘으면서 Nz값이 음의 값을 갖게 되는데, 이것은 일반적으로 사용되는 필름 연신법에 의해서는 만들어지기 어려운 기술이다.1 illustrates a change in Nz value according to the alignment angle of the liquid crystal character. In particular, as the orientation angle exceeds 45 °, the Nz value has a negative value, which is a technique that is difficult to be produced by the film stretching method that is generally used.

본 발명에서는 광배향 물질을 사용하여 배향막의 배향각도를 쉽게 조절할 수 있으며, 배향막 위에 코팅한 네마틱 액정들도 배향된 배향막에 의해서 같은 방향으로 배열을 하게 되어, 쉽게 Nz값이 음이 되는 필름을 제조할 수 있다.In the present invention, the alignment angle of the alignment layer can be easily adjusted using a photo-alignment material, and nematic liquid crystals coated on the alignment layer are also arranged in the same direction by the alignment layer, so that the Nz value becomes easily negative. It can manufacture.

도 2a,b,c는 본 발명에 있어서 PET 필름(10) 위에 네마틱 액정(20)이 배열해 있는 모양을 도식적으로 나타낸 것으로써, 도 2a는 배향막이 코팅되어 있지 않은 PET 필름(1)) 위에 네마틱 액정(20)이 필름의 drawing 방향으로 배열되어 있으며 필름의 Nz값은 1 이다.2A, 2B and 2C schematically show the nematic liquid crystals 20 arranged on the PET film 10 according to the present invention, and FIG. 2A shows the PET film 1 without the alignment film coated thereon). The nematic liquid crystal 20 is arranged above in the drawing direction of the film, and the Nz value of the film is 1.

도 2b는 수직 배향막이 코팅된 PET필름(10) 위에 네마틱 액정(20)이 필름면에 수직으로 배열되어 있으며, 이 필름(10)을 사용하여 CLC필름의 시야각에 따른 retardation을 보상해 줄 수 있다.2b shows that the nematic liquid crystals 20 are vertically arranged on the film surface on the PET film 10 coated with the vertical alignment layer, and the film 10 can be used to compensate for retardation according to the viewing angle of the CLC film. have.

도 2c는 수직 배향막을 코팅하고, 편광된 UV 빛을 조사하여 배향각도를 기울여서, 그 위에 네마틱 액정이 배열되어 있는 필름(10)으로 배향각도에 따라서 Nz값이 다양하게 만들어 질 수 있는 장점이 있다.FIG. 2C is an advantage of coating the vertical alignment layer and inclining the alignment angle by irradiating polarized UV light, thereby allowing the Nz value to be varied in accordance with the alignment angle to the film 10 having nematic liquid crystals arranged thereon. have.

도 3은 본 발명을 통해 제작된 필름을 실제로 CLC Polarizer에 적용한 예로써, 그림 3a는 그림 2a에서 처럼 수평배향된 약 1㎛ 두께의 필름을 QWP(quarter wave plate)로 사용한 것이다.3 is an example of actually applying the film produced through the present invention to the CLC Polarizer, Figure 3a is a horizontal wave-oriented film of about 1㎛ thickness as shown in Figure 2a as a QWP (quarter wave plate).

LC(liquid crystal) QWP(40)는 CLC필름(30)의 단파장쪽에 붙어있고, 그 위에 선편광판(linear polarizer, 50)이 점착되어져 있다. 이때 LC QWP의 drawing 방향과 선편광판의 투과축은 135°의 각도를 이루어야 한다.The liquid crystal (LC) QWP 40 is attached to the short wavelength side of the CLC film 30, and a linear polarizer 50 is attached thereto. At this time, the drawing direction of LC QWP and the transmission axis of the linear polarizer should be at an angle of 135 °.

도 3a와 같은 구조로 CLC Polarizer를 만들때 CLC 필름의 시야각에 따른 retardation 때문에 사각에서는 휘도가 급속히 감소하며, 색상이 변하게 된다.When the CLC Polarizer is manufactured with the structure as shown in FIG. 3A, the luminance rapidly decreases and the color changes in the square due to retardation according to the viewing angle of the CLC film.

도 3b는 시야각에 따른 문제점을 해결하기 위한 구조로 CLC필름과 LC QWP사이에 도 2b에서처럼 수직 배향된 필름을 삽입하여 각도에 따른 급격한 휘도 감소 및 색상의 변화를 보정해 줄 수 있다.FIG. 3B is a structure for solving the problem according to the viewing angle, and a vertically oriented film may be inserted between the CLC film and the LC QWP as shown in FIG. 2B to correct a sudden decrease in luminance and color change according to the angle.

즉, CLC필름의 각도에 따른 negative retardation을 수직 배향된 positive retardation 필름으로 retrdation 값을 복원해 줌으로써 전체적으로 볼 때 각도에 따른 retardation 값의 변화가 없어진다.That is, by restoring the retrdation value of the negative retardation according to the angle of the CLC film to the vertically oriented positive retardation film, there is no change in the retardation value according to the angle.

앞에서 기술한 LC QWP와 수직배향 보상필름의 제작은 PET필름 Roll을 기저필름으로 사용하고, Roll Coater를 이용하여 연속적으로 대량 생산공정을 통해 이루어졌다.The production of LC QWP and vertical alignment compensation film described above was carried out through mass production process using PET film roll as base film and roll coater.

우선 PET 필름을 Coater의 Unwinder에 장착하고, 필름을 건조기와 UV조사기를 통과시켜서 Rewinder에 연결 한다.First, the PET film is mounted on the coater's unwinder, and the film is connected to the rewinder by passing through the dryer and the UV irradiator.

건조기의 온도와 풍속을 조건에 맞게 설정을 하고, 준비된 네마틱 액정 용액을 액팬(Pan)에 부어 Coating Roll이 잠기게 한다. Coater를 작동시키고 PET 필름을 Coating Roll에 밀착시켜서 용액이 PET 필름으로 전사되도록 한다.Set the dryer's temperature and wind speed according to the conditions, and pour the prepared nematic liquid crystal solution into the pan to lock the coating roll. Operate the coater and adhere the PET film to the coating roll to transfer the solution to the PET film.

PET 필름이 Coating Roll을 지나가면서 연속적으로 용액을 묻혀가고, 건조기를 지나면서 용제가 건조되고 UV조사기를 통과하면서 액정들이 고분자화 되어서 필름형태로 PET 필름 위에 고착된다.The PET film is continuously buried as it passes the coating roll, the solvent is dried as it passes through the dryer, and the liquid crystals are polymerized as they pass through the UV irradiator and are fixed on the PET film in the form of a film.

그리고 액정 필름을 실제로 사용할 때에는 접착제나 점착제를 액정 필름면에 코팅하고, 다른 필름과 합착(lamination)한 후에 기재로 사용한 PET 필름을 제거하면 된다.And when using a liquid crystal film actually, what is necessary is just to coat an adhesive agent and an adhesive on the liquid-crystal film surface, and to laminate with another film, and to remove the PET film used as a base material.

실시예 1Example 1

일축 연신으로 제조되고 아무 처리도 되지 않은 깨끗한 PET 필름을 준비하고, 그 위에 roll 코팅방법으로 네마틱 액정물질을 도포하었다. 이때, 네마틱 액정물질로는 경화성 네마틱 액정물질(BASF사)을 사용하였다.A clean PET film prepared by uniaxial stretching and no treatment was prepared, and a nematic liquid crystal material was applied thereon by a roll coating method. At this time, a curable nematic liquid crystal material (BASF) was used as the nematic liquid crystal material.

먼저, MEK에 경화성 네마틱 액정물질과 광개시제(LG184,Ciba.Geigy)를 녹여 용액을 제조하였다. 용액 농도는 20wt%이고 광개시제 항량은 5wt% 였다.First, a solution was prepared by dissolving a curable nematic liquid crystal material and a photoinitiator (LG184, Ciba.Geigy) in MEK. The solution concentration was 20 wt% and the photoinitiator dose was 5 wt%.

이렇게 제조된 용액을 roll 코팅 방법에 의해 PET 필름 위에 박막 도포하고 건조기를 통과시켜 용제를 건조,제거하여 네마틱 액정 물질을 수평배향 시킨 후 UV 광조사에 의해 중합을 진행시켜 수평배향 상태를 고정시키며 필름을 제조하였다.The thin film is applied onto the PET film by the roll coating method, and the solvent is dried and removed by passing through a dryer to horizontally align the nematic liquid crystal material, and then the polymerization is progressed by UV light to fix the horizontal orientation. A film was prepared.

이때, 코팅 속도는 7 m/min 이었고, 건조 조건은 80℃였으며, UV광조사는 300W (중심 파장 360nm) lamp를 사용하였다.At this time, the coating speed was 7 m / min, the drying conditions were 80 ℃, UV light irradiation was used 300W (center wavelength 360nm) lamp.

도 2a와 같이 제조된 수평배향 네마틱 액정필름의 두께는 1㎛ 였으며, 굴절률 측정과 Polarimeter를 사용하여 액정이 수평배향이 되었음을 확인하였다.The thickness of the horizontally aligned nematic liquid crystal film prepared as shown in FIG. 2a was 1 μm, and it was confirmed that the liquid crystals were horizontally aligned by using a refractive index measurement and a polarimeter.

측정된 굴절률은, PET 필름의 연신방향으로 Nx = 1.660, 연신의 수직방향과 필름면의 수직방향으로 같은 값인 Ny = Nz = 1.535의 결과를 얻었다.The measured refractive index obtained the result of Ny = Nz = 1.535 which is the same value in the extending direction of PET film in Nx = 1.660, the perpendicular direction of extending | stretching, and the vertical direction of a film plane.

이 결과는 Polarimeter로부터 측정한 필름의 retardation값, R= 125nm와 잘일치했고, 가시광 영역인 500nm의 λ/4 위상차판 역할을 할 수 있다. 제조된 λ/4 필름은 콜레스테릭 액정 편광판(CLC Polarizer)의 제작에 사용된 폴리카보네이트 (PC)재질의 λ/4 필름 대신에 CLC 필름과 편광판(Linear Polarizer)사이에 위치시켜 제대로 작동함을 확인했다.This result was in good agreement with the retardation value of the film measured from the polarimeter, R = 125 nm, and can serve as a λ / 4 retardation plate of 500 nm in the visible region. The prepared λ / 4 film is positioned between the CLC film and the linear polarizer instead of the polycarbonate (PC) material λ / 4 film used in the manufacture of the cholesteric liquid crystal polarizer (CLC Polarizer). Confirmed.

실시예 2Example 2

광 배향물질을 MEK에 2wt%의 농도를 갖도록 용액을 제조하여 일축 연신으로 제조되고 아무처리도 되지 않은 깨끗한 PET 필름 위에 roll 코팅방법으로 코팅하고, 용제를 건조 시킨 후 UV광조사를 통해서 사각(Oblique)배향성을 갖게 했다.The solution was prepared to have a concentration of 2wt% in the MEK to the optical alignment material, coated by a roll coating method on a clean PET film made by uniaxial stretching and not treated, dried and solvent-coated and then squared through UV light irradiation. I got orientation.

이때, 건조조건은 75℃였으며 UV 광조사는 중심파장이 360nm인 300W Lamp를사용하였다.At this time, the drying condition was 75 ℃ and UV light irradiation used a 300W Lamp with a central wavelength of 360nm.

3-펜타논(3-Penthanon)에 경화성 네마틱 액정물과 광개시제(IG184, Ciba-Geigy)를 녹여 농도가 35wt% 인 용액을 제조하였으며, 이때 광개시제 함량은 5w%었다.A solution having a concentration of 35wt% was prepared by dissolving a curable nematic liquid crystal and photoinitiator (IG184, Ciba-Geigy) in 3-pentanone, wherein the photoinitiator content was 5w%.

이렇게 제조된 용액을 롤(roll) 코팅 방법에 의해 배향막이 코팅된 PET 필름위에 박막코팅하고 건조기를 통과시켜 용제를 건조, 제거하여 네마틱 액정물질을 수직배향 시킨 후 UV광조사에 의해 중합을 진행시켜 수직배향 상태를 고정시키며 필름을 제조하였다.The thin film is coated on the PET film coated with the alignment layer by a roll coating method, and the solvent is dried and removed by passing through a dryer to vertically align the nematic liquid crystal material, and then proceed with polymerization by UV light irradiation. To fix the vertical alignment state to prepare a film.

이때, 코팅 속도는 7m/min 이었고, 건조 조건은 80℃였으며, UV 광조사는 중심파장이 360nm인 300W Lamp를 사용하였다.At this time, the coating speed was 7m / min, the drying conditions were 80 ℃, UV light irradiation used a 300W Lamp with a central wavelength of 360nm.

도 2b와 같이 제조된 수직배향 네마틱 액정필름의 두께는 5㎛였으며, 굴절률 측정와 Crossed Polariler를 사용하여 필름이 수직 배향 되었음을 확인하였다.The thickness of the vertically aligned nematic liquid crystal film prepared as shown in FIG. 2b was 5 μm, and it was confirmed that the film was vertically aligned by using a refractive index measurement and a crossed polariler.

측정된 수직배향 필름의 굴절률은 필름의 표면방향으로 Nx = Ny = 1.535로 균일 하였으며, 필름의 수직방향으로 Nz = 1.668로 가장 큰 값이었다.The measured refractive index of the vertically oriented film was uniform as Nx = Ny = 1.535 in the surface direction of the film, and the largest value was Nz = 1.668 in the vertical direction of the film.

이렇게 제조된 수직배향 필름은 CLC Polarizer에서 CLC 필름의 음의 복굴절 (negative birefringence)을 보상하는데 사용할 수 있다.The vertically oriented film thus prepared can be used to compensate for negative birefringence of the CLC film in the CLC Polarizer.

실시예 3Example 3

광배향물질을 MEK에 2wt%의 농도를 갖도록 용액을 제조하여 일축 연신으로 제조되고 아무처리도 되지 않은 깨끗한 PET필름 위에 roll 코팅방법으로 코팅하고,용제를 건조시킨 후 UV광조사를 통해서 사각(Oblique)배향성을 갖게 했다.The solution was prepared to have a concentration of 2wt% in the MEK to the optical alignment material, coated by a roll coating method on a clean PET film made by uniaxial stretching and not treated, dried and solvent-coated and then squared by UV light irradiation. I got orientation.

이때, 건조조건은 75℃였으며 UV 광조사는 중심파장이 360nm인 300W Lamp를 사용하였다.At this time, the drying condition was 75 ℃ and UV light irradiation used a 300W Lamp with a central wavelength of 360nm.

3-펜타논(3-Penthanon)에 경화성 네마틱 액정물과 광개시제(IG184, Ciba-Geigy)를 녹여 농도가 35wt% 인 용액을 제조하였으며, 이때 광개시제 함량은 5w%였다.A solution having a concentration of 35wt% was prepared by dissolving a curable nematic liquid crystal and photoinitiator (IG184, Ciba-Geigy) in 3-pentanone, wherein the photoinitiator content was 5w%.

이렇게 제조된 용액흘 롤(roll) 코팅방법에 의해 배향막이 코팅된 PET 필름위에 박막코팅하고 건조기를 통과시켜 용제를 건조, 제거하여 네마틱 액정물질을 사각배향(Oblique aligning)시킨 후 UV광조사에 의해 중합을 진행시켜 배향상태를 고정시키며 필름을 제조하였다.The thin film is coated on the PET film coated with the alignment film by the roll coating method, and the solvent is dried and removed by passing through a dryer. The nematic liquid crystal material is oblique aligned and then subjected to UV light irradiation. The polymerization was carried out to fix the alignment state to prepare a film.

이때, 코팅속도는 6m/min 이었고, 건조조건은 80℃였으며, UV 광조사는 중심파장이 360nm인 300W Lamp를 사용하였다.At this time, the coating speed was 6m / min, the drying condition was 80 ℃, UV light irradiation used a 300W Lamp with a central wavelength of 360nm.

도 2c와 같이 제조된 사각배향 네마틱 액정필름의 두께는 4㎛였으며, 굴절률 측정와 Crossed Polariler를 사용하여 필름의 배향각도를 구할 수 있었다. 측정된 사각배향필름외 굴전률은 필름의 표면방향으로 Nx = 1.549, Ny = 1.535이고 필름의 수직방향으로 Nz = 1.650이었다.The thickness of the rectangular alignment nematic liquid crystal film prepared as shown in Figure 2c was 4㎛, it was possible to obtain the orientation angle of the film by using the refractive index measurement and the Crossed Polariler. The measured refractive index in addition to the rectangular alignment film was Nx = 1.549 in the surface direction of the film, Ny = 1.535 and Nz = 1.650 in the vertical direction of the film.

이 값으로부터 제조된 필름의 네마틱액정의 배향이 수직에서 약 20˚기울어져 있음을 알 수 있다. 그리고 굴절률과 두께로부터 계산한 필름의 retardation 값은 R = 56nm이며, 이 값은 가시광 영역의 λ/4 필름으로 사용하기에는 부족한 값으로 Polarimeter로 확인을 할 수는 없었다.From this value, it can be seen that the orientation of the nematic liquid crystal of the film produced is tilted about 20 degrees from vertical. In addition, the retardation value of the film calculated from the refractive index and the thickness was R = 56 nm, which was not enough to be used as the λ / 4 film in the visible region and could not be confirmed by the polarimeter.

이렇게 제조된 사각배향 필름은 CLC Polarizer에서 CLC 필름의 음의 복굴절 (negatlwebirefringence)을 보상하는데 사용할 수도 있고, 코팅 두께를 조절하여 λ/4 필름 역할을 가진 보상필름으로도 사용이 가능하다.The rectangular alignment film thus prepared may be used to compensate for negative birefringence (negatlwebirefringence) of the CLC film in the CLC Polarizer, or may be used as a compensation film having a λ / 4 film role by adjusting the coating thickness.

상술한 바와 같이 본 발명을 이용하게 되면 배향막을 코팅한 PET 필름을 이용하여 경화성 네마틱 액정을 원하는 두께로 코팅하고 배향시킨후 UV광조사에 의해 배상상태를 고정시킴으로서 수평 배향에서부터 수직배향에 이르기까지 다양한 필름을 제조할 수 있는 효과가 있다.When the present invention is used as described above, the curable nematic liquid crystal is coated to a desired thickness by using a PET film coated with an alignment layer, and then aligned, and then the compensation state is fixed by UV light irradiation. There is an effect that can produce a variety of films.

Claims (10)

배향막을 코팅한 필름을 사용하여 경화성 네마틱 액정을 원하는 두께로 코팅하고 배양시킨후 UV광조사에 의해 배향상태를 고정시켜 필름을 제작하는 것을 특징으로 하는 복굴절 필름의 제작방법.A method of manufacturing a birefringent film, comprising coating a curable nematic liquid crystal to a desired thickness using a film coated with an alignment film and incubating the same, and then fixing the alignment state by UV light irradiation. 제 1 항에 있어서,The method of claim 1, 네마틱 액정을 배향시키기 위해서 PET나 TAC와 같은 고분자 필름위에 배향막을 코팅한 것을 특징으로 하는 복굴절 필름 제작방법.A birefringent film production method characterized by coating an alignment film on a polymer film such as PET or TAC in order to orient the nematic liquid crystal. 제 1 항에 있어서,The method of claim 1, 네마틱 액정을 배향시키기 위해서 PET나 TAC와 같은 고분자 필름을 연신비가 크게 한쪽 방향으로 연신한 것을 특징으로 하는 복굴절 필름 제작방법.In order to orient a nematic liquid crystal, the birefringent film manufacturing method characterized by extending | stretching the polymer film, such as PET and TAC, in one direction with large draw ratio. 제 1 항에 있어서,The method of claim 1, 복굴절률(△n=ne-no)이 0.01∼0.2인 네마틱 액정을 사용한 것을 특징으로 하는 복굴절 필름 제작방법.A birefringent film production method using a nematic liquid crystal having a birefringence (Δn = n e -n o ) of 0.01 to 0.2. 제 1 항에 있어서,The method of claim 1, 배향막의 기울기(tilt)를 조절하여 필름의 Nz=(nx-nz)/(nx-ny)값을 1보다 작거나 같게 만든 것을 특징으로 하는 복굴절 필름 제작방법.A method for producing a birefringent film, characterized in that the Nz = (n x -n z ) / (n x -n y ) value of the film is made less than or equal to 1 by adjusting the tilt of the alignment layer. 이때 nx네마틱 액정이 배향된 방향으로 필름 표면에서의 굴절률 값이고, ny는 필름 표면에서 nx와 수직되는 방향으로 굴절률 값이고 nz는 필름표면에 수직되는 방향으로의 굴절률 값이다.In this case, n x is a refractive index value on the film surface in the direction in which the nematic liquid crystal is aligned, n y is a refractive index value in the direction perpendicular to n x on the film surface, and n z is a refractive index value in the direction perpendicular to the film surface. 제 1 항에 있어서,The method of claim 1, 복굴절 필름의 두께를 조절하여 CLC 편광막의 λ/4(quarter wave) 필름으로 사용하는 것을 특징으로 하는 복굴절 필름 제작방법.A method for producing a birefringent film, characterized in that it is used as a λ / 4 (quarter wave) film of a CLC polarizing film by adjusting the thickness of a birefringent film. 제 6 항에 있어서,The method of claim 6, λ/4필름의 retardation이 100∼200㎚인 것을 특징으로 하는 복굴절 필름 제작방법.A method for producing a birefringent film, wherein the retardation of the λ / 4 film is 100 to 200 nm. 제 1 항 또는 제 5 항에 있어서,The method according to claim 1 or 5, 네마틱 액정을 수직 배향시켜서 CLC 편광막의 보상필름으로 사용토록 배향막의 기울기를 90°로 하여 제작하는 것을 특징으로 하는 복굴절 필름 제작방법.A method for producing a birefringent film, characterized in that the nematic liquid crystal is vertically oriented so as to be inclined at 90 ° to be used as a compensation film of a CLC polarizing film. 제 1 항 또는 제 5 항에 있어서,The method according to claim 1 or 5, 네마틱 액정의 Nz값이 음수가 되게 하여 CLC 편광막의 λ/4필름과 보상필름을 동시에 만족하는 필름으로 사용토록 배향막의 기울기를 90˚∼45˚로 제작하는 것을 특징으로 하는 복굴절 필름 제작방법.A method of producing a birefringent film, characterized by producing an inclination of the alignment film at 90 ° to 45 ° so that the Nz value of the nematic liquid crystal becomes a negative value and the film satisfies the λ / 4 film and the compensation film of the CLC polarizing film at the same time. 제 1 항의 방법을 통해 제작되는 복굴절 필름을 삽입하여 제조되는 것을 특징으로 하는 콜레스테릭 액정 편광막.A cholesteric liquid crystal polarizing film, which is prepared by inserting a birefringent film produced by the method of claim 1.
KR10-2000-0066447A 2000-11-09 2000-11-09 Fabrication of Quarter-wave Films Using a Liquid Crystal and Application to the CLC Polarizer KR100378529B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0066447A KR100378529B1 (en) 2000-11-09 2000-11-09 Fabrication of Quarter-wave Films Using a Liquid Crystal and Application to the CLC Polarizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0066447A KR100378529B1 (en) 2000-11-09 2000-11-09 Fabrication of Quarter-wave Films Using a Liquid Crystal and Application to the CLC Polarizer

Publications (2)

Publication Number Publication Date
KR20020036311A true KR20020036311A (en) 2002-05-16
KR100378529B1 KR100378529B1 (en) 2003-03-31

Family

ID=19698091

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0066447A KR100378529B1 (en) 2000-11-09 2000-11-09 Fabrication of Quarter-wave Films Using a Liquid Crystal and Application to the CLC Polarizer

Country Status (1)

Country Link
KR (1) KR100378529B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715906B1 (en) * 2000-12-26 2007-05-08 엘지.필립스 엘시디 주식회사 Method of manufacturing of Cholesteric Liquid Crystal Color Filter
KR100732325B1 (en) 2005-02-16 2007-06-25 주식회사 엘지화학 A Retardation Film Having A Homeotropic Alignment Liquid Crystal film and Method for Preparing the Same
KR100738314B1 (en) * 2005-08-02 2007-07-12 주식회사 에이스 디지텍 Method for Manufacturing compenasation film for angular field of view and compenasation film for angular field of view using thereof
KR100771954B1 (en) 2006-03-27 2007-10-31 주식회사 에이스 디지텍 Method for Manufacturing compensation film for IPS mode with using Nematic Liquid Crystal
KR100835556B1 (en) * 2007-10-17 2008-06-05 주식회사 엘지에스 Method for manufacturing cholesteric reflective plarizer with quater wave plate, and reflective plarizer therefrom
KR101155575B1 (en) * 2010-05-12 2012-06-19 경희대학교 산학협력단 A manufacturing method of optical film having planar oriented cholesteric liquid crystal layer
KR20120066288A (en) * 2010-12-14 2012-06-22 엘지디스플레이 주식회사 Liquid crystal display device and method of manfacturing the same
US8576358B2 (en) 2009-06-04 2013-11-05 Samsung Display Co., Ltd. Display device having polarizing layer and manufacturing method of the same
WO2014017754A1 (en) * 2012-07-25 2014-01-30 제일모직 주식회사 Optical film, method for manufacturing same, and liquid crystal display including same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5673092A (en) * 1994-10-14 1997-09-30 Sharp Kabushiki Kaisha Liquid crystal device and method for fabricating the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100715906B1 (en) * 2000-12-26 2007-05-08 엘지.필립스 엘시디 주식회사 Method of manufacturing of Cholesteric Liquid Crystal Color Filter
KR100732325B1 (en) 2005-02-16 2007-06-25 주식회사 엘지화학 A Retardation Film Having A Homeotropic Alignment Liquid Crystal film and Method for Preparing the Same
KR100738314B1 (en) * 2005-08-02 2007-07-12 주식회사 에이스 디지텍 Method for Manufacturing compenasation film for angular field of view and compenasation film for angular field of view using thereof
KR100771954B1 (en) 2006-03-27 2007-10-31 주식회사 에이스 디지텍 Method for Manufacturing compensation film for IPS mode with using Nematic Liquid Crystal
KR100835556B1 (en) * 2007-10-17 2008-06-05 주식회사 엘지에스 Method for manufacturing cholesteric reflective plarizer with quater wave plate, and reflective plarizer therefrom
WO2009051408A1 (en) * 2007-10-17 2009-04-23 Lms Co., Ltd. Method for manufacturing cholesteric reflective plarizer with quater wave plate, and reflective plarizer therefrom
US8576358B2 (en) 2009-06-04 2013-11-05 Samsung Display Co., Ltd. Display device having polarizing layer and manufacturing method of the same
KR101155575B1 (en) * 2010-05-12 2012-06-19 경희대학교 산학협력단 A manufacturing method of optical film having planar oriented cholesteric liquid crystal layer
KR20120066288A (en) * 2010-12-14 2012-06-22 엘지디스플레이 주식회사 Liquid crystal display device and method of manfacturing the same
WO2014017754A1 (en) * 2012-07-25 2014-01-30 제일모직 주식회사 Optical film, method for manufacturing same, and liquid crystal display including same
US9880420B2 (en) 2012-07-25 2018-01-30 Samsung Sdi Co., Ltd. Optical film, method for manufacturing same, and liquid crystal display including same

Also Published As

Publication number Publication date
KR100378529B1 (en) 2003-03-31

Similar Documents

Publication Publication Date Title
JP4137438B2 (en) Optical film, polarizing film using the same, and method for improving viewing angle of polarizing film
JP4107741B2 (en) Optical film manufacturing method, optical film and liquid crystal display device
KR100851604B1 (en) Optical film, polarizing film using the optical film, and method of improving visibility angle of polarizing film
JP5989859B2 (en) Liquid crystal display
KR101275944B1 (en) Liquid crystal display device
JP2007522533A (en) Retardation film including vertically aligned liquid crystal film and method for producing the same
KR100969148B1 (en) A method of fabricating retardation film using of polarized uv
KR100378529B1 (en) Fabrication of Quarter-wave Films Using a Liquid Crystal and Application to the CLC Polarizer
TWI245924B (en) Optical sheet, polarizer and liquid-crystal display device
CN114514451B (en) Optical film, circularly polarizing plate, and organic electroluminescent display device
KR100415250B1 (en) Fabrication Method Of A Retardation Film Using Nematic Liquid Crystals And A Retardation Film Thereby
GB2266599A (en) Optical phase-retardation compensating film
KR100364504B1 (en) Fabrication method of retardation film using photo-alignment layer
JP2003015134A (en) Liquid crystal display device
CN114222804A (en) Liquid crystal composition, optical film, circularly polarizing plate for organic EL display, and method for producing optically anisotropic layer
JP5049705B2 (en) Transparent film, polarizing plate, and liquid crystal display device
KR20050004455A (en) A method of fabricating retardation film using of ion beam
CN114245875A (en) Method for producing optically anisotropic layer, method for producing laminate, method for producing optically anisotropic layer with polarizer, method for producing laminate with polarizer, composition, and optically anisotropic layer
JP2007286331A (en) Optical compensation sheet, polarizing plate using the same and liquid crystal display
WO2003060578A1 (en) Polarizing plate comprising linearly polarizing film and phase retarder
KR102207386B1 (en) Manufacturing method of retardation film, retardation film, polarizing plate comprising same and liquid crystal display device comprising same
JP2022182619A (en) Optical element, laminate, display device, and manufacturing method of optical element
KR20010056719A (en) Compensation Method of color and luminance along viewing angle for reflective polarizer
CN116113858A (en) Method for producing optically anisotropic layer
KR20230127901A (en) Phase difference plate, phase difference plate with temporary support, circularly polarizing plate, and display device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20081008

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee