KR101130337B1 - Method of converting pyrolysis wax oil from municipal waste plastic into high-value light hydrocarbon - Google Patents

Method of converting pyrolysis wax oil from municipal waste plastic into high-value light hydrocarbon Download PDF

Info

Publication number
KR101130337B1
KR101130337B1 KR1020100039928A KR20100039928A KR101130337B1 KR 101130337 B1 KR101130337 B1 KR 101130337B1 KR 1020100039928 A KR1020100039928 A KR 1020100039928A KR 20100039928 A KR20100039928 A KR 20100039928A KR 101130337 B1 KR101130337 B1 KR 101130337B1
Authority
KR
South Korea
Prior art keywords
catalyst
oil
product
pyrolysis
wax
Prior art date
Application number
KR1020100039928A
Other languages
Korean (ko)
Other versions
KR20110120493A (en
Inventor
이경환
신대현
송광섭
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020100039928A priority Critical patent/KR101130337B1/en
Publication of KR20110120493A publication Critical patent/KR20110120493A/en
Application granted granted Critical
Publication of KR101130337B1 publication Critical patent/KR101130337B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

본 발명은 생활계 혼합 폐플라스틱을 열분해하여 생성된 저급 왁스 오일을 제올라이트계 촉매 존재하에서 열분해하여 고급 탄화수소로 전환시키는 방법에 관한 것이다.
보다 구체적으로, 본 발명은 폴리올레핀계가 주성분인 필름유의 혼합 폐플라스틱을 고온의 상용 로터리 킬른(rotary kiln) 반응 장치에서 열분해하여 얻은 왁스 오일을 제올라이트계 촉매하에서 열분해하여 탄소수 5개 내지 40개인 고급 탄화수소로 전환시키는 방법에 관한 것이다.
The present invention relates to a method for converting a low-grade wax oil produced by pyrolysis of a mixed-use waste plastic into pyrolysis in the presence of a zeolite-based catalyst to convert it into a high-grade hydrocarbon.
More specifically, the present invention relates to a process for producing a wax oil by pyrolyzing a wax oil obtained by pyrolyzing a mixed waste plastic of a polyolefin-based main component of a mixed waste plastic in a high-temperature rotary kiln reactor with a zeolite- Quot;

Description

폐플라스틱을 열분해하여 생성된 왁스 오일을 고급 경질유로 전환시키는 방법 {Method of converting pyrolysis wax oil from municipal waste plastic into high-value light hydrocarbon}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for converting wax oil produced by pyrolysis of waste plastics into high-

본 발명은 생활계 혼합 폐플라스틱을 열분해하여 생성된 저급 왁스 오일을 제올라이트계 촉매 존재하에서 열분해하여 고급 탄화수소로 전환시키는 방법에 관한 것이다.The present invention relates to a method for converting a low-grade wax oil produced by pyrolysis of a mixed-use waste plastic into pyrolysis in the presence of a zeolite-based catalyst to convert it into a high-grade hydrocarbon.

산업 발전과 함께 많은 양의 일회용품(플라스틱, 폴리에스틸, 비닐, 스티로폼 등)이 사용되고 있으며, 이러한 일회용품 중 90% 이상이 유류성을 함유한 플라스틱 또는 합성수지를 그 재료로 사용하고 있다. 이러한 플라스틱과 합성수지 제품은 사용의 편리성을 제공하는 반면에 심각한 환경오염을 일으키는 주요 원인이 되고 있다. 현재 여러 방안을 통하여 환경문제를 적극적으로 개선시키려는 노력이 추진되고 있으나, 특히 재활용 부문에서 플라스틱은 현재 생산되는 양에 비하여 재활용이 활성화되지 않고 있으며, 폐기에도 어려움이 많아 그 기술과 재활용에 대해 많이 논의되고 있다. 플라스틱이 가지고 있는 장점이 단점으로 부각되어 매립 소각을 하기에는 여러 가지 한계 상황에 도달하였다.A large amount of disposable items (plastic, poly-steel, vinyl, styrofoam, etc.) are used along with industrial development. More than 90% of these disposable products are made of plastic or synthetic resin containing oil. While these plastic and synthetic resin products provide ease of use, they are a major cause of serious environmental pollution. Currently, efforts are being made to actively improve environmental problems through various measures. However, in particular, plastic is not recycled more than the amount currently produced in the recycling sector, and there are many difficulties in disposal. . The advantages of plastics have been pointed out as disadvantages and various limitations have been reached for incineration of landfill.

단일 재질의 플라스틱인 경우에는 재활용에 어려움이 없지만, 혼합 플라스틱의 경우에는 재활용에 많은 어려움이 있다. 혼합되어 있는 폐플라스틱을 선별하여 단일재질의 제품으로 재활용하기 위해서는 많은 과정이 필요하고, 재생제품의 고부가가치화를 위하여 폐기물의 재질별 분리가 필요하다.In the case of a single-piece plastic, there is no difficulty in recycling, but in the case of mixed plastic, recycling is difficult. In order to recycle the mixed waste plastic as a single material product, many processes are required, and it is necessary to separate the waste materials according to the high added value of the recycled product.

최근 혼합 폐플라스틱인 EPR(Extended Producer Responsibility;생산자책임재활용제도) 종말품을 친환경적이고 자원 확보 차원에서 재활용하는 방법으로 가스화와 유화 등이 주목을 받고 있다. 종전에 폐합성수지를 화학처리 및 열분해하여 유류성분을 추출하는 유화장치가 공지되어 있으나 이는 유지비용 및 시설비용이 고가이고 많은 양의 폐플라스틱 등을 한꺼번에 처리할 수 없고 처리 시간도 오래 걸릴 뿐 아니라 기름추출량이 30~40%에 지나지 않기 때문에 경제적인 측면에서 효율이 떨러진다는 단점이 있다. 특히, 종래 폐합성수지의 용융을 위해 진공분위기에서 고온 열분해를 실시할 경우 폭발의 위험성과 함께, 주기적으로 고온을 식혀주어야 하는 등의 문제점이 있었다.Gasification and oil paintings have recently attracted attention as a way to recycle EPR (Extended Producer Responsibility) end product, which is a mixed waste plastic, in an environmentally friendly and resource-saving way. Conventionally, there is known an emulsifying apparatus for extracting oil components by chemical treatment and pyrolysis of waste synthetic resin. However, since the maintenance cost and the facility cost are high, the waste plastics can not be treated at a time, The extraction efficiency is only 30 to 40%, which is disadvantageous in terms of economical efficiency. Particularly, there has been a problem that when the pyrolysis is carried out at a high temperature in a vacuum atmosphere in order to melt the waste synthetic resin, there is a risk of explosion and a high temperature is required to be periodically cooled.

이에, 폐플라스틱을 촉매 존재하에서 저온으로 용융시켜 얻어진 열분해 왁스에 가연성 배합제를 혼합한 후 성형건조시켜 고형연료를 제조하는 방법이 공지되었다. 또한, 간접열을 이용한 저온 열분해를 통해 폐합성수지를 용융 및 정제하는 유화처리장치 등이 연구되었다.Thus, a method of producing a solid fuel by mixing a combustible compounding agent with pyrolytic wax obtained by melting waste plastics at low temperature in the presence of a catalyst, followed by molding and drying is known. In addition, an emulsifying apparatus for melting and refining waste synthetic resin through indirect heat and low-temperature pyrolysis has been studied.

생활계 폐플라스틱을 열분해하여 생성되는 열분해 오일은 최근 대체 연료로서 주목받고 있다. 주로 폴리올레핀 중합체로 이루어진 폐플라스틱으로부터 생성된 열분해 오일은 경질유, 중질유 뿐 아니라 왁스를 함유한다. 왁스 오일은 활용가치가 낮은데, 증기하에 이동성이 낮고, 분자량이 크며 탄소수 분포도 넓은 특징을 나타낸다. 특히, 대체 연료로서 연소 반응에 왁스 오일을 직접 사용하는 것은 파이프 라인을 막히게 하거나 기기의 수명을 단축시키는 등 기기 작동시 문제를 야기할 수 있다. 이와 같이 유화 공정의 운전 과정에서 라인, 펌프 등의 여러 부분에서 장애를 야기하기 때문에 열분해 반응기에서 나오는 왁스 오일은 산업체 등에 판매가 가능한 일반 열분해 오일과 구분하거나 저비점 고급유로 전환할 필요가 있다.Pyrolysis oil produced by pyrolysis of waste plastics in the living system has recently attracted attention as an alternative fuel. Pyrolysis oil produced mainly from waste plastics made mainly of a polyolefin polymer contains wax as well as light oil and heavy oil. Wax oil has low utility value, low mobility under steam, high molecular weight, and wide distribution of carbon number. In particular, direct use of wax oil in combustion reactions as alternative fuels can cause problems with equipment operation, such as clogging pipelines or shortening the life of the equipment. Since the wax oil generated from the pyrolysis reactor is separated from general pyrolysis oil which can be sold to industry or the like, it is necessary to convert the wax oil into a low-boiling high-grade oil.

따라서, 열분해 오일 중에 많은 부분을 차지하는 왁스나 고비점 생성유가 포함된 저급 열분해 오일에 대한 고부가 가치화가 요구되는 바, 이를 위해 촉매 공정을 이용한 고부가 가치 물질로의 전환에 대한 연구가 있어 왔다.Therefore, there is a need for high-value-added low-grade pyrolysis oil containing wax or high-boiling point oil, which accounts for a large portion of the pyrolysis oil, and research has been conducted on the conversion to a high value-added substance using a catalytic process.

본 발명은 생활계 혼합 폐플라스틱을 열분해하여 생성된 탄소수 5 내지 40 개의 저급 왁스 오일을 제올라이트계 촉매 존재하에서 열분해하여 고급 탄화수소로 전환시키는 방법에 관한 것이다.The present invention relates to a method for converting a low-grade wax oil having 5 to 40 carbon atoms produced by pyrolysis of a mixed-use waste plastics into pyrolysis in the presence of a zeolite-based catalyst to convert it to a higher hydrocarbon.

보다 구체적으로, 본 발명은 폴리올레핀계가 주성분인 필름유의 혼합 폐플라스틱을 고온의 상용 로터리 킬른(rotary kiln) 반응 장치에서 열분해하여 얻은 왁스 오일을 제올라이트계 촉매하에서 열분해하여 탄소수 5개 내지 12개인 고급 탄화수소로 전환시키는 방법에 관한 것이다.More specifically, the present invention relates to a process for producing a wax oil by pyrolyzing wax oil obtained by pyrolyzing a mixed waste plastic of film oil which is a polyolefin-based main component in a high-temperature rotary kiln reaction apparatus, in a zeolite- Quot;

반응 원료인 일반 가정에서 필름 형태로 배출되는 생활계 혼합 폐플라스틱을 상용 로터리 킬른 반응 장치에서 열분해하여 얻은 왁스 오일의 성상은 탄소수가 5개부터 40개로 넓은 분포로 경질유도 일부 포함되지만 고분자인 중질유 성분이 많고, 오일은 주로 노르말-파라핀과 노르말-올레핀으로 구성되며 특히 노르말-파라핀이 70%이상이다.Wax oil obtained by pyrolyzing mixed mixed waste plastic discharged in the form of film in a general household as a reaction raw material in a commercial rotary kiln reactor has a wide distribution ranging from 5 to 40 carbon atoms, and some of the light oil is included. However, the heavy oil component And the oil consists mainly of normal paraffins and normal-olefins, in particular more than 70% of normal paraffins.

본 발명에서 사용되는 원료 열분해 왁스는 (주)동명RPF의 상용규모 로터리 킬른형 열분해 공정에서 열분해하여 생성된 고비점 왁스를 사용하였다. 보다 구체적으로, 상기 열분해 왁스는 노르말-파라핀 70.7%, 노르말-올레핀 8% 및 기타 성분으로 구성된다. 열분해 왁스 오일 원료의 성질을 하기 표에 나타내었다. 열분해 왁스 오일은 높은 수소함량(H/C 비)을 나타내고, 일반 오일과 비교하여 더 높은 열량치를 나타내고, 약 0.75%의 질소를 함유한다.The raw pyrolysis wax used in the present invention was a high boiling point wax produced by pyrolysis in a commercial scale rotary kiln type pyrolysis process of Dongfeng RPF Co., More specifically, the thermally cracked wax is composed of 70.7% of n-paraffin, 8% of n-olefin and other components. Properties of pyrolyzed wax oil raw materials are shown in the following table. Pyrolytic wax oil exhibits a high hydrogen content (H / C ratio), a higher calorific value as compared to a common oil, and contains about 0.75% nitrogen.

Figure 112010027797726-pat00001
Figure 112010027797726-pat00001

본 발명에서 사용되는 제올라이트계 촉매로는 ZSM-5 촉매(HZSM-5; 순수), 제올라이트 Y 촉매(HY; 순수 또는 20% 클레이 포함) 또는 모더나이트 촉매(HM; 20% 클레이 또는 알루미나 포함)를 들 수 있으며, 이로부터 지지체로서 클레이 또는 알루미나를 갖거나 갖지 않는 촉매가 이용될 수 있고, 이들은 상이한 성질을 나타낸다. 각 종류의 제올라이트계 촉매에 대한 조성 및 BET 표면적을 하기 표에 나타내었다.Examples of the zeolite catalyst used in the present invention include a ZSM-5 catalyst (HZSM-5; pure water), a zeolite Y catalyst (HY; pure water or 20% clay) or a mordenite catalyst (HM: 20% clay or alumina) From which catalysts with or without clay or alumina can be used as supports and they exhibit different properties. The composition and BET surface area for each type of zeolitic catalyst are shown in the following table.

Figure 112010027797726-pat00002
Figure 112010027797726-pat00002

상기 촉매를 이용하여 열분해 왁스를 450 ℃에서 1 시간 동안 촉매 분해한 결과 수득된 생성물의 분포를 하기 표에 나타내었다.The catalysts were used to decompose the pyrolyzed wax at 450 ° C for 1 hour, and the distribution of the obtained products is shown in the following table.

Figure 112010027797726-pat00003
Figure 112010027797726-pat00003

상이한 제올라이트계 촉매들은 생성물 분포가 다르게 나타내고 있으며, 특히 ZSM-5 촉매가 약 50%의 가장 높은 가스 분획을 나타내는 반면, 모더나이트를 함유하는 촉매는 중질유를 경질유로 가장 낮게 전환시키는 것으로 약 10%의 가스 분획을 나타내었다. 이는 제올라이트 형태가 열분해 왁스 오일을 경질유로 전환시키는데 있어서 중요한 역할을 한다는 것을 나타낸다.Different zeolitic catalysts exhibit different product distributions, and in particular the ZSM-5 catalyst represents the highest gas fraction of about 50%, whereas the catalyst containing mordenite is the lowest conversion of heavy oil to light oil, with about 10% Gas fraction. This indicates that the zeolite form plays an important role in converting pyrolyzed wax oil to light oil.

하기 표는 상이한 제올라이트계 촉매로 열분해 왁스 오일을 분해한 후 수득된 액체 파라핀(노르말/이소), 올레핀(노르말/이소), 나프텐 및 방향족 생성물의 분포를 나타낸다.The following table shows the distribution of liquid paraffins (normal / iso), olefins (normal / iso), naphthene and aromatic products obtained after decomposition of pyrolysis wax oil with different zeolitic catalysts.

Figure 112010027797726-pat00004
Figure 112010027797726-pat00004

ZSM-5 촉매를 사용한 경우 고리형 성분들이 생성되는데 나프텐 18% 및 77% 방향족 생성물을 포함한다. 제올라이트계 촉매중, ZSM-5 촉매가 중질유의 열분해로부터 수득된 파라핀 및 올레핀의 고리화를 통해 방향족 생성물의 가장 높은 분획을 나타낸다. 주요 생성물인 나프렌 및 방향족 생성물은 가솔린 범위 성분으로서 5개 내지 12 개의 탄소수를 갖는다. 보다 구체적으로, 방향족 생성물은 벤젠, 톨루엔, 자일렌 및 에틸벤젠의 주로 C6, C7 및 C8 성분이며, 나프텐 생성물은 벤젠고리 구조의 C10, C11 및 C12 성분이다. 이러한 생성물은 ZSM-5 촉매의 형태 선택성에 기인하는 것이다.When ZSM-5 catalysts are used, cyclic components are produced, including naphthenic 18% and 77% aromatic products. Of the zeolitic catalysts, the ZSM-5 catalyst exhibits the highest fraction of aromatic products through the cyclization of paraffins and olefins obtained from pyrolysis of heavy oils. The main products naprene and aromatic products have 5 to 12 carbon atoms as a gasoline range component. More specifically, the aromatic products are mainly the C6, C7 and C8 components of benzene, toluene, xylene and ethylbenzene, and the naphthenic products are the C10, C11 and C12 components of the benzene ring structure. This product is due to the morphological selectivity of the ZSM-5 catalyst.

제올라이트Y 촉매는 고옥탄가의 측쇄 경질유의 높은 분획을 나타낼 뿐아니라 가솔린 범위 성분중 방향족 생성물의 높은 분획을 나타낸다.The zeolite Y catalyst not only represents a high fraction of the high octane number of branched chain light oils, but also represents a high fraction of aromatic products in the gasoline range components.

모더나이트를 포함하는 촉매는 열분해 왁스 오일을 경질유로 가장 낮은 전환을 나타내고 액체 생성물중 훨씬 더 많은 파라핀 생성물을 나타내므로써, 열분해 왁스 오일의 특성을 유사하게 나타났다.Catalysts containing mordenite exhibited the lowest conversion of pyrolytic wax oils to light oils and exhibited much more paraffinic products in the liquid product, resulting in similar characteristics of pyrolytic wax oils.

본 발명에 있어서, 좁은 탄소수 분포인 방향족 생성유를 상대적으로 용이하게 생성할 수 있는 ZAM-5 촉매를 이용하여 기상 촉매 분해 반응에서 촉매의 양에 따른 촉매의 분해 효과를 확인하였다.In the present invention, the decomposition effect of the catalyst according to the amount of the catalyst in the gas phase catalytic cracking reaction was confirmed using a ZAM-5 catalyst capable of relatively easily producing an aromatic production oil having a narrow carbon number distribution.

본 발명의 반응 실험 장치도를 도 1에 나타내었다. 고비점 시료의 원활한 주입을 위해 실린지 펌프부터 반응기까지 라인을 가열해 주었고 열전도계를 설치하여 온도를 확인하였다. 또한 반응 온도는 반응기 내부에 설치된 온도계로 실시간으로 확인하여 조절하였고, 반응기로부터 생성되는 생성물은 액상상태로 포집하기 위하여 포집기 외부에 얼음 온도로 유지하면서 생성물을 포집하였다. 실험 방법은 전처리한 촉매를 반응기에 넣어준 후, 그 위에 울을 넣어주어 반응기로 들어오는 시료가 촉매와 고르게 접촉할 수 있도록 해주었다. 그리고 반응기를 장치에 연결 설치하였고 고온 전기로의 온도를 반응온도까지 올려 안정화시킨 후에 실린지 펌프로 원료의 주입비 0.3g/min로 60분간 동안 주입하였다.FIG. 1 is a view showing a reaction experimental apparatus of the present invention. The line was heated from the syringe pump to the reactor for smooth injection of the high boiling point sample, and the temperature was confirmed by installing a thermal conductivity meter. In addition, the reaction temperature was checked in real time by a thermometer installed inside the reactor, and the product was collected while maintaining the ice temperature outside the collector in order to collect the product from the reactor in a liquid state. In the experimental method, the pretreated catalyst was put into a reactor, and then a wool was put on the reactor so that the sample coming into the reactor could contact the catalyst uniformly. Then, the reactor was connected to the apparatus, and the temperature of the high-temperature electric furnace was stabilized by raising the temperature to the reaction temperature. Then, the syringe was poured into the syringe pump at a feed rate of 0.3 g / min for 60 minutes.

실험 후 얻어지는 액상생성물은 GC와 MASS를 이용하여 정성, 정량분석한 후 각 액상생성물의 탄소수 분포과 PONA분포를 통해 액상생성물의 특성을 알아보았다. 분석에 사용된 GC는 Agilent사의 6890N모델이며 Mass는 5890 모델이다.The liquid product obtained after the experiment was qualitatively and quantitatively analyzed by GC and MASS, and then the characteristics of the liquid product were examined through the carbon number distribution and PONA distribution of each liquid product. The GC used for the analysis was Agilent's 6890N model and Mass 5890 model.

고비점 왁스를 기상 촉매 분해에 의해 얻어진 각종 생성물의 분포를 촉매 양의 함수로 하여 표 5에 나타내고 있다. 촉매의 함량이 증가함에 따라 촉매의 분해 효과에 의해 액상 생성물의 분율값은 감소하고 상대적으로 기상 생성물의 분율은 증가하는 경향을 보이고 있다. 도 2는 각기 다른 촉매 함량에 따라 분해 실험을 실시하여 얻은 액상 생성물의 GC 분석 피크와 탄소수 분포이다. 촉매 함량이 작은 경우는 가솔린 범위의 생성물도 많이 생성되지만 분해 활성이 낮아 고비점인 탄소수 20개 이상의 성분도 보이고 있고, 점차 촉매 함량이 많아짐에 따라 고비점 성분은 줄어들고 저비점인 탄소수가 10개 이내인 가솔린 성분이 더욱 증가하는 것을 볼 수 있다.The distribution of various products obtained by gas-phase catalytic cracking of the high boiling point wax is shown in Table 5 as a function of the amount of catalyst. As the content of the catalyst increases, the fraction of the liquid product decreases and the fraction of the gaseous product relatively increases due to the decomposition effect of the catalyst. FIG. 2 shows the GC analysis peak and carbon number distribution of the liquid product obtained by the decomposition experiment according to different catalyst contents. When the catalyst content is small, the product of the gasoline range is generated to a large extent, but the decomposition activity is low, so that the components having 20 or more carbon atoms having a high boiling point are also seen. As the catalyst content gradually increases, the high boiling point component decreases, It can be seen that the components are further increased.

Figure 112010027797726-pat00005
Figure 112010027797726-pat00005

이와 같은 경향은 도 3의 가솔린, 등유+경유, 중질유의 분포에서 알 수 있다. 촉매 함량이 증가함에 따라 가솔린의 분율은 증가한 반면에, 등유+경유보다는 큰 분자인 중질유 분율이 감소하는 것을 볼 수 있다. 이는 촉매 분해에 의해 중질유가 분해하여 저분자인 가솔린으로 더욱 분해됨을 알 수 있다. 하지만 액상 생성물 중에 주요 성분은 촉매 양에 관계없이 가솔린 범위인 탄소수 10 정도 범위 이내의 성분임을 알 수 있었다.This tendency can be found from the distribution of gasoline, kerosene + diesel oil and heavy oil of FIG. As the catalyst content increases, the fraction of gasoline increases, while the fraction of heavy oil, which is larger than kerosene + diesel, decreases. It can be seen that the decomposition of heavy oil by catalytic decomposition further decomposes into gasoline of low molecular weight. However, the major component of the liquid product was found to be within the range of about 10 carbon atoms within the range of gasoline, regardless of the amount of catalyst.

한편, 촉매의 함량에 따른 생성유의 파라핀, 올레핀, 나프텐 및 방향족(예를 들어, 파라핀, 올레핀, 나프텐 및 방향족 생성물)의 분포 변화를 도 4에 나타내고 있다. 여기에서 보면, 촉매 함량이 증가함에 따라 환형 구조인 나프텐과 방향족 생성물의 분율이 증가한 반면에, 포화 탄화수소인 파라핀 중에 선형 구조인 노말-파라핀 생성물의 분율이 크게 감소하는 것을 볼 수 있다. 이는 ZSM-5 촉매가 세공 형상 선택성에 의해 환형 구조인 방향족 생성물의 생성을 양호하게 하는 것을 알 수 있다. 이는 도 5의 파라핀, 올레핀, 나프텐 및 방향족 생성물의 탄소수 분포에서 알 수 있다. 대부분이 가솔린 범위의 생성물이 얻어지고 있지만 이중에서도 탄소수가 6개에서 9개 사이의 벤젠링 하나인 방향족이 주도적으로 생성됨을 알 수 있다. 한편, 나프텐 생성물은 탄소수 11개부터 13개까지 주로 생성되었고, 파라핀 성분은 촉매 분해에 의해 저분자 성분들이 주로 얻어졌다.4 shows changes in the distribution of paraffin, olefin, naphthene and aromatics (for example, paraffins, olefins, naphthenes and aromatic products) in the produced oil depending on the content of the catalyst. From this, it can be seen that as the catalyst content increases, the fraction of the naphthene and aromatic product increases, whereas the fraction of the linear naphtha-paraffin product in the saturated hydrocarbon, paraffin, decreases significantly. This shows that the ZSM-5 catalyst improves the production of an aromatic product having a cyclic structure by pore shape selectivity. This can be seen in the carbon number distribution of the paraffins, olefins, naphthenes and aromatic products of FIG. Although most of the products are obtained in the gasoline range, the aromatics, which are one of the benzene rings with 6 to 9 carbon atoms, are predominantly produced. On the other hand, naphthenic products were mainly produced from 11 to 13 carbon atoms, and paraffin components were mainly obtained by catalytic decomposition.

본 발명에 있어서, 좁은 탄소수 분포인 방향족 생성유를 상대적으로 용이하게 생성할 수 있는 ZAM-5 촉매를 이용하여 기상 촉매 분해 반응에서 반응온도에 따른 촉매의 분해 효과를 확인하였다.In the present invention, the decomposition effect of the catalyst according to the reaction temperature in the gas phase catalytic cracking reaction was confirmed by using a ZAM-5 catalyst capable of relatively easily producing an aromatic production oil having a narrow carbon number distribution.

ZSM-5 촉매상에서 각기 다른 반은온도에서 기상 촉매 분해에 의해 얻어진 생성물의 분율 값을 표 6에 나타내고 있다. 3g의 경우 반응온도가 증가함에 따라 액상 생성물의 분율은 감소하고 가스 생성물의 분율은 증가하는 경향을 보이고 있다. 이는 촉매 함량이 5g의 경우에도 유사하게 나타나고 있는데 5g의 경우 촉매의 분해활성이 좋아 온도의 효과가 크게 나타나지 않았다.The fraction of products obtained by gas phase catalytic cracking at different half-temperatures on the ZSM-5 catalyst is shown in Table 6. < tb > < TABLE > In the case of 3g, the fraction of liquid product decreases and the fraction of gaseous product increases with increasing reaction temperature. This is similar to the case where the catalyst content is 5 g. In the case of 5 g, the decomposition activity of the catalyst is good and the effect of temperature is not remarkable.

Figure 112010027797726-pat00006
Figure 112010027797726-pat00006

한편, 각 반응온도에서 분해 반응을 실시하여 얻어진 액상 생성물의 GC 피크와 탄소수 분포를 도 6에 나타내고 있다. 반응온도가 낮은 350℃에서 얻어진 생성물의 탄소수는 주로 4개에서 12개 사이에 주로 분포하고 있지만 그 외에도 20개 이상의 중질유 성분도 일부 생성된다. 이와 같은 경향은 모든 반응온도에서 나타나지만, 반응온도가 높아짐에 따라 중질유 성분이 점차 없어지고 가솔린 범위의 성분이 많아지는 것으로 점차 높은 분해 성능을 보이고 있다.On the other hand, the GC peak and the carbon number distribution of the liquid product obtained by the decomposition reaction at each reaction temperature are shown in Fig. The carbon number of the product obtained at 350 ℃, which is low in reaction temperature, is mainly distributed in the range of 4 to 12, but some 20 or more heavy oil components are also produced. This tendency appears at all the reaction temperatures, but as the reaction temperature increases, the heavy oil component gradually disappears and the components of the gasoline range increase, and the decomposition performance is gradually increasing.

이와 같은 경향은 도 7에서 나타난 생성유에 대한 가솔린, 등유+ 경우 및 중질유 범위로 나누어 나타난 결과에서도 알 수 있다. 반응온도가 높아짐에 따라 중간 탄소수 값을 가진 경유+등유의 분율 값 변화는 크지 않지만, 큰 분자인 중질유 분율은 감소하고, 저분자인 가솔린 분율은 확연히 증가하는 경향을 보이고 있다. 또한, 반응온도의 증가에 따른 액상 생성물의 특성인 PONA 분포를 도 9에 나타내고 있다. 반응온도가 증가함에 따라 환형 구조인 나프텐 성분의 분율 값은 별 변화가 없지만, 주 생성물인 방향족 생성물의 분율은 증가하는 경향을 보이고 있다. 역으로 파라핀 생성물 중에 이소-파라핀보다는 노르말-파라핀이 반응온도 증가에 따라 급격히 감소하는 경향을 보이고 있다. 이와 같은 결과는 ZSM-5 촉매상에서 반응온도 증가에 따라 반응 메카니즘의 변화를 알 수 있었다. 생성물 중에 올레핀 성분은 모든 반응온도 범위에서 아주 작은 양이 생성되었다. 이들 결과는 도 9에 나타나 각 반응온도에서 얻은 파라핀, 올레핀, 나프텐 및 방향족 생성물의 탄소수 분포에서 알 수 있다. 생성물 중에 주 생성물인 방향족 생성물은 탄소수가 6개부터 9개 사이가 많이 생성되었고, 다음으로 많은 나프텐은 탄소수 10개부터 13개 사이가 많았으며, 파라핀은 아주 작은 탄소수 생성유이거나 아주 큰 탄소수 생성유가 구성하고 있었다. 여기에서 탄소수가 큰 생성유는 반응온도가 낮은 경우 생성되는 것으로 촉매 분해 효과가 나타나지 않은 것으로 보인다.This tendency can also be seen from the result of dividing into gasoline, kerosene + case and heavy oil range for the product oil shown in Fig. As the reaction temperature increases, the change of the fraction value of gasoline + kerosene with intermediate carbon number is not great, but the fraction of heavy oil, which is a large molecule, decreases, and the fraction of gasoline with low molecular weight tends to increase remarkably. The PONA distribution, which is the characteristic of the liquid product with increasing reaction temperature, is shown in Fig. As the reaction temperature increases, the fraction of the naphthenic component, which is a cyclic structure, does not change but the fraction of aromatic product, which is the main product, tends to increase. Conversely, n - paraffin in the paraffin product tends to decrease more rapidly than the iso - paraffin as the reaction temperature increases. These results show that the reaction mechanism changes with increasing reaction temperature on ZSM-5 catalyst. The olefin component in the product produced a very small amount at all reaction temperature ranges. These results are shown in FIG. 9, and are shown in the carbon number distributions of paraffins, olefins, naphthenes and aromatic products obtained at the respective reaction temperatures. The aromatic product, which is the main product in the product, has 6 to 9 carbon atoms. Next, many naphthenes have 10 to 13 carbon atoms. Paraffin is a very small number of carbon - It was composed of oil. In this case, the product having a large number of carbon atoms is generated when the reaction temperature is low.

제올라이트계 촉매, 특히 ZSM-5 촉매를 이용하여 열분해 왁스 오일을 촉매 분해시킴으로써 가솔린 범위의 저비점 생성유와 액상 생성유중에 방향족 생성물을 많이 생성하여 고비점 왁스 오일의 고급화를 달성하게 되었다. 폐플라스틱을 재활용한 열분해 왁스 오일을 고부가 가치있는 경질유로 전환시킬 수 있으므로 환경오염의 방지 뿐 아니라 대체 연료를 수득할 수 있게 되었다.Catalytic cracking of pyrolyzed wax oil using zeolite catalysts, especially ZSM-5 catalyst, has resulted in the production of aromatic products in low boiling point oil and liquid forming oil in the gasoline range, thus achieving a high quality of high boiling point wax oil. It is possible to convert pyrolytic wax oil recycled from waste plastic into high value-added light oil, so that it is possible to obtain an alternative fuel as well as to prevent environmental pollution.

도 1은 반응 실험 장치도이다.
도 2는 생성유의 GC 피크 및 탄소수 분포에 대한 촉매 양의 효과를 나타낸다.
도 3은 촉매양의 함수로서 생성유의 가솔린, 등유+경유 및 중질유 범위 분획을 나타낸다.
도 4는 촉매양의 함수로서 생성유의 파라핀, 올레핀, 나프텐 및 방향족 분포를 나타낸다.
도 5는 생성유의 파라핀, 올레핀, 나프텐 및 방향족 성분의 탄소수 분포에 대한 촉매양의 효과를 나타낸다.
도 6은 생성유의 GC 피크 및 탄소수 분포에 대한 반응온도의 효과를 나타낸다.
도 7은 반응온도의 함수로서 생성유의 가솔린, 등유+경유 및 중질유 범위 분획을 나타낸다.
도 8은 반응온도의 함수로서 생성유의 파라핀, 올레핀, 나프텐 및 방향족 분포를 나타낸다.
도 9는 생성유의 파라핀, 올레핀, 나프텐 및 방향족 성분의 탄소수 분포에 대한 반응온도의 효과를 나타낸다.
1 is a diagram of a reaction experimental apparatus.
Figure 2 shows the effect of the amount of catalyst on the GC peak and carbon number distribution of the produced oil.
Figure 3 shows the produced oil gasoline, kerosene + diesel and heavy oil range fractions as a function of the amount of catalyst.
Figure 4 shows the resulting paraffin, olefin, naphthene and aromatics distribution as a function of catalyst volume.
Figure 5 shows the effect of the amount of catalyst on the carbon number distribution of paraffin, olefin, naphthene and aromatic components of the produced oil.
Figure 6 shows the effect of reaction temperature on GC peak and carbon number distribution of produced oil.
Figure 7 shows the resulting crude gasoline, kerosene + diesel and heavy oil range fractions as a function of reaction temperature.
Figure 8 shows the resulting paraffin, olefin, naphthene and aromatics distribution as a function of reaction temperature.
Figure 9 shows the effect of reaction temperature on the carbon number distribution of paraffin, olefin, naphthene and aromatic components in the product oil.

이하는 본 발명의 구체적인 설명을 위한 일 예일 뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the following examples.

대조예 1Control Example 1

열분해 왁스의 열분해Pyrolysis of pyrolysis wax

원료로서 열분해 왁스를 주입속도 0.3g/min로 주입하고, 반응온도 450℃에서 1시간동안 반응시켜 열분해를 수행하였다. 이로부터 수득된 생성유는 탄소수 분포가 5 내지 40개로 원료인 왁스와 유사한 탄소수 분포를 보이고, 오일의 특성도 노르말-파라핀이 70%이상으로 나타나므로 열분해 효과가 크게 나타나지 않았다.Pyrolysis wax as a raw material was injected at an injection rate of 0.3 g / min and reacted at a reaction temperature of 450 캜 for 1 hour to perform pyrolysis. The resulting product oil had a carbon number distribution of 5 to 40 and showed a similar carbon number distribution to that of the raw wax, and the oil had a characteristic of normal-paraffin of 70% or more.

실시예 1Example 1

열분해 왁스의 촉매분해 - 모더나이트 촉매Catalytic cracking of pyrolysis wax - Mordenite catalyst

상기 대조예와 동일 실험조건 (주입속도 0.3g/min, 반응온도 450℃, 1시간 반응시간)에서 제올라이트 촉매들 중에 모더나이트 촉매 5g을 사용하였다.5 g of mordenite catalyst was used in the zeolite catalysts under the same experimental conditions (injection rate 0.3 g / min, reaction temperature 450 ° C., reaction time 1 hour) as in the above control example.

이로부터 수득된 생성유는 탄소수가 21개 이상인 성분이 50% 이상의 높은 분율을 나타내는 중질유였고, 더욱이 노르말-파라핀이 약 60%, 노르말-올레핀이 약 10%, 이소-올레핀이 약 10%, 나프텐이 약 3%, BTX(벤젠, 톨루엔, 자일렌)가 주성분인 방향족 생성물이 약 9% 포함된 것으로 나타났다. 이는 상기 열분해보다는 고부가 가치 생성물인 방향족 생성물과 이소-올레핀이 더 생성되는 특성을 나타냈다.The resulting product oil was a heavy oil having a high fraction of not less than 50% of the components having 21 or more carbon atoms. Further, the product oil obtained from the obtained product was about 60% of normal paraffins, about 10% of n-olefins, About 3% of tungsten and about 9% of aromatics mainly composed of BTX (benzene, toluene, xylene) were contained. This shows that aromatic products and iso-olefins, which are high-value-added products, are produced more than the pyrolysis.

실시예 2Example 2

열분해 왁스의 촉매분해 - 제올라이트YCatalytic cracking of pyrolysis wax - Zeolite Y

상기와 동일 실험 조건에서 촉매로서 제올라이트 Y를 사용하였다.Zeolite Y was used as a catalyst under the same experimental conditions as above.

제올라이트Y에 의한 촉매 분해에 의해서 수득된 생성유는 고가인 탄소수가 10개 이하인 가솔린 범위의 생성유가 80% 내외였고 나머지는 탄소수가 11개 내지 20개인 생성유를 포함하였다. 보다 구체적으로, 수득된 생성유의 특성은 노르말 파리핀이 약 12%, 노르말-올레핀이 약 6%, 이소-파라핀이 25-30%, 이소-올레핀이 약 10%, 나프텐이 약 10%, BTX가 주성분인 방향족이 약 30% 포함된 것으로 나타났다. 특히, 제올라이트 Y촉매에 의한 분해는 BTX가 주성분인 방향족 생성물이 약 30% 수득되었고, 이는 모더나이트 촉매를 사용한 경우 보다 더 높게 나타났다. 또, 고옥탄가인 이소-파라핀이 약 30%로 높은 값을 나타냈다.The product oil obtained by catalytic cracking by zeolite Y contained about 80% of the product oil in the range of gasoline having up to 10 carbon atoms and the remainder including the product oil having 11 to 20 carbon atoms. More specifically, the properties of the resulting oil obtained are about 12% for normal paraffin, about 6% for normal olefins, about 25-30% for iso-paraffins, about 10% for iso-olefins, about 10% It was found that about 30% of the aromatics mainly composed of BTX were contained. In particular, decomposition by zeolite Y catalyst resulted in about 30% of BTX-based aromatic products, which is higher than with mordenite catalysts. In addition, iso - paraffin, which is a high octane value, showed a high value of about 30%.

실시예 3Example 3

열분해 왁스의 촉매분해 - ZSM-5 Catalytic cracking of pyrolytic wax - ZSM-5

상기와 동일 실험 조건에서 촉매로서 ZSM-5촉매를 사용하였다.ZSM-5 catalyst was used as a catalyst under the same experimental conditions as above.

ZSM-5촉매에 의한 촉매 분해에 의해서 수득된 생성유는 고부가 가치 가솔린 범위인 탄소수 5개 내지 10개의 생성유 분율이 85%이상이고, 나머지는 탄소수가 11개 내지 20개인 생성유를 포함하였다. 더욱이 생성유의 특성은 노르말-파라핀이 약 3%, 이소-파라핀이 약 1%이고 나머지는 대부분 환형 구조인 나프텐과 방향족 생성물로 나프텐이 약 20%, BTX(벤젠, 톨루앤, 자이렌)가 주성분인 방향족 생성물이 75%이상이 포함된 것으로 나타났다. 제올라이트 촉매 중 ZSM-5촉매가 혼합 폐플라스틱을 열분해하여 얻은 왁스를 촉매 분해하여 방향족 생성유가 가장 많이 생성된 것으로 나타났다. 특히, 방향족 생성물 중에 벤젠 약 15%, 톨루엔 약 30%, 자이렌 약 20% 인 총 65% 로 대부분 BTX생성물이 생성되었다.The product oils obtained by catalytic cracking with ZSM-5 catalysts contained product oils having a product yield of 5 to 10 carbon atoms in the high value-added gasoline range of 85% or more, and the remainder being 11 to 20 carbon atoms. Furthermore, the characteristics of the produced oil are about 20% of naphthene and about 20% of BTX (benzene, toluene, xylene), naphthene and naphthene which are mostly cyclic structure, about 3% of normal paraffin and about 1% Containing more than 75% of aromatic products as the main component. ZSM-5 catalyst among the zeolite catalysts catalyzed the wax obtained by pyrolyzing the mixed waste plastics, and it was found that aromatic production oil was generated most. In particular, most of the BTX product was produced in the aromatic product, totaling 65%, which is about 15% benzene, about 30% toluene, about 20% xylene.

실시예Example 4 4

열분해 왁스의 촉매분해 - ZSM-5 Catalytic cracking of pyrolytic wax - ZSM-5

실시예 3과 같은 제올라이트 촉매인 ZSM-5촉매를 사용하고, 실험 조건을 주입 속도는 같으나 완만한 실험 조건인 반응온도가 350℃로 낮고 촉매양이 3g으로 작게 하여 실험을 실시하였다. 수득된 결과를 보면, 방향족 생성유의 분율이 약 53%로 반응온도 450℃ 및 촉매량 5g보다는 낮지만, 생성유의 특성인 파라핀, 올레핀, 나프텐 및 방향족 중에 방향족 생성물이 가장 많이 생성되었고, 방향족 중에 BTX인 벤젠이 약 6%, 톨루엔이 약 20%, 자일렌이 약 17% 인 총 43%의 BTX가 수득되었다. 이는 완만한 실험 조건에서도 오일 중에 BTX성분이 거의 50%에 가까운 값을 보이고 있으며, 실시예 3처럼 반응온도가 높고 촉매량이 많아지면 생성유 중에 방향족인 BTX의 생성물이 많아짐을 알 수 있다.Experiments were carried out using ZSM-5 catalyst, which is a zeolite catalyst as in Example 3, under the same experimental conditions as the experimental conditions except that the reaction temperature was 350 ° C. and the catalyst amount was 3 g. The results obtained show that the aromatics produced in the paraffins, olefins, naphthenes and aromatics were the most abundant in the production of aromatics, while the fractions of aromatics were 53%, lower than the reaction temperature of 450 ℃ and the catalytic amount of 5g. A total of 43% of BTX was obtained with about 6% of benzene, about 20% of toluene, and about 17% of xylene. This shows that the BTX component in the oil is almost 50% even in the gentle experimental conditions, and the reaction temperature is high and the amount of the aromatic BTX in the product oil is increased when the amount of the catalyst is increased as in Example 3. [

제올라이트 촉매 중 ZSM-5촉매가 혼합 폐플라스틱을 열분해하여 얻은 왁스를 촉매 분해하여 방향족 생성유가 가장 많이 생성되었다.ZSM-5 catalyst among the zeolite catalysts catalyzed the wax obtained by pyrolyzing the mixed waste plastics, and aromatic production oil was produced the most.

하기 표 7, 표 8 및 표 9는 ZSM-5 촉매를 이용한 기상 분해 반응에서 수득된 생성물들의 촉매 양 및 반응온도에 따른 분포를 나타낸다.The following Tables 7, 8 and 9 show the distribution of the products obtained in the gas phase decomposition reaction using the ZSM-5 catalyst according to the catalyst amount and the reaction temperature.

또한, 제올라이트계 촉매, 특히 ZSM-5 촉매 존재하에서의 열분해는 반응온도 350 내지 450 ℃에서 주입조건 LHSV(Liquid Hourly Space Velocity, h-1)가 3 내지 10 이다:In addition, the zeolite-containing catalyst, in particular ZSM-5 catalyst under the pyrolysis is a reaction temperature of 350 to implant conditions at 450 ℃ LHSV (Liquid Hourly Space Velocity , h -1) of 3 to 10:

공간 주입속도(LHSV)= 주입속도/촉매량=0.3g/min /2g-5g촉매량 x 60(LHSV) = injection rate / amount of catalyst = 0.3 g / min / 2 g-5 g amount of catalyst x 60

Figure 112010027797726-pat00007
Figure 112010027797726-pat00007

Figure 112010027797726-pat00008
Figure 112010027797726-pat00008

Figure 112010027797726-pat00009
Figure 112010027797726-pat00009

1. 시린지 펌프
2. 히팅 라인
3. 3-웨이 밸브
4. 노(furnace)
5. 반응기
6. 온도 조절기
7. 온도 표시계
8. 수용기
9. 콘덴서
10. 쉬프트 잭
11. 온/오프 밸프
12. N2 실린더
1. Syringe pump
2. Heating Line
3. Three-way valve
4. Furnace
5. Reactor
6. Temperature regulator
7. Temperature Indicator
8. Receptor
9. Condenser
10. Shift jack
11. On / off valve
12. N 2 cylinder

Claims (5)

a) 입자상의 ZSM-5 촉매 또는 제올라이트 Y 촉매를 반응기에 충진하는 단계;
b) 상기 촉매가 충진된 반응기에 저급왁스오일을 주입하는 단계;
c) 질소 분위기에서 350 내지 450℃에서 3 내지 10 h-1로의 LHSV로 열분해하는 단계;를 포함하고,
상기 열분해 단계 생성물은 (C6-C9)의 벤젠링이 하나인 방향족 생성물이 전체 생성분율의 50 내지 80%인 것을 특징으로 하는 열분해 방법.
a) filling a particulate ZSM-5 catalyst or zeolite Y catalyst into a reactor;
b) injecting a low grade wax oil into the reactor filled with the catalyst;
c) pyrolysis in an atmosphere of nitrogen at an LHSV of from 3 to 10 h < -1 > at 350 to 450 DEG C,
Wherein the pyrolysis step product is an aromatic product having one benzene ring of (C6-C9) in an amount of 50 to 80% of the total product fraction.
제 1항에 있어서,
상기 저급왁스오일은 노르말 파라핀 및 노르말 올레핀을 포함하는 것을 특징으로 열분해 방법.
The method according to claim 1,
Wherein the lower wax oil comprises normal paraffin and normal olefin.
제 1항에 있어서,
상기 ZSM-5 촉매 또는 제올라이트 Y 촉매의 BET 표면적은 400 내지 800㎡/g인 것을 특징으로 하는 열분해 방법.
The method according to claim 1,
Wherein the ZSM-5 catalyst or the zeolite Y catalyst has a BET surface area of 400 to 800 m 2 / g.
제 1항에 있어서,
상기 열분해 단계 생성물은 (C5-C12)의 지방족 생성물, (C6-C8)방향족 생성물 및 (C9-C12)나프텐 생성물을 포함하는 것을 특징으로 하는 열분해 방법.
The method according to claim 1,
Wherein the pyrolysis step product comprises an aliphatic product of (C5-C12), (C6-C8) aromatic product and (C9-C12) naphthene product.
제 1항에 있어서,
상기 열분해 단계 생성물은 벤젠, 톨루엔, 에틸-벤젠, 1,3-디메틸-벤젠, p-자일렌, 1-에틸-2-메틸-벤젠, 1-에틸-3-메틸-벤젠, 1-에틸-4-메틸-벤젠, 1,2,3-트리메틸-벤젠 및 2,3-디히드로인덴을 포함하는 것을 특징으로 하는 열분해 방법.



The method according to claim 1,
The pyrolysis step product may be selected from the group consisting of benzene, toluene, ethyl-benzene, 1,3-dimethyl-benzene, p-xylene, Methyl-benzene, 1,2,3-trimethyl-benzene, and 2,3-dihydroindene.



KR1020100039928A 2010-04-29 2010-04-29 Method of converting pyrolysis wax oil from municipal waste plastic into high-value light hydrocarbon KR101130337B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100039928A KR101130337B1 (en) 2010-04-29 2010-04-29 Method of converting pyrolysis wax oil from municipal waste plastic into high-value light hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100039928A KR101130337B1 (en) 2010-04-29 2010-04-29 Method of converting pyrolysis wax oil from municipal waste plastic into high-value light hydrocarbon

Publications (2)

Publication Number Publication Date
KR20110120493A KR20110120493A (en) 2011-11-04
KR101130337B1 true KR101130337B1 (en) 2012-03-26

Family

ID=45391606

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100039928A KR101130337B1 (en) 2010-04-29 2010-04-29 Method of converting pyrolysis wax oil from municipal waste plastic into high-value light hydrocarbon

Country Status (1)

Country Link
KR (1) KR101130337B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102539139B1 (en) 2022-10-04 2023-06-01 창원대학교 산학협력단 A catalytic reaction process that decomposes the wax component of the pyrolysis oil produced in the waste plastic pyrolysis process
KR102544370B1 (en) 2022-10-04 2023-06-19 창원대학교 산학협력단 A catalyst for the wax cracking produced from pyrolysis of waste plastic
KR20240012185A (en) 2022-07-20 2024-01-29 한국에너지기술연구원 Apparatus for collecting Pyrolysis wax using gas jet and waste plastic pyrolysis system including the pparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101300652B1 (en) * 2013-01-28 2013-08-28 주식회사 연화인텍 A method for decompostion of paraffin oil and polyethylene from waste secondary battery separator membrane
CN113398982B (en) * 2021-06-04 2023-01-03 青岛惠城环保科技集团股份有限公司 Catalyst for preparing low-carbon olefin by catalytic cracking of waste plastic and preparation method thereof
WO2023234696A1 (en) * 2022-05-31 2023-12-07 한국생명공학연구원 Method for producing diacid from plastic wastes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940019655A (en) * 1993-02-26 1994-09-14 황선두 Advanced hydrocarbon production method using waste plastic
KR970010718A (en) * 1995-08-19 1997-03-27 김건종 Recovery of Aromatic Compounds from Peplastics
KR19980013642A (en) * 1996-08-01 1998-05-15 윤조희 Method of recovering monomers and dimers from plastic by-products or waste plastics
KR20070032634A (en) * 2004-03-14 2007-03-22 오즈모테크 피티와이 엘티디 Method for converting waste material into liquid fuel and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940019655A (en) * 1993-02-26 1994-09-14 황선두 Advanced hydrocarbon production method using waste plastic
KR970010718A (en) * 1995-08-19 1997-03-27 김건종 Recovery of Aromatic Compounds from Peplastics
KR19980013642A (en) * 1996-08-01 1998-05-15 윤조희 Method of recovering monomers and dimers from plastic by-products or waste plastics
KR20070032634A (en) * 2004-03-14 2007-03-22 오즈모테크 피티와이 엘티디 Method for converting waste material into liquid fuel and apparatus therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240012185A (en) 2022-07-20 2024-01-29 한국에너지기술연구원 Apparatus for collecting Pyrolysis wax using gas jet and waste plastic pyrolysis system including the pparatus
KR102539139B1 (en) 2022-10-04 2023-06-01 창원대학교 산학협력단 A catalytic reaction process that decomposes the wax component of the pyrolysis oil produced in the waste plastic pyrolysis process
KR102544370B1 (en) 2022-10-04 2023-06-19 창원대학교 산학협력단 A catalyst for the wax cracking produced from pyrolysis of waste plastic

Also Published As

Publication number Publication date
KR20110120493A (en) 2011-11-04

Similar Documents

Publication Publication Date Title
KR101130337B1 (en) Method of converting pyrolysis wax oil from municipal waste plastic into high-value light hydrocarbon
Sharma et al. Upgrading of wood-derived bio-oil over HZSM-5
Walendziewski Engine fuel derived from waste plastics by thermal treatment
CN108603130B (en) Chemical and fuel blend preparation by catalytic fast pyrolysis process
Walendziewski Continuous flow cracking of waste plastics
Sharma et al. Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags
Ni et al. High selective and stable performance of catalytic aromatization of alcohols and ethers over La/Zn/HZSM-5 catalysts
Kim et al. Catalytic co-pyrolysis of polypropylene and Laminaria japonica over zeolitic materials
CN105722951A (en) Hydrocracking process for a hydrocarbon stream
Wan et al. Tunable production of jet-fuel range alkanes and aromatics by catalytic pyrolysis of LDPE over biomass-derived activated carbons
Soliman et al. Pyrolysis of low-density polyethylene waste plastics using mixtures of catalysts
Mentzel et al. High yield of liquid range olefins obtained by converting i-propanol over zeolite H-ZSM-5
KR20240051149A (en) Co-processing of waste plastic pyrolysis oil and biorenewable feedstock
Sun et al. Catalytic co-pyrolysis of polycarbonate and polyethylene/polypropylene mixtures: Promotion of oil deoxygenation and aromatic hydrocarbon formation
Khan et al. The influence of dual-catalyst bed system of zeolitic and metal oxide catalysts on the production of valuable hydrocarbons during co-pyrolysis of rice straw and waste tire
Khazaal et al. Valuable oil recovery from plastic wastes via pressurized thermal and catalytic pyrolysis
Roozbehani et al. Gasoline production from a polymeric urban disposal mixture using silica–alumina catalyst
Sunarno et al. Upgrading of pyrolysis oil via catalytic co-pyrolysis of treated palm oil empty fruit bunch and plastic waste
Yuan et al. Directional synthesis of liquid higher olefins through catalytic transformation of bio‐oil
Irawan et al. Pyrolysis of polyolefins into chemicals using low-cost natural zeolites
Salwa et al. Production of petroleum–Like fractions from waste cooking oil
Ahmad et al. Influence of waste brick kiln dust on pyrolytic conversion of polypropylene in to potential automotive fuels
Gaurh et al. In-situ production of valuable aromatics via pyrolysis of waste polypropylene using commercial catalyst ZSM-5
RU2110535C1 (en) Method of treating organic industrial and domestic polymeric waste
Wilson et al. Investigation into the potential of a novel superacid catalyst for the catalytic upgrading of pyrolytic bio‐oil

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150313

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160309

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180209

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191210

Year of fee payment: 9