KR101078715B1 - 폐목탄을 이용한 수질정화기능을 갖는 친환경 포러스 콘크리트블록 - Google Patents

폐목탄을 이용한 수질정화기능을 갖는 친환경 포러스 콘크리트블록 Download PDF

Info

Publication number
KR101078715B1
KR101078715B1 KR20110080815A KR20110080815A KR101078715B1 KR 101078715 B1 KR101078715 B1 KR 101078715B1 KR 20110080815 A KR20110080815 A KR 20110080815A KR 20110080815 A KR20110080815 A KR 20110080815A KR 101078715 B1 KR101078715 B1 KR 101078715B1
Authority
KR
South Korea
Prior art keywords
weight
parts
porous concrete
water
concrete block
Prior art date
Application number
KR20110080815A
Other languages
English (en)
Inventor
조규용
박영수
배상규
이장목
석제균
Original Assignee
주식회사 케이알티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이알티 filed Critical 주식회사 케이알티
Priority to KR20110080815A priority Critical patent/KR101078715B1/ko
Application granted granted Critical
Publication of KR101078715B1 publication Critical patent/KR101078715B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/068Combustion residues, e.g. purification products of smoke, fumes or exhaust gases from burning wood
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/002Water
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0093Other features
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

본 발명은 폐목탄을 이용한 수질정화기능을 갖는 친환경 포러스 콘크리트블록에 관한 것으로 구체적으로는 시멘트 결합재를 사용하지 않고 레이들 슬래그 및 수재 슬래그 천연 또는 화학 무수석고, 석회, 급결경화제, 소포제로 조성되는 무공해성의 고화결합재 조성물에 순환굵은골재, 실리카흄, 섬유보강제, 폐목탄, 혼화제, 결합수로 조성되는 콘크리트 조성물로된 폐목탄을 이용한 수질정화기능을 갖는 친환경 포러스 콘크리트 블록에 관한 것이다.

Description

폐목탄을 이용한 수질정화기능을 갖는 친환경 포러스 콘크리트블록{Natural friendly-porous concrete block with function of purificating water using charcoal from waste woods}
본 발명은 폐목탄을 이용한 수질정화기능을 갖는 친환경 포러스 콘크리트블록에 관한 것으로 구체적으로는 시멘트 결합재를 사용하지 않고 레이들 슬래그 및 수재 슬래그 천연 또는 화학 무수석고, 석회, 급결경화제, 소포제로 조성되는 무공해성의 고화결합재 조성물에 순환굵은골재, 실리카흄, 섬유보강제, 폐목탄, 혼화제, 결합수로 조성되는 콘크리트 조성물로 된 폐목탄을 이용한 수질정화기능을 갖는 친환경 포러스 콘크리트 블록에 관한 것이다.
본 발명은 건설토목분야에서 시멘트 콘크리트 구조물은 시멘트의 우수한 경제성과 강도의 특성 때문에 불가분의 주원료로 군림하고 있으나 근간에 이르러 시멘트의 제조공정에서 CO2가스의 배출, 다량의 에너지소비, 분진, 소음 그리고 해양의 환경오염사업으로 지적되고 있으며, 그밖에도 시멘트는 인체에 유해한 물질을 포함하고 있어 시멘트 독성에 의한 아토피를 유발시키는 등 실생활에 있어서도 환경적으로 유해하므로 이를 대체할 수 있는 고화성 바인더를 사용한 무공해성의 콘크리트 제품개발이 요구되고 있으며 이와 같은 문제점들을 해결하기 위한 노력에 의한 연구들이 진행되어 왔고 앞으로도 진행되어야할 과제임에는 분명하지만 현재까지는 큰 성과를 얻지 못하고 있다.
본 발명은 시멘트공해와 기타 환경의 오염으로부터 탈피하여 보다 질적으로 향상된 친환경 생활공간을 조성하기 위해서 시멘트사용을 탈피하고 무공해성이고 일반시멘트 콘크리트의 강도를 유지하는 고화결합재 조성물을 개발하여 여기에 순환굵은골재, 실리카흄, 섬유보강제, 폐목탄, 혼화제 및 결합수로 조성되는 콘크리트조성물로 경쟁력이 우수하고 무공해성이며 수질정화기능은 물론 식생투수기능성, 유용미생물이 서식할 수 있는 포러스 콘크리트블록을 개발함에 있다.
좀더 구체적으로는 상기 순환골재와 폐목재로부터 얻어진 폐목탄의 경우 다공성의 구조와 높은 흡수율을 가지고 있어 비표면적을 크게 할 수 있으며 이로 인해 수질정화기능을 가질 수 있고 또한 잔골재 및 채움재 없이 순환골재와 폐목탄을 사용함으로써 식생투수기능과 유용미생물의 서식환경을 조성할 수 있고 또한 우수한 압축강도를 발휘할 수 있는 고화결합재 조성물과 실리카흄 및 보강섬유사의 첨가로 가일층 압축강도를 보강케함으로써 일반콘크리트 수준의 강도를 유지할 수 있는 친환경 포러스 콘크리트블록을 제공함에 있다.
상기 본 발명과 관련된 종래기술로서 기존의 고화결합재의 경우 친환경을 부각시키면서 시멘트의 함량을 최소화하거나 시멘트를 배제시킨 고화결합재로 제조된 블록 구조물 등이 소개되고 있으나 강도 및 강도의 내구성 한계를 벗어날 수 없었다.
이와 관련된 구체적인 종래기술을 알아보면,
국내등록특허공보(등록번호 제550654호)에는 "기포콘크리트 조성물"이 소개되고 있다. 기술의 구성인즉 섬유, 메타카오린 그리고 시멘트슬러리에 기포제를 만들어 안정적인 기포를 발생시킴으로써 공극률을 극대화시킨 기술로 시멘트사용의 한계를 극복하지 못한 포러스 콘크리트 조성물이라 할 수 있다.
다른 종래기술로서 국내등록특허공보(등록번호 제753128호)에는 "부유식 수질정화용 경량다공질체" 기술이 게재되어 있는바 기술의 내용인즉, PVA분말을 물에 용해시킨 결합제를 흙, 석고, 진주암, 활성탄 및 해부석으로 구성된 혼합물에 첨가하여 성형체를 형성 및 양생시켜서 된 부유식 수질정화용 경량다공질체라 할 수 있으나 조성물의 수경화에 의한 결합반응정도가 약하므로 PVA의 결합력에 의해 다공질체를 유지할 수 있으나 PVA의경우 수분저항성이 낮아 장기 성능면에서 한계를 나타내는 기술이라 할 수 있다.
또 다른 종래기술로서 국내등록특허공보(등록번호 제742620호)는 "재생골재, 숯, 황토고형물로 한 투수성을 갖는 수목이식용 블록"에 관한 기술이라 할 수 있으나 재생골재의 크기에 대한 다양한 시험으로 최적공극률을 모사하였으나 시멘트사용을 통한 혼합물에 의한 바인더를 사용함으로써 2차 오염의 한계를 나타내고 있다.
그밖에 국내등록특허공보(등록번호 제840602호에는 "수질정화용 콘크리트"에 관한 기술이 소개되고 있으며 기술의 내용은 재생골재의 사용과 유용미생물이 배양액을 첨가한 콘크리트로 환경성을 고려하여 석탄회와 고로 슬래그 미분말을 적용하고 있으나 시멘트를 완전히 배제하지는 못하였다.
상술한 종래기술은 거의가 시멘트를 완전하게 배제하지는 못한 콘크리트 구조물로서 시멘트에 의한 유해성 문제는 완전하게 해결할 수 없고 시멘트를 완전히 배제한 발명의 경우에는 소정의 강도를 유지할 수 없거나 추구하는 기능성에 대한 내구성을 기대할 수 없다.
본 발명은 보다 친환경적인 콘크리트블록을 제조하기 위하여 시멘트 결합재를 사용하는 대신에 시멘트 콘크리트 수준의 강도를 갖는 고화바인더 조성물을 개발하여 여기에 잔골재 및 채움재 없이 순환굵은골재와 폐목탄을 첨가함으로써 우선 재활용에 의한 이점으로 경쟁력을 확보할 수 있고 기능적으로는 수질정화기능, 식생투수기능 및 유용미생물의 서식공간이 부여된 포러스 콘크리트블록을 제공함에 있다.
고로 수재 슬래그 57~65중량%, 레이들 슬래그 14~20중량부, 천연 또는 화학 무수석고 7~10중량부, 석회 11~15중량%, 급결경화제 0.2~5.0중량%, 소포제 0.01~0.1중량%로 조성되는 고화결합재 조성물 100중량부에 순환굵은골재 308중량부, 실리카흄 11중량부, 섬유보강제 2.2중량부, 폐목탄 1.1~5.6중량부, 혼화제 0.78중량부, 결합수 40중량부로 조성되는 친환경 포러스 콘크리트블록을 제공함으로써 본 발명의 목적을 달성할 수 있었다.
시멘트 결합재 대신에 무해성의 고화결합재 조성물을 사용함에도 일반시멘트 콘크리트 수준의 압축강도를 발휘할 수 있고 이와 같은 강도를 지속적으로 유지할 수 있으며 수질정화기능, 식생기능, 유용미생물의 서식공간부여 등 다양한 기능성이 부여된 친환경 포러스 콘크리트블록이라 할 수 있다.
도 1은 레이들 슬래그 XRD 분석결과.
도 2는 고로 수재 슬래그 XRD 분석결과.
본 발명은 시멘트의 공해문제를 탈피하기 위해 콘크리트 조성물의 결합재로서 시멘트를 사용하지 않고 무공해이면서 일반시멘트 콘크리트 수준의 강도를 발현하는 고화바인더 조성물을 개발하여 여기에 재활용 순환굵은골재, 폐목재 건류로 얻어진 폐목탄, 실리카흄, 섬유보강제, 혼화제 및 결합수를 첨가함으로써 수질정화기능, 식생투수기능 및 유용미생물의 서식공간이 부여된 친환경 포러스 콘크리트블록으로 좀더 구체적으로는 본 발명에서 개발한 표1과 같은 고화바인더 조성물 100중량부에 순환굵은골재 308중량부, 실리카흄 11중량부, 섬유보강제 2.2중량부,, 폐목탄 1.1~5.6중량부, 혼화제 0.78중량부, 결합수 40중량부로 조성되는 친환경 포러스 콘크리트블록에 관한 것이다.
고화결합재(바인더) 조성물 및 조성비.
조성물 조성비(중량%) 비고
고로수재슬래그 57~65중량%
분말도는 3800~4200, 급결경화제는 탄산나트륨 등을 사용하고 소포제로서는 계면활성제 또는 알콜을 사용하였다.
레이들 슬래그 14~20중량%
석고류 7~10중량%
석회류 11~15중량%
급결경화제 0.2~5.0중량%
소포제 0.01~0.1중량%
이상의 고화바인더 조성물을 구성하는 래이들 슬래그는 래이들로(Ladle Furnace)에서 발생하는 슬래그로서 용광로에서 용해한 용선을 제강공정에서 탈황, 탈인 등을 목적으로 사용되는 원료들에 기인하여 레이들 슬래그의 주요물성은 표2에 나타낸 바와 같이 CaO, Al2O3, SiO2 등으로 구성되어 있으며 레이들 슬래그의 화학조성은 표3과 같고 주요결정상은 도 1의 X선 회절분석기(X-Ray Diffractrometer) 분석결과 주로 Ca12Al14O33(C12A7), C11A7CaF2, 2CaO·SiO2임을 확인할 수 있었다.
레이들 슬래그는 고화재 원료적용에 있어 수화반응시 에트린자이트(Ettringite)가 생성됨에 따라 지반안정성 및 콘크리트 구조체 강도증대에 큰 효과를 얻을 수 있다.
레이들 슬래그 주요 물성.
진비중 겉보기 비중 분말도(㎠/g) 평균입경(㎛) 주요 결정상

2.9

1.12

3,800~4,200

18~20
Ca12Al14O33(C12A7), C11A7CaF2, 2CaO·SiO2
레이들 슬래그 화학 조성
Materials Chemical Compositions (%)

Ladle Slag
SiO2 Al2O3 Fe2O3 CaO MgO SO3 Ig-loss
10.4 29.8 3.2 48.9 0.2 0.5 7.0
또한 고로 슬래그는 용융상태의 Melt로부터의 처리공정에 따라 수재 슬래그(Glass질) 및 공냉 슬래그(결정질)로 나누어지며 고로 슬래그가 급냉하면 그라스화되어 도2와 같이 비정질로 존재하는데 이를 "고로 수재 슬래그"라 하며, 고로 슬래그가 서냉하면 결정상태로 존재하게 되는데 이를 "고로 공냉 슬래그"라고 한다. 고로 수재 슬래그의 기본물성은 표4에 나타나있고 화학조성 분석결과는 표5로 나타나 있으며, 주요 결정상은 도2의 XRD분석결과로 확인할 수 있었으며 전체의 결정상이 그라스 타입의 비정질(Amorphous)임을 확인할 수 있었으며 고로 수재 슬래그는 고화재로 적용 시 포졸란 반응에 의해 장기강도와 내구성이 크게 증진하는 효과를 얻을 수 있다. 이는 고로 수재 슬래그는 급냉으로 결정이 될 틈이 없이 결정화 에너지를 내부에 보존하면서 유리화가 된다.
이와 같은 처리에 의하여 고로 수재 슬래그는 잠재 수경성을 가지며 조성물로 첨가되는 알칼리 또는 황산염 등에 의한 자극작용에 의하여 수경성을 발휘하기 때문이라 할 수 있으며 여기에서 알칼리는 조성물로 첨가되는 석회, 급결제로 첨가되는 탄산나트륨이 될 수 있고 황산염은 무수석고라 할 수 있다.
고로 수재 슬래그 기본 물성.
진비중 겉보기 비중 분말도(㎠/g) 평균입경(㎛) 주요 결정상
2.97 1.05 3800~4200 10~13 Amorphous
고로 수재 슬래그 화학 조성.
Materials Chemical Compositions (%)
Blast Furnace Slag SiO2 Al2O3 Fe2O3 CaO MgO SO3 Ig-loss
31.6 14.7 0.5 44.3 3.9 1.6 3.4
또한 고화결합재 조성물 중에서 무수석고(CaSO4)를 첨가하면 수화의 촉진으로 다량의 간극수를 소비함으로써 응결시간이 단축되고 고화바인더 조성물들이 수화반응을 진행하기 위해서는 일정농도의 SO4 2 - 있어야 하는데 무수석고를 적당량 첨가하면 수화반응을 촉진시켜 더 많은 에트린자이트가 생성되므로 더욱더 치밀한 경화체를 형성할 수 있다.
이로 인해 경화체의 압축강도가 크게 상승하게 된다.
그 밖의 석회는 점토광물(SiO2·Al2O3)과 반응하게 되는데 석회를 점토광물과 혼합하였을 때 만들어지는 생성물은 석회가 강한 알칼리조건에서 점토광물과 반응하여 반응생성물이 형성하게 되는데 반응과정은 물의 첨가로 생석회가 소석회로 되고 소석회는 점토광물과 이온교환반응, 포졸란반응 등으로 CaO-SiO2-H2O(C-S-H), CaO-Al2O3-H2O(C-A-H), CaO-Al2O3-SiO2-H2O(C-A-S-H)의 1차 반응물들이 생성되고 이들은 상기 소석회와 공기 중의 CO2 반응하여 생성된 탄산칼슘과 반응하여 알루민산칼슘수화물(C-A-H), gehlenite(Ca2Al2SiO7), hillebranditee(Ca2SiO3(OH)2), 규산칼슘수화물(C-S-H), 수산화칼슘 등이 생성되어 강도가 향상된다.
이상의 고화결합재(바인더) 조성물은 상술한 바와 같이 각 조성물의 특성 및 작용, 각 조성물간의 반응에 의한 반응생성물, 에트린자이트의 생성 포졸란반응 등에 기인하여 수첨경화로 높은 압축강도를 갖는 경화체를 얻을 수 있다.
이를 뒷받침하기 위하여 표1의 고화결합재 조성물의 범위 내에서 각 조성물의 평균치에 의하여 표6의 확정된 고화결합재 조성물 100중량부에 ISO 표준사 300중량부 결합수 50중량부를 첨가하여 얻어진 모르타르(재령28일)로 물리적 특성을 알아본 결과 표7과 같은 결과를 얻을 수 있었으며 이와 같은 물리적 특성의 결과는 전술한 고화결합재 조성물의 특성을 대표할 수 있는 결과라 할 수 있다.
확정된 고화결합재 조성물(실시예).
조성물 조성비(중량부) 비고
고로 수재 슬래그 61 o 분말도 3800~4200
o 결합수는 고화결합재 100중량부, ISO 표준사 300중량부에 대하여 50중량부를 첨가함.
o 모르타르는 재령28일의 것으로 함.
o 소포제는 계면활성제 또는 알콜이다.
레이들 슬래그 17
무수석고 8.5
석회류 13
급결경화제(탄산나트륨 등) 0.45
소포제 0.05
100
표6의 고화결합재 조성물로 된 콘크리트의 물리적 특성.
항 목 결 과 시 험 방 법
비중(20℃) 2.90 KS L 5110
분말도(비표면적)(㎠/g) 4150 KS L 5106
압축강도(MPa) - 28일 46.1 KS L ISO 679
Pb(mg/L) 불검출 폐기물공정시험기준
Hg(mg/L) 불검출 폐기물공정시험기준
Cd(mg/L) 불검출 폐기물공정시험기준
Cu(mg/L) 불검출 폐기물공정시험기준
Cr6 +(mg/L) 불검출 폐기물공정시험기준
As(mg/L) 불검출 폐기물공정시험기준
상기 표7에서 고화결합재 조성물로 된 모르타르의 압축강도는 46.1 MPa로서 포틀랜드 시멘트 KS L 5201 및 고로 슬래그 시멘트 KS L 5210에서 규정하는 압축강도 42.5 MPa를 상회하고 있음을 알 수 있다.
본 발명에서 시도하고 있는 수질정화기능을 갖는 포러스 콘크리트블록(Porous Concrete Block)을 얻기 위하여 시멘트 대신에 상기 표6의 고화결합재 조성물에 순환굵은골재, 실리카흄, 섬유보강제, 폐목탄, 혼화제, 결합수로 조성되는 본 발명 콘크리트조성물로 된 배합을 B-5~B-7로 하고 배합 B-1은 고화결합재에 신규 부순 굵은골재, 혼화제, 결합수를 첨가한 조성물, 배합 B-2는 고화결합재에 순환굵은골재, 혼화제 및 결합수를 첨가한 조성물, 배합 B-3는 고화결합재에 신규의 부순 굵은골재, 실리카흄, 섬유보강제, 혼화제 및 결합수로 된 조성물, 배합 B-4는 고화결합재에 순환굵은골재, 실리카흄,섬유보강제, 혼화제 및 결합수로 조성된 표8과 같은 각각의 조성물에 의한 물성을 알아보기로 하였다.
배합 B-1~B-7에 따른 포러스 콘크리트조성물 배합비. 단위 : 중량부
구분\재료 결합재
(바인더)
부순
굵은골재
순환
굵은골재
실리카흄 섬유
보강제
폐목탄 혼화제
배합 B-1 100 40 308 - - - - 0.78
배합 B-2 100 40 - 308 - - - 0.78
배합 B-3 100 40 308 - 11 2.2 - 0.78
배합 B-4 100 40 - 308 11 2.2 - 0.78
배합 B-5 100 40 - 308 11 2.2 1.1 0.78
배합 B-6 100 40 - 308 11 2.2 3.3 0.78
배합 B-7 100 40 - 308 11 2.2 3.6 0.78
(주) 결합재(바인더)의 비중(g/㎤) : 2.90
부순 굵은골재(25mm)의 표면건조 포화상태의 밀도(g/㎤) : 2.64
순환 굵은골재의 표면건조 포화상태의 밀도(g/㎤) : 2.59
실리카흄의 비중(g/㎤) : 2.10
혼화제(고성능 감수제 표준형(PC계))
상기 표8의 배합 B-1~B7의 조성물에 사용된 조성물 중 순환굵은골재의 품질특성은 표9와 같다.
표8에서 사용된 순환굵은골재의 품질특성.
항 목 결 과 시 험 방 법

입도(%)
(체를 통과하는 백분율)
40 mm 100 KS F 2502
25 mm 100 KS F 2502
15 mm 45 KS F 2502
5 mm 4 KS F 2502
2.5 mm 1 KS F 2502
조립률 6.84 KS F 2526
안전성(Na2SO4) (%) 5 KS F 2507
표면건조 포화상태의 밀도 (g/㎤) 2.59 KS F 2503
절대 건조 밀도 (g/㎤) 2.52 KS F 2503
흡수율 (g/㎤) 2.8 KS F 2503
점토덩어리 (g/㎤) 0.13 KS F 2512
0.08 mm체 통과량 (%) 0.7 KS F 2511
단위용적질량(다짐봉시험) (kg/L) 1.55 KS F 2505
마모감량 - 입도구분 B (%) 23 KS F 2508
입자모양 판정 실적률(%) 57 KS F 2527
이물질함유량(유기이물질) (%) 0.22 KS F 2576
이물질함유량(무기이물질) (%) 0.24 KS F 2576
Pb(mg/L) 불검출 폐기물공정시험기준
Hg(mg/L) 불검출 폐기물공정시험기준
Cd(mg/L) 불검출 폐기물공정시험기준
Cu(mg/L) 불검출 폐기물공정시험기준
Cr6 +(mg/L) 불검출 폐기물공정시험기준
As(mg/L) 불검출 폐기물공정시험기준
또한 표8의 배합 B-1~B-7 포러스 콘크리트조성물에 사용된 폐목으로부터 제조된 폐목탄은 소성온도 800℃에서 4시간 30분간 상압의 공기분위기에서 처리된 폐목탄으로서 분쇄하여 45㎛(325mesh)를 이용 체가름하였으며 폐목탄을 공정시험기준에 의한 중금속용출시험결과 Pb, Hg, Cd, Cu, Cr+6, As 중금속이 검출되지 않았다.
그밖에도 폐목탄에 대해서는 메틸렌블루 흡착시험결과 표10과 같은 결과를 얻었다.
폐목탄의 메틸렌블루 흡착시험결과.
구 분 폐목탄
초기농도(mg/L) 1200
말기농도(mg/L) 780
시료 투입량(g) 0.102
흡착성능 mg/g) 103
(주) 흡착성능의 계산(mg/g) =
Figure 112011062710169-pat00001
C : 메틸렌블루의 잔류 농도(mg/L)
S : 시료 투입량(g)
상기 표8에서와 같이 배합 B-1~B-7에 따른 각종 물리적 성능을 평가하였으며 그중 압축강도를 알아보면, 압축강도의 측정은 KS F 2405에 의거하여 각각의 배합비로 지름 100mm, 높이 200mm의 공시체를 제작하여 28일경화 후 압축강도를 만능재료 시험기를 이용하여 측정하되 3회 측정하여 평균하였다. 그 결과 표11에 배합 B-1~B-7에 따른 포러스 콘크리트의 압축강도를 나타내었다.
(1) 압축강도
배합 B-1~B-7에 따른 포러스 콘크리트의 압축강도.
항 목 결 과 시험방법
B-1 B-2 B-3 B-4 B-5 B-6 B-7
압축강도(MPa) : 재령28일
22.3

21.5

35.7

34.5

35.3

36.2

36.6
KS F 2405
표11에 나타나 있는 바와 같이 본 발명 포러스 콘크리트의 콘크리트 공시체 B-1~B-7에 따른 각각의 압축강도는 이와 동일류의 콘크리트인 한국콘크리트 단체 표준규격인 포러스 콘크리트의 강도 18.0 MPa 이상의 압축강도를 확보하고 있으며 특히 배합B-5, 배합 B-6 및 배합 B-7이 높아 강도면에서 활용성이 크다.
(2) 동결융해(100사이클) 후 압축강도 시험.
또한 배합 B-1~B-7에 따른 콘크리트 공시체의 내구성을 평가하기 위하여 동결융해(100 Cycles) 후 압축강도를 측정하여 이를 확인하였으며 28일 경과후의 콘크리트 공시체를 KS F 2456에 의거하여 급속동결융해시험기(B법)를 이용하여 100사이클로 동결융해시험을 진행 후 만능재료시험기를 이용하여 압축강도를 측정하되 3회를 실시하고 이의 평균값과 동결융해전 압축강도 평균값과의 비를 백분율로 계산하였다. 그 결과 표12와 같이 배합 B-1~B-7에 따른 콘크리트 공시체의 동결융해(100 Cycles) 후 압축강도비를 얻었다.
배합 B-1~B-7에 따른 포러스 콘크리트공시체의 동결융해(100 Cycles) 후 압축강도비.
항 목 결 과 시험방법
B-1 B-2 B-3 B-4 B-5 B-6 B-7
동결융해(100 Cycles)후 압축강도비(%)
87

88

93

91

91

90

91
KS F 2456
KS F 2405
(3) 투수성능 평가시험.
공시체 포러스 콘크리트 배합 B-1~B-7에 대한 투수계수시험을 실시하였다. 투수계수실험은 KS F 2322에 제시되어 있는 방법에 의거하여 실시하였다. 표13에는 포러스 콘크리트 배합조성에 따른 투수계수를 나타내었다.
실험결과 실리카흄 등은 사용한 것이 압축강도, 압축강도의 내구성을 크게 향상시키나 투수성을 저하시키고 있다. 이는 실리카흄이 콘크리트 사이의 간극을 좁혀서 투수성이 저하되는 것으로 판단되나 투수성이 지나치게 증가해도 보수성이 떨어지므로 바람직하지 않다. 여기에서 공시체들의 투수계수는 환경마크 0.010cm/s이상으로 B-5~B-7의 투수계수가 적당한 보수성을 유지함에는 적절하다 할 수 있다.
배합 B-1~B7에 대한 투수계수.

항 목
환경마크기준(cm/s) 결 과
시험방법
B-1 B-2 B-3 B-4 B-5 B-6 B-6
투수계수(cm/s) 0.010 이상 0.933 1.021 0.163 0.170 0.062 0.088 0.042 KS F 2322
(4) 수질정화 성능평가..
수질정화 성능평가는 주로 폐목탄에 의해 효과가 발생하므로 폐목탄이 첨가된 배합 B-5~B7의 공시체로 메틸렌블루 탈색력을 수행하였다. 수질정화성능은 각 공시체의 마쇄분말 5g과 메틸렌블루(MB) 2.4mg/L, 용액 25mL를 넣고 30분간 진탕배양기에 넣고 교반한 후 메틸렌블루의 농도변화를 자외·가시선 분광광도계(UV-vis spetropotometer)를 이용하여 측정평가하였으며 그 결과를 표14에 나타내었다.
포러스 콘크리트 공시체의 수질정화 성능결과.
항 목 결 과 시험방법
B-5 B-6 B-7
메틸렌블루 30분 후 농도(mg/L) 0.955 0.791 0.850



KS F 1802(준용)
메틸렌블루 농도 감소량(mg/L) 1.445 1.609 1.550
메틸렌블루 흡착량(mg/g) 시료 1g당 0.0072 0.0080 0.0077
메틸렌블루 탈색력(mg/L·min) 시료 1g당 0.288 0.321 0.309
메틸렌블루 탈색성능(μmol/L·min) 시료 1g당 0.026 0.029 0.028
표14에서와 같이 B-5~B7의 수질정화성능이 우수하였다.
(5) 중금속 용출시험.
제작한 콘크리트 공시체 배합 B-1~B-7에 대한 중금속 용출시험을 실시한 결과 납, 수은, 카드뮴, 구리, 6가크롬, 비소와 같은 중금속은 전혀 용출되지 않았다. 중금속 용출시험은 폐기물 공정시험기준에 의거하여 용출하고 용출수를 유도결합 플라즈마 발광 광도계를 이용하여 측정하였다.
(6) 수질정화 기능성 유지(수질정화 기능성의 내구성).
배합 B-5~B-7의 포러스 콘크리트 공시체의 시편 자체가 장기간에 걸쳐 수질정화기능을 제대로 유지할 수 있는지를 평가하기 위해 콘크리트 공시체를 파쇄하고 그 파쇄 시편 50g을 오염수 200mL에 침지하여 3개월 동안 정치한 후 수질정화기능유지를 확인한 결과 표15와 같은 결과를 얻었다.
배합 B-5~B-7의 포러스 콘크리트 수질정화기능 유지평가결과.
항 목 결 과 시험방법
B-5 B-6 B-7
메틸렌블루 30분 후 농도(mg/L) 1.141 0.978 1.049



KS F 1802(준용)
메틸렌블루 농도 감소량(mg/L) 1.259 1.422 1.351
메틸렌블루 흡착량(mg/g) 시료 1g당 0.0062 0.0070 0.0067
메틸렌블루 탈색력(mg/L·min) 시료 1g당 0.248 0.279 0.269
메틸렌블루 탈색성능(μmol/L·min) 시료 1g당 0.022 0.025 0.024
성능저하율(%) 15 14 14
이상에서 다양한 배합 B-1~B-7에 따른 포러스 콘크리트 공시체로 본 발명이 시도하는 목적에 적합한 각종시험결과로서 포러스 콘크리트 압축강도, 압축강도의 내구성 수질정화기능, 수질정화기능의 내구성, 투수성의 적합도와 그밖에 재활용자재의 사용에 따른 경쟁력의 강해 공해성의 유무 측면에서 전체적으로 검토한 결과 포러스 콘크리트 공시체로서는 공시체 배합 B-5~B-7이 최적의 친환경 포러스 콘크리트 조성물이라 할 수 있다.
배합 B-5~B-7의 포러스 콘크리트블록의 조성비는 표8에서와 같이 고화결합재 조성물 100중량부에 순환굵은골재 308중량부, 실리카흄 11중량부, 섬유보강제 2.2중량부, 폐목탄 1.1~5.6중량부, 혼화제 0.78중량부, 결합수 40중량부로 조성되는 포러스 콘크리트블록이라 할 수 있다.
이상의 방법과 조성물들로서 제조된 콘크리트블록은 공해성이 있는 시멘트 결합재 대신에 무공해성의 고화결합재를 사용함에도 일반 콘크리트 수준의 강도를 유지할 수 있고 재생원료를 사용함으로써 경쟁력을 확보할 수 있는 이점이 있으며 수질정화기능 및 수질정화기능성의 내구성, 식생기능, 유용미생물의 석식공간부여 등의 다양한 기능성이 부여된 친환경 포러스 콘크리트블록이라 할 수 있고 이와 같은 조성의 포러스 콘크리트는 해양생태 옹벽블록, 조초블록, 어소블록, 큰고블록, 수중생태환경블록, 생녹화옹벽블록에 응용할 수 있다.

Claims (3)

  1. 고화결합재 조성물 100중량부에 순환굵은골재 308중량부, 실리카흄 11중량부, 섬유보강제 2.2중량부, 폐목탄 1.1~5.6중량부, 혼화제 0.78중량부, 결합수 40중량부로 조성되는 친환경 포러스 콘크리트블록.
  2. 청구항 제1항에 있어서,
    고화결합재 조성물이 고로 수재 슬래그 57~65중량%, 레이들 슬래그 14~20중량%, 무수석고 7~10중량%, 석회 11~15중량%, 급결경화제 0.2~5.0중량%, 소포제 0.01~0.1중량%로 조성되는 고화결합재 조성물임을 특징으로 하는 친환경 포러스 콘크리트블록.
  3. 청구항 제1항에 있어서,
    혼화제는 폴리카보네이트계 혼화제임을 특징으로 하는 친환경 포러스 콘크리트블록.
KR20110080815A 2011-08-12 2011-08-12 폐목탄을 이용한 수질정화기능을 갖는 친환경 포러스 콘크리트블록 KR101078715B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20110080815A KR101078715B1 (ko) 2011-08-12 2011-08-12 폐목탄을 이용한 수질정화기능을 갖는 친환경 포러스 콘크리트블록

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20110080815A KR101078715B1 (ko) 2011-08-12 2011-08-12 폐목탄을 이용한 수질정화기능을 갖는 친환경 포러스 콘크리트블록

Publications (1)

Publication Number Publication Date
KR101078715B1 true KR101078715B1 (ko) 2011-11-01

Family

ID=45396972

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20110080815A KR101078715B1 (ko) 2011-08-12 2011-08-12 폐목탄을 이용한 수질정화기능을 갖는 친환경 포러스 콘크리트블록

Country Status (1)

Country Link
KR (1) KR101078715B1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102765906A (zh) * 2012-06-30 2012-11-07 安徽中龙建材科技有限公司 一种利用萤石矿渣生产加气空心砖方法
CN102765908A (zh) * 2012-06-30 2012-11-07 安徽中龙建材科技有限公司 一种利用矿山尾渣制备加气空心砖的方法
CN102765923A (zh) * 2012-06-30 2012-11-07 安徽中龙建材科技有限公司 一种利用电石渣生产加气空心砖方法
CN102765907A (zh) * 2012-06-30 2012-11-07 安徽中龙建材科技有限公司 一种利用高炉矿渣生产加气空心砖方法
CN102765909A (zh) * 2012-06-30 2012-11-07 安徽中龙建材科技有限公司 一种利用废建筑垃圾制备加气空心砖的方法
KR20180068784A (ko) 2016-12-14 2018-06-22 (재)한국건설생활환경시험연구원 수질정화용 패널 결합구조를 지닌 저시멘트 바인더 활용 콘크리트 블록

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822061B1 (ko) 2007-04-30 2008-04-15 (주)동산 숯 분말과 재활용골재를 이용한 친환경 식재형 블록
KR100931008B1 (ko) 2009-04-23 2009-12-10 (주)지오티엠이엔지 친환경 무기질바인더를 이용한 투수성 포장재 및 이를 이용한 시공방법
KR100997486B1 (ko) 2010-06-15 2010-12-01 대명콘텍 주식회사 투수카본콘크리트 구조물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822061B1 (ko) 2007-04-30 2008-04-15 (주)동산 숯 분말과 재활용골재를 이용한 친환경 식재형 블록
KR100931008B1 (ko) 2009-04-23 2009-12-10 (주)지오티엠이엔지 친환경 무기질바인더를 이용한 투수성 포장재 및 이를 이용한 시공방법
KR100997486B1 (ko) 2010-06-15 2010-12-01 대명콘텍 주식회사 투수카본콘크리트 구조물

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102765906A (zh) * 2012-06-30 2012-11-07 安徽中龙建材科技有限公司 一种利用萤石矿渣生产加气空心砖方法
CN102765908A (zh) * 2012-06-30 2012-11-07 安徽中龙建材科技有限公司 一种利用矿山尾渣制备加气空心砖的方法
CN102765923A (zh) * 2012-06-30 2012-11-07 安徽中龙建材科技有限公司 一种利用电石渣生产加气空心砖方法
CN102765907A (zh) * 2012-06-30 2012-11-07 安徽中龙建材科技有限公司 一种利用高炉矿渣生产加气空心砖方法
CN102765909A (zh) * 2012-06-30 2012-11-07 安徽中龙建材科技有限公司 一种利用废建筑垃圾制备加气空心砖的方法
KR20180068784A (ko) 2016-12-14 2018-06-22 (재)한국건설생활환경시험연구원 수질정화용 패널 결합구조를 지닌 저시멘트 바인더 활용 콘크리트 블록

Similar Documents

Publication Publication Date Title
Chang et al. Valorization of sewage sludge in the fabrication of construction and building materials: A review
Zhang Production of bricks from waste materials–A review
Gomes et al. CO2 sequestration by construction and demolition waste aggregates and effect on mortars and concrete performance-An overview
KR101078715B1 (ko) 폐목탄을 이용한 수질정화기능을 갖는 친환경 포러스 콘크리트블록
Cheah et al. The hybridizations of coal fly ash and wood ash for the fabrication of low alkalinity geopolymer load bearing block cured at ambient temperature
Zhang et al. Optimal use of MSWI bottom ash in concrete
Peng et al. Preparation, characterization, and application of an eco-friendly sand-fixing material largely utilizing coal-based solid waste
Saleh et al. Sustainable composite of improved lightweight concrete from cement kiln dust with grated poly (styrene)
KR101367790B1 (ko) 친환경 저알칼리성 콘크리트 형성용 조성물
RU2705646C1 (ru) Бесцементное вяжущее вещество и его применение
Tian et al. The mechanical properties improvement of environmentally friendly fly ash-based geopolymer mortar using bio-mineralization
KR100873996B1 (ko) 생태복원용 블록 조성물
Yurt et al. Comparative study of hazelnut-shell biomass ash and metakaolin to improve the performance of alkali-activated concrete: A sustainable greener alternative
Sun et al. Influence of carbonation on chloride binding of mortars made with simulated marine sand
Liu et al. Preparation of artificial aggregates from concrete slurry waste and waste brick masonry powder: CO2 uptake and performance evaluation
Prabhakar et al. Sewage sludge ash-based mortar as construction material: Mechanical studies, macrofouling, and marine toxicity
Rozbahani et al. Coupling effect of superfine zeolite and fiber on enhancing the long-term performance of stabilized/solidified Pb-contaminated clayey soils
Farid et al. Production of new generation and sustainable concrete using Rice Husk Ash (RHA): A review
KR101096012B1 (ko) 고화결합재 조성물 및 재활용재료를 이용한 수질정화기능을 갖는 친환경 콘크리트
KR20030061177A (ko) 석탄회를 이용한 인공골재, 그 생산방법 및 이를 이용한프리캐스트 콘크리트 또는 시멘트 제품
Contreras et al. Recycling of industrial wastes for value-added applications in clay-based ceramic products: A global review (2015–19)
Kalpokaitė-Dičkuvienė et al. Cement substitution by sludge-biomass gasification residue: Synergy with silica fume
WO2019076449A1 (en) METHOD FOR DESIGNING A SELF-REPAIRABLE CONCRETE ADDED TO A PERMEABLE CONCRETE CONTAINING BIOLOGICAL MATERIALS
KR101611441B1 (ko) 천연광석 분말을 포함하는 친환경 미장용 첨가제와 그것을 이용한 미장용 시멘트 및 몰탈
CN110510944A (zh) 一种玄武岩纤维珊瑚混凝土及其制备方法

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141024

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151026

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161021

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171020

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181010

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191014

Year of fee payment: 9