KR101108690B1 - Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material - Google Patents
Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material Download PDFInfo
- Publication number
- KR101108690B1 KR101108690B1 KR1020090131076A KR20090131076A KR101108690B1 KR 101108690 B1 KR101108690 B1 KR 101108690B1 KR 1020090131076 A KR1020090131076 A KR 1020090131076A KR 20090131076 A KR20090131076 A KR 20090131076A KR 101108690 B1 KR101108690 B1 KR 101108690B1
- Authority
- KR
- South Korea
- Prior art keywords
- metal foil
- clad
- metal
- plasma
- clad material
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 62
- 239000002184 metal Substances 0.000 title claims abstract description 53
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 53
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 29
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000011888 foil Substances 0.000 claims abstract description 30
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 20
- 238000005253 cladding Methods 0.000 claims abstract description 15
- 238000005096 rolling process Methods 0.000 claims abstract description 12
- 239000010949 copper Substances 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 238000009832 plasma treatment Methods 0.000 claims abstract description 7
- 230000004913 activation Effects 0.000 claims abstract description 4
- 230000001678 irradiating effect Effects 0.000 claims abstract 4
- 150000001879 copper Chemical class 0.000 claims 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 6
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 6
- 239000010953 base metal Substances 0.000 abstract description 4
- 238000000678 plasma activation Methods 0.000 abstract description 4
- 238000001994 activation Methods 0.000 abstract description 3
- 230000020169 heat generation Effects 0.000 abstract description 2
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004381 surface treatment Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910000652 nickel hydride Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/665—Composites
- H01M4/667—Composites in the form of layers, e.g. coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
본 발명은 리튬 이온 2차 전지 리드재에 사용되는 다층 금속 클래드재의 제조방법에 관한 것으로, 상세하게는 제1 금속박과 제2 금속박의 표면에 플라즈마를 조사하여 표면 활성화처리를 수행하는 단계, 제1 금속박과 제2 금속박을 저압 압연하는 단계, 1차 클래딩된 금속박과 제3 금속박의 표면에 플라즈마를 조사하여 표면 활성화처리를 수행하는 단계, 1차 클래딩된 금속박과 제3 금속박을 저압 압연하는 단계의 다층 금속 클래드재 제조방법을 제공한다. The present invention relates to a method for manufacturing a multi-layer metal clad material used in a lithium ion secondary battery lead material, and in detail, performing a surface activation process by irradiating plasma on the surfaces of the first metal foil and the second metal foil. Low pressure rolling the metal foil and the second metal foil, performing surface activation by irradiating plasma on the surfaces of the first clad metal foil and the third metal foil, and performing low pressure rolling of the first clad metal foil and the third metal foil. Provided is a method for producing a multilayer metal clad material.
본 발명은, 연속 양산 진공 플라즈마 처리에 의한 클래드재 제조공정을 이용하여 모재 금속박 양면에 오버레이재 금속박을 클래딩하는 다층 금속 클래드재를 제조하는 방법에 있어서, 1차 클래딩된 금속박 (공지기술 특 2003-0087755)과 제3 금속박 표면에 플라즈마를 조사하여 표면 활성화처리 및 저압 압연 시 플라즈마 전력 1.0~1.5kw, 가스 유량 500~600sccm, 롤 속도 250~300m/min, 압력 1~1.5kgf/cm 조건을 통해 다층 클래드재를 제조하여 대전류 통전이 가능한 우수한 전기적 특성을 가지고, 버(Burr)가 발생되지 않고 에너지 로스 및 발열에 의한 손상을 방지할 수 있는 전지용 리드재 제조를 특징으로 한다. The present invention relates to a method for producing a multilayer metal clad material in which an overlay material metal foil is clad on both sides of a base metal foil by using a clad material manufacturing process by a continuous mass production vacuum plasma treatment. 0087755) and the surface of the third metal foil through the plasma activation and low pressure rolling plasma power 1.0 ~ 1.5kw, gas flow rate 500 ~ 600sccm, roll speed 250 ~ 300m / min, pressure 1 ~ 1.5kgf / cm conditions It is characterized by the manufacture of a multi-layer cladding material that has excellent electrical properties capable of conducting a large current, and is capable of preventing damage caused by energy loss and heat generation without generating a burr.
아울러, 본 발명에 따르면, 클래드재의 재료는 구리(Cu), 니켈(Ni)인 것을 특징으로 하는 다층 금속 클래드재를 제조하는 방법임을 특징으로 한다. In addition, according to the present invention, the material of the clad material is characterized in that the method for producing a multi-layer metal clad material, characterized in that the copper (Cu), nickel (Ni).
진공플라즈마, 다층 금속 클래드재, 2차 전지 리드재, 구리(Cu),니켈(Ni) Vacuum Plasma, Multi-Layer Metal Clad Material, Secondary Battery Lead Material, Copper (Cu), Nickel (Ni)
Description
본 발명은, 전지용 리드재 제조방법, 특히 플라즈마 표면 활성화처리를 함으로써 형성된 클래드재를 이용함으로써, 제조할 수 있는 리드재에 관한 것이다. TECHNICAL FIELD This invention relates to the lead material which can be manufactured by using the battery lead material manufacturing method, especially the clad material formed by performing plasma surface activation treatment.
리튬 이온 2차 전지나 니켈 수소 전지는 외부를 형성하는 금속 케이스와 케이스 내부에 전해액, 집전체, 양극단자 및 음극단자로 구성된다. 상기 집전체는 양극과 세퍼레이터와 음극을 차례대로 적층하여 구성되어 있고, 집전체가 권취되어 금속 케이스 내부에 위치한다. 상기 양극과 양극단자, 음극과 음극단자는 각각 양극리드 및 음극리드에 의해 전기적으로 연결된다. A lithium ion secondary battery or a nickel hydride battery is composed of a metal case forming an outside and an electrolyte solution, a current collector, a positive electrode terminal, and a negative electrode terminal inside the case. The current collector is configured by stacking a positive electrode, a separator, and a negative electrode in order, and the current collector is wound and positioned inside the metal case. The positive electrode and the positive electrode terminal, the negative electrode and the negative electrode terminal are electrically connected by the positive lead and the negative lead, respectively.
최근에, 전기제품의 고성능화나 전지 용도의 확대에 따라 전지의 소형화 및 고에너지 밀도화가 요구되고 있다. 따라서, 전지를 구성하는 각 부품의 소형화 및 박형화가 필요하나, 부품의 소형화나 박형화가 이루어질 경우 전기저항이 증대하여 전기적 에너지 로스가 발생되는 문제가 있다. 또한, 제품의 고기능성 및 고출력화를 만족하기 위해 양극리드 및 음극리드는 전기적 특성이 우수한 재료로 구성되는 것이 바람직하다. 그러나 상기 집전체, 양극리드 및 음극리드를 소형화 및 박형화하는 것은 전기적 특성을 저해하는 요소로 작용한다. 따라서, 양극리드 및 음극리드의 소형화, 박형화가 가능한, 전기적 특성 및 내식성이 우수한 재료의 개발이 요구되고 있다. 이러한 이유로 양극리드 및 음극리드 재료로 순니켈이 사용되고 있다. 그러나 순니켈은 가격이 비싸고, 가공 시 버(Burr) 발생을 만들어 내기 쉬운 난점이 있다. 버(Burr)가 발생할 경우 전지 내부재를 손상하기 쉽고, 전지 특성을 저하하며, 전지 제조 시 불량의 원인으로 작용한다. 그러므로 양극리드 및 음극리드의 재료로 소형화 및 박형화가 가능하고, 전기저항이 작으며, 내식성이 우수하고, 가공 시 버(Burr)가 발생되지 않는 재료의 개발이 바람직하다. Recently, miniaturization and high energy density of batteries have been demanded as high performance of electrical appliances and expansion of battery applications have been demanded. Therefore, although miniaturization and thinning of each component constituting the battery are required, when the miniaturization or thinning of the components is made, there is a problem in that electrical resistance is increased to generate electrical energy loss. In addition, in order to satisfy the high functionality and high output of the product, it is preferable that the anode lead and the cathode lead are made of a material having excellent electrical characteristics. However, miniaturization and thinning of the current collector, the positive electrode lead, and the negative electrode lead act as a factor that hinders electrical characteristics. Therefore, there is a demand for the development of a material having excellent electrical properties and corrosion resistance that can be miniaturized and thinned in the anode lead and the cathode lead. For this reason, pure nickel is used as the anode lead and cathode lead materials. Pure nickel, however, is expensive and difficult to produce burrs during processing. When burr occurs, it is easy to damage the battery internal material, deteriorate battery characteristics, and act as a cause of defects in battery manufacturing. Therefore, it is desirable to develop a material that can be miniaturized and thinned as a material of the anode lead and the cathode lead, has low electrical resistance, excellent corrosion resistance, and does not generate burrs during processing.
본 발명은 상기 과제 해결을 위해서 전해질에 대한 내식성을 가지고, 전기적 특성이 우수하며, 가공 시 버(Burr)가 발생되지 않는 리튬 2차 전지 리드재 제조방법을 제공하는 것을 목적으로 한다. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a lithium secondary battery lead material having corrosion resistance to an electrolyte, excellent electrical characteristics, and no burr generated during processing.
본 발명은 상기 과제 해결을 위해서 플라즈마 활성화 표면처리를 거친 후 저압압연으로 정밀층상복합 소재를 제조하는 공정을 이용하여 전해질에 대한 내식성을 가지고, 전기적 특성이 우수하며, 가공 시 버(Burr)가 발생되지 않는 리튬 2차 전지 리드재 제조방법을 제공하는 것을 목적으로 한다. The present invention has a corrosion resistance to the electrolyte by using a process for producing a precision layered composite material by low rolling after plasma activation surface treatment to solve the above problems, excellent electrical properties, and generates a burr during processing An object of the present invention is to provide a method for producing a lithium secondary battery lead material that is not available.
본 발명은, 연속 양산 진공 플라즈마 처리에 의한 클래드재 제조공정을 이용 하여 모재 금속박 양면에 금속 오버레이재 금속박을 클래딩하는 다층 금속 클래드재를 제조하는 방법에 있어서, 1차 클래딩된 금속박 (공지기술 특 2003-0087755)과 제3 금속박 표면에 플라즈마를 조사하여 표면 활성화처리 및 저압 압연 시 플라즈마 전력 1.0~1.5kw, 가스 유량 500~600sccm, 롤 속도 250~300m/min, 압력 1~1.5kgf/cm 조건을 통해 다층 클래드재를 제조하는 것을 특징으로 한다.The present invention relates to a method for producing a multilayer metal clad material that clads a metal overlay material metal foil on both sides of a base metal foil using a clad material manufacturing process by a continuous mass production vacuum plasma treatment. -0087755) and the surface of the third metal foil to the plasma activation and low pressure rolling plasma power 1.0 ~ 1.5kw, gas flow rate 500 ~ 600sccm, roll speed 250 ~ 300m / min, pressure 1 ~ 1.5kgf / cm conditions It is characterized by manufacturing a multi-layer clad material through.
본 발명에 의해 제조된 클래드재는 양극리드 및 음극리드에 사용되므로 모재 금속은 전기 전도성이 우수하며, 가격이 저렴한 동을 이용하고, 오버레이재 금속은 내식성이 우수한 니켈을 사용하여 다층 클래드재를 구성하였다, 모재 금속의 순도는 동 99% 이상, 오버레이재 금속의 순도는 니켈 99%이상 인 것이 바람직하다. Since the clad material manufactured by the present invention is used for the anode lead and the cathode lead, the base metal has excellent electrical conductivity, and uses inexpensive copper, and the overlay material metal is made of multilayer clad material using nickel having excellent corrosion resistance. , The purity of the base metal is 99% or more copper, the purity of the overlay material metal is preferably 99% nickel or more.
또한, 양극리드 및 음극리드로써의 기능 발휘를 위하여 다층 클래드의 두께는 100미크론 이하이며, 버(Burr) 발생으로 인한 전지 내부재의 손상 및 전지 특성 저하를 방지하기 위하여 버(Burr) 높이는 50미크론 이하로 제한한다. In addition, the thickness of the multi-layer cladding is 100 microns or less for the function as the anode lead and the cathode lead, and the burr height is 50 microns or less in order to prevent damage to battery internal materials and deterioration of battery characteristics due to burr generation. Limited to
본 발명에 따른, 연속양산 진공 플라즈마 처리에 의한 클래드재 제조 공정을 이용한 다층 금속 클래드재 제조방법은, 별도의 냉간 압연 및 열처리 공정의 추가 없이 다층 금속 클래드재를 제작하기 때문에 공정을 단축하고 고가의 금속 사용에 따른 비용 감소 효과를 기대할 수 있다. 또한 양극리드 및 음극리드의 버(Burr) 발생을 방지하여 전지 특성의 열화를 방지하고, 소형화 및 박형화가 가능한 전지 내 리드재의 제공이 가능하다. According to the present invention, a method of manufacturing a multilayer metal clad material using a cladding material manufacturing process by continuous mass vacuum plasma treatment is a method of manufacturing a multilayer metal cladding material without adding a separate cold rolling and heat treatment process. The cost savings from the use of metals can be expected. In addition, it is possible to prevent the deterioration of battery characteristics by preventing the generation of burrs of the anode lead and the cathode lead, and to provide a lead material in the battery that can be miniaturized and thinned.
본 발명에 따른 방법에 사용되는 리튬 이온 2차 전지 리드재에 적용된 금속 클래드재의 연속 양산공정에서 금속-금속-금속 클래드재 제조 공정은, 1차 클래딩된 금속박 (공지기술 특 2003-0087755)과 제3 금속박 표면에 플라즈마를 조사하여 표면 활성화처리 및 저압 압연 시 플라즈마 전력 1.0~1.5kw, 가스 유량 500~600sccm, 롤 속도 250~300m/min, 압력 1~1.5kgf/cm 조건을 통하여 다층 금속 클래드재를 제조하는 방법으로, 기존의 냉간 압연 및 열처리가 불필요한 방법이다.In the continuous mass production process of the metal clad material applied to the lithium ion secondary battery lead material used in the method according to the present invention, the metal-metal-metal clad material manufacturing process includes a primary clad metal foil (KKA 2003-0087755) and 3 Multi-layered metal clad material through plasma irradiation on the surface of metal foil and plasma activation 1.0 ~ 1.5kw, gas flow 500 ~ 600sccm, roll speed 250 ~ 300m / min, pressure 1 ~ 1.5kgf / cm As a method of manufacturing, conventional cold rolling and heat treatment is unnecessary.
이하에서, 본 발명의 바람직한 실시 예를 첨부한 도면들을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in detail.
도 1은 리튬 이온 2차 전지 리드재 적용을 위한 연속진공 플라즈마 처리에 의한 금속-금속-금속 클래드재 제조 공정 방법을 설명하기 위한 개략도이다. 1 is a schematic view for explaining a metal-metal-metal clad material manufacturing process method by a continuous vacuum plasma treatment for applying a lithium ion secondary battery lead material.
도 1을 참조하면, 본 발명의 실시 예에 따른 금속-금속-금속 클래드 재료의 클래드 방법은, 제 1부분(1)과 제 2부분(2)에서 연속적으로 플라즈마 처리되어 압연롤(3) 부분에서 클래드된 금속-금속 클래드재(4)를 저압 압연롤(3)을 통과시킨다. 저압 압연롤(3)을 통과한 클래드재는 권취된다. 권취된 2층 클래드재를 다시 투입하여 제 3 금속박과 플라즈마 표면 처리 및 저압 압연을 통해 다층 클래드재를 제조한다.Referring to FIG. 1, a cladding method of a metal-metal-metal cladding material according to an embodiment of the present invention may be performed by plasma treatment in a first part 1 and a second part 2 so as to form a rolling roll 3. The clad metal-metal cladding material (4) is passed through the low pressure rolling roll (3). The cladding material which passed the low pressure rolling roll 3 is wound up. The wound two-layer cladding material is added again to prepare a multilayer cladding material through the third metal foil, plasma surface treatment, and low pressure rolling.
본 발명은, 제 1금속박과 제 3금속박으로 니켈을 사용하고, 제 2금속박으로 구리가 사용되는 것을 특징으로 하는 방법을 제공한다. 상기 클래드재는 리튬 이온 2차 전지 내 양극리드 및 음극리드로 사용되며, 전해질에 부식되지 않고 고전류의 통전이 가능한 전지에 사용된다. 또한 가공 시 버(Burr) 발생이 감소하여 전지 제조 시 불량율의 감소가 가능하다. The present invention provides a method wherein nickel is used as the first metal foil and the third metal foil, and copper is used as the second metal foil. The cladding material is used as a positive electrode lead and a negative electrode lead in a lithium ion secondary battery, and is used in a battery capable of conducting a high current without corrosion to the electrolyte. In addition, since the occurrence of burrs during processing is reduced, it is possible to reduce the defective rate during battery manufacturing.
순도 99.9% 이상인 무산소동과 순도 99% 이상인 니켈을 사용하여, 플라즈마 표면 처리 및 저압압연을 통해 다층 클래드재를 제조하고 특성, 형상을 측정한다. 양극 리드 및 음극리드 제조 시 니켈의 두께에 따른 버(Burr) 발생을 측정하고, 리튬 이온 2차 전지를 제작하여 저저항 회로에 접속 후 과대전류를 흘리는 시험을 행하고 전기특성 및 발열 특성에 관한 데이터를 수집한다. Using oxygen-free copper having a purity of 99.9% or more and nickel having a purity of 99% or more, a multilayer clad material is manufactured through plasma surface treatment and low rolling, and properties and shapes are measured. Measurement of burr generation according to the thickness of nickel in the production of positive electrode lead and negative electrode lead, fabrication of lithium ion secondary battery, test of excess current after connection to low resistance circuit, and data on electrical and heating characteristics Collect it.
시험 결과를 이하의 표 1에 나타낸다. The test results are shown in Table 1 below.
[표 1][Table 1]
(㎛)Final thickness
(Μm)
(㎛)Nickel thickness
(Μm)
(㎛)Burr height
(Μm)
(nΩ/m)Electrical resistance
(nΩ / m)
표 1에 나타나는 결과로부터 실시예 1의 경우 버(Burr) 높이가 비교예의 버(Burr) 높이보다 감소함을 알 수 있었다. 실시예 2의 경우 버(Burr) 높이가 평균 17 미크론으로 순니켈을 사용한 비교예보다 버(Burr) 발생이 효과적으로 제어되었다. 실시예 3의 경우 실시예 1과 유사한 수준의 평균 버(Burr) 높이가 23 미크론으 로 측정되었다. 실시예 4의 경우 버(Burr) 높이가 가장 효과적으로 억제되었고, 버(Burr) 방지 효과를 가지는 것으로 판명되었다. From the results shown in Table 1, it can be seen that in the case of Example 1, the burr height is reduced than the burr height of the comparative example. In the case of Example 2, the burr height was controlled more effectively than the comparative example using pure nickel with an average height of 17 microns. For Example 3, the average burr height, similar to that of Example 1, was measured to be 23 microns. In the case of Example 4, the burr height was most effectively suppressed, and it was found to have a burr prevention effect.
다음으로 과대전류 통전 시험에서는 순니켈로 제작된 비교예의 양극리드 및 음극리드 사용 시 발열이 크고, 전지 특성의 열화가 관찰되었다. 실시예 1~4의 경우 리드재로부터의 발열이 효과적으로 억제되었고, 전지 특성의 열화는 관찰되지 않았다. Next, in the overcurrent energization test, a large amount of heat was generated when using the positive lead and the negative lead of the comparative example made of pure nickel, and deterioration of the battery characteristics was observed. In Examples 1 to 4, heat generation from the lead material was effectively suppressed, and deterioration of battery characteristics was not observed.
따라서, 동과 니켈로 구성된 클래드재를 양극리드 및 음극리드로 이용할 경우 종래의 순니켈로 제조된 양극리드 및 음극리드에 비해 전기 저항치를 감소하는 것이 가능하다. Therefore, when the cladding material composed of copper and nickel is used as the positive electrode lead and the negative electrode lead, it is possible to reduce the electric resistance value compared with the positive electrode lead and the negative electrode lead made of conventional pure nickel.
도 1은 인쇄 회로기판 적용을 위한 연속 양산 진공 플라즈마 처리에 의한 다층 클래드재를 제조하는 방법의 개략도이다. 1 is a schematic diagram of a method of manufacturing a multilayer clad material by continuous mass production vacuum plasma treatment for printed circuit board applications.
도 2는 FESEM을 통해 관찰한 다층 클래드재의 형상이다.2 is a shape of the multi-layer clad material observed through the FESEM.
Claims (6)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090131076A KR101108690B1 (en) | 2009-12-24 | 2009-12-24 | Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material |
PCT/KR2010/004246 WO2011078455A1 (en) | 2009-12-24 | 2010-06-30 | Method for manufacturing multilayer metal clad material, and multilayer metal clad material and lead material within battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090131076A KR101108690B1 (en) | 2009-12-24 | 2009-12-24 | Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110074180A KR20110074180A (en) | 2011-06-30 |
KR101108690B1 true KR101108690B1 (en) | 2012-01-25 |
Family
ID=44195956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090131076A KR101108690B1 (en) | 2009-12-24 | 2009-12-24 | Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101108690B1 (en) |
WO (1) | WO2011078455A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013020878A (en) * | 2011-07-13 | 2013-01-31 | Sumitomo Electric Ind Ltd | Lead member and manufacturing method of the same |
KR101917634B1 (en) * | 2014-12-22 | 2018-11-13 | 희성금속 주식회사 | Manufacturing method of Metal - Polymer Clad |
JP6592946B2 (en) * | 2015-04-15 | 2019-10-23 | 日立金属株式会社 | Clad material for battery negative electrode lead material and method for producing clad material for battery negative electrode lead material |
JP6766330B2 (en) * | 2015-09-11 | 2020-10-14 | 日立金属株式会社 | Battery lead material and battery lead material manufacturing method |
KR102540672B1 (en) | 2016-01-21 | 2023-06-07 | 삼성에스디아이 주식회사 | Secondary battery |
DE102017208220A1 (en) * | 2017-05-16 | 2018-11-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Process for producing a dry film and dry film and dry film coated substrate |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100615382B1 (en) * | 1998-07-23 | 2006-08-25 | 도요 고한 가부시키가이샤 | Clad board for printed-circuit board, multilayered printed-circuit board, and method of manufacture thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3460410B2 (en) * | 1995-10-20 | 2003-10-27 | ソニー株式会社 | Metal lead with bump and method of manufacturing the same |
TW446627B (en) * | 1998-09-30 | 2001-07-21 | Toyo Kohan Co Ltd | A clad sheet for lead frame, a lead frame using thereof and a manufacturing method thereof |
-
2009
- 2009-12-24 KR KR1020090131076A patent/KR101108690B1/en active IP Right Grant
-
2010
- 2010-06-30 WO PCT/KR2010/004246 patent/WO2011078455A1/en active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100615382B1 (en) * | 1998-07-23 | 2006-08-25 | 도요 고한 가부시키가이샤 | Clad board for printed-circuit board, multilayered printed-circuit board, and method of manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20110074180A (en) | 2011-06-30 |
WO2011078455A1 (en) | 2011-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101108690B1 (en) | Manufacturing method of metal multi-layer Clad and metal multi-layer Clad and battery lead material | |
JP6596194B2 (en) | Solid ion capacitor | |
WO2013001908A1 (en) | Power storage device element and power storage device | |
JP4662368B2 (en) | Manufacturing method of solid electrolytic capacitor | |
CN110948111B (en) | Composite welding method for tab of soft package lithium ion battery | |
WO2016006420A1 (en) | Method of manufacturing power storage device and method of manufacturing electrode | |
JP2015220012A (en) | Solid electrolyte structure and all-solid-state battery | |
JP2012054197A (en) | Laminate battery and method for manufacturing the same | |
Lim | Development of composite-metal hybrid bipolar plates for PEM fuel cells | |
JP2010238484A (en) | Method of manufacturing all solid lithium secondary battery | |
TW200937469A (en) | Stacked solid electrolytic capacitor | |
CN111769289A (en) | Welding method of flexible current collector | |
TW200407921A (en) | Anode member for solid electrolytic condenser and solid electrolytic condenser using the anode member | |
CN116844870A (en) | Capacitor core package, low-leakage laminated solid aluminum electrolytic capacitor and preparation method thereof | |
WO2022259664A1 (en) | Battery and method for manufacturing battery | |
JP2008198490A (en) | Manufacturing method of all-solid lithium secondary battery | |
KR101917634B1 (en) | Manufacturing method of Metal - Polymer Clad | |
JP2005116208A (en) | Secondary battery and its manufacturing method | |
EP4113649A1 (en) | Solid-state battery manufacturing method and solid-state battery | |
JP2007180160A (en) | Capacitor chip and manufacturing method thereof | |
JP2017168634A (en) | Electrode for electrochemical device, electrochemical device, method for manufacturing electrode for electrochemical device, and method for manufacturing electrochemical device | |
KR20190114814A (en) | Rolled copper foil for lithium ion battery collectors and lithium ion battery | |
CN218679471U (en) | Inlay copper base plate and fill electric pile circuit board | |
WO2022270042A1 (en) | Method for manufacturing battery | |
JP5035999B2 (en) | Solid electrolytic capacitor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150112 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20151207 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20161107 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20171030 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20181113 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20191127 Year of fee payment: 9 |