KR101108690B1 - Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material - Google Patents

Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material Download PDF

Info

Publication number
KR101108690B1
KR101108690B1 KR1020090131076A KR20090131076A KR101108690B1 KR 101108690 B1 KR101108690 B1 KR 101108690B1 KR 1020090131076 A KR1020090131076 A KR 1020090131076A KR 20090131076 A KR20090131076 A KR 20090131076A KR 101108690 B1 KR101108690 B1 KR 101108690B1
Authority
KR
South Korea
Prior art keywords
metal foil
clad
metal
plasma
clad material
Prior art date
Application number
KR1020090131076A
Other languages
Korean (ko)
Other versions
KR20110074180A (en
Inventor
윤원규
양승호
홍길수
기호
Original Assignee
희성금속 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 희성금속 주식회사 filed Critical 희성금속 주식회사
Priority to KR1020090131076A priority Critical patent/KR101108690B1/en
Priority to PCT/KR2010/004246 priority patent/WO2011078455A1/en
Publication of KR20110074180A publication Critical patent/KR20110074180A/en
Application granted granted Critical
Publication of KR101108690B1 publication Critical patent/KR101108690B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

본 발명은 리튬 이온 2차 전지 리드재에 사용되는 다층 금속 클래드재의 제조방법에 관한 것으로, 상세하게는 제1 금속박과 제2 금속박의 표면에 플라즈마를 조사하여 표면 활성화처리를 수행하는 단계, 제1 금속박과 제2 금속박을 저압 압연하는 단계, 1차 클래딩된 금속박과 제3 금속박의 표면에 플라즈마를 조사하여 표면 활성화처리를 수행하는 단계, 1차 클래딩된 금속박과 제3 금속박을 저압 압연하는 단계의 다층 금속 클래드재 제조방법을 제공한다. The present invention relates to a method for manufacturing a multi-layer metal clad material used in a lithium ion secondary battery lead material, and in detail, performing a surface activation process by irradiating plasma on the surfaces of the first metal foil and the second metal foil. Low pressure rolling the metal foil and the second metal foil, performing surface activation by irradiating plasma on the surfaces of the first clad metal foil and the third metal foil, and performing low pressure rolling of the first clad metal foil and the third metal foil. Provided is a method for producing a multilayer metal clad material.

본 발명은, 연속 양산 진공 플라즈마 처리에 의한 클래드재 제조공정을 이용하여 모재 금속박 양면에 오버레이재 금속박을 클래딩하는 다층 금속 클래드재를 제조하는 방법에 있어서, 1차 클래딩된 금속박 (공지기술 특 2003-0087755)과 제3 금속박 표면에 플라즈마를 조사하여 표면 활성화처리 및 저압 압연 시 플라즈마 전력 1.0~1.5kw, 가스 유량 500~600sccm, 롤 속도 250~300m/min, 압력 1~1.5kgf/cm 조건을 통해 다층 클래드재를 제조하여 대전류 통전이 가능한 우수한 전기적 특성을 가지고, 버(Burr)가 발생되지 않고 에너지 로스 및 발열에 의한 손상을 방지할 수 있는 전지용 리드재 제조를 특징으로 한다. The present invention relates to a method for producing a multilayer metal clad material in which an overlay material metal foil is clad on both sides of a base metal foil by using a clad material manufacturing process by a continuous mass production vacuum plasma treatment. 0087755) and the surface of the third metal foil through the plasma activation and low pressure rolling plasma power 1.0 ~ 1.5kw, gas flow rate 500 ~ 600sccm, roll speed 250 ~ 300m / min, pressure 1 ~ 1.5kgf / cm conditions It is characterized by the manufacture of a multi-layer cladding material that has excellent electrical properties capable of conducting a large current, and is capable of preventing damage caused by energy loss and heat generation without generating a burr.

아울러, 본 발명에 따르면, 클래드재의 재료는 구리(Cu), 니켈(Ni)인 것을 특징으로 하는 다층 금속 클래드재를 제조하는 방법임을 특징으로 한다. In addition, according to the present invention, the material of the clad material is characterized in that the method for producing a multi-layer metal clad material, characterized in that the copper (Cu), nickel (Ni).

진공플라즈마, 다층 금속 클래드재, 2차 전지 리드재, 구리(Cu),니켈(Ni) Vacuum Plasma, Multi-Layer Metal Clad Material, Secondary Battery Lead Material, Copper (Cu), Nickel (Ni)

Description

다층 금속 클래드재를 제조하는 방법 및 다층 금속 클래드재 및 전지 내 리드재{Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material}Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material

본 발명은, 전지용 리드재 제조방법, 특히 플라즈마 표면 활성화처리를 함으로써 형성된 클래드재를 이용함으로써, 제조할 수 있는 리드재에 관한 것이다. TECHNICAL FIELD This invention relates to the lead material which can be manufactured by using the battery lead material manufacturing method, especially the clad material formed by performing plasma surface activation treatment.

리튬 이온 2차 전지나 니켈 수소 전지는 외부를 형성하는 금속 케이스와 케이스 내부에 전해액, 집전체, 양극단자 및 음극단자로 구성된다. 상기 집전체는 양극과 세퍼레이터와 음극을 차례대로 적층하여 구성되어 있고, 집전체가 권취되어 금속 케이스 내부에 위치한다. 상기 양극과 양극단자, 음극과 음극단자는 각각 양극리드 및 음극리드에 의해 전기적으로 연결된다. A lithium ion secondary battery or a nickel hydride battery is composed of a metal case forming an outside and an electrolyte solution, a current collector, a positive electrode terminal, and a negative electrode terminal inside the case. The current collector is configured by stacking a positive electrode, a separator, and a negative electrode in order, and the current collector is wound and positioned inside the metal case. The positive electrode and the positive electrode terminal, the negative electrode and the negative electrode terminal are electrically connected by the positive lead and the negative lead, respectively.

최근에, 전기제품의 고성능화나 전지 용도의 확대에 따라 전지의 소형화 및 고에너지 밀도화가 요구되고 있다. 따라서, 전지를 구성하는 각 부품의 소형화 및 박형화가 필요하나, 부품의 소형화나 박형화가 이루어질 경우 전기저항이 증대하여 전기적 에너지 로스가 발생되는 문제가 있다. 또한, 제품의 고기능성 및 고출력화를 만족하기 위해 양극리드 및 음극리드는 전기적 특성이 우수한 재료로 구성되는 것이 바람직하다. 그러나 상기 집전체, 양극리드 및 음극리드를 소형화 및 박형화하는 것은 전기적 특성을 저해하는 요소로 작용한다. 따라서, 양극리드 및 음극리드의 소형화, 박형화가 가능한, 전기적 특성 및 내식성이 우수한 재료의 개발이 요구되고 있다. 이러한 이유로 양극리드 및 음극리드 재료로 순니켈이 사용되고 있다. 그러나 순니켈은 가격이 비싸고, 가공 시 버(Burr) 발생을 만들어 내기 쉬운 난점이 있다. 버(Burr)가 발생할 경우 전지 내부재를 손상하기 쉽고, 전지 특성을 저하하며, 전지 제조 시 불량의 원인으로 작용한다. 그러므로 양극리드 및 음극리드의 재료로 소형화 및 박형화가 가능하고, 전기저항이 작으며, 내식성이 우수하고, 가공 시 버(Burr)가 발생되지 않는 재료의 개발이 바람직하다. Recently, miniaturization and high energy density of batteries have been demanded as high performance of electrical appliances and expansion of battery applications have been demanded. Therefore, although miniaturization and thinning of each component constituting the battery are required, when the miniaturization or thinning of the components is made, there is a problem in that electrical resistance is increased to generate electrical energy loss. In addition, in order to satisfy the high functionality and high output of the product, it is preferable that the anode lead and the cathode lead are made of a material having excellent electrical characteristics. However, miniaturization and thinning of the current collector, the positive electrode lead, and the negative electrode lead act as a factor that hinders electrical characteristics. Therefore, there is a demand for the development of a material having excellent electrical properties and corrosion resistance that can be miniaturized and thinned in the anode lead and the cathode lead. For this reason, pure nickel is used as the anode lead and cathode lead materials. Pure nickel, however, is expensive and difficult to produce burrs during processing. When burr occurs, it is easy to damage the battery internal material, deteriorate battery characteristics, and act as a cause of defects in battery manufacturing. Therefore, it is desirable to develop a material that can be miniaturized and thinned as a material of the anode lead and the cathode lead, has low electrical resistance, excellent corrosion resistance, and does not generate burrs during processing.

본 발명은 상기 과제 해결을 위해서 전해질에 대한 내식성을 가지고, 전기적 특성이 우수하며, 가공 시 버(Burr)가 발생되지 않는 리튬 2차 전지 리드재 제조방법을 제공하는 것을 목적으로 한다.  SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a lithium secondary battery lead material having corrosion resistance to an electrolyte, excellent electrical characteristics, and no burr generated during processing.

본 발명은 상기 과제 해결을 위해서 플라즈마 활성화 표면처리를 거친 후 저압압연으로 정밀층상복합 소재를 제조하는 공정을 이용하여 전해질에 대한 내식성을 가지고, 전기적 특성이 우수하며, 가공 시 버(Burr)가 발생되지 않는 리튬 2차 전지 리드재 제조방법을 제공하는 것을 목적으로 한다. The present invention has a corrosion resistance to the electrolyte by using a process for producing a precision layered composite material by low rolling after plasma activation surface treatment to solve the above problems, excellent electrical properties, and generates a burr during processing An object of the present invention is to provide a method for producing a lithium secondary battery lead material that is not available.

본 발명은, 연속 양산 진공 플라즈마 처리에 의한 클래드재 제조공정을 이용 하여 모재 금속박 양면에 금속 오버레이재 금속박을 클래딩하는 다층 금속 클래드재를 제조하는 방법에 있어서, 1차 클래딩된 금속박 (공지기술 특 2003-0087755)과 제3 금속박 표면에 플라즈마를 조사하여 표면 활성화처리 및 저압 압연 시 플라즈마 전력 1.0~1.5kw, 가스 유량 500~600sccm, 롤 속도 250~300m/min, 압력 1~1.5kgf/cm 조건을 통해 다층 클래드재를 제조하는 것을 특징으로 한다.The present invention relates to a method for producing a multilayer metal clad material that clads a metal overlay material metal foil on both sides of a base metal foil using a clad material manufacturing process by a continuous mass production vacuum plasma treatment. -0087755) and the surface of the third metal foil to the plasma activation and low pressure rolling plasma power 1.0 ~ 1.5kw, gas flow rate 500 ~ 600sccm, roll speed 250 ~ 300m / min, pressure 1 ~ 1.5kgf / cm conditions It is characterized by manufacturing a multi-layer clad material through.

본 발명에 의해 제조된 클래드재는 양극리드 및 음극리드에 사용되므로 모재 금속은 전기 전도성이 우수하며, 가격이 저렴한 동을 이용하고, 오버레이재 금속은 내식성이 우수한 니켈을 사용하여 다층 클래드재를 구성하였다, 모재 금속의 순도는 동 99% 이상, 오버레이재 금속의 순도는 니켈 99%이상 인 것이 바람직하다. Since the clad material manufactured by the present invention is used for the anode lead and the cathode lead, the base metal has excellent electrical conductivity, and uses inexpensive copper, and the overlay material metal is made of multilayer clad material using nickel having excellent corrosion resistance. , The purity of the base metal is 99% or more copper, the purity of the overlay material metal is preferably 99% nickel or more.

또한, 양극리드 및 음극리드로써의 기능 발휘를 위하여 다층 클래드의 두께는 100미크론 이하이며, 버(Burr) 발생으로 인한 전지 내부재의 손상 및 전지 특성 저하를 방지하기 위하여 버(Burr) 높이는 50미크론 이하로 제한한다. In addition, the thickness of the multi-layer cladding is 100 microns or less for the function as the anode lead and the cathode lead, and the burr height is 50 microns or less in order to prevent damage to battery internal materials and deterioration of battery characteristics due to burr generation. Limited to

본 발명에 따른, 연속양산 진공 플라즈마 처리에 의한 클래드재 제조 공정을 이용한 다층 금속 클래드재 제조방법은, 별도의 냉간 압연 및 열처리 공정의 추가 없이 다층 금속 클래드재를 제작하기 때문에 공정을 단축하고 고가의 금속 사용에 따른 비용 감소 효과를 기대할 수 있다. 또한 양극리드 및 음극리드의 버(Burr) 발생을 방지하여 전지 특성의 열화를 방지하고, 소형화 및 박형화가 가능한 전지 내 리드재의 제공이 가능하다. According to the present invention, a method of manufacturing a multilayer metal clad material using a cladding material manufacturing process by continuous mass vacuum plasma treatment is a method of manufacturing a multilayer metal cladding material without adding a separate cold rolling and heat treatment process. The cost savings from the use of metals can be expected. In addition, it is possible to prevent the deterioration of battery characteristics by preventing the generation of burrs of the anode lead and the cathode lead, and to provide a lead material in the battery that can be miniaturized and thinned.

본 발명에 따른 방법에 사용되는 리튬 이온 2차 전지 리드재에 적용된 금속 클래드재의 연속 양산공정에서 금속-금속-금속 클래드재 제조 공정은, 1차 클래딩된 금속박 (공지기술 특 2003-0087755)과 제3 금속박 표면에 플라즈마를 조사하여 표면 활성화처리 및 저압 압연 시 플라즈마 전력 1.0~1.5kw, 가스 유량 500~600sccm, 롤 속도 250~300m/min, 압력 1~1.5kgf/cm 조건을 통하여 다층 금속 클래드재를 제조하는 방법으로, 기존의 냉간 압연 및 열처리가 불필요한 방법이다.In the continuous mass production process of the metal clad material applied to the lithium ion secondary battery lead material used in the method according to the present invention, the metal-metal-metal clad material manufacturing process includes a primary clad metal foil (KKA 2003-0087755) and 3 Multi-layered metal clad material through plasma irradiation on the surface of metal foil and plasma activation 1.0 ~ 1.5kw, gas flow 500 ~ 600sccm, roll speed 250 ~ 300m / min, pressure 1 ~ 1.5kgf / cm As a method of manufacturing, conventional cold rolling and heat treatment is unnecessary.

이하에서, 본 발명의 바람직한 실시 예를 첨부한 도면들을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.

도 1은 리튬 이온 2차 전지 리드재 적용을 위한 연속진공 플라즈마 처리에 의한 금속-금속-금속 클래드재 제조 공정 방법을 설명하기 위한 개략도이다. 1 is a schematic view for explaining a metal-metal-metal clad material manufacturing process method by a continuous vacuum plasma treatment for applying a lithium ion secondary battery lead material.

도 1을 참조하면, 본 발명의 실시 예에 따른 금속-금속-금속 클래드 재료의 클래드 방법은, 제 1부분(1)과 제 2부분(2)에서 연속적으로 플라즈마 처리되어 압연롤(3) 부분에서 클래드된 금속-금속 클래드재(4)를 저압 압연롤(3)을 통과시킨다. 저압 압연롤(3)을 통과한 클래드재는 권취된다. 권취된 2층 클래드재를 다시 투입하여 제 3 금속박과 플라즈마 표면 처리 및 저압 압연을 통해 다층 클래드재를 제조한다.Referring to FIG. 1, a cladding method of a metal-metal-metal cladding material according to an embodiment of the present invention may be performed by plasma treatment in a first part 1 and a second part 2 so as to form a rolling roll 3. The clad metal-metal cladding material (4) is passed through the low pressure rolling roll (3). The cladding material which passed the low pressure rolling roll 3 is wound up. The wound two-layer cladding material is added again to prepare a multilayer cladding material through the third metal foil, plasma surface treatment, and low pressure rolling.

본 발명은, 제 1금속박과 제 3금속박으로 니켈을 사용하고, 제 2금속박으로 구리가 사용되는 것을 특징으로 하는 방법을 제공한다. 상기 클래드재는 리튬 이온 2차 전지 내 양극리드 및 음극리드로 사용되며, 전해질에 부식되지 않고 고전류의 통전이 가능한 전지에 사용된다. 또한 가공 시 버(Burr) 발생이 감소하여 전지 제조 시 불량율의 감소가 가능하다. The present invention provides a method wherein nickel is used as the first metal foil and the third metal foil, and copper is used as the second metal foil. The cladding material is used as a positive electrode lead and a negative electrode lead in a lithium ion secondary battery, and is used in a battery capable of conducting a high current without corrosion to the electrolyte. In addition, since the occurrence of burrs during processing is reduced, it is possible to reduce the defective rate during battery manufacturing.

순도 99.9% 이상인 무산소동과 순도 99% 이상인 니켈을 사용하여, 플라즈마 표면 처리 및 저압압연을 통해 다층 클래드재를 제조하고 특성, 형상을 측정한다. 양극 리드 및 음극리드 제조 시 니켈의 두께에 따른 버(Burr) 발생을 측정하고, 리튬 이온 2차 전지를 제작하여 저저항 회로에 접속 후 과대전류를 흘리는 시험을 행하고 전기특성 및 발열 특성에 관한 데이터를 수집한다. Using oxygen-free copper having a purity of 99.9% or more and nickel having a purity of 99% or more, a multilayer clad material is manufactured through plasma surface treatment and low rolling, and properties and shapes are measured. Measurement of burr generation according to the thickness of nickel in the production of positive electrode lead and negative electrode lead, fabrication of lithium ion secondary battery, test of excess current after connection to low resistance circuit, and data on electrical and heating characteristics Collect it.

시험 결과를 이하의 표 1에 나타낸다. The test results are shown in Table 1 below.

[표 1][Table 1]

실시예Example 최종두께
(㎛)
Final thickness
(Μm)
니켈 두께
(㎛)
Nickel thickness
(Μm)
Burr 높이
(㎛)
Burr height
(Μm)
전기 저항치
(nΩ/m)
Electrical resistance
(nΩ / m)
실시예 1Example 1 8080 2525 2929 3939 실시예 2Example 2 8080 2020 1717 2222 실시예 3Example 3 8080 1515 2323 2727 실시예 4Example 4 8080 1010 44 2525 비교예Comparative example 순니켈Pure nickel 4242 7575

표 1에 나타나는 결과로부터 실시예 1의 경우 버(Burr) 높이가 비교예의 버(Burr) 높이보다 감소함을 알 수 있었다. 실시예 2의 경우 버(Burr) 높이가 평균 17 미크론으로 순니켈을 사용한 비교예보다 버(Burr) 발생이 효과적으로 제어되었다. 실시예 3의 경우 실시예 1과 유사한 수준의 평균 버(Burr) 높이가 23 미크론으 로 측정되었다. 실시예 4의 경우 버(Burr) 높이가 가장 효과적으로 억제되었고, 버(Burr) 방지 효과를 가지는 것으로 판명되었다. From the results shown in Table 1, it can be seen that in the case of Example 1, the burr height is reduced than the burr height of the comparative example. In the case of Example 2, the burr height was controlled more effectively than the comparative example using pure nickel with an average height of 17 microns. For Example 3, the average burr height, similar to that of Example 1, was measured to be 23 microns. In the case of Example 4, the burr height was most effectively suppressed, and it was found to have a burr prevention effect.

다음으로 과대전류 통전 시험에서는 순니켈로 제작된 비교예의 양극리드 및 음극리드 사용 시 발열이 크고, 전지 특성의 열화가 관찰되었다. 실시예 1~4의 경우 리드재로부터의 발열이 효과적으로 억제되었고, 전지 특성의 열화는 관찰되지 않았다. Next, in the overcurrent energization test, a large amount of heat was generated when using the positive lead and the negative lead of the comparative example made of pure nickel, and deterioration of the battery characteristics was observed. In Examples 1 to 4, heat generation from the lead material was effectively suppressed, and deterioration of battery characteristics was not observed.

따라서, 동과 니켈로 구성된 클래드재를 양극리드 및 음극리드로 이용할 경우 종래의 순니켈로 제조된 양극리드 및 음극리드에 비해 전기 저항치를 감소하는 것이 가능하다. Therefore, when the cladding material composed of copper and nickel is used as the positive electrode lead and the negative electrode lead, it is possible to reduce the electric resistance value compared with the positive electrode lead and the negative electrode lead made of conventional pure nickel.

도 1은 인쇄 회로기판 적용을 위한 연속 양산 진공 플라즈마 처리에 의한 다층 클래드재를 제조하는 방법의 개략도이다. 1 is a schematic diagram of a method of manufacturing a multilayer clad material by continuous mass production vacuum plasma treatment for printed circuit board applications.

도 2는 FESEM을 통해 관찰한 다층 클래드재의 형상이다.2 is a shape of the multi-layer clad material observed through the FESEM.

Claims (6)

동 금속박과 니켈 금속박의 표면에 플라즈마를 조사하여 표면 활성화처리를 수행하는 단계와, Irradiating a plasma on the surfaces of the copper metal foil and the nickel metal foil to perform surface activation treatment; 상기 표면 활성화처리된 동 금속박과 니켈 금속박을 저압 압연하여 클래딩하는 단계와, Low-pressure rolling cladding the surface activated copper metal foil and nickel metal foil; 상기 1차 클래딩된 금속박과 니켈 금속박의 표면에 플라즈마를 조사하여 표면 활성화처리를 수행하는 단계와, Irradiating plasma on the surfaces of the primary clad metal foil and nickel metal foil to perform surface activation treatment; 상기 표면 활성화처리된 1차 클래딩된 금속박과 니켈 금속박을 저압 압연하여 클래딩하는 단계로 구성된 것을 특징으로 하는 연속 양산 진공플라즈마 처리를 이용하여 제조된 다층 금속 클래드재를 포함하는 전지 내 리드재로서, A lead material in a battery including a multilayer metal clad material manufactured by using a continuous mass production vacuum plasma treatment, characterized in that the step of the surface-activated primary cladding metal foil and nickel metal foil by low-pressure rolling cladding, 상기 전지 내 리드재에 발생되는 버(Burr)의 높이가 4 내지 30미크론 이하인 것을 특징으로 하는, 다층 금속 클래드재를 포함하는 전지 내 리드재.The height of the burr generated in the lead material in the battery is 4 to 30 microns or less, the lead material in a battery comprising a multi-layer metal clad material. 제 1항에 있어서,The method of claim 1, 상기 동 금속박은 순도가 99.9% 이상인 것을 특징으로 하는, 다층 금속 클래드재를 포함하는 전지 내 리드재.The copper metal foil is a lead material in a battery comprising a multilayer metal clad material, characterized in that the purity is 99.9% or more. 제 1항에 있어서, The method of claim 1, 상기 니켈 금속박은 순도가 99% 이상인 것을 특징으로 하는, 다층 금속 클래드재를 포함하는 전지 내 리드재.The nickel metal foil is a lead material in a battery, characterized in that the purity is 99% or more. 삭제delete 삭제delete 삭제delete
KR1020090131076A 2009-12-24 2009-12-24 Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material KR101108690B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090131076A KR101108690B1 (en) 2009-12-24 2009-12-24 Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material
PCT/KR2010/004246 WO2011078455A1 (en) 2009-12-24 2010-06-30 Method for manufacturing multilayer metal clad material, and multilayer metal clad material and lead material within battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090131076A KR101108690B1 (en) 2009-12-24 2009-12-24 Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material

Publications (2)

Publication Number Publication Date
KR20110074180A KR20110074180A (en) 2011-06-30
KR101108690B1 true KR101108690B1 (en) 2012-01-25

Family

ID=44195956

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090131076A KR101108690B1 (en) 2009-12-24 2009-12-24 Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material

Country Status (2)

Country Link
KR (1) KR101108690B1 (en)
WO (1) WO2011078455A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013020878A (en) * 2011-07-13 2013-01-31 Sumitomo Electric Ind Ltd Lead member and manufacturing method of the same
KR101917634B1 (en) * 2014-12-22 2018-11-13 희성금속 주식회사 Manufacturing method of Metal - Polymer Clad
JP6592946B2 (en) * 2015-04-15 2019-10-23 日立金属株式会社 Clad material for battery negative electrode lead material and method for producing clad material for battery negative electrode lead material
JP6766330B2 (en) * 2015-09-11 2020-10-14 日立金属株式会社 Battery lead material and battery lead material manufacturing method
KR102540672B1 (en) 2016-01-21 2023-06-07 삼성에스디아이 주식회사 Secondary battery
DE102017208220A1 (en) * 2017-05-16 2018-11-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for producing a dry film and dry film and dry film coated substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100615382B1 (en) * 1998-07-23 2006-08-25 도요 고한 가부시키가이샤 Clad board for printed-circuit board, multilayered printed-circuit board, and method of manufacture thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3460410B2 (en) * 1995-10-20 2003-10-27 ソニー株式会社 Metal lead with bump and method of manufacturing the same
TW446627B (en) * 1998-09-30 2001-07-21 Toyo Kohan Co Ltd A clad sheet for lead frame, a lead frame using thereof and a manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100615382B1 (en) * 1998-07-23 2006-08-25 도요 고한 가부시키가이샤 Clad board for printed-circuit board, multilayered printed-circuit board, and method of manufacture thereof

Also Published As

Publication number Publication date
KR20110074180A (en) 2011-06-30
WO2011078455A1 (en) 2011-06-30

Similar Documents

Publication Publication Date Title
KR101108690B1 (en) Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material
JP6596194B2 (en) Solid ion capacitor
WO2013001908A1 (en) Power storage device element and power storage device
JP4662368B2 (en) Manufacturing method of solid electrolytic capacitor
CN110948111B (en) Composite welding method for tab of soft package lithium ion battery
WO2016006420A1 (en) Method of manufacturing power storage device and method of manufacturing electrode
JP2015220012A (en) Solid electrolyte structure and all-solid-state battery
JP2012054197A (en) Laminate battery and method for manufacturing the same
Lim Development of composite-metal hybrid bipolar plates for PEM fuel cells
JP2010238484A (en) Method of manufacturing all solid lithium secondary battery
TW200937469A (en) Stacked solid electrolytic capacitor
CN111769289A (en) Welding method of flexible current collector
TW200407921A (en) Anode member for solid electrolytic condenser and solid electrolytic condenser using the anode member
CN116844870A (en) Capacitor core package, low-leakage laminated solid aluminum electrolytic capacitor and preparation method thereof
WO2022259664A1 (en) Battery and method for manufacturing battery
JP2008198490A (en) Manufacturing method of all-solid lithium secondary battery
KR101917634B1 (en) Manufacturing method of Metal - Polymer Clad
JP2005116208A (en) Secondary battery and its manufacturing method
EP4113649A1 (en) Solid-state battery manufacturing method and solid-state battery
JP2007180160A (en) Capacitor chip and manufacturing method thereof
JP2017168634A (en) Electrode for electrochemical device, electrochemical device, method for manufacturing electrode for electrochemical device, and method for manufacturing electrochemical device
KR20190114814A (en) Rolled copper foil for lithium ion battery collectors and lithium ion battery
CN218679471U (en) Inlay copper base plate and fill electric pile circuit board
WO2022270042A1 (en) Method for manufacturing battery
JP5035999B2 (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150112

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151207

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161107

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171030

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181113

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191127

Year of fee payment: 9