KR101083060B1 - Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and TiO2,SiO2 sol solutions used for thermo stable photo catalyst - Google Patents

Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and TiO2,SiO2 sol solutions used for thermo stable photo catalyst Download PDF

Info

Publication number
KR101083060B1
KR101083060B1 KR20080137971A KR20080137971A KR101083060B1 KR 101083060 B1 KR101083060 B1 KR 101083060B1 KR 20080137971 A KR20080137971 A KR 20080137971A KR 20080137971 A KR20080137971 A KR 20080137971A KR 101083060 B1 KR101083060 B1 KR 101083060B1
Authority
KR
South Korea
Prior art keywords
photocatalytic activity
carbon nanofiber
composite carbon
photocatalyst
nano fiber
Prior art date
Application number
KR20080137971A
Other languages
Korean (ko)
Other versions
KR20100079470A (en
Inventor
양갑승
김보혜
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR20080137971A priority Critical patent/KR101083060B1/en
Priority to PCT/KR2009/007733 priority patent/WO2010077011A2/en
Publication of KR20100079470A publication Critical patent/KR20100079470A/en
Application granted granted Critical
Publication of KR101083060B1 publication Critical patent/KR101083060B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic System; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts

Abstract

본 발명은 탄소나노섬유에 대한 것으로, 보다 구체적으로는 광촉매활성을 갖는 복합탄소나노섬유제조방법, 그 제조방법으로 제조된 복합탄소나노섬유, 상기 복합탄소나노섬유를 포함하는 필터 및 상기 복합탄소나노섬유 제조시 사용되는 열안정성 광촉매 졸 용액에 관한 것이다.  The present invention relates to carbon nanofibers, and more specifically, to a method for producing a composite carbon nanofiber having a photocatalytic activity, a composite carbon nanofiber prepared by the manufacturing method thereof, a filter including the composite carbon nanofiber, and the composite carbon nanofiber. A thermostable photocatalyst sol solution used in the manufacture of fibers.

전기방사, 광촉매, 광활성, TiO2, SiO2, 졸-겔, dip 코팅, 복합탄소나노 섬유 Electrospinning, photocatalyst, photoactive, TiO2, SiO2, sol-gel, dip coating, composite carbon nanofiber

Description

광촉매활성을 갖는 복합탄소나노섬유 제조방법, 그 방법으로 제조된 광촉매활성을 갖는 복합탄소나노섬유, 상기 복합탄소나노섬유를 포함하는 필터 및 상기 제조방법에 사용되는 열 안정성 광촉매 졸 용액{Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and TiO2,SiO2 sol solutions used for thermo stable photo catalyst}A method for producing a composite carbon nanofiber having a photocatalytic activity, a composite carbon nanofiber having a photocatalytic activity produced by the method, a filter comprising the composite carbon nanofiber, and a thermally stable photocatalyst sol solution used in the manufacturing method. carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and TiO2, SiO2 sol solutions used for thermo stable photo catalyst}

본 발명은 탄소나노섬유에 대한 것으로, 보다 구체적으로는 광촉매활성을 갖는 복합탄소나노섬유제조방법, 그 제조방법으로 제조된 복합탄소나노섬유, 상기 복합탄소나노섬유를 포함하는 필터 및 상기 복합탄소나노섬유 제조시 사용되는 열안정성 광촉매 졸 용액에 관한 것이다. The present invention relates to carbon nanofibers, and more specifically, to a method for producing a composite carbon nanofiber having a photocatalytic activity, a composite carbon nanofiber prepared by the manufacturing method thereof, a filter including the composite carbon nanofiber, and the composite carbon nanofiber. A thermostable photocatalyst sol solution used in the manufacture of fibers.

일반적으로 수중에 존재하는 환경오염 유발원은 크게 부유물질, 용존유기물, 용존무기물로 분류할 수 있다. 부유물질 중 비중이 큰 부유물질은 침전법을 이용하여 제거할 수 있으며, 또한 상대적으로 침전되기 어려운 부유물질의 경우에는 포화 공기방울을 이용한 부상부유법을 이용하여 제거할 수 있다. 그러나, 산업화의 진전 은 미생물이 분해하기 힘든 생물학적 난분해성 물질이 다량으로 배출되는 결과를 가져오고 있다. 이러한 난분해성 물질들은 기존의 혼합 부유미생물을 이용한 활성 슬러지 공정으로는 거의 제거처리가 되지 않고 있어 심각한 환경오염 원인이 되고 있다.Generally, sources of environmental pollution present in water can be largely classified into suspended matter, dissolved organic matter and dissolved inorganic matter. The suspended solids with a high specific gravity among the suspended solids can be removed by sedimentation method. In the case of suspended solids which are relatively hard to settle, they can be removed by floating flotation using saturated air bubbles. However, advances in industrialization have resulted in the release of large quantities of biologically degradable substances that are difficult for microorganisms to degrade. These hardly decomposable materials are rarely removed by the conventional activated sludge process using mixed suspended microorganisms, which causes serious environmental pollution.

광촉매는 "빛이 조사된 것에 의해 그 자신은 변하지 않지만, 화학반응을 촉진시켜 주는 물질"이다. 빛을 에너지원으로 하여 촉매 반응을 진행시키는 물질을 말하는데, 광촉매로는 반도체성 금속 산화물이나 황 화합물이 이용된다. 이러한 광촉매는 기존의 미생물이 제거할 수 없는 다양한 생물학적 난분해성 물질을 분해할 수 있는 것으로 알려져 왔는데, 상기와 같은 광촉매 효과를 나타내는 물질에는 ZnO, WO3, SnO2, ZrO2, TiO2, CdS 등이 있다.Photocatalysts are "materials that do not change themselves when irradiated with light, but catalyze chemical reactions." It refers to a substance that advances the catalytic reaction using light as an energy source, and a semiconductor metal oxide or a sulfur compound is used as the photocatalyst. Such photocatalysts have been known to decompose various biologically hardly decomposable substances that existing microorganisms cannot remove. Examples of such photocatalysts include ZnO, WO 3 , SnO 2 , ZrO 2 , TiO 2 , and CdS. There is this.

그 중에서 특히 아나타제(anatase) 결정구조의 이산화티탄(TiO2)이 많이 이용되는데, 이는 광여기 반응을 일으키는데 필요한 에너지가 387.5nm 정도로 태양광으로부터 충분한 에너지를 받을 수 있고, 화학적으로 안정하고, 광활성이 우수하며, 인체에 무해한 점 등 그 물성이 우수하기 때문이다. Among them, titanium dioxide (TiO 2 ) having an anatase crystal structure is particularly used. The energy required to cause the photoexcitation reaction is 387.5 nm, and sufficient energy can be received from sunlight. This is because it is excellent in physical properties such as harmless to the human body.

즉 반도체는 일정한 영역의 에너지가 가해지면 전자가 가전자대(Valence Band)에서 전도대(Conduction Band)로 여기 된다. 즉 전도대(Conduction Band)에는 전자[e-, electron]들이 형성되게 되고 가전자대(Valence Band)에는 정공[h+, electron hole]이 형성되게 된다. 정공(h+)이 물과 반응해서 수산라디칼 (·OH)을 생성하고, 반대가 되는 환원반응에서는 공기 중 산소의 환원이 일어나 슈퍼옥사이 드 음이온(O2 -), 2종의 활성산소를 생성한다. That is, in a semiconductor, when energy of a certain region is applied, electrons are excited from the valence band to the conduction band. That is, electrons [e-, electrons] are formed in the conduction band and holes [h +, electron holes] are formed in the valence band. Holes (h +) react with water to produce hydroxyl radicals (.OH), and in the opposite reduction reaction, oxygen is reduced in air, producing superoxide anions (O 2 ) and two active oxygen species. .

특히 수산라디칼은 높은 산화, 환원전위를 가지고 있기 때문에 NOx, SOx, 휘발성유기화합물(VOCs) 및 각종 악취정화에 탁월하고 축산폐수, 오수, 공장폐수의 BOD, 색도 및 난분해성 오염물질, 환경호르몬 등을 제거할 뿐만 아니라 병원성 대장균, 황색포도구균, O-157 등 각종 병원균과 박테리아를 99% 이상 살균할 수 있다.In particular, since radicals have high oxidation and reduction potentials, they are excellent for NO x , SO x , volatile organic compounds (VOCs) and various odor purification, BOD, color and hardly degradable contaminants of livestock wastewater, sewage, factory wastewater, environment In addition to removing hormones, it can sterilize over 99% of pathogens and bacteria such as Escherichia coli, Staphylococcus aureus, and O-157.

이와 같이 아나타제 결정구조의 이산화티탄 분말은 우수한 광촉매적 성질을 가지고 있으면서도 상대적으로 합성하기 쉬워 이에 관한 많은 연구가 진행되어왔다[미국특허 제 6,022,824호]. 그러나, 이러한 이산화티탄 분말은 그 크기가 약 0.1 ㎛ 이하로서 매우 작아 연속흐름식 수처리반응기로 제작하였을 경우 이를 회수하기 위해서는 멤브레인과 같은 막을 사용해야 하는 문제가 있다[미국특허 제 5,462,674호]. 또한, 이산화티탄 분말은 이러한 분리용 막표면에 축적되어 막의 수명을 단축시키는 결과를 가져오며 결과적으로 전체 수처리반응기 시스템의 제거효율을 저하시키는 문제가 있어왔다. As described above, titanium dioxide powder having anatase crystal structure has excellent photocatalytic properties and is relatively easy to synthesize, and many studies on this have been conducted (US Pat. No. 6,022,824). However, such titanium dioxide powder has a problem that the size of the titanium dioxide powder is about 0.1 μm or less, which is very small, so that a membrane such as a membrane may be used to recover the titanium dioxide powder when it is manufactured with a continuous flow type water treatment reactor (US Pat. No. 5,462,674). In addition, the titanium dioxide powder accumulates on the separation membrane surface, resulting in shortening the life of the membrane, and consequently has a problem of lowering the removal efficiency of the entire water treatment reactor system.

또한, 매우 작은 분말형 이산화티탄을 분산시켜 광촉매 시스템으로 구성하는 경우 분산된 이산화티탄 분말이 빛을 흡수하여 빛을 수처리 반응기 전체에 균일하게 조사하는 것이 매우 어려워 이러한 광촉매 시스템을 큰 용량으로 확장하는 것을 어렵게 하였다[미국특허 제5,275,741호].In addition, in the case of forming a photocatalyst system by dispersing a very small powdered titanium dioxide, it is very difficult for the dispersed titanium dioxide powder to absorb light and irradiate the light uniformly throughout the water treatment reactor. Made difficult [US Pat. No. 5,275,741].

또한, 미국특허 제 5,591,380호 및 제 4,176,089호 등에서는 두 종류의 졸을 지지체에 균일하게 분산할 때, 졸의 안정성이 저하되어 쉽게 겔화되어 코팅막이 두꺼워지거나, 공정이 복합해 진다는 문제점이 있다. In addition, US Patent Nos. 5,591,380, 4,176,089 and the like have a problem in that when the two types of sol are uniformly dispersed in the support, the stability of the sol is lowered and is easily gelled to thicken the coating film or the process is complex.

또한 대한민국 공개특허 특2001-0084574호 및 10-2004-0003759호 등에서는 실리카겔에 담지 또는 지지체로 하는 이산화티타늄 광촉매의 제조방법을 제안하고 있다. 여기서는 촉매로서의 안정성을 확보하기 위하여 400 ~ 600 ℃에서 소성 열처리한 후 사용하였다. 이들 광촉매들은 높은 온도에서는 루틸 (Rutil)구조로 상전이 되어 광촉매의 효율이 급격히 감소하게 된다. In addition, Korean Patent Laid-Open Publication Nos. 2001-0084574 and 10-2004-0003759 propose a method for producing a titanium dioxide photocatalyst supported or supported on silica gel. In this case, in order to ensure stability as a catalyst, it was used after calcining heat treatment at 400 ~ 600 ℃. These photocatalysts are phase-changed into a rutile structure at a high temperature, and the efficiency of the photocatalyst is drastically reduced.

한편, 탄소나노 섬유는 나노흑연구조를 갖는 활성탄소의 새로운 종류로서 양산이 가능하고 큰 비표면적을 갖으며 전도성이 우수한 새로운 형태의 탄소재료이다. 흡착제의 종류인 활성탄소와 비교해 탄소나노 섬유는 비표면적이 크고, 그 기공의 깊이가 얕으며, 1-2 nm의 크기의 미세공을 가지므로 큰 비표면적, 미세한 다공구조의 강한 흡착력을 이용하여 효과적인 흡착, 탈색, 수처리제, 탈취제, 습기를 제거하는 조습제등의 용도로 사용될 수 있다. 그러나 탄소나노 섬유는 다공구조의 흡착성만을 이용한 것으로 흡착이 완결되면 정화능력이 급격히 떨어지는 단점이 있다. Carbon nanofibers, on the other hand, are a new kind of activated carbon having a nanographite structure and are a new type of carbon material capable of mass production, having a large specific surface area and excellent conductivity. Compared to activated carbon, which is a kind of adsorbent, carbon nanofibers have a large specific surface area, shallow pore depth, and micropores of 1-2 nm size. It can be used for effective adsorption, decolorization, water treatment agent, deodorant, moisture absorbent and the like. However, carbon nanofibers use only the adsorptivity of the porous structure, and when the adsorption is completed, the purification ability is sharply reduced.

본 발명자들은 탄소나노섬유와 광촉매물질을 이용하여 광촉매 특성을 가지는 동시에 탄소나노섬유의 고유특성을 갖게 되어 보다 우수한 정화기능을 갖는 광촉매활성을 갖는 복합탄소나노섬유제조방법 및 그 방법으로 제조된 복합탄소나노섬유를 개발하게 되어 본 발명을 완성하게 되었다.The present inventors have a photocatalytic property using carbon nanofibers and a photocatalyst material and at the same time have the inherent properties of carbon nanofibers, and a composite carbon nanofiber manufacturing method having a photocatalytic activity having a superior purification function and a composite carbon manufactured by the method Nanofibers were developed to complete the present invention.

따라서, 본 발명의 목적은 탄소나노섬유 고유의 흡착능력과 광촉매의 분해 능력을 동시에 보유하여 유기물을 흡착과 동시에 분해하는 광촉매 활성을 갖는 복합탄소나노섬유제조방법, 그 제조방법으로 제조된 복합탄소나노섬유 및 상기 복합탄소나노섬유를 포함하는 필터를 제공하는 것이다. Accordingly, an object of the present invention is a method for producing a composite carbon nanofiber having a photocatalytic activity of simultaneously adsorbing and decomposing organic substances by simultaneously retaining the inherent adsorption capacity of carbon nanofibers and the decomposition ability of the photocatalyst, and composite carbon nanoparticles prepared by the method It is to provide a filter comprising a fiber and the composite carbon nanofibers.

본 발명의 다른 목적은 기존 광촉매에 비해 높은 광활성을 보이며, 고농도 염료의 광분해 능력이 뛰어나 고농도 염색 폐수의 색도 처리에 높은 정화 효율을 얻을 수 있는 광촉매 활성을 갖는 복합탄소나노섬유제조방법, 그 제조방법으로 제조된 복합탄소나노섬유 및 상기복합 탄소나노섬유를 포함하는 필터를 제공하는 것이다. Another object of the present invention is a composite carbon nanofiber manufacturing method having a photocatalytic activity which shows a high photoactivity compared to the existing photocatalyst, and has a high photocatalytic activity for color treatment of high concentration dyeing waste water due to excellent photolysis ability of a high concentration dye, It is to provide a filter comprising a composite carbon nanofibers and the composite carbon nanofibers prepared by.

본 발명의 또 다른 목적은 높은 온도에서도 일반 유기화합물의 광분해 반응은 물론 유해가스의 흡착 및 분해 기능을 갖는 광촉매 활성을 갖는 복합탄소나노섬유제조방법, 그 제조방법으로 제조된 복합탄소나노섬유 및 상기 복합탄소나노섬유를 포함하는 필터를 제공하는 것이다. Still another object of the present invention is a method for producing a composite carbon nanofiber having a photocatalytic activity having a photocatalytic activity of adsorbing and decomposing harmful gases as well as photocatalytic reaction of a general organic compound even at a high temperature, and a composite carbon nanofiber prepared by the method. It is to provide a filter comprising a composite carbon nanofibers.

본 발명의 또 다른 목적은 공기청정기용 필터, 자동차용 배기가스 정화 필 터, 정수용 필터에 널리 이용되기에 극히 적합한 광촉매 활성을 갖는 복합탄소나노섬유제조방법, 그 제조방법으로 제조된 복합탄소나노섬유 및 상기 복합탄소나노섬유를 포함하는 필터를 제공하는 것이다. Still another object of the present invention is a method for producing a composite carbon nanofiber having a photocatalytic activity which is extremely suitable to be widely used in an air purifier filter, an automobile exhaust gas purification filter, and a water purification filter, and a composite carbon nanofiber manufactured by the manufacturing method thereof. And to provide a filter comprising the composite carbon nanofibers.

본 발명의 또 다른 목적은 광촉매로 사용되는 이산화티탄에 750℃ 이상의 열이 가해져도 이산화티탄의 결정구조가 열적 안정성을 갖는 아나타제 구조를 유지하여 높은 광 활성을 갖게 하는 조성의 열 안정성 광촉매 졸 용액을 제공하는 것이다. It is still another object of the present invention to provide a thermally stable photocatalyst sol solution having a composition in which the crystal structure of titanium dioxide maintains an anatase structure having thermal stability even though heat is applied to titanium dioxide used as a photocatalyst to have high optical activity. To provide.

본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.

상기 목적을 달성하기 위하여 본 발명은 탄소섬유 전구체 물질이 용해된 방사용액을 전기 방사하여 얻어진 탄소나노섬유 전구체를 200 내지 350℃에서 안정화하여 내염화 섬유를 얻는 단계; 광촉매 졸 용액을 준비하는 단계; 상기 광촉매 졸 용액에 상기 내염화섬유를 침지시켜 코팅하는 단계; 및 상기 코팅된 내염화섬유를 건조한 후 탄화시키는 단계를 포함하는 광촉매 활성을 갖는 복합탄소나노섬유제조방법을 제공한다. In order to achieve the above object, the present invention comprises the steps of stabilizing the carbon nanofiber precursor obtained by electrospinning the spinning solution in which the carbon fiber precursor material is dissolved at 200 to 350 ℃ to obtain a flame-resistant fiber; Preparing a photocatalyst sol solution; Coating the chlorinated fiber by dipping the photocatalyst sol solution; And it provides a composite carbon nanofiber manufacturing method having a photocatalytic activity comprising the step of carbonizing the coated flame resistant fiber after drying.

바람직한 실시예에 있어서, 상기 광촉매는 ZnO, WO3, SnO2, ZrO2, TiO2, CdS 의 그룹에서 선택되는 어느 하나이다. In a preferred embodiment, the photocatalyst is any one selected from the group of ZnO, WO 3 , SnO 2 , ZrO 2 , TiO 2 , CdS.

바람직한 실시예에 있어서, 상기 광촉매 졸 용액을 준비하는 단계에서 SiO2를 더 첨가하여 광촉매 졸 용액을 준비한다. In a preferred embodiment, in preparing the photocatalyst sol solution, SiO 2 is further added to prepare a photocatalyst sol solution.

바람직한 실시예에 있어서, 상기 SiO2가 더 첨가된 광촉매 졸 용액은 SiO2 졸 용액을 준비한 후 상기 광촉매를 첨가하면서 교반하여 얻어진다.In a preferred embodiment, the photocatalyst sol solution to which SiO 2 is further added is obtained by preparing a SiO 2 sol solution and then stirring while adding the photocatalyst.

바람직한 실시예에 있어서, 상기 탄화시키는 단계는 900℃까지 가온하여 수행된다.In a preferred embodiment, the carbonization step is carried out by heating to 900 ° C.

바람직한 실시예에 있어서, 상기 탄소나노섬유 전구체 물질은 폴리 아크릴로 니트릴(polyacrylo nitrile, PAN), 폴리이미드(polyimide), 폴리벤조이미다졸(polybenz imidazole, PBI), 피치로 구성된 그룹에서 선택되는 어느 하나이다.In a preferred embodiment, the carbon nanofiber precursor material is any one selected from the group consisting of polyacrylo nitrile (PAN), polyimide, polybenzimidazole (PBI), and pitch. .

또한, 본 발명은 제 1 항 내지 제 6 항 중 어느 한 항의 방법으로 제조된 광촉매 활성을 갖는 탄소나노섬유로서, 포함된 광촉매가 이산화티탄인 것을 특징으로 하는 광촉매 활성을 갖는 복합탄소나노섬유를 제공한다. In another aspect, the present invention provides a carbon nanofiber having a photocatalytic activity prepared by the method of any one of claims 1 to 6, wherein the included photocatalyst is titanium dioxide, the composite carbon nanofibers having a photocatalytic activity. do.

바람직한 실시예에 있어서, 상기 이산화티탄의 결정구조는 아나타제 구조가 50% 이상이다. In a preferred embodiment, the crystal structure of the titanium dioxide has anatase structure of 50% or more.

바람직한 실시예에 있어서, 상기 광촉매 활성을 갖는 복합탄소나노섬유의 비표면적이 254 m2/g이다. In a preferred embodiment, the specific surface area of the composite carbon nanofibers having the photocatalytic activity is 254 m 2 / g.

또한, 본 발명은 제 7 항의 광촉매 활성을 갖는 복합탄소나노섬유를 포함하여 고온에서도 안정적인 광촉매 활성을 갖는 필터를 제공한다.The present invention also provides a filter having a stable photocatalytic activity even at high temperature, including the composite carbon nanofibers having the photocatalytic activity of claim 7.

또한, 본 발명은 광촉매 활성을 부여하고자 하는 소재의 표면에 코팅되는 광촉매로서 이산화티탄이 분산된 졸 용액에 SiO2 가 분산된 상태로 더 포함되어 상기 소재의 표면에 코팅된 이산화티탄에 750℃ 이상의 열이 가해져도 상기 이산화티탄의 결정구조가 아나타제에서 루틸 결정구조로 상전이 되는 것이 억제되는 것을 특징으로 하는 열 안정성 광촉매 졸 용액을 제공한다.In addition, the present invention is a photocatalyst coated on the surface of the material to give the photocatalytic activity is further included in a state in which SiO 2 is dispersed in a sol solution in which titanium dioxide is dispersed is more than 750 ℃ in titanium dioxide coated on the surface of the material Provided is a thermally stable photocatalyst sol solution characterized in that the crystal structure of the titanium dioxide is inhibited from phase transition from anatase to rutile crystal structure even when heat is applied.

바람직한 실시예에 있어서, 상기 열 안정성 광촉매 졸 용액은 98% 이상의 순도를 갖는 테트라에틸오르소실리케이트 (tetraethyl orthosilicate, TEOS), 티타늄이소프로폭사이드(Titanium (IV) isopropoxide, TiP), 에탄올 (Ethyl alcohol), 물 및 0.05 N HCl을 포함하고, 상기 TEOS 및 TiP는 분산된 상태이다. In a preferred embodiment, the thermally stable photocatalyst sol solution is tetraethyl orthosilicate (TEOS), titanium isopropoxide (TiP), ethanol (Ethyl alcohol) having a purity of 98% or more. ), Water and 0.05 N HCl, the TEOS and TiP is in a dispersed state.

바람직한 실시예에 있어서, 상기 열 안정성 광촉매 졸 용액은 상기 에탄올에 TEOS, 물 및 0.05 N HCl을 혼합하여 실리카 졸 용액을 제조한 후 TiP를 첨가하면서 교반하여 얻어진다. In a preferred embodiment, the thermally stable photocatalyst sol solution is obtained by mixing TEOS, water, and 0.05 N HCl in the ethanol to prepare a silica sol solution, followed by stirring while adding TiP.

본 발명은 다음과 같은 우수한 효과를 가진다.The present invention has the following excellent effects.

본 발명의 복합탄소나노섬유제조방법으로 제조된 복합탄소나노섬유 및 상기 복합탄소나노섬유를 포함하는 필터는 탄소나노섬유 고유의 흡착능력과 광촉매의 분해 능력을 동시에 보유하여 유기물을 흡착과 동시에 분해하는 우수한 광촉매 활성을 갖는다. The composite carbon nanofibers prepared by the method of manufacturing the composite carbon nanofiber of the present invention and the filter including the composite carbon nanofibers have the adsorption capacity and the photocatalytic decomposition ability of carbon nanofibers at the same time to decompose organic substances simultaneously with adsorption. It has excellent photocatalytic activity.

본 발명의 복합탄소나노섬유제조방법으로 제조된 복합탄소나노섬유 및 상기 복합탄소나노섬유를 포함하는 필터는 기존 광촉매에 비해 높은 광활성을 보이며, 고농도 염료의 광분해 능력이 뛰어나 고농도 염색 폐수의 색도 처리에 높은 정화 효율을 얻을 수 있다. The composite carbon nanofibers produced by the composite carbon nanofiber manufacturing method of the present invention and the filter including the composite carbon nanofibers show higher photoactivity than conventional photocatalysts, and have excellent photodegradation ability of high-density dyes for color treatment of highly concentrated dye wastewater. High purification efficiency can be obtained.

본 발명의 복합탄소나노섬유제조방법으로 제조된 복합탄소나노섬유 및 상기 복합탄소나노섬유를 포함하는 필터는 높은 온도에서도 일반 유기화합물의 광분해 반응은 물론 유해가스의 흡착 및 분해 기능을 갖는 우수한 광촉매 활성을 갖는다. The composite carbon nanofibers prepared by the composite carbon nanofiber manufacturing method of the present invention and the filter including the composite carbon nanofibers have excellent photocatalytic activity having the adsorption and decomposition function of harmful gases as well as photodegradation reaction of general organic compounds even at high temperature. Has

본 발명의 복합탄소나노섬유제조방법으로 제조된 복합탄소나노섬유 및 상기 복합탄소나노섬유를 포함하는 필터는 공기청정기용 필터, 자동차용 배기가스 정화 필터, 정수용 필터에 널리 이용되기에 극히 적합한 우수한 광촉매 활성을 갖는다. The composite carbon nanofibers produced by the composite carbon nanofiber manufacturing method of the present invention and the filter including the composite carbon nanofibers are excellent photocatalysts that are extremely suitable for being widely used in air purifier filters, automobile exhaust gas purification filters, and water purification filters. Have activity.

본 발명의 복합탄소나노섬유제조방법에 사용될 수 있는 열 안정성 광촉매 졸 용액은 광촉매 활성을 부여하는 광촉매로서 사용되는 이산화티탄에 750℃이상의 열이 가해져도 이산화티탄의 결정구조가 열적 안정성을 갖는 아나타제 구조를 유지하여 높은 광 활성을 갖게 하는 조성을 가진다.The thermally stable photocatalyst sol solution that can be used in the composite carbon nanofiber manufacturing method of the present invention is an anatase structure in which the crystal structure of titanium dioxide has thermal stability even when heat of 750 ° C. or more is applied to titanium dioxide used as a photocatalyst to impart photocatalytic activity. It has a composition to maintain the high light activity.

본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.The terms used in the present invention were selected as general terms as widely used as possible, but in some cases, the terms arbitrarily selected by the applicant are included. In this case, the meanings described or used in the detailed description of the present invention are considered, rather than simply the names of the terms. The meaning should be grasped.

먼저, 본 발명의 광촉매 활성을 갖는 복합탄소나노섬유제조방법은 일반적으로 알려진 바와 같이 완제품에 광촉매를 코팅하는 것이 아니라 탄소나노섬유제조과정에서 광촉매를 코팅하게 되므로, 즉 광촉매를 내염화섬유에 침지코팅시킨 후 900℃까지 가온하는 탄화공정을 통해 최종적으로 광촉매 활성을 갖는 복합탄소나노섬유를 제조하게 된다. First, the composite carbon nanofiber manufacturing method having the photocatalytic activity of the present invention does not coat the photocatalyst on the finished product as is generally known, but rather the photocatalyst is coated in the carbon nanofiber manufacturing process, that is, the photocatalyst is immersed in the flame resistant fiber. After the carbonization process to warm up to 900 ℃ to finally produce a composite carbon nanofibers having a photocatalytic activity.

따라서, 본 발명의 제조방법에 의하면 광촉매가 탄소나노섬유의 일부를 구성하게 되어 광촉매가 자연스럽게 고정상을 이룰 뿐만 아니라 광촉매가 작용할 수 있는 유기물을 탄소나노섬유의 흡착능력에 의해 쉽게 흡착할 수 있게 되므로 광촉매활성이 현저하게 향상될 수 있어 필터로 사용하기에 극히 적합하다.Therefore, according to the manufacturing method of the present invention, the photocatalyst constitutes a part of the carbon nanofibers, so that the photocatalyst naturally forms a fixed phase and the organic catalyst to which the photocatalyst can act can be easily adsorbed by the adsorption capacity of the carbon nanofibers. The activity can be significantly improved, making it extremely suitable for use as a filter.

다만, 본 발명의 복합탄소나노섬유제조방법은 사용되는 광촉매가 열안정성이 아닐 경우 900℃의 탄화공정에서도 광촉매의 활성이 가능한 저하되는 정도가 낮거나 유지할 수 있거나 향상될 수 있는 기술적 구성을 더 하는 것이 바람직하다. However, the composite carbon nanofiber manufacturing method of the present invention further provides a technical configuration that can lower or maintain or improve the degree of degradation of the photocatalytic activity even at a carbonization process of 900 ° C. when the photocatalyst used is not thermally stable. It is preferable.

예를 들어, 일반적인 광촉매로 가장 많이 사용되는 이산화티탄(TiO2)은 루틸과 아나타제의 두 가지 결정 구조를 가지고 있는데, 이러한 결정의 구조적 차이로 아나타제와 루틸간의 결정구조가 달라 아나타제 (3.2 eV)는 루틸 (3.0 eV) 보다 약간 큰 띠간격을 갖게 되며, 이로 인해 루틸 표면에서 빠른 전자-정공의 재결합 반응이 일어나고, 표면에 달라붙은 반응물들의 수와 표면 위의 수산화기의 양이 아나타제보다 루틸이 더 적기 때문에 아나타제의 광효율도가 루틸보다 일반적으로 더 높으므로 고온에서도 아나타제 구조를 갖는 것이 바람직하다. For example, titanium dioxide (TiO 2 ), which is most commonly used as a general photocatalyst, has two crystal structures, rutile and anatase. Due to the structural difference between the crystals, anatase (3.2 eV) It has a bandgap slightly larger than rutile (3.0 eV), which results in fast electron-hole recombination reactions on the rutile surface, with fewer rutiles than anatase in the number of reactants attached to the surface and the amount of hydroxyl groups on the surface Because of this, the light efficiency of anatase is generally higher than rutile, so it is desirable to have an anatase structure even at high temperatures.

하지만, 이산화티탄은 750 ℃에서 결정구조가 아나타제에서 루틸 결정구조로 상전이 되기 시작하고, 900℃이상의 소성온도에서는 X선 회절 분석기 (XRD)에서 준안정 상태인 아나타제 피크는 전혀 관측되지 않고 열적안정 상태인 루틸 피크만 측정된다. However, titanium dioxide begins to phase change its crystal structure from anatase to rutile crystal structure at 750 ° C. At firing temperatures above 900 ° C, meta-stable anatase peaks are not observed at all in the X-ray diffractometer (XRD). Only in rutile peaks are measured.

따라서, 본 발명은 광촉매 활성을 갖는 복합탄소나노섬유를 제조하는 방법에 사용될 수 있는 즉 900℃이상의 온도에서도 이산화티탄의 광촉매활성을 유지할 수 있는 열 안정성 광촉매 졸 용액을 제공한다. Accordingly, the present invention provides a thermally stable photocatalyst sol solution that can be used in a method for producing a composite carbon nanofiber having a photocatalytic activity, that is, to maintain the photocatalytic activity of titanium dioxide even at a temperature of more than 900 ℃.

이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical structure of the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.

그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Like reference numerals designate like elements throughout the specification.

도 1은 본 발명의 일 실시예에 따른 광촉매 활성을 갖는 복합탄소나노섬유 제조방법의 각 공정을 간략하게 나타낸 흐름도이고, 도 2a는 도 1의 방법에 의해 광촉매가 코팅된 복합탄소나노섬유의 전자현미경 사진이고, 도 2b는 에너지 분산형 X선 분광기 (EDX)의 그래프이며, 도 3은 TiO2/SiO2 코팅된 탄소나노섬유의 X선 회절 분석 (XRD)의 그래프이고, 도 4는 TiO2 코팅된 탄소나노섬유의 X선 회절 분석 (XRD)의 그래프이며, 도 5는 TiO2/SiO2 코팅된 탄소나노섬유의 FT-IR 그래프이고, 도 6은 TiO2/SiO2 코팅된 복합탄소나노섬유[(TiO2/SiO2)/CNFs], TiO2 코팅된 탄소나노섬유[TiO2/CNFs] 및 복합탄소나노섬유[CNFs]에 자외선을 조사하였을 때 Methylene blue용액의 농도를 조사시간에 따라 VU-Vis 분광광도기로 분석한 그래프이다.1 is a flow chart briefly showing each process of the composite carbon nanofiber manufacturing method having a photocatalytic activity according to an embodiment of the present invention, Figure 2a is a photocatalyst coated electron of the composite carbon nanofibers by the method of Figure 1 2B is a graph of an energy dispersive X-ray spectrometer (EDX), FIG. 3 is a graph of X-ray diffraction analysis (XRD) of TiO 2 / SiO 2 coated carbon nanofibers, and FIG. 4 is TiO 2 a graph of X-ray diffraction analysis (XRD) of the coated carbon nano-fiber, 5 is a TiO 2 / SiO 2 coating of carbon and FT-IR graph of a nano fiber, and Fig. 6 is a TiO 2 / SiO 2 coating the composite carbon nano The concentration of Methylene blue solution was determined by irradiating UV rays to fibers [(TiO 2 / SiO 2 ) / CNFs], TiO 2 coated carbon nanofibers [TiO 2 / CNFs] and composite carbon nanofibers [CNFs]. This is a graph analyzed by VU-Vis spectrophotometer.

실시예1 Example 1

도 1에 도시된 공정을 다음과 같이 수행하여 광촉매 활성을 갖는 복합탄소나노섬유를 제조하였다.The composite carbon nanofibers having the photocatalytic activity were prepared by performing the process shown in FIG. 1 as follows.

1. PAN 내염화섬유의 제조1. Preparation of PAN Chlorinated Fiber

탄소섬유용 PAN을 dimethyformamide(DMF)에 용해하여 방사 용액을 제조한다. 이 PAN 용액을 정전방사 방법을 이용해서 나노섬유로 구성된 부직포 웹을 제조하였다. 이때의 정전방사 장치는 노즐과 콜렉터에 각각 30 kV의 인가전압을 가하고, 방사구금과 콜렉터간의 거리는 10~30 cm 정도로 필요에 따라 가변 시켰다. 전기방사하여 얻은 PAN 방사 섬유를 열풍순환爐를 사용하여 압축공기를 분당 5~20 mL의 유속으로 공급하고, 분당 1 ℃의 승온 속도로 200~300 ℃에서 1시간 유지하여 안정화하여 PAN 내염화 섬유를 얻었다. PAN for carbon fiber was dissolved in dimethyformamide (DMF) to prepare a spinning solution. This PAN solution was prepared using a non-woven web composed of nanofibers using an electrospinning method. At this time, the electrospinning apparatus applied an applied voltage of 30 kV to the nozzle and the collector, respectively, and the distance between the spinneret and the collector was varied as needed about 10 to 30 cm. The PAN spinning fiber obtained by electrospinning was supplied with compressed air at a flow rate of 5-20 mL per minute using a hot air circulating fan, and stabilized by maintaining it at 200-300 ° C. for 1 hour at a temperature rising rate of 1 ° C. per minute. Got.

2. 열안정성 광촉매 졸 용액의 준비2. Preparation of Thermostable Photocatalyst Sol Solution

열안정성 광촉매 졸 용액인 TiO2/SiO2 졸 용액은 ACROS사 제품인 98% 이상의 순도를 갖는 테트라에틸오르소실리케이트 (tetraethyl orthosilicate, TEOS), 티탄늄이소프로폭사이드 (Titanium (IV) isopropoxide TiP), 에탄올 (Ethyl alcohol)을 구입하여 그대로 사용하였다. 먼저 에탄올에 TEOS, 물 및 0.05 N HCl을 혼합하여 실리카 졸 용액을 제조한 후 TiP를 서서히 넣어주면서 격렬하게 교반하여 TiO2/SiO2 졸 용액을 완성하였다.The TiO 2 / SiO 2 sol solution, a thermally stable photocatalyst sol solution, contains tetraethyl orthosilicate (TEOS), Titanium (IV) isopropoxide TiP, Ethanol (Ethyl alcohol) was purchased and used as it is. First, TEOS, water, and 0.05 N HCl were mixed in ethanol to prepare a silica sol solution, followed by vigorous stirring while slowly adding TiP to complete the TiO 2 / SiO 2 sol solution.

3. PAN 내염화섬유의 침지코팅 (Dip coating)3. Dip coating of PAN flame resistant fiber

TiO2/SiO2 졸 용액에 PAN 내염화 섬유를 2시간 침지 코팅한 후 공기중에서 건조시키고, 분당 5 ℃의 승온 속도로 900 ℃까지 가온하여 탄화시켜 광촉매 활성을 갖는 복합탄소나노섬유(즉, TiO2/SiO2 코팅된 탄소나노섬유)를 제조하였다. PAN flame-resistant fiber was immersed in TiO 2 / SiO 2 sol solution for 2 hours, dried in air, and carbonized by heating to 900 ° C. at a heating rate of 5 ° C. per minute (ie, TiO 2 / SiO 2 coated carbon nanofibers) was prepared.

실시예2Example 2

광촉매 졸 용액에 TEOS를 첨가하지 않은 것을 제외하면, 실시예와 동일한 방법을 수행하여 TiO2 코팅된 복합탄소나노섬유를 제조하였다.Except that TEOS was not added to the photocatalyst sol solution, TiO 2 -coated composite carbon nanofibers were prepared in the same manner as in Example.

실험예 1Experimental Example 1

실시예1에서 제조된 광촉매 활성을 갖는 복합탄소나노섬유에서 광촉매의 존재를 확인하기 위해 전자현미경으로 관찰하여 도2a에 나타내었으며, 에너지 분산형 X선 분광기(EDX)의 그래프를 도 2b에 나타내었다.In order to confirm the presence of the photocatalyst in the composite carbon nanofibers having the photocatalytic activity prepared in Example 1, it was observed by electron microscope in FIG. 2a, and a graph of an energy dispersive X-ray spectrometer (EDX) is shown in FIG. 2b. .

전자현미경 사진인 도 2a로부터 20-40 nm 크기의 초미세 광촉매 입자인 TiO2 가 탄소나노 섬유 표면에 균일하게 분포되어 있음을 확인할 수 있었다. From the electron microscope photograph of FIG. 2A, it was confirmed that TiO 2, which is an ultrafine photocatalyst particle having a size of 20-40 nm, was uniformly distributed on the surface of the carbon nanofibers.

또한, 에너지 분산형 X선 분광기 (EDX)의 그래프인 도 2b로부터 TiO2/SiO2 코팅된 복합탄소나노섬유 즉 광촉매 활성을 갖는 복합탄소나노섬유의 C, Ti 및 Si의 원소를 확인하였다. In addition, elements of C, Ti, and Si of TiO 2 / SiO 2 coated carbon nanofibers, that is, composite carbon nanofibers having photocatalytic activity were identified from FIG. 2B, which is a graph of an energy dispersive X-ray spectrometer (EDX).

실험예 2Experimental Example 2

실시예1에서 제조된 TiO2/SiO2 코팅된 복합탄소나노섬유와 실시예2에서 제조된 TiO2 코팅된 복합탄소나노섬유에 포함된 광촉매 TiO2가 광촉매 활성을 유지하는지 여부를 X-선 회절패턴으로 조사하여 그 결과를 표 1, 도 3 및 도 4에 도시하였다.Example 1 TiO 2 / SiO 2 composite coating of carbon nanofiber as in Example 2 X- ray diffraction whether maintaining the photocatalytic TiO 2 the photocatalytic activity include the production of TiO 2 coated with the composite manufactured from the carbon nanofiber The pattern was examined and the results are shown in Table 1, FIG. 3 and FIG. 4.

표1 도시한 바와 같이 실리카가 분산 되었을 때 즉 열안정성 광촉매 졸 용액을 사용한 경우에는 900 ℃의 높은 탄화온도에서도 TiO2의 상전이가 억제되어 아나타제와 루틸의 결정 구조가 8:2로 혼재되어 나타났고, 아나타제의 결정크기는 Scherrer 식에 의해 계산된 결과 20 nm로 나타났다. 또한 높은 온도에서 광촉매가 코팅된 탄소나노 섬유는 254 m2/g의 비표면적을 나타내었다. As shown in Table 1, when the silica was dispersed, that is, when the thermally stable photocatalyst sol solution was used, the phase transition of TiO 2 was suppressed even at a high carbonization temperature of 900 ° C, resulting in a mixture of 8: 2 crystal structures of anatase and rutile. The crystal size of, anatase was 20 nm as calculated by the Scherrer equation. In addition, the carbon nanofibers coated with the photocatalyst at a high temperature had a specific surface area of 254 m 2 / g.

그러나 TiO2만이 탄소나노 섬유에 코팅 된 경우에는 높은 온도에 의해 루틸의 상전이가 촉진되어 루틸의 비율이 크게 증가하고 촉매의 입자크기가 증가하였다.However, when only TiO 2 was coated on the carbon nanofibers, the phase transition of rutile was promoted by the high temperature, which greatly increased the ratio of rutile and increased the particle size of the catalyst.

Figure 112008090928112-pat00001
Figure 112008090928112-pat00001

a탄소나노 섬유의 비표면적 a specific surface area of carbon nanofibers

bCNF - 탄소나노 섬유 (Carbon Nano Fiber) b CNF-Carbon Nano Fiber

또한 TiO2/SiO2 코팅된 탄소나노섬유의 X-선 회절패턴인 도 3으로부터도 광촉매인 TiO2 입자는 아나타제와 루틸의 형태가 8:2로 혼재하고 있다는 결과는 확인되었다. 이러한 결과로부터도 기존의 광촉매가 높은 온도에서 활성이 떨어지는 루틸 형태로 나타나는 것과 달리, 본 발명의 열안정성 광촉매 졸 용액이 TiO2의 상전이를 억제하여 아나타제의 결정구조를 유지하는 광촉매를 얻을 수 있게 하는 것을 알 수 있었다. In addition, from Fig. 3, which is an X-ray diffraction pattern of TiO 2 / SiO 2 coated carbon nanofibers, it was confirmed that the TiO 2 particles, which are photocatalysts, were mixed with 8: 2 in the form of anatase and rutile. From these results, unlike the conventional photocatalyst, which appears in the form of rutiles having low activity at high temperatures, the thermally stable photocatalyst sol solution of the present invention suppresses the phase transition of TiO 2 to obtain a photocatalyst that maintains the crystal structure of anatase. I could see that.

실험예 3Experimental Example 3

실시예1에서 얻어진 TiO2/SiO2 코팅된 탄소나노섬유의 FT-IR 을 수행하여 그 결과를 도 5에 나타내었다.FT-IR was performed on the TiO 2 / SiO 2 coated carbon nanofibers obtained in Example 1, and the results are shown in FIG. 5.

도 5에서는 930 cm-1에서 Ti-O-Si의 특정 피크를 보여주는데 이는 실리카(SiO2)가 TiO2에 분산됨으로써 루틸 결정으로의 상전이를 막아 아나타제의 구조를 유지함을 알 수 있었다. 5 shows a specific peak of Ti-O-Si at 930 cm -1 , which shows that silica (SiO 2 ) is dispersed in TiO 2 to prevent phase transition to rutile crystals to maintain the structure of anatase.

즉 SiO2가 TiO2입자 및 분자의 이동을 방해함으로써 고온에서 TiO2가 응집하는 현상을 방지하여 입자 크기의 증가 및 아나타제에서 루틸로의 상전이를 억제하는 역할을 하는 것을 알 수 있었다.In other words, it was found that SiO 2 prevents TiO 2 from agglomerating at high temperature by disturbing the movement of TiO 2 particles and molecules, thereby increasing the particle size and inhibiting phase transition from anatase to rutile.

실험예 4Experimental Example 4

TiO2/SiO2 코팅된 탄소나노섬유 및 TiO2 코팅된 탄소나노섬유의 광활성 반응을 메틸렌 블루 염료를 이용하여 다음과 같이 수행하였고 그 결과를 도 6에 나타내었다. The photoactive reaction of TiO 2 / SiO 2 coated carbon nanofibers and TiO 2 coated carbon nanofibers was performed using methylene blue dye as follows, and the results are shown in FIG. 6.

먼저, 메틸렌 블루 (Methylene blue, MB) 염료를 10 ppm 농도로 용액을 제조하였다. 이 용액 100 mL와 TiO2/SiO2이 코팅된 탄소나노 섬유 또는 TiO2 코팅된 탄소나노 섬유 0.1 g을 각각 비이커에 넣고 UV (8 W, 365 nm, Sankyo Denki)를 조사하여 염료 분해 성능을 관찰하였다. 반응 후 MB의 농도 변화를 확인하기 위해 일정한 시간 간격으로 3 mL의 반응 용액을 채취하였고, TiO2 입자가 혼합되지 않은 순수한 용액을 얻기 위하여 0.45 μm (Millipore millex filter) 여과막을 사용하여 용액을 분리하였다. UV-Vis 분광기로 반응 시간에 따른 MB의 농도를 측정하였다. First, a solution of methylene blue (MB) dye was prepared at a concentration of 10 ppm. 100 mL of this solution and 0.1 g of TiO 2 / SiO 2 coated carbon nanofibers or TiO 2 coated carbon nanofibers were placed in a beaker and irradiated with UV (8 W, 365 nm, Sankyo Denki) to observe dye degradation performance. It was. After the reaction, 3 mL of the reaction solution was collected at regular time intervals to confirm the change in concentration of MB, and the solution was separated using a 0.45 μm (Millipore millex filter) filtration membrane to obtain a pure solution containing no TiO 2 particles. . The concentration of MB according to reaction time was measured by UV-Vis spectroscopy.

도 6에서 나타난 바와 같이 TiO2 코팅된 탄소나노섬유[TiO2/CNFs]의 경우에는 루틸 분율이 증가하여 촉매 활성이 크게 저하되었지만 CNFs보다는 분해 효율이 우수한 것을 알 수 있었다. 또한, 제조시 복합탄소나노섬유[(TiO2/SiO2)/CNFs]는 높은 소성온도에서도 아나타제의 결정구조가 유지되어 30 분 만에 거의 염료가 분해됨을 알 수 있었다. As shown in FIG. 6, in the case of TiO 2 coated carbon nanofibers [TiO 2 / CNFs], the rutile fraction was increased so that the catalytic activity was greatly reduced, but the decomposition efficiency was superior to CNFs. In addition, it was found that the composite carbon nanofibers [(TiO 2 / SiO 2 ) / CNFs] retained the crystal structure of anatase even at high firing temperature, so that the dye was almost decomposed in 30 minutes.

이상의 실험예 및 실시예들에서는 광촉매로서 TiO2 가 사용되었으나 다른 광촉매 물질인 ZnO, WO3, SnO2, ZrO2, CdS를 사용하여도 유사한 결과를 얻을 수 있으므로 본 발명은 상술된 광촉매를 사용하는 것을 배제하지 않는다. 또한, 탄소나노섬유 전구체 물질의 경우에도 폴리 아크릴로 니트릴(polyacrylo nitrile, PAN)외에 폴리이미드(polyimide), 폴리벤조이미다졸(polybenz imidazole, PBI), 피치로 구성된 그룹에서 선택되는 어느 하나가 사용될 수 있다. In the above experimental examples and examples, TiO 2 was used as the photocatalyst, but similar results can be obtained using other photocatalyst materials ZnO, WO 3 , SnO 2 , ZrO 2 , and CdS. Do not exclude that. In addition, in the case of the carbon nanofiber precursor material, any one selected from the group consisting of polyimide, polybenzimidazole (PBI), and pitch in addition to polyacrylonitrile (PAN) may be used. have.

이와 같이 본 발명의 광촉매 활성을 갖는 탄소나노섬유 제조방법에 의해 제조된 광촉매활성을 갖는 탄소나노섬유는 포함된 광촉매가 이산화티탄인 경우, 이산화티탄의 결정구조는 아나타제 구조가 50% 이상으로서 비표면적이 254 m2/g이상이므로 높은 온도에서도 일반 유기화합물의 광분해 반응은 물론 유해가스의 흡착 및 분해 기능을 갖게 된다. 따라서, 상기 복합탄소나노섬유를 포함하는 필터는 공기청정기용 필터, 자동차용 배기가스 저화 필터 등에 널리 이용될 수 있으며, 폐수처리, 수중의 오염물질 및 색소를 분해할 수 있어 정수용 필터로도 널리 사용될 수 있다. As described above, when the carbon nanofibers having the photocatalytic activity produced by the carbon nanofibers having the photocatalytic activity of the present invention are titanium dioxide, the crystal structure of the titanium dioxide has a specific surface area of 50% or more as the anatase structure. Since it is more than 254 m 2 / g, it has the function of adsorption and decomposition of harmful gases as well as photodegradation reaction of general organic compounds even at high temperature. Therefore, the filter including the composite carbon nanofibers can be widely used in filters for air cleaners, exhaust filters for automobiles, etc., and can be widely used as water purification filters because it can decompose wastewater treatment, pollutants and pigments in water. Can be.

또한, 본 발명의 열안정성 광촉매 졸 용액은 상기 용액에 분산된 이산화티탄에 750℃ 이상의 열이 가해져도 상기 이산화티탄의 결정구조를 아나타제 구조로 유지할 수 있으므로 본 발명의 광촉매 활성을 갖는 복합탄소나노섬유제조방법 뿐만 아니라, 다른 소재를 이용하여 고온에서 광촉매활성을 갖도록 하는 분야에 다양하게 적용될 수 있다. In addition, the thermally stable photocatalyst sol solution of the present invention is capable of maintaining the crystal structure of the titanium dioxide in the anatase structure even when heat of 750 ° C. or more is applied to the titanium dioxide dispersed in the solution, thereby providing a composite carbon nanofiber having the photocatalytic activity of the present invention. In addition to the manufacturing method, it can be variously applied to the field to have a photocatalytic activity at a high temperature using another material.

이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.As described above, the present invention has been illustrated and described with reference to preferred embodiments, but is not limited to the above-described embodiments, and is provided to those skilled in the art without departing from the spirit of the present invention. Various changes and modifications will be possible.

도 1은 본 발명의 일 실시예에 따른 광촉매 활성을 갖는 복합탄소나노섬유 제조방법의 각 공정을 간략하게 나타낸 흐름도,1 is a flow chart briefly showing each process of the composite carbon nanofiber manufacturing method having a photocatalytic activity according to an embodiment of the present invention;

도 2a는 도 1의 방법에 의해 광촉매가 코팅된 복합탄소나노섬유의 전자현미경 사진이고, 도 2b는 에너지 분산형 X선 분광기 (EDX)의 그래프, Figure 2a is an electron micrograph of a composite carbon nanofiber coated with a photocatalyst by the method of Figure 1, Figure 2b is a graph of an energy dispersive X-ray spectrometer (EDX),

도 3은 TiO2/SiO2 코팅된 복합탄소나노섬유의 X선 회절 분석 (XRD)의 그래프,3 is a graph of X-ray diffraction analysis (XRD) of TiO 2 / SiO 2 coated carbon nanofibers,

도 4는 TiO2 코팅된 복합탄소나노섬유의 X선 회절 분석 (XRD)의 그래프,4 is a graph of X-ray diffraction analysis (XRD) of TiO 2 coated carbon nanofibers,

도 5는 TiO2/SiO2 코팅된 복합탄소나노섬유의 FT-IR 그래프,5 is an FT-IR graph of TiO 2 / SiO 2 coated composite carbon nanofibers,

도 6은 TiO2/SiO2 코팅된 복합탄소나노섬유[(TiO2/SiO2)/CNFs], TiO2 코팅된 복합탄소나노섬유[TiO2/CNFs] 및 탄소나노섬유[CNFs]에 자외선을 조사하였을 때 Methylene blue용액의 농도를 조사시간에 따라 VU-Vis 분광광도기로 분석한 그래프이다.6 shows ultraviolet rays in TiO 2 / SiO 2 coated carbon nanofibers [(TiO 2 / SiO 2 ) / CNFs], TiO 2 coated carbon nanofibers [TiO 2 / CNFs] and carbon nanofibers [CNFs]. When irradiated, the concentration of Methylene blue solution was analyzed by VU-Vis spectrophotometer according to the irradiation time.

Claims (13)

탄소섬유 전구체 물질이 용해된 방사용액을 전기 방사하여 얻어진 탄소나노섬유 전구체를 200 내지 350℃에서 안정화하여 내염화 섬유를 얻는 단계; Stabilizing the carbon nanofiber precursor obtained by electrospinning the spinning solution in which the carbon fiber precursor material is dissolved at 200 to 350 ° C. to obtain flame-resistant fibers; 광촉매 졸 용액을 준비하는 단계; Preparing a photocatalyst sol solution; 상기 광촉매 졸 용액에 상기 내염화섬유를 침지시켜 코팅하는 단계; 및 Coating the chlorinated fiber by dipping the photocatalyst sol solution; And 상기 코팅된 내염화섬유를 건조한 후 탄화시키는 단계를 포함하는 광촉매 활성을 갖는 복합탄소나노섬유제조방법. Composite carbon nanofiber manufacturing method having a photocatalytic activity comprising the step of carbonizing the coated flame resistant fiber after drying. 제 1 항에 있어서, The method of claim 1, 상기 광촉매는 ZnO, WO3, SnO2, ZrO2, TiO2, CdS의 그룹에서 선택되는 어느 하나인 것을 특징으로 하는 광촉매 활성을 갖는 복합탄소나노섬유제조방법. The photocatalyst is a composite carbon nanofiber manufacturing method having a photocatalytic activity, characterized in that any one selected from the group of ZnO, WO 3 , SnO 2 , ZrO 2 , TiO 2 , CdS. 제 1 항에 있어서, The method of claim 1, 상기 광촉매 졸 용액을 준비하는 단계에서 SiO2를 더 첨가하여 광촉매 졸 용액을 준비하는 것을 특징으로 하는 광촉매 활성을 갖는 복합탄소나노섬유제조방법. The method for preparing a composite carbon nanofiber having photocatalytic activity, characterized in that preparing a photocatalyst sol solution by further adding SiO 2 in preparing the photocatalyst sol solution. 제 3 항에 있어서, The method of claim 3, wherein 상기 SiO2가 더 첨가된 광촉매 졸 용액은 SiO2 졸 용액을 준비한 후 상기 광촉매를 첨가하면서 교반하여 얻어지는 것을 특징으로 하는 광촉매 활성을 갖는 복합탄소나노섬유제조방법. The method of manufacturing a composite carbon nanofiber having photocatalytic activity, characterized in that the photocatalyst sol solution to which SiO 2 is further added is obtained by preparing a SiO 2 sol solution and then stirring while adding the photocatalyst. 제 1 항에 있어서, The method of claim 1, 상기 탄화시키는 단계는 900℃까지 가온하여 수행되는 것을 특징으로 하는 광촉매 활성을 갖는 복합탄소나노섬유제조방법. The carbonizing step is a composite carbon nanofiber manufacturing method having a photocatalytic activity, characterized in that performed by heating up to 900 ℃. 제 1 항에 있어서,The method of claim 1, 상기 탄소나노섬유 전구체 물질은 폴리 아크릴로 니트릴(polyacrylo nitrile, PAN), 폴리이미드(polyimide), 폴리벤조이미다졸(polybenz imidazole, PBI), 피치로 구성된 그룹에서 선택되는 어느 하나인 것을 특징으로 하는 광촉매 활성을 갖는 복합탄소나노섬유제조방법. The carbon nanofiber precursor material is any one selected from the group consisting of polyacrylo nitrile (PAN), polyimide, polybenzimidazole (PBI), and pitch. Composite carbon nanofiber manufacturing method having activity. 제 1 항 내지 제 6 항 중 어느 한 항의 방법으로 제조된 광촉매 활성을 갖는 탄소나노섬유로서, 포함된 광촉매가 이산화티탄인 것을 특징으로 하는 광촉매 활성을 갖는 복합탄소나노섬유. A carbon nanofiber having a photocatalytic activity prepared by the method of any one of claims 1 to 6, wherein the included photocatalyst is titanium dioxide. 제 7 항에 있어서, The method of claim 7, wherein 상기 이산화티탄의 결정구조는 아나타제 구조가 50% 이상인 것을 특징으로 하는 광촉매 활성을 갖는 복합탄소나노섬유. The crystal structure of the titanium dioxide composite carbon nanofibers having a photocatalytic activity, characterized in that the anatase structure is 50% or more. 제 7 항에 있어서, The method of claim 7, wherein 상기 광촉매 활성을 갖는 탄소나노섬유의 비표면적이 254 m2/g이상 인 것을 특징으로 하는 광촉매 활성을 갖는 복합탄소나노섬유.A composite carbon nanofiber having a photocatalytic activity, characterized in that the specific surface area of the carbon nanofibers having the photocatalytic activity is 254 m 2 / g or more. 제 7 항의 광촉매 활성을 갖는 복합탄소나노섬유를 포함하여 고온에서도 안정적인 광촉매 활성을 갖는 필터.A composite carbon nanofiber having a photocatalytic activity of claim 7 and a filter having a stable photocatalytic activity even at high temperatures. 삭제delete 삭제delete 삭제delete
KR20080137971A 2008-12-31 2008-12-31 Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and TiO2,SiO2 sol solutions used for thermo stable photo catalyst KR101083060B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20080137971A KR101083060B1 (en) 2008-12-31 2008-12-31 Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and TiO2,SiO2 sol solutions used for thermo stable photo catalyst
PCT/KR2009/007733 WO2010077011A2 (en) 2008-12-31 2009-12-23 Method for producing a composite carbon nanofiber having a photocatalytic activity, composite carbon nanofiber having a photocatalytic activity produced by the method, filter comprising the composite carbon nanofiber, and thermally stable photocatalyst sol solution used in the production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20080137971A KR101083060B1 (en) 2008-12-31 2008-12-31 Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and TiO2,SiO2 sol solutions used for thermo stable photo catalyst

Publications (2)

Publication Number Publication Date
KR20100079470A KR20100079470A (en) 2010-07-08
KR101083060B1 true KR101083060B1 (en) 2011-11-16

Family

ID=42310336

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20080137971A KR101083060B1 (en) 2008-12-31 2008-12-31 Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and TiO2,SiO2 sol solutions used for thermo stable photo catalyst

Country Status (2)

Country Link
KR (1) KR101083060B1 (en)
WO (1) WO2010077011A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101598896B1 (en) * 2014-09-26 2016-03-03 재단법인대구경북과학기술원 Carbon nanofiber composite and preparation method thereof
CN108085770A (en) * 2017-12-06 2018-05-29 胡旺 A kind of antibacterial polyester fiber of photocatalysis and preparation method thereof
CN110373811A (en) * 2019-07-08 2019-10-25 北京化工大学 A kind of preparation method of water-oil separating tunica fibrosa

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101270716B1 (en) * 2011-08-26 2013-06-03 전남대학교산학협력단 Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite
CN102926030B (en) * 2012-10-15 2014-07-02 东华大学 Preparation method of nano fiber containing TiO2/WO3 heterojunction
KR101336286B1 (en) 2012-11-13 2013-12-03 재단법인대구경북과학기술원 Manufacturing method for carbon nano fiber complex and carbon nano fiber complex
KR101437592B1 (en) * 2012-12-28 2014-09-04 전자부품연구원 Graphene composite membrane for water treatment
KR101334294B1 (en) * 2013-02-18 2013-11-28 전남대학교산학협력단 Photocatalyst-graphenes-carbon nano-fiber composite and filter comprising the same
KR101454865B1 (en) * 2013-10-02 2014-11-04 부산대학교 산학협력단 Manufacturing method of fabrication of Lithium titanate hollow nanofibers anode
KR101722397B1 (en) 2015-06-22 2017-04-04 한국과학기술연구원 Carbon complexed fiber and method of producing the same
CN105126886B (en) * 2015-07-01 2019-02-01 宁波工程学院 A kind of TiO2/WO3/g-C3N4The preparation method of full meso-porous nano fiber
CN105126892B (en) * 2015-07-01 2019-02-01 宁波工程学院 A kind of TiO2/WO3/g-C3N4Full application of the meso-porous nano fiber in high efficiency photocatalyst
CN105148965B (en) * 2015-07-01 2019-02-01 宁波工程学院 A kind of TiO2/WO3/g-C3N4Full meso-porous nano fiber
CN110756228A (en) * 2019-11-19 2020-02-07 北京工业大学 Multilevel-structure TiO2Preparation method and application of/C @ MOF nanofiber membrane photocatalytic material
CN110854381B (en) * 2019-11-27 2022-03-08 宁波大学 Preparation method of carbon-doped tin-manganese composite oxide nanofiber modified by cobalt oxide
CN112023906A (en) * 2020-05-08 2020-12-04 扬州工业职业技术学院 Recycling process of waste activated carbon
CN111560667B (en) * 2020-05-15 2022-06-17 安徽众诚环境检测有限公司 Preparation method of modified electrospun carbon nanofiber for wastewater detection
CN112813531A (en) * 2021-01-04 2021-05-18 周菊青 Titanium dioxide nanoflower modified polyacrylonitrile nanofiber desulfurizer and preparation method thereof
CN113351174A (en) * 2021-06-18 2021-09-07 东北电力大学 Preparation method and application of HKUST-1/CNF composite membrane loaded with V/N doped nano titanium dioxide
CN113406155B (en) * 2021-06-23 2022-08-05 长春理工大学 Tin oxide/polyacid/tungsten oxide three-layer coaxial nanofiber gas sensing material and preparation method thereof
KR102404225B1 (en) * 2021-12-16 2022-06-02 주식회사 서현어패럴 The manufacturing method of nano carbon fiber vehicle seat and vehicle seat thereof
KR102406888B1 (en) * 2021-12-16 2022-06-23 주식회사 서현어패럴 Manufacturing method of nano carbon fiber protective clothing and protective clothing thereof
KR102406893B1 (en) * 2021-12-16 2022-06-13 주식회사 서현어패럴 The manufacturing method of nano carbon fiber shoe heel pad and the pad therof
CN114392771B (en) * 2022-02-08 2022-09-30 西北大学 Composite nano photocatalytic material and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136143A (en) 1997-07-17 1999-02-09 Toray Ind Inc Precursor for carbon fiber and production of carbon fiber
KR100600838B1 (en) * 2004-09-02 2006-07-14 학교법인 포항공과대학교 SiO2/TiO2 photocatalyst for treating wastewaters containing alkylammoniums and its preparation method
KR100714069B1 (en) * 2005-07-15 2007-05-02 (주) 태양기전 Producing method of titanium deoxide coat dose

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902563A (en) * 1988-03-04 1990-02-20 The Dow Chemical Company Carbonaceous fiber or fiber assembly with inorganic coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136143A (en) 1997-07-17 1999-02-09 Toray Ind Inc Precursor for carbon fiber and production of carbon fiber
KR100600838B1 (en) * 2004-09-02 2006-07-14 학교법인 포항공과대학교 SiO2/TiO2 photocatalyst for treating wastewaters containing alkylammoniums and its preparation method
KR100714069B1 (en) * 2005-07-15 2007-05-02 (주) 태양기전 Producing method of titanium deoxide coat dose

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101598896B1 (en) * 2014-09-26 2016-03-03 재단법인대구경북과학기술원 Carbon nanofiber composite and preparation method thereof
CN108085770A (en) * 2017-12-06 2018-05-29 胡旺 A kind of antibacterial polyester fiber of photocatalysis and preparation method thereof
CN110373811A (en) * 2019-07-08 2019-10-25 北京化工大学 A kind of preparation method of water-oil separating tunica fibrosa
CN110373811B (en) * 2019-07-08 2021-04-02 北京化工大学 Preparation method of fiber membrane for oil-water separation

Also Published As

Publication number Publication date
WO2010077011A3 (en) 2010-09-23
WO2010077011A2 (en) 2010-07-08
KR20100079470A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
KR101083060B1 (en) Method for producing carbon composite nano fiber with photocatalytic activity, carbon composite nano fiber with photocatalytic activity produced by the same method, filters comprising the carbon nano fiber and TiO2,SiO2 sol solutions used for thermo stable photo catalyst
Srikanth et al. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment
KR101334294B1 (en) Photocatalyst-graphenes-carbon nano-fiber composite and filter comprising the same
Calisir et al. Nitrogen-doped TiO2 fibers for visible-light-induced photocatalytic activities
KR101270716B1 (en) Mehod for producing photocatalyst-graphenes-carbon nano-fiber composite
De Assis et al. Conversion of “Waste Plastic” into photocatalytic nanofoams for environmental remediation
US20110064609A1 (en) High surface area ceramic coated fibers
FR2935908A1 (en) PHOTOCATALYSTS BASED ON THREE-DIMENSIONAL FOAMS STRUCTURED IN CARBIDE AND IN PARTICULAR IN BETA-SIC
Liu et al. Preparation and application of efficient TiO2/ACFs photocatalyst
KR102438310B1 (en) Hollow fiber type photocatalyst and manufacturing method thereof
Nor et al. Effects of heat treatment of TiO2 nanofibers on the morphological structure of PVDF nanocomposite membrane under UV irradiation
KR101216497B1 (en) Method for producing Ag-photocatalyst-carbon nano fiber complex, and filter comprising the same
KR101104168B1 (en) Preparation method of carbon material based photocatalyst with improved photo catalytic activity, the photocatalyst prepared by the former method and the filter containing the former carbon material based photo catalyst
Kottappara et al. Enhancing semiconductor photocatalysis with carbon nanostructures for water/air purification and self-cleaning applications
Yoon et al. Effects of hydrothermal treatment of cellulose nanocrystal templated TiO2 films on their photodegradation activity of methylene blue, methyl orange, and rhodamine B
US20210261443A1 (en) Photocatalysis and device implementing same
KR101339721B1 (en) Ag-photocatalyst-carbon nano fiber complex, and filter comprising the same
KR102077419B1 (en) Titanium dioxide immobilized mesoporous silica nano-fiber and manufacturing method thereof
KR100658664B1 (en) Method of manufacturing reactant for disposing pollutant
Alshoaibi et al. Heating influence on atomic site structural changes of Mesoporous Au supported Anatase nanocomposite for photocatalytic progression
RU2482912C1 (en) Method of producing filtering-sorbing material with photo catalytic properties
Mondal et al. Cooperative and Bifunctional Adsorbent‐Catalysts Materials for In‐situ VOCs Capture‐Conversion
JP2001096154A (en) Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
Zhang et al. Zr-doped TiO2 ceramic nanofibrous membranes for enhancing photocatalytic organic pollutants degradation and antibacterial activity
Wu et al. Monolithic ceramic foams for ultrafast photocatalytic inactivation of bacteria

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141024

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151008

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee