KR101121476B1 - Preparation method of copper indium diselenide thin film for solar cell using continuous flow reaction process - Google Patents

Preparation method of copper indium diselenide thin film for solar cell using continuous flow reaction process Download PDF

Info

Publication number
KR101121476B1
KR101121476B1 KR1020100011685A KR20100011685A KR101121476B1 KR 101121476 B1 KR101121476 B1 KR 101121476B1 KR 1020100011685 A KR1020100011685 A KR 1020100011685A KR 20100011685 A KR20100011685 A KR 20100011685A KR 101121476 B1 KR101121476 B1 KR 101121476B1
Authority
KR
South Korea
Prior art keywords
thin film
cuinse
flow reaction
solar cell
continuous flow
Prior art date
Application number
KR1020100011685A
Other languages
Korean (ko)
Other versions
KR20110092173A (en
Inventor
류시옥
김채린
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020100011685A priority Critical patent/KR101121476B1/en
Publication of KR20110092173A publication Critical patent/KR20110092173A/en
Application granted granted Critical
Publication of KR101121476B1 publication Critical patent/KR101121476B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

본 발명은 연속흐름반응법을 이용한 화합물 태양전지용 CuInSe2 박막의 제조방법에 관한 것으로, 보다 상세하게는 본 발명은 (i) 구리 공급원 및 인듐 공급원을 물에 용해시켜 스트림 A를 준비하는 단계; (ii) 셀레늄 공급원을 물에 용해시켜 스트림 B를 준비하는 단계; (iii) 상기 반응물 흐름 A와 반응물 흐름 B를 혼합한 후, 혼합물을 기판 상에 연속흐름반응법을 이용하여 증착시키는 단계; 및 (iv) 증착된 박막을 진공 또는 질소 분위기 하에서 열처리하는 단계를 포함하여 이루어지는 것을 특징으로 하는, 연속흐름반응법을 이용한 화합물 태양전지용 CuInSe2 박막의 제조방법에 관한 것이다.The present invention relates to a method for producing a CuInSe 2 thin film for a compound solar cell using a continuous flow reaction method, and more particularly, the present invention comprises the steps of (i) preparing stream A by dissolving a copper source and an indium source in water; (ii) dissolving the selenium source in water to prepare stream B; (iii) mixing reactant stream A and reactant stream B, and then depositing the mixture on a substrate using a continuous flow reaction method; And (iv) heat-treating the deposited thin film under vacuum or nitrogen atmosphere, and the method of manufacturing a CuInSe 2 thin film for a compound solar cell using a continuous flow reaction method.

Description

연속흐름반응법을 이용한 화합물 태양전지용 CuInSe2 박막의 제조방법{Preparation method of copper indium diselenide thin film for solar cell using continuous flow reaction process}Preparation method of copper indium diselenide thin film for solar cell using continuous flow reaction process

본 발명은 화합물 태양전지의 광흡수 층으로 사용되는 CuInSe2 박막을 복잡한 공정과 고가의 진공 장치가 필요로 하지 않는 연속흐름반응법(CFR)을 이용하여 저비용으로 기판에 증착시키는 화합물 태양전지용 CuInSe2 박막의 제조방법에 관한 것이다.The invention compound solar cell to deposit on a substrate at a low cost by using the CuInSe 2 continuous flow which does not complex processes and expensive need to vacuum system thin film reaction method (CFR) is used as a light absorbing layer of the compound solar CuInSe 2 It relates to a method for producing a thin film.

카드뮴 텔루라이드(CdTe), 구리인듐디셀레나이드(CuInSe2), 구리인듐갈륨디셀레나이드(CuInxGa(1-x)Se2) 및 무정형 실리콘(a-Si) 등과 같은 박막 소재는 제2세대 태양전지의 소재로서 현재 각광받고 있다. 박막 태양전지는 결정성 실리콘계 태양전지와 비교하면 낮은 공정비, 보다 가벼운 무게 및 유연성을 포함한 많은 장점을 지닌다. Thin film materials such as cadmium telluride (CdTe), copper indium diselenide (CuInSe 2 ), copper indium gallium diselenide (CuIn x Ga (1-x) Se 2 ), and amorphous silicon (a-Si) It is currently in the spotlight as a material for generation solar cells. Thin film solar cells have many advantages over crystalline silicon solar cells, including lower process costs, lighter weight and flexibility.

일반적으로 CuInSe2 (CIS)를 광흡수층으로 이용한 박막태양전지는 소다석회유리를 기판으로 금속전극(Al, Ni, Ag)/ZnO/CdS/CuInSe2/Mo/soda-lime glass 구조로 4개 이상의 단위박막을 순차적으로 쌓아올려 제조한다.In general, thin film solar cells using CuInSe 2 (CIS) as a light absorption layer have four or more metal structures (Al, Ni, Ag) / ZnO / CdS / CuInSe 2 / Mo / soda-lime glass structure using soda-lime glass as a substrate. It is prepared by stacking unit thin films in sequence.

CIS계 박막 태양전지는 기존의 결정질실리콘(두께 : 수백 마이크론) 태양전지와는 달리 그 두께가 10 마이크론 이하로 제작이 가능하고, 장기적으로 안정성이 매우 뛰어난 특징을 지니고 있다. 또한 실험실적으로 최고변환효율이 18.8%로 여타 박막 태양전지에 비해 월등히 높아 기존 결정질실리콘을 대체할 수 있는 저가 고효율의 태양전지로 그 상업화 가능성이 매우 높다.Unlike conventional crystalline silicon (thickness: hundreds of microns) solar cells, CIS-based thin-film solar cells can be manufactured with a thickness of less than 10 microns and have excellent stability in the long term. In addition, the highest conversion efficiency in the laboratory is 18.8%, which is much higher than other thin film solar cells, and it is highly commercialized as a low-cost, high-efficiency solar cell that can replace existing crystalline silicon.

이러한 구조의 태양전지에서 가장 중요한 것은 CIS 박막으로 저가, 고효율, 대면적 공정이 필수적으로 요구되는 조건이다. CIS계 박막의 제조와 관련하여 알려진 선행기술은 진공 하에서 금속원소를 동시에 증발증착하는 삼단공정(three stage process)(미국 특허 4,523,051, 1985. 6. 11)으로, 현재까지 가장 높은 변환효율의 태양전지는 이 방법을 이용한 것이다. The most important thing in this type of solar cell is CIS thin film, which is a condition that requires low cost, high efficiency and large area process. Known prior art for the production of CIS based thin films is a three stage process (US Patent 4,523,051, June 11, 1985) which simultaneously evaporates and deposits metallic elements under vacuum, the highest conversion efficiency of solar cells. Is using this method.

하지만 금속원소의 증발증착을 이용한 삼단공정(Three stage process)의 경우 금속원소의 증발기구로 비록 그 가치는 인정받고 있지만 값이 비싼 이퓨젼 셀(effusion cell)을 사용하기 때문에 필요로 하는 박막이 대면적으로 갈수록 비경제적이라는 단점이 있다.However, in the three stage process using evaporation of metal elements, although the value is recognized as an evaporation mechanism of metal elements, the thin film required due to the use of expensive fusion cells is required. The disadvantage is that it is more economical.

상기 종래기술의 문제점을 해결하기 위하여, 본 발명의 목적은 연속흐름반응법을 이용하여 CuInSe2 박막을 기판에 증착시킴으로써 고가의 장비나 복잡한 진공 시스템을 필요로 하지 않아 저비용으로 CuInSe2 박막을 형성할 수 있다는 점에 착안하여 본 발명을 완성하였다.In order to solve the problems of the prior art, it is an object of this invention to form a CuInSe 2 thin films at low cost does not require expensive equipment and complex vacuum system by depositing a CuInSe 2 thin film using a continuous flow reaction method in the substrate The present invention has been completed by focusing on the fact that it can be used.

이에, 본 발명의 목적은 연속흐름반응법을 이용한 화합물 태양전지용 CuInSe2 박막의 제조방법을 제공하는 데에 있다.Accordingly, an object of the present invention is to provide a method for producing a CuInSe 2 thin film for a compound solar cell using a continuous flow reaction method.

상기 목적을 달성하기 위하여, 본 발명은 (i) 구리 공급원 및 인듐 공급원을 물에 용해시켜 반응물 A를 준비하는 단계; (ii) 셀레늄 공급원을 물에 용해시켜 반응물 B를 준비하는 단계; (iii) 상기 반응물 A와 반응물 B를 혼합한 후, 혼합물을 기판 상에 연속흐름반응법을 이용하여 증착시키는 단계; 및 (iv) 증착된 박막을 진공 또는 질소 분위기 하에서 열처리하는 단계를 포함하여 이루어지는 것을 특징으로 하는, 연속흐름반응법을 이용한 화합물 태양전지용 CuInSe2 박막의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of (i) preparing a reactant A by dissolving a copper source and an indium source in water; (ii) dissolving the selenium source in water to prepare reactant B; (iii) mixing reactant A and reactant B, and then depositing the mixture on a substrate using a continuous flow reaction method; And (iv) provides a method for producing a CuInSe 2 thin film for a compound solar cell using a continuous flow reaction method comprising the step of heat-treating the deposited thin film in a vacuum or nitrogen atmosphere.

상기 구리 공급원으로는 염화구리, 황산구리, 질산구리 또는 초산구리 수화물에서 선택되고, 상기 인듐 공급원으로는 염화인듐, 황산인듐, 인듐아세테이트 또는 인듐트리설파이드에서 선택되며, 상기 셀레늄 공급원으로는 소듐 셀레노설파이트, 셀레늄 파우더, 소듐 셀레나이트, 셀레노우레아 또는 디메틸 셀레노우레아에서 선택될 수 있다.The copper source is selected from copper chloride, copper sulfate, copper nitrate or copper acetate hydrate, the indium source is selected from indium chloride, indium sulfate, indium acetate or indium trisulfide, and the selenium source is sodium selenulfite , Selenium powder, sodium selenite, selenourea or dimethyl selenourea.

상기 증착 단계는 100-300℃에서 혼합물을 기판 상에 증착시키며, 이때 상기 온도범위를 벗어나 증착하면 기판과 박막 사이의 결합구조에 문제가 야기될 수 있다.The deposition step deposits the mixture on the substrate at 100-300 ° C., in which the deposition outside the temperature range may cause a problem in the bonding structure between the substrate and the thin film.

또한, 상기 증착 단계는 1-10 ml/초의 유속으로 혼합물을 기판 상에 증착시키며, 이때 상기 유속범위를 벗어나 증착하면 박막을 형성하기 전 단계의 용액이 혼합되지 않을 문제가 야기될 수 있다.In addition, the deposition step deposits the mixture on the substrate at a flow rate of 1-10 ml / sec, when the deposition outside the flow rate range may cause a problem that the solution of the step before forming the thin film is not mixed.

또한, 상기 증착 단계는 1-10분 동안 혼합물을 기판 상에 증착시키며, 이때 상기 시간범위를 벗어나 증착하면 물리적 힘에 의해 박막이 침삭되는 문제가 야기될 수 있다.In addition, the deposition step deposits the mixture on the substrate for 1-10 minutes, when the deposition outside the time range may cause a problem that the thin film is deposited by the physical force.

또한, 상기 열처리 단계는 진공 또는 질소 분위기 하 100-600℃에서 1-3 시간 동안 열처리하며, 이때 상기 온도범위를 벗어나 열처리하면 입자사이즈가 충분히 커지지 않아 계면결함농도의 증가로 인해 균일한 박막이 얻어지지 않을 문제가 야기될 수 있고, 상기 시간범위를 벗어나 열처리하면 물질 고유의 결정성과 결합성에 문제가 야기될 수 있다.
In addition, the heat treatment step is a heat treatment for 1-3 hours at 100-600 ℃ under vacuum or nitrogen atmosphere, when the heat treatment outside the temperature range is not large enough to obtain a uniform thin film due to the increase in the interface defect concentration Problems that may not occur may occur, and heat treatment outside the above time range may cause problems in crystallinity and binding properties of materials.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

1. 기판 준비1. Board Preparation

본 발명에서는 상업용 현미경 글래스(Fisher Scientific), 소다석회 유리, 코닝 유리 또는 금속산화물 박막이 증착된 유리를 기판으로 사용하며, 이러한 기판은 수산화나트륨 수용액에서 초음파 처리한 후, 아세톤, 메탄올 및 초순수를 이용하여 화학적으로 세정하여 준비한다.In the present invention, a commercial microscope glass (Fisher Scientific), soda-lime glass, Corning glass or glass deposited with a metal oxide thin film is used as a substrate, which is subjected to ultrasonic treatment in aqueous sodium hydroxide solution, and then using acetone, methanol and ultrapure water Prepared by chemical cleaning.

2. CuInSe2. CuInSe 22 박막 증착 Thin film deposition

Cu 및 In 공급원용으로 준비된 전구체 수용액을 포함하는 반응물 흐름 A와 소듐 셀레노설파이트 수용액을 포함하는 반응물 흐름 B을 혼합한 후, 글래스 기판 상에 증착시킨다. 이때, 혼합 용액의 유속은 1-10 ml/초이며, 증착시간은 1-10분일 수 있으며, 보다 바람직하게는 혼합 용액의 유속은 약 1ml/초, 충돌시간은 7분으로 고정할 수 있다. Reactant stream A, including aqueous precursor solution prepared for Cu and In sources, and reactant stream B, including aqueous solution of sodium selenosulfite are mixed and then deposited on a glass substrate. At this time, the flow rate of the mixed solution is 1-10 ml / second, the deposition time may be 1-10 minutes, more preferably the flow rate of the mixed solution is about 1 ml / second, the impact time can be fixed to 7 minutes.

박막의 결정화를 개선하고 산화를 방지하기 위하여, 증착된 CuInSe2 박막을 질소 분위기 하에서 1-3 시간 동안 100-600℃에서 열처리할 수 있다. In order to improve the crystallization of the thin film and to prevent oxidation, the deposited CuInSe 2 thin film may be heat-treated at 100-600 ° C. for 1-3 hours under a nitrogen atmosphere.

CFR 증착 공정과 관련된 상세한 것은 알려진 방법(JYoung Jung, No-Kuk Park, Tae Jin Lee, Si Ok Ryu, Chih-Hung Chang, flow microreactor, Curr Appl Phys. 8(6), 720-724, 2008)에 따라 수행될 수 있다.Details regarding the CFR deposition process can be found in known methods (JYoung Jung, No-Kuk Park, Tae Jin Lee, Si Ok Ryu, Chih-Hung Chang, flow microreactor, Curr Appl Phys. 8 (6), 720-724, 2008). Can be performed accordingly.

본 발명에 따른 CuInSe2 박막의 제조방법은 연속흐름반응법(CFR)을 이용하여 CuInSe2 박막을 기판에 증착시킴으로써 고가의 장비나 복잡한 진공 시스템을 필요로 하지 않아 저비용으로 화합물 태양전지용 CuInSe2 박막을 제조할 수 있다.Production method of the CuInSe 2 thin film according to the present invention is the expensive equipment or complex does not require a vacuum system, compound solar cells CuInSe 2 thin film at a low cost by depositing a CuInSe 2 thin film using a continuous flow reaction method (CFR) to the substrate It can manufacture.

도 1은 전구체 용액에서 인듐 시약의 농도를 다양하게 변화시켜 증착된 본 발명에 따른 CuInSe2 박막 필름의 XRD 패턴을 나타낸 것이고,
도 2a 및 도 2b는 본 발명에 따른 CuInSe2 박막 필름의 광학 밴드 갭을 나타낸 것이고,
도 3a 및 도 3b는 본 발명에 따른 CuInSe2 박막 필름의 표면 형상을 나타낸 SEM 이미지이고,
도 4a 내지 도 4c는 본 발명에 따른 CuInSe2 박막 필름의 Cu 2p, In 3d 및 Se 3d의 XPS 분석을 나타낸 것이다.
Figure 1 shows the XRD pattern of the CuInSe 2 thin film according to the present invention deposited by varying the concentration of the indium reagent in the precursor solution,
2a and 2b shows the optical band gap of the CuInSe 2 thin film according to the present invention,
3a and 3b are SEM images showing the surface shape of the CuInSe 2 thin film according to the present invention,
4A to 4C show XPS analysis of Cu 2 p , In 3 d and Se 3 d of the CuInSe 2 thin film according to the present invention.

이하, 하기 실시예에 의해 본 발명을 보다 상세하게 설명한다. 그러나, 하기 실시예는 본 발명의 내용을 구체화하기 위한 설명일 뿐 실시예에 의해 본 발명이 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are only for the purpose of clarifying the contents of the present invention, and the present invention is not limited by the examples.

<실시예 1> CuInSeExample 1 CuInSe 22 박막 제조 Thin film manufacturing

1. 기판 준비1. Board Preparation

상업용 현미경 글래스(Fisher Scientific), 소다석회 유리, 코닝 유리 또는 금속산화물 박막이 증착된 유리를 기판으로 이용하였다. 상기 유리 기판을 1M 수산화나트륨 수용액에서 초음파 세정하였고, 표준 아세톤, 메탄올 및 초순수를 이용하여 화학적으로 세정하였다. Commercial microscope glass (Fisher Scientific), soda-lime glass, corning glass, or glass deposited with a metal oxide thin film was used as the substrate. The glass substrates were ultrasonically cleaned in 1M aqueous sodium hydroxide solution and chemically cleaned using standard acetone, methanol and ultrapure water.

2. 전구체 용액 제조2. Preparation of Precursor Solution

필름 형성에 있어서 인듐(In)에 대한 구리(Cu) 몰비의 효과를 검토하기 위하여, 전구체 용액에서 In 시약 농도를 다양하게 변화시켰다. Cu 및 In의 수용성 공급원으로 200ml 초순수에 용해된 0.1M 염화구리(CuCl2?2H2O)와 0.005 내지 0.05M 염화인듐(InCl3?2H2O)를 각각 사용하였다. 셀레늄(Se)의 공급원으로서의 소듐 셀레노설파이트(Na2SeSO3)는 0.05M 소듐 설파이트(Na2SO3)를 셀레늄 파우더(Se)와 200ml 초순수에서 혼합하여 준비하였다.In order to examine the effect of the copper (Cu) molar ratio on indium (In) in film formation, the In reagent concentration in the precursor solution was varied. A water-soluble source of Cu and In was used as a 0.1M copper chloride (CuCl 2? 2H 2 O) and 0.005 to 0.05M of indium chloride (InCl 3? 2H 2 O) was dissolved in 200ml ultra pure water, respectively. Sodium selenulfite (Na 2 SeSO 3 ) as a source of selenium (Se) was prepared by mixing 0.05 M sodium sulfite (Na 2 SO 3 ) with selenium powder (Se) in 200 ml ultrapure water.

3. CuInSe3. CuInSe 22 박막 증착 Thin film deposition

CFR법에 의해 CuInSe2 박막을 준비된 기판에 증착시키기 위하여, 먼저 Cu 및 In 공급원용으로 준비된 전구체 수용액을 포함하는 반응물 흐름 A와 소듐 셀레노설파이트 수용액을 포함하는 반응물 흐름 B를 먼저 마이크로 믹서에 넣어 서로 혼합하였다. 이렇게 얻어진 혼합물이 온도가 제어된 기판에 충돌하기 전에 상기 혼합물을 미리 약 140℃의 온도를 유지하는 온도 제어 채널에 통과시켰다. 상기 용액의 유속은 약 1ml/초, 충돌시간은 7분으로 고정시켰다. In order to deposit the CuInSe 2 thin film on the prepared substrate by the CFR method, the reactant stream A including the precursor aqueous solution prepared for the Cu and In sources and the reactant stream B containing the aqueous solution of sodium selenosulfite were first put into a micromixer. Mixed. The mixture thus obtained was passed through a temperature control channel which previously maintained a temperature of about 140 ° C. before impinging the temperature controlled substrate. The flow rate of the solution was fixed at about 1 ml / second, the collision time was 7 minutes.

CFR 증착 공정과 관련된 상세한 것은 알려진 방법(JYoung Jung, No-Kuk Park, Tae Jin Lee, Si Ok Ryu, Chih-Hung Chang, microreactor, Curr Appl Phys. 8(6), 720-724, 2008)에 따라 수행되었다. Details regarding the CFR deposition process can be found in accordance with known methods (JYoung Jung, No-Kuk Park, Tae Jin Lee, Si Ok Ryu, Chih-Hung Chang, microreactor, Curr Appl Phys. 8 (6), 720-724, 2008). Was performed.

증착된 CuInSe2 박막의 결정화를 개선하고 산화를 방지하기 위하여, 증착된 CuInSe2 박막을 진공 또는 질소 분위기 하에서 1시간 동안 400℃에서 열처리하였다. In order to improve the crystallization of the deposited CuInSe 2 thin film and to prevent oxidation, the deposited CuInSe 2 thin film was heat treated at 400 ° C. for 1 hour under vacuum or nitrogen atmosphere.

<실시예 2> CuInSeExample 2 CuInSe 22 박막 분석 Thin film analysis

1. 구조 분석1. Structural Analysis

CuInSe2 박막의 구조 및 결정 방향성을 X-선 회절 분광계(XRD; PANalytical MPD for thin film)를 사용하여 결정하였다. The structure and crystal orientation of CuInSe 2 thin films were determined using an X-ray diffraction spectrometer (XRD; PANalytical MPD for thin film).

도 1은 전구체 용액에서 인듐 시약의 농도를 다양하게 변화시켜 증착된 CuInSe2 박막 필름의 X-선 회절 패턴을 나타낸다. 즉, 도 1a는 0.025M InCl3 수용액을 함유한 전구체 용액을 이용하여 증착된 CuInSe2 박막 필름의 열처리를 하기 전의 XRD 패턴으로, CuInSe2 3원 화합물 형성을 의미하는 (112), (211) 및 (204)의 주요 회절선이 비록 약하긴 하지만 증착 필름에서 관찰되었다. 1 shows an X-ray diffraction pattern of a CuInSe 2 thin film deposited by varying the concentration of indium reagent in the precursor solution. That is, FIG. 1A is an XRD pattern before heat treatment of a CuInSe 2 thin film deposited using a precursor solution containing 0.025M InCl 3 aqueous solution, to indicate formation of CuInSe 2 ternary compounds (112), (211) and The main diffraction line of 204, although weak, was observed in the deposited film.

도 1b, 도 1c 및 도 1d에 나타난 XRD 스펙트럼은 열처리된 CuInSe2 박막 필름의 회절 패턴을 의미하며, 각각 0.005M, 0.010M 및 0.025M InCl3로부터 제조된 것이다.The XRD spectra shown in FIGS. 1B, 1C and 1D refer to the diffraction pattern of the heat treated CuInSe 2 thin film, prepared from 0.005M, 0.010M and 0.025M InCl 3 , respectively.

이러한 결과로부터 결정성 CuInSe2 박막 필름은 InCl3의 몰농도가 증가할수록 보다 잘 형성됨을 알 수 있었다. 즉, 0.025M InCl3 용액으로부터 증착된 CuInSe2 박막 필름은 가장 우수한 결정성을 나타내었다.From these results, it was found that the crystalline CuInSe 2 thin film was formed better with increasing molar concentration of InCl 3 . That is, CuInSe 2 thin film deposited from 0.025M InCl 3 solution showed the best crystallinity.

2θ=26.65°, 35.54°, 44.184°, 52.433° 및 62.668°에서 검출된 회절 피크는 사정방계 구조를 지닌 CuInSe2 구조의 (112), (211), (204), (312) 및 (323) 결정면과 각각 대응한다. 이러한 X-선 회절 피크는 CuIn 금속 합금 피크에서 나타나는 사정방계 황동계용 JCPDS 87-2265의 값과 잘 일치하였다. The diffraction peaks detected at 2θ = 26.65 °, 35.54 °, 44.184 °, 52.433 ° and 62.668 ° were determined by (112), (211), (204), (312) and (323) of CuInSe 2 structure with emissive structure. Corresponds to the crystal plane respectively. These X-ray diffraction peaks were in good agreement with the values of JCPDS 87-2265 for emissive brass based on CuIn metal alloy peaks.

2θ=41.93ㅀ에 위치한 특징적 피크가 XRD 패턴에서 관찰되었고, 이는 Cu4In 및 Cu9In4 계에 속하는 CuIn 금속 합금 선으로 확인되었다. 이러한 합금 선은 InCl3 함량이 증가할수록 보다 강도가 증가하였다. 반응하지 않는 Cu 및 In 원소를 함유하는 미세영역의 존재는 Cu4In 및 Cu9In4 계 회절 선에 의해 기인한 것으로 판단된다. 만약, 인듐이 증착 필림에서 반응하지 않고 남아있다면 Cu의 셀렌화가 셀렌화 발생 전에 In 및 Cu 간의 반응에 의해 방해 받을 수 있다.A characteristic peak located at 2θ = 41.93 Hz was observed in the XRD pattern, which was confirmed by CuIn metal alloy lines belonging to the Cu 4 In and Cu 9 In 4 systems. These alloy wires increased in strength with increasing InCl 3 content. The presence of microregions containing Cu and In elements that do not react is judged to be due to the Cu 4 In and Cu 9 In 4 based diffraction lines. If indium remains unreacted at the deposition film, selenization of Cu may be interrupted by a reaction between In and Cu before selenization occurs.

따라서, 반응하지 않는 인듐은 열처리 공정 동안 Cu4In 및 Cu9In4 계의 형성을 야기할 수 있다. XRD 분석 결과로부터 증착 필름 및 열처리 필름의 결정 성장은 인듐 공급원의 몰 농도에 영향을 받는 것으로 확인되었다.Thus, unreacted indium can cause the formation of Cu 4 In and Cu 9 In 4 systems during the heat treatment process. From the XRD analysis results, crystal growth of the deposited film and the heat treated film was found to be affected by the molar concentration of the indium source.

2. 광학적 특성 분석2. Optical Characterization

CuInSe2 박막의 광학적 특성을 UV-가시선 분광분석기(Ocean Optics Inc, USB 2000 optic spectrometer)를 이용하여 300-800nm의 가시 범위 내에서 측정하였다. 일반적으로, 필름의 광학 밴드 갭은 0차 흡수계수 α에 관한 에너지 축에 대한 hν에 대한 (αhν)2의 플롯의 직선 영역을 외삽하여 CuInSe2 박막 필름의 광학 밴드 갭 값을 얻었다. The optical properties of CuInSe 2 thin films were measured within a visible range of 300-800 nm using a UV-Vis spectrometer (Ocean Optics Inc, USB 2000 optic spectrometer). In general, the optical band gap of the film was extrapolated by the linear region of the plot of (αhν) 2 for hν relative to the energy axis with respect to the zeroth order absorption coefficient α to obtain the optical band gap value of the CuInSe 2 thin film.

도 2a 및 도 2b는 0.025M InCl3로 처리된 CuInSe2 박막 필름에 관한 hν에 대한 (αhν)2의 플롯을 나타내었고, 열처리 전의 CuInSe2 박막 필름의 광학 밴드 갭 값이 ~1.54eV, 열처리된 필름의 광학 밴드 갭 값이 ~1.25eV로 산출되었다. 황동계 CuInSe2 박막 필름의 광학 밴드 갭은 Cu/In 비율에 따라 변동될 수 있지만, 0.98-1.04eV의 범위 내인 것으로 보고되어 있다. 본 발명에서 얻어진 보다 높은 광학 밴드 갭 값은 양자사이즈 효과에 기인할 수 있다.2A and 2B show plots of (αhν) 2 for hν for CuInSe 2 thin films treated with 0.025M InCl 3 , wherein the optical band gap value of the CuInSe 2 thin film before heat treatment was ˜1.54 eV, The optical band gap value of the film was calculated to be 1.25 eV. The optical band gap of the brass-based CuInSe 2 thin film may vary depending on the Cu / In ratio, but is reported to be in the range of 0.98-1.04 eV. Higher optical band gap values obtained in the present invention may be due to quantum size effects.

3. 표면 형태 분석3. Surface shape analysis

유리 기판 상에 증착된 다결정질의 CuInSe2 박막 필름의 표면 형태를 분석하기 위하여, 주사전자현미경(SEM; Hitachi, LTD S-4800 FE-SEM)을 사용하였다. In order to analyze the surface morphology of the polycrystalline CuInSe 2 thin film deposited on the glass substrate, a scanning electron microscope (SEM; Hitachi, LTD S-4800 FE-SEM) was used.

도 3a에 도시된 0.025M InCl3 수용액을 이용하여 증착된 CuInSe2 박막 필름의 표면 형상은 도 3b에 도시된 열처리된 필름과 비교하면, 열처리된 필름이 균일하고 매끈한 표면을 나타내었다. CuInSe2의 입자는 20-200nm의 범위 내에서 위치에 따른 특별한 경향을 나타내지 않고 임의로 분포되었다. The surface shape of the CuInSe 2 thin film deposited using the 0.025M InCl 3 aqueous solution shown in FIG. 3A showed a uniform and smooth surface of the heat-treated film compared to the heat-treated film shown in FIG. 3B. The particles of CuInSe 2 were randomly distributed in the range of 20-200 nm with no particular tendency to position.

다결정성 박막 필름의 표면 거칠기와 입도는 태양전지 디바이스 효율과 직접적인 관련을 지닌다. 입도가 작을수록 표면 결점 밀도가 높아지므로 캐리어 수명의 감소를 초래할 수 있다.Surface roughness and particle size of polycrystalline thin film films are directly related to solar cell device efficiency. Smaller particle sizes result in higher surface defect densities, which can result in reduced carrier life.

본 실시예에서는 CFR법을 통해 양호한 표면 형상을 갖는 CuInSe2 박막 필름을 제조할 수 있었다. 도 3b의 삽입도는 CFR법에 의해 제조된 CuInSe2 박막 필름의 횡단면 이미지를 나타내며, 필름이 치밀하고 촘촘하였다. 한편, 필름의 두께를 alpha step profiler를 이용하여 측정하였고, 그 결과 필름의 두께는 약 2.5㎛이었고, 이러한 두께는 광전지 디바이스용 흡수층으로서 적합한 두께이다.In the present embodiment, a CuInSe 2 thin film having a good surface shape could be manufactured through the CFR method. 3B shows a cross-sectional image of a CuInSe 2 thin film prepared by the CFR method, and the film was dense and dense. On the other hand, the thickness of the film was measured using an alpha step profiler, and as a result, the thickness of the film was about 2.5 µm, and this thickness is a thickness suitable as an absorbing layer for photovoltaic devices.

4. 화학결합 정보 분석4. Chemical Bonding Information Analysis

0.025M InCl3 수용액을 포함한 전구체 용액을 이용하여 증착하고 열처리된 CuInSe2 박막 필름의 구성성분 간의 화학적 결합 상태를 확인하기 위하여, X-선 광전자 분광기(XPS; VGESCALAB, 200-IXL instrument with Mg K radiation)를 사용하였다. X-ray photoelectron spectroscopy (XPS; VGESCALAB, 200-IXL instrument with Mg K radiation) was used to confirm the chemical bonding between components of the deposited and heat-treated CuInSe 2 thin film using a precursor solution containing 0.025 M InCl 3 solution. ) Was used.

도 4a 내지 도 4c는 각각 Cu 2p, In 3d 및 Se 3d의 XPS 분석을 나타낸 것이다. 즉, 도 4a는 Cu 2p 코어 수준 스펙트럼을 나타내며, 931.6eV에서 관찰된 피크는 CuInSe2 화합물로부터 발산되는 Cu 2p 3/2 전자에 관한 결합 에너지와 일치하며, 951eV에서 관찰된 피크는 Cu 원소로부터 발산되는 Cu 2p 1/2 전자에 관한 결합 에너지와 일치한다. 4A to 4C show XPS analysis of Cu 2 p , In 3 d and Se 3 d , respectively. That is, FIG. 4A shows the Cu 2 p core level spectrum, the peak observed at 931.6 eV is consistent with the binding energy for Cu 2 p 3/2 electrons emitted from the CuInSe 2 compound, and the peak observed at 951 eV is Cu element. Coincides with the binding energy for Cu 2 p 1/2 electrons emitted from.

도 4b는 In 3d 코어 수준 스펙트럼을 나타내며, 441.2eV 및 448.3eV에서 관찰된 피크는 In 3d 5/2 및 In 3d 3/2의 전자 상태와 일치한다. 도 4c는 Se 3d 코어 수준 스펙트럼을 나타내며, 53.6eV에서 관찰된 피크는 CuInSe2 화합물로부터 발산되는 Se 3d 5/2 전자 상태, 54.9eV에서 관찰된 피크는 Se 원소로부터 발산되는 Se 3d 5/2 전자 상태와 일치한다. 4B shows the In 3d core level spectrum, with peaks observed at 441.2 eV and 448.3 eV consistent with the electronic states of In 3 d 5/2 and In 3 d 3/2 . Figure 4c shows Se 3 d core level spectrum, the peak observed at 53.6 eV is Se 3 d 5/2 electron state emitted from the CuInSe 2 compound, the peak observed at 54.9 eV is Se 3 d 5 emitted from the Se element / 2 matches the electronic state.

Claims (6)

(i) 구리 공급원 및 인듐 공급원을 물에 용해시켜 반응물 A를 준비하는 단계;
(ii) 셀레늄 공급원을 물에 용해시켜 반응물 B를 준비하는 단계;
(iii) 상기 반응물 A와 반응물 B를 혼합한 후, 혼합물을 기판 상에 연속흐름식 반응법을 이용하여 증착시키는 단계; 및
(iv) 증착된 박막을 진공 또는 질소 분위기 하에서 열처리하는 단계를 포함하여 이루어지는 것을 특징으로 하는, 연속흐름식 반응법을 이용한 화합물 태양전지용 CuInSe2 박막의 제조방법.
(i) dissolving the copper source and the indium source in water to prepare Reactant A;
(ii) dissolving the selenium source in water to prepare reactant B;
(iii) mixing reactant A and reactant B, and then depositing the mixture on a substrate using a continuous flow reaction method; And
(iv) a method of manufacturing a CuInSe 2 thin film for a compound solar cell using a continuous flow reaction method, comprising the step of heat-treating the deposited thin film under vacuum or nitrogen atmosphere.
청구항 1에 있어서, 상기 구리 공급원은 염화구리, 황산구리, 질산구리 또는 초산구리 수화물에서 선택되고, 상기 인듐 공급원은 염화인듐, 황산인듐, 인듐아세테이트 또는 인듐트리설파이드에서 선택되며, 상기 셀레늄 공급원은 소듐 셀레노설파이트, 셀레늄 파우더, 소듐 셀레나이트, 셀레노우레아 또는 디메틸 셀레노우레아에서 선택되는, 연속흐름식 반응법을 이용한 화합물 태양전지용 CuInSe2 박막의 제조방법.The method of claim 1, wherein the copper source is selected from copper chloride, copper sulfate, copper nitrate or copper acetate hydrate, the indium source is selected from indium chloride, indium sulfate, indium acetate or indium trisulfide, and the selenium source is sodium selenium A method for producing a CuInSe 2 thin film for a compound solar cell using a continuous flow reaction method selected from sulfite, selenium powder, sodium selenite, selenourea or dimethyl selenourea. 청구항 1 또는 청구항 2에 있어서, 상기 증착 단계는 100-300℃에서 혼합물을 기판 상에 증착시키는, 연속흐름식 반응법을 이용한 화합물 태양전지용 CuInSe2 박막의 제조방법.The method of claim 1 or 2, wherein the depositing step deposits the mixture on a substrate at 100-300 ° C. The method of manufacturing a CuInSe 2 thin film for a compound solar cell using a continuous flow reaction method. 청구항 1 또는 청구항 2에 있어서, 상기 증착 단계는 1-10 ml/초의 유속으로 혼합물을 기판 상에 증착시키는, 연속흐름식 반응법을 이용한 화합물 태양전지용 CuInSe2 박막의 제조방법.The method according to claim 1 or claim 2, wherein the deposition step is for producing a compound thin film solar cell CuInSe 2 with a continuous-flow reaction method to deposit a mixture with 1-10 ml / sec flow rate on the substrate. 청구항 1 또는 청구항 2에 있어서, 상기 증착 단계는 1-10분 동안 혼합물을 기판 상에 증착시키는, 연속흐름식 반응법을 이용한 화합물 태양전지용 CuInSe2 박막의 제조방법.The method according to claim 1 or claim 2, wherein said deposition step is 1-10 minutes the mixture to a process for the preparation of a compound thin film solar cell CuInSe 2 with a continuous-flow reaction method is deposited on the substrate while. 청구항 1 또는 청구항 2에 있어서, 상기 열처리 단계는 진공 또는 질소 분위기 하 100-600℃에서 1-3 시간 동안 열처리하는, 연속흐름식 반응법을 이용한 화합물 태양전지용 CuInSe2 박막의 제조방법.The method of claim 1 or 2, wherein the heat treatment is heat treatment at 100-600 ° C. for 1-3 hours in a vacuum or nitrogen atmosphere, and a method of manufacturing a CuInSe 2 thin film for a compound solar cell using a continuous flow reaction method.
KR1020100011685A 2010-02-08 2010-02-08 Preparation method of copper indium diselenide thin film for solar cell using continuous flow reaction process KR101121476B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100011685A KR101121476B1 (en) 2010-02-08 2010-02-08 Preparation method of copper indium diselenide thin film for solar cell using continuous flow reaction process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100011685A KR101121476B1 (en) 2010-02-08 2010-02-08 Preparation method of copper indium diselenide thin film for solar cell using continuous flow reaction process

Publications (2)

Publication Number Publication Date
KR20110092173A KR20110092173A (en) 2011-08-17
KR101121476B1 true KR101121476B1 (en) 2012-03-13

Family

ID=44929154

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100011685A KR101121476B1 (en) 2010-02-08 2010-02-08 Preparation method of copper indium diselenide thin film for solar cell using continuous flow reaction process

Country Status (1)

Country Link
KR (1) KR101121476B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416176B1 (en) * 1996-05-28 2004-04-29 록히드 마틴 코포레이션 Transformation shoulder system and method for boundary layer air conversion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437761B1 (en) * 2013-01-31 2014-09-16 영남대학교 산학협력단 Preparation Method of Copper Selenide Thin Film for Solar Cell Using Continuous Flow Reaction Process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106967A1 (en) 2004-05-03 2005-11-10 Solaronix Sa Method for producing a thin-film chalcopyrite compound
KR20080109240A (en) * 2007-06-12 2008-12-17 경북대학교 산학협력단 Culns2 absorber layer of thin film solar cell and manufacture method thereof
KR20090005184A (en) * 2006-04-18 2009-01-12 다우 코닝 코포레이션 Copper indium diselenide-based photovoltaic device and method of preparing the same
KR20090063283A (en) * 2007-12-14 2009-06-18 주식회사 엘지화학 Process for preparation of coating layer of 1b-3a-6a group compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106967A1 (en) 2004-05-03 2005-11-10 Solaronix Sa Method for producing a thin-film chalcopyrite compound
KR20090005184A (en) * 2006-04-18 2009-01-12 다우 코닝 코포레이션 Copper indium diselenide-based photovoltaic device and method of preparing the same
KR20080109240A (en) * 2007-06-12 2008-12-17 경북대학교 산학협력단 Culns2 absorber layer of thin film solar cell and manufacture method thereof
KR20090063283A (en) * 2007-12-14 2009-06-18 주식회사 엘지화학 Process for preparation of coating layer of 1b-3a-6a group compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100416176B1 (en) * 1996-05-28 2004-04-29 록히드 마틴 코포레이션 Transformation shoulder system and method for boundary layer air conversion

Also Published As

Publication number Publication date
KR20110092173A (en) 2011-08-17

Similar Documents

Publication Publication Date Title
TWI510664B (en) Chalcogenide-based materials and improved methods of making such materials
AU2010254119A1 (en) Thin films for photovoltaic cells
JP4615067B1 (en) Photoelectric conversion element and solar cell including the same
US9391231B2 (en) Method for preparing a thin layer of an absorber made of copper, zinc and tin sulfide(s), annealed thin layer and photovoltaic device thus obtained
WO2012011723A2 (en) Method of manufacturing high density cis thin film for solar cell and method of manufacturing thin film solar cell using the same
JP6330051B2 (en) Method for doping Cu (In, Ga) (S, Se) 2 nanoparticles with sodium or antimony
US9040113B2 (en) Atomic layer deposition of metal sulfide thin films using non-halogenated precursors
Yussuf et al. Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells
KR101121476B1 (en) Preparation method of copper indium diselenide thin film for solar cell using continuous flow reaction process
JP6035122B2 (en) Photoelectric conversion element and method for producing buffer layer of photoelectric conversion element
JP2019024106A (en) Preparation of copper-rich copper indium (gallium) diselenide/disulphide
JP2014130858A (en) Photoelectric conversion element and process of manufacturing buffer layer of the same
KR101093831B1 (en) Preparation method of copper indium disulphide thin film for solar cell using spin spray
Morris et al. Chemical bath deposition of thin film CdSe layers for use in Se alloyed CdTe solar cells
KR101463327B1 (en) Preparation Method of Copper Indium Diselenide Thin Film for Solar Cell Using Spray Process
KR102212042B1 (en) Solar cell comprising buffer layer formed by atomic layer deposition and method of fabricating the same
KR101114685B1 (en) Preparation method of copper indium disulfide thin film for solar cell using continuous flow reaction process
KR101437761B1 (en) Preparation Method of Copper Selenide Thin Film for Solar Cell Using Continuous Flow Reaction Process
KR102212040B1 (en) Method of fabricating solar cell comprising buffer layer formed by atomic layer deposition
KR101114635B1 (en) Preparation method of cadmium telluride thin film for solar cell using spray process
Vadakkedath Gopi et al. Post deposition annealing effect on properties of CdS films and its impact on CdS/Sb2Se3 solar cells performance
JP2013016674A (en) Method for manufacturing buffer layer and photoelectric conversion element including the same
KR101083847B1 (en) Preparation method of cadmium telluride thin film for solar cell using continuous flow reaction process
Prabhakar et al. Alkali assisted enhancement of CZTS absorber layer characteristics
JP2011119764A (en) Buffer layer, manufacturing method thereof, reaction liquid, photoelectric conversion element, and solar cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150120

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151230

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170123

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee