KR101094458B1 - 열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체 - Google Patents

열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체 Download PDF

Info

Publication number
KR101094458B1
KR101094458B1 KR1020090108590A KR20090108590A KR101094458B1 KR 101094458 B1 KR101094458 B1 KR 101094458B1 KR 1020090108590 A KR1020090108590 A KR 1020090108590A KR 20090108590 A KR20090108590 A KR 20090108590A KR 101094458 B1 KR101094458 B1 KR 101094458B1
Authority
KR
South Korea
Prior art keywords
nanocomposite
thermoelectric
mte
nte
prepared
Prior art date
Application number
KR1020090108590A
Other languages
English (en)
Other versions
KR20110051814A (ko
Inventor
김성진
한미경
김희진
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to KR1020090108590A priority Critical patent/KR101094458B1/ko
Priority to PCT/KR2010/007244 priority patent/WO2011059185A2/ko
Publication of KR20110051814A publication Critical patent/KR20110051814A/ko
Application granted granted Critical
Publication of KR101094458B1 publication Critical patent/KR101094458B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체에 관한 것으로, 더욱 상세하게는 배위리간드를 가지며, 표면처리된 MO(M= Cd 또는 Zn)에 계면활성제를 첨가한 후 Te 금속분말을 고온주입하여 MTe를 제조하는 단계(단계 1); 상기 단계 1에서 제조된 MTe에 N(N= Pb 또는 Sn) 전구체를 주입하여 코어-셀 구조의 MTe-NTe를 제조하는 단계(단계 2); 및 상기 단계 2에서 제조된 나노입자 MTe-NTe와 벌크 NTe를 혼합하여 전열처리한 후 열처리하는 단계(단계 3)를 포함하는 열전효율이 향상된 나노복합체의 제조방법 및 구형의 나노입자 MTe(M= Cd 또는 Zn)의 둘레를 NTe(N= Pb 또는 Sn)가 구형으로 둘러싸는 형상인 코어-셀 구조의 MTe-NTe 나노입자와 벌크 NTe가 혼합된 나노복합체에 관한 것이다. 본 발명에 따른 열전효율이 향상된 나노복합체의 제조방법은 고온주입법을 이용하여 균일한 크기의 코어-셀 나노입자를 제조할 수 있고, 벌크 크기의 PbTe 또는 SnTe와 혼합하여 나노복합체를 제조함으로써, 열적, 전기적 특성을 동시에 제어하여 향상된 열전효율이 나타나므로, 열전냉각 및 열전발전 분야의 열전재료로 유용하게 사용할 수 있다.
열전효율, 코어-셀 구조, 나노복합체, 고온주입법

Description

열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체{The method for preparation of nanocomposite with enhanced thermoelectric ability and nanocomposite thereof}
본 발명은 열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체에 관한 것이다.
열전소자는 열전재료 (thermoelectric material)를 이용하여 열을 전기로, 전기를 열로 상호 변환시키는 기능을 갖는 반도체 소자로서, 전기를 통한 흡열과 냉각작용 하는 열펌프(heat pumps, 열전냉각) 및 태양열이나 낭비되는 열을 전기로 전환할 수 있는 발전(power generation, 열전발전) 분야에 응용되고 있다. 특히, 기존 화석에너지의 고갈과 공해에 따른 환경문제 등이 심각하게 제기되고 있는 상황에서 열전재료에 의한 에너지의 효율적인 재사용은 차세대 대체에너지로 부각되고 있다. 열전소자의 에너지 변환 효율은 열전성능지수(thermoelectric figure of merit, ZT)에 의해서 결정된다. 열전성능지수는 ZT = S2σT/κ으로 나타내며, 여기서 S는 제백상수(Seebeck coefficient), σ는 전기전도도(electrical conductivity), κ는 열전도도(thermal conductivity) 그리고 T는 절대온도(K)를 나타낸다. 열전재료의 성능을 좌우하는 인자들은 제백계수, 전기전도도, 열전도도 이 세 가지인데, 일반적으로 제백상수가 크고, 전기전도도가 높고, 열전도도가 낮을수록 열전성능지수는 높게 되어 에너지변환효율이 향상된다. 상온에서 S = 225 μV/K, σ = 105/Ωm, κ = 1.5 W/mK의 물성을 갖는 열전재료의 열전성능지수 값은 1이 된다. 수학적으로 전기전도도를 두 배 올릴 수 있다면 열전성능지수가 두 배가 될 거라 예상할 수 있지만 비데만-프란츠의 법칙(Wiedemann- Franz law)에 의해 열전도도와 전기전도도는 근사적으로 비례하기 때문에 전기전도도가 늘어난 만큼 비례적으로 열전도도 또한 증가하게 되어 열전성능지수를 개선하는 효과를 얻지 못한다. 따라서, 열전성능지수의 값을 인위적으로 조절하기는 힘들지만, 일반적으로 최적의 이동도(mobility)과 캐리어(carrier) 농도를 갖는 좁은 밴드갭(narrow band gap) 반도체물질은 제백상수와 열전도도가 동시에 높다고 알려져 있다.
한편, 열전효율을 높이기 위한 최근의 연구동향과 이론적인 내용을 분석하면 크게 두 방향으로 연구가 진행되고 있음을 알 수 있다. 최근 연구동향 중 한 방법은 원하는 형태의 결정구조와 캐리어도핑(carrier doping)을 갖도록 금속이나 비금속을 적절히 혼합하여 열전효율을 조절하는 것이다. 현재 높은 열전특성을 나타내 고 있는 열전재료로는 bismuth telluride (Bi2Te3)-based alloys, lead telluride (PbTe)-based alloys, 그리고 silicon germanium (SiGe)-based alloys 등이 있는데, 각각은 고유의 온도의존성을 보이며, 최대 열전성능지수를 나타내는 온도도 다르기 때문에 용도에 적합한 재료를 선택할 필요가 있다. 이 중에 lead telluride (PbTe)-based alloys는 높은 녹는점, 낮은 증기압, 화학적 안정성 등의 이유뿐만 아니라 중온영역(200 ~ 500 ℃)에서 최대 열전성능지수를 보이기 때문에 산업 폐열이나 자동차 엔진 폐열을 이용한 열전발전 기술 재료로 연구가 활발히 진행되고 있다. PbTe based 물질에 K, Na 같은 p형 불순물(dopant)이나 PbI2와 같은 n형 불순물(dopant)을 첨가하여 전기전도도를 변화시키거나, SnTe나 GeTe 등을 첨가하여 열전도도를 감소시키는 연구가 진행되고 있다. 최신 연구동향 중 다른 한 방법은 저차원 양자점 및 초격자 구조(superlattice) 등의 다양한 나노기술을 이용하여 나노구조재료를 만들어 열전효율을 조절하는 것이다. 이는 열전달을 담당하는 격자산란(phonon)이 증가하여 열전도도를 최소화하거나 페르미 레벨(Fermi level)의 상태밀도(density of states)를 변형시켜 제백상수를 높여서 열전성능지수를 높인다. 격자산란(Phonon)을 증가시킨 예로, 최근 벌크 PbTe 기판(matrix) 에 나노입자가 생성되게 함으로써 열전성능지수를 PbTe 자체보다 100% 더 높게 향상시킨 연구결과가 발표되었다. 이것은 벌크(bulk) 안에 생성된 Ag-Sb 나노 구조체가 격자산란(phonon)을 증가시키는 역할을 하여 열전도도를 최소화하게 함으로써 가능하다. 하지만 이 물질들은 열처리조건에 매우 민감하여 소결온도가 약간 달라도 나노구조 가 바뀌게 되고 그에 따른 물성이 변화하기 때문에 열처리조건의 설정에 어려운 점이 많다. 또한 이 방법들은 나노구조의 조성이나 결정구조를 효과적으로 제어하는 것이 어렵다.
또 다른 최근의 획기적인 연구는 열전성능지수가 1.4인 (BiSb)2Te3계 벌크재료를 개발한 것이다. 이는 재료들을 수십 나노미터 크기로 분말화한 후, 핫프레스로 압축하여 다시 벌크 상태로 굳힌 것이다. 따라서, 얻어지는 벌크 열전재료 안의 나노입자의 크기나 형상은 우연히 얻어진 것이라 볼 수 있다. 상기 방법은 나노사이즈 도메인 격자를 형성함으로써 벌크의 전기전도도를 갖는 반면 열전도도를 벌크의 절반 수준으로 낮추었다. 상기 방법 또한 나노입자에 의한 격자산란을 증가시켜 열전도도를 감소시키는 방법이라 할 수 있다. 여기에 만약 이 물질의 각 나노입자의 도메인 경계면(boundary)을 없앨 수 있다면 열전성능지수를 더 높일 수 있을 것으로 예상된다.
나노기술을 이용한 열전성능지수를 증가시키는 방법으로 열전도의 조절뿐만 아니라 상태밀도(DOS)를 변형시켜 전기전도도를 조절하는 방법이 제시되었다. 초격자 Bi2Te3/Sb2Te3 초격자구조를 이용하여 열전성능지수가 2.4인 값을 얻었으며 이는 열전반도체의 연구에 새로운 방향성을 제시한 예이다. 하지만 초격자의 생산성 저하와 제조원가 상승 등의 문제가 있다.
상기 연구에서 본 바와 같이, 열전반도체의 성능향상을 위한 연구가 여러 방향으로 진행되었으나, 기존의 방법들은 대부분 열적 특성이나 전기적 특성의 한 부 분에 국한된 연구들이 대부분이고, 각각의 연구에서 나노구조물의 크기나 조성에 대한 물성 변화에 관한 연구는 미비한 상태이다.
열전재료를 이용하여 기존 상용화되고 있는 냉각기술이나 열전기술을 대체하기 위해서는 열전성능지수가 3 이상인 물질의 개발이 요구된다. 이를 위해서는, 전기는 결정과 같이 양호하게 전달되지만 열은 유리처럼 전하지 못하는 물질, 즉 포논유리전자결정(phonon glass electron crystal, PGEC15)을 갖는 벌크 물질의 개발이 반드시 필요하다. 즉, 열전달 매체인 격자진동의 평균자유경로(mean free paths)는 대략 수백 나노미터이고, 전자는 10 나노미터 이하인 점을 고려할 때 벌크 물질에 나노구조물을 접목하여 전자의 이동은 제안되지 않고, 격자진동의 이동만 조절할 수 있는 열전재료를 만들 필요가 있다. 이에 본 발명자들은 나노구조물을 벌크에 완전결정의 형태로 융합시켜 열전성능지수를 증가시키는 방법을 개발하던 중 CdTe 또는 ZnTe를 코어로 하고, PbTe 또는 SnTe를 셀로 융합하여 나노입자를 제조하고 상기 나노입자가 벌크에 완전결정으로 융합되어 열전효율이 향상된 열전소자를 개발하고, 본 발명을 완성하였다.
본 발명의 목적은 열전효율이 향상된 나노복합체의 제조방법을 제공하는 데 있다.
또한, 본 발명의 다른 목적은 열전효율이 향상된 나노복합체를 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은 배위리간드를 가지며, 표면처리된 MO(M= Cd 또는 Zn)에 계면활성제를 첨가한 후 Te 금속분말을 고온주입하여 MTe를 제조하는 단계(단계 1); 상기 단계 1에서 제조된 MTe에 N(N= Pb 또는 Sn) 전구체를 주입하여 코어-셀 구조의 MTe-NTe를 제조하는 단계(단계 2); 및 상기 단계 2에서 제조된 MTe-NTe 나노입자와 NTe 벌크를 혼합하여 전열처리한 후 열처리하는 단계(단계 3)를 포함하는 열전효율이 향상된 나노복합체의 제조방법을 제공한다.
또한, 본 발명은 구형의 나노입자 MTe(M= Cd 또는 Zn)의 둘레를 NTe(N= Pb 또는 Sn)가 구형으로 둘러싸는 형상인 코어-셀 구조의 MTe-NTe 나노입자와 벌크 NTe가 혼합된 나노복합체를 제공한다.
본 발명에 따른 열전효율이 향상된 나노복합체의 제조방법은 고온주입법을 이용하여 균일한 크기의 코어-셀 나노입자를 제조할 수 있고, 벌크 크기의 PbTe 또는 SnTe와 혼합하여 나노복합체를 제조함으로써, 열적, 전기적 특성을 동시에 제어하여 향상된 열전효율이 나타나므로, 열전냉각 및 열전발전 분야의 열전재료로 유용하게 사용할 수 있다.
본 발명은
배위리간드를 가지며, 표면처리된 MO(M= Cd 또는 Zn)에 계면활성제를 첨가한 후 Te 금속분말을 고온주입하여 MTe를 제조하는 단계(단계 1);
상기 단계 1에서 제조된 MTe에 N(N= Pb 또는 Sn) 전구체를 주입하여 코어-셀 구조의 MTe-NTe를 제조하는 단계(단계 2); 및
상기 단계 2에서 제조된 MTe-NTe 나노입자와 NTe 벌크를 혼합하여 전열처리한 후 열처리하는 단계(단계 3)를 포함하는 열전효율이 향상된 나노복합체의 제조방법을 제공한다.
이하, 본 발명에 따른 나노복합체의 제조방법을 단계별로 상세히 설명한다(도 1 참조).
본 발명에 따른 나노복합체의 제조방법에 있어서, 단계 1은 배위리간드를 가지며, 표면처리된 MO(M= Cd 또는 Zn)에 계면활성제를 첨가한 후 Te 금속분말을 고 온주입하여 MTe를 제조하는 단계이다.
상기 단계 1의 계면활성제는 올레인산(oleic acid), 옥타데신(octadecene) 및 올레야민(oleyamine) 등을 사용할 수 있다.
또한, 상기 단계 1의 고온주입은 250 - 350 ℃의 온도범위에서 수행되는 것이 바람직하다. 만약, 고온주입 온도가 250 ℃ 미만인 경우에는 반응온도가 낮아 생성물이 MO 상태가 아닌 Cd 또는 Te 상태로 존재하는 문제가 있고, 350 ℃를 초과하는 경우에는 MO 화합물의 크기가 커져 벌크 MO 화합물이 존재하는 문제가 있다.
다음으로, 본 발명에 따른 나노복합체의 제조방법에 있어서, 단계 2는 상기 단계 1에서 제조된 MTe에 N(N= Pb 또는 Sn) 전구체를 주입하여 코어-셀 구조의 MTe-NTe를 제조하는 단계이다.
상기 단계 2의 Pb 전구체는 PbCl2 및 Pb(Ac)2 등을 사용할 수 있고, Sn 전구체는 Sn(CH3CO3)4, Tin(Ⅳ)acetate 및 SnCl4(Tin(Ⅳ)Chloride) 등을 사용할 수 있다.
또한, 상기 단계 2의 주입은 150 - 250 ℃의 온도범위에서 수행되는 것이 바람직하다. 만약, 주입온도가 150 ℃ 미만인 경우에는 셀의 두께가 너무 얇게 형성되는 문제가 있고, 250 ℃를 초과하는 경우에는 셀의 두께가 너무 두꺼워지거나 셀로 형성되지 않는 문제가 있다.
다음으로, 본 발명에 따른 나노복합체의 제조방법에 있어서, 단계 3은 상기 단계 2에서 제조된 MTe-NTe 나노입자와 NTe 벌크를 혼합하여 전열처리한 후 열처리하는 단계이다.
상기 단계 3의 전열처리는 상기 단계 1 및 2에서 생성된 유기물을 제거하기 위한 과정이며 상기 전열처리를 통해 치밀한 벌크재료를 제조할 수 있다. 이때, 상압 열처리시 발생할 수 있는 나노입자와 벌크의 산화를 억제하기 위해 질소나 아르곤 분위기에서 열처리하는 것이 바람직하며, 상기 전열처리는 300 - 400 ℃의 온도범위에서 수행되는 것이 바람직하다. 만약, 상기 전열처리 온도가 300 ℃ 미만인 경우에는 유기물이 존재하는 문제가 있고, 400 ℃를 초과하는 경우에는 산화반응이 일어나는 문제가 있다.
또한, 상기 단계 3의 열처리는 900 - 1000 ℃의 온도범위에서 수행되는 것이 바람직하다. 만약, 상기 열처리 온도가 900 ℃ 미만인 경우에는 나노복합체의 결정성이 저하되며 코어-셀 나노입자가 벌크와 혼합되지 못하는 문제가 있고, 1000 ℃를 초과하는 경우에는 코어-셀 구조인 나노입자의 구조가 변화되는 문제가 있다.
나아가, 본 발명은 구형의 나노입자 MTe(M= Cd 또는 Zn)의 둘레를 NTe(N= Pb 또는 Sn)가 구형으로 둘러싸는 형상인 코어-셀 구조의 MTe-NTe 나노입자와 벌크 NTe가 혼합된 나노복합체를 제공한다.
본 발명에 따른 열전효율이 향상된 나노복합체의 제조방법은 고온주입법을 이용하여 균일한 크기의 코어-셀 나노입자를 제조할 수 있고, 벌크 크기의 PbTe 또는 SnTe와 혼합하여 나노복합체를 제조함으로써, 열적, 전기적 특성을 동시에 제어 하여 향상된 열전효율이 나타나므로, 열전냉각 및 열전발전 분야의 열전재료로 유용하게 사용할 수 있다.
이하, 본 발명을 하기의 실시예에 의해 더욱 상세히 설명한다. 단, 하기의 실시예는 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 제한되는 것은 아니다.
<실시예 1> 열전효율이 향상된 나노복합체 열전재료의 제조
단계 1: CdTe 를 제조하는 단계
배위리간드를 가지며, 표면처리된 CdO에 올레인산(옥타테신 또는 올레야민)를 첨가한 후 TOP(Trioctylphosphine) 또는 TOPO(Trioctylphosphine oxide)에 녹인Te 금속분말을 300 ℃로 고온주입하여 CdTe를 제조하였다.
단계 2: 코어-셀 구조의 CdTe - PbTe 를 제조하는 단계
상기 단계 1에서 제조된 CdTe에 올레인산(Oleic acid)를 첨가한 PbCl2(또는 Pb(Ac)2) 전구체를 200 ℃로 주입하여 코어-셀 구조의 CdTe-PbTe를 제조하였다.
단계 3: 나노복합체를 제조하는 단계
상기 단계 2에서 제조된 CdTe-PbTe 나노입자와 벌크 PbTe를 혼합하여 300 - 400 ℃에서 아르곤이나 질소 분위기에서 전열처리한 후 쿼즈관에 넣고 진공 분위기에서 900 - 1000 ℃로 열처리하였다(도 2 참조).
<비교예 1> 열전재료의 제조 1
Pb 금속분말과 Te 금속분말을 진공로에서 1050 ℃로 열처리하여 열전재료를 제조하였다.
<비교예 2> 열전재료의 제조 2
PbTe를 볼밀링(ball milling)한 후 약 600 ℃에서 2 - 24 시간 동안 핫프레스(hot press)하여 열전재료를 제조하였다.
<실험예 1> 나노복합체 열전재료의 내부구조 분석
본 발명에 따른 실시예 1에서 제조된 나노복합체 열전재료의 내부구조를 알아보기 위해 투과전자현미경(TEM, JEOL, JEM-2010F)으로 분석하고, 그 결과를 도 3에 나타내었다.
도 3에 나타난 바와 같이, CdTe-PbTe 나노입자가 벌크 PbTe에 결합되어 있는 것을 알 수 있다.
<실험예 2> 열전재료의 열전특성값 비교
본 발명에 따른 실시예 1에서 제조된 나노복합체 열전재료와 비교예 1 및 2 에서 제조된 열전재료의 열전특성값을 비교하고, 그 결과를 표 1에 나타내었다.
제백상수
(uV/K)
전기비저항
(mΩ·㎝)
열전도도
(W/K·m)
성능지수
(×103/K)
실시예 1 - 60 1 0.05 1.96
비교예 1 - 60 ~ 80 1 ~ 1.4 0.5 ~ 0.7 0.2 ~ 0.4
비교예 2 - 50 ~ 70 0.8 ~ 1.2 0.25 ~ 0.35 0.4 ~ 0.6
상기 표 1에 나타난 바와 같이, 본 발명에 따른 실시예 1에서 제조된 나노복합체 열전재료의 열전도도 값은 0.05 W/K·m로 비교예 1 및 2에서 제조된 열전재료보다 낮은 것을 알 수 있고, 열전도도가 낮으므로 열전성능지수가 높아져 열전효율이 향상되는 것을 알 수 있다.
도 1은 본 발명에 따른 나노복합체의 제조방법을 나타낸 흐름도이고;
도 2는 본 발명의 제조방법으로 제조된 나노복합체를 나타낸 사진이고; 및
도 3은 본 발명에 따른 나노복합체의 열전재료의 투과전자현미경(TEM) 사진이다.

Claims (9)

  1. 배위리간드를 가지며, 표면처리된 CdO에 계면활성제를 첨가한 후 Te 금속분말을 고온주입하여 CdTe를 제조하는 단계(단계 1);
    상기 단계 1에서 제조된 CdTe에 Pb 전구체를 주입하여 코어-셀 구조의 CdTe-PbTe를 제조하는 단계(단계 2); 및
    상기 단계 2에서 제조된 CdTe-PbTe 나노입자와 PbTe 벌크를 혼합하여 전열처리한 후 열처리하는 단계(단계 3)를 포함하는 열전효율이 향상된 나노복합체의 제조방법.
  2. 제1항에 있어서, 상기 단계 1의 계면활성제는 올레인산(oleic acid), 옥타데신(octadecene) 또는 올레야민(oleyamine)인 것을 특징으로 하는 열전효율이 향상된 나노복합체의 제조방법.
  3. 제1항에 있어서, 상기 단계 1의 고온주입은 250 - 350 ℃의 온도범위에서 수행되는 것을 특징으로 하는 열전효율이 향상된 나노복합체의 제조방법.
  4. 제1항에 있어서, 상기 단계 2의 Pb 전구체는 PbCl2 또는 Pb(Ac)2인 것을 특징으로 하는 열전효율이 향상된 나노복합체의 제조방법.
  5. 삭제
  6. 제1항에 있어서, 상기 단계 2의 주입은 150 - 250 ℃의 온도범위에서 수행되는 것을 특징으로 하는 열전효율이 향상된 나노복합체의 제조방법.
  7. 제1항에 있어서, 상기 단계 3의 전열처리는 300 - 400 ℃의 온도범위에서 수행되는 것을 특징으로 하는 열전효율이 향상된 나노복합체의 제조방법.
  8. 제1항에 있어서, 상기 단계 3의 열처리는 900 - 1000 ℃의 온도범위에서 수행되는 것을 특징으로 하는 열전효율이 향상된 나노복합체의 제조방법.
  9. 구형의 나노입자 CdTe의 둘레를 PbTe가 구형으로 둘러싸는 형상인 코어-셀 구조의 CdTe-PbTe 나노입자와 벌크 PbTe가 혼합된 나노복합체.
KR1020090108590A 2009-11-11 2009-11-11 열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체 KR101094458B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090108590A KR101094458B1 (ko) 2009-11-11 2009-11-11 열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체
PCT/KR2010/007244 WO2011059185A2 (ko) 2009-11-11 2010-10-21 열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090108590A KR101094458B1 (ko) 2009-11-11 2009-11-11 열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체

Publications (2)

Publication Number Publication Date
KR20110051814A KR20110051814A (ko) 2011-05-18
KR101094458B1 true KR101094458B1 (ko) 2011-12-15

Family

ID=43992175

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090108590A KR101094458B1 (ko) 2009-11-11 2009-11-11 열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체

Country Status (2)

Country Link
KR (1) KR101094458B1 (ko)
WO (1) WO2011059185A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409404B1 (ko) 2012-10-09 2014-06-20 한양대학교 에리카산학협력단 열전재료의 제조방법 및 그에 따라 제조된 열전재료
KR20210060168A (ko) * 2019-11-18 2021-05-26 울산과학기술원 텔루라이드 기반 고성능 열전 박막을 이용한 열전 박막 소재 및 이의 제조방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130121546A (ko) 2012-04-27 2013-11-06 삼성전자주식회사 열전성능이 증대된 열전소재 및 그 제조 방법
KR102138527B1 (ko) 2014-01-20 2020-07-28 엘지전자 주식회사 상분리를 이용한 열전소재, 상기 열전소재를 이용한 열전소자 및 그 제조방법
CN112670394B (zh) * 2020-12-24 2022-11-08 合肥工业大学 一种通过引入稳定的纳米异质结提高p型SnTe基材料热电性能的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294478A (ja) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd 熱電変換材料
US7465871B2 (en) * 2004-10-29 2008-12-16 Massachusetts Institute Of Technology Nanocomposites with high thermoelectric figures of merit
JP4830383B2 (ja) * 2005-07-19 2011-12-07 大日本印刷株式会社 コアシェル型ナノ粒子および熱電変換材料
US8044292B2 (en) * 2006-10-13 2011-10-25 Toyota Motor Engineering & Manufacturing North America, Inc. Homogeneous thermoelectric nanocomposite using core-shell nanoparticles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409404B1 (ko) 2012-10-09 2014-06-20 한양대학교 에리카산학협력단 열전재료의 제조방법 및 그에 따라 제조된 열전재료
KR20210060168A (ko) * 2019-11-18 2021-05-26 울산과학기술원 텔루라이드 기반 고성능 열전 박막을 이용한 열전 박막 소재 및 이의 제조방법
KR102284963B1 (ko) * 2019-11-18 2021-08-04 울산과학기술원 텔루라이드 기반 고성능 열전 박막을 이용한 열전 박막 소재 및 이의 제조방법

Also Published As

Publication number Publication date
WO2011059185A3 (ko) 2011-11-03
KR20110051814A (ko) 2011-05-18
WO2011059185A2 (ko) 2011-05-19

Similar Documents

Publication Publication Date Title
Gayner et al. Recent advances in thermoelectric materials
Tyagi et al. Enhanced thermoelectric performance of spark plasma sintered copper-deficient nanostructured copper selenide
US10580954B2 (en) Nano-structured porous thermoelectric generators
KR101042575B1 (ko) In-Co-Fe-Sb 계 스커테루다이트 열전재료 및 그 제조방법
Feng et al. Temperature dependent thermoelectric properties of cuprous delafossite oxides
KR20130084120A (ko) 나노복합체형 열전재료, 이를 포함하는 열전모듈과 열전장치
Zhou et al. Significant enhancement in the thermoelectric performance of aluminum-doped ZnO tuned by pore structure
KR101902925B1 (ko) 열전재료, 열전소자 및 열전모듈
KR102138527B1 (ko) 상분리를 이용한 열전소재, 상기 열전소재를 이용한 열전소자 및 그 제조방법
JP2011029566A (ja) 高圧焼結方法を利用した高密度化高性能ナノ結晶バルク熱電材料の製造方法
KR101094458B1 (ko) 열전효율이 향상된 나노복합체의 제조방법 및 이에 따라 제조되는 나노복합체
EP2483205A1 (en) Gasb-filled skutterudite composite material and method of preparing the same
Brockway et al. Thermoelectric properties of large-scale Zn3 P2 nanowire assemblies
Akram et al. Microstructure and thermoelectric properties of Sb doped Hf0. 25Zr0. 75NiSn Half-Heusler compounds with improved carrier mobility
Li et al. Dual-functional aniline-assisted wet-chemical synthesis of bismuth telluride nanoplatelets and their thermoelectric performance
Amin Bhuiyan et al. A review on performance evaluation of Bi2Te3-based and some other thermoelectric nanostructured materials
TWI555243B (zh) 熱電材料及其製法
Shtern et al. Challenges and perspective recent trends of enhancing the efficiency of thermoelectric materials on the basis of PbTe
KR102399079B1 (ko) 반-호이슬러계 열전 재료, 이의 제조 방법 및 이를 포함하는 열전 소자
Li et al. Strengthened interlayer interaction and improved room-temperature thermoelectric performance of Ag-doped n-type Bi2Te2. 7Se0. 3
Song et al. Enhanced thermoelectric properties in p‐type Bi0. 4Sb1. 6Te3 alloy by combining incorporation and doping using multi‐scale CuAlO2 particles
WO2022147628A1 (en) Nanocomposite thermoelectric material and process for preparing same
Zhu et al. Thermoelectric properties of silicon germanium alloy nanocomposite fabricated by mechanical alloying and spark plasma sintering
JP2014013869A (ja) ナノコンポジット熱電変換材料およびその製造方法
Lan et al. Silicon–germanium alloys

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151204

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee