KR101076043B1 - 폴리하이드록시알카노에이트 생성능을 가지는 미생물을 이용한 하이드록시알카노에이트 알킬에스테르의 제조방법 - Google Patents

폴리하이드록시알카노에이트 생성능을 가지는 미생물을 이용한 하이드록시알카노에이트 알킬에스테르의 제조방법 Download PDF

Info

Publication number
KR101076043B1
KR101076043B1 KR1020090060496A KR20090060496A KR101076043B1 KR 101076043 B1 KR101076043 B1 KR 101076043B1 KR 1020090060496 A KR1020090060496 A KR 1020090060496A KR 20090060496 A KR20090060496 A KR 20090060496A KR 101076043 B1 KR101076043 B1 KR 101076043B1
Authority
KR
South Korea
Prior art keywords
spp
acid
hydroxy
hydroxybutyrate
microorganism
Prior art date
Application number
KR1020090060496A
Other languages
English (en)
Other versions
KR20110002951A (ko
Inventor
이상엽
박진환
정유경
Original Assignee
바이오퓨얼켐 주식회사
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바이오퓨얼켐 주식회사, 한국과학기술원 filed Critical 바이오퓨얼켐 주식회사
Priority to KR1020090060496A priority Critical patent/KR101076043B1/ko
Publication of KR20110002951A publication Critical patent/KR20110002951A/ko
Application granted granted Critical
Publication of KR101076043B1 publication Critical patent/KR101076043B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 폴리하이드록시알카노에이트(polyhydroxyalkanoate;PHA) 생성능을 가지는 미생물을 이용한 하이드록시알카노에이트 알킬에스테르(HA alkyl ester)의 제조방법에 관한 것으로서, 더욱 상세하게는 PHA 생성능을 가지는 미생물을 배양하여, PHA를 대량생산하고, PHA를 포함하는 배양액의 pH를 조절하여 하이드록시알카노에이트(HA) 단량체를 제조한 뒤, 알킬에스테르화시키는 것을 특징으로 하는 하이드록시알카노에이트 알킬에스테르(HA alkyl ester)의 제조방법에 관한 것이다.
본 발명에 따르면, 미생물이 생산하는 대표적인 폴리하이드록시알카노에이트 의 일종인 폴리-3-하이드록시부티레이트 {poly(3-hydroxybutyrate)}를 100% 전환효율로 3-하이드록시부티레이트 알킬에스테르(3-HB alkylester)로 전환할 수 있어, 최근 바이오디젤로의 효용가치가 확인된 3-하이드록시부티레이트 알킬에스테르의 산업적 생산 방법으로 유용하다.
poly(3-hydroxybutyrate), 3-hydroxybutyrate alkylester, biodiesel

Description

폴리하이드록시알카노에이트 생성능을 가지는 미생물을 이용한 하이드록시알카노에이트 알킬에스테르의 제조방법{Method for Preparing hydroxyalkanoate alkylester Using the Microorganisms Producing polyhydroxyakanoate}
본 발명은 폴리하이드록시알카노에이트(polyhydroxyalkanoate;PHA) 생성능을 가지는 미생물을 이용한 하이드록시알카노에이트 알킬에스테르(HA alkylester)의 제조방법에 관한 것으로서, 더욱 상세하게는 PHA 생성능을 가지는 미생물을 배양하여, PHA를 대량생산하고, PHA를 포함하는 배양액의 pH를 조절하여 하이드록시알카노에이트(HA) 단량체를 제조한 뒤, 알킬에스테르화시키는 것을 특징으로 하는 하이드록시알카노에이트 알킬에스테르(HA alkylester)의 제조방법에 관한 것이다.
최근 고유가와 환경 문제로 인해 미생물을 이용한 바이오연료 생산이 큰 관심을 끌고 있다. 최근 바이오 디젤이 경유를 대체하거나 경유와 혼합하여 디젤엔진에 사용할 수 있는 대체연료로 부상하면서 시장 규모가 매우 빠른 속도로 증가하고 있다. 유럽연합(EU)에서는 2008년 한 해 동안 660만톤의 바이오디젤이 생산 되었으며, 5.5 billion 유로의 시장규모를 이루었다 (Biodiesel Market, Frost & Sullivan). 또한, 미국에서도 2006년 한 해 동안 3억 갤론의 바이오디젤이 생산되었다 (Biodiesel Market, Global Industry Analysts Inc, 2006. 5). 바이오디젤은 연소율이 좋아 유독가스의 배출이 낮고, 경유보다 발열량이 10% 정도 낮으며, 발화점은 더 높아 운송과 저장에 보다 안전하다는 장점을 지니고 있다. 바이오디젤은 주로 동식물의 지방성분을 경유와 유사한 특성을 갖도록 가공하거나, 식물성 유지 (쌀겨, 폐식용유, 대두유, 유채유 등)와 알코올을 반응시켜 제조하였다. 이 경우 대량생산이 어렵다는 단점이 있다. 따라서 경유의 대체연료로 적합한 바이오디젤을 미생물을 이용하여 대량 생산한다면, 원유 수입 대체 효과 및 온실 가스 배출 감소로 인한 환경적 효과 등을 가져올 수 있다.
PHA는 미생물이 탄소원은 풍부하나 다른 성장인자(질소, 인, 산소, 황 등)가 부조할 때 세포내에서 합성하여 축적하는 에너지 저장물질이며, 성장환경이 바뀌어 제한되었던 성장인자가 다시 제공되면 축적해 놓은 PHA를 분해하여 에너지원으로 사용하게 된다. PHA는 생산하는 미생물의 종류나, 공급되는 화학물질의 종류, 배양조건 등에 변화에 의해 100종류 이상의 단량체가 구성요서로 가능한 것으로 알려져 있다 (Steinbchel and Valentin, FEMS Microbiol Lett, 128:219, 1995).
최근, 미생물이 생산하는 PHA를 메틸에스테르화하여, 바이오디젤을 생산하려는 노력들이 진행되어오고 있으며, 정제된 PHA에 황산과 메탄올을 가하여 고온고압조건에서 반응시켜 3-하이드록시알카노에이트 메틸에스테르(3-HA methylester)를 생산한 기술이 개발된바 있다(Zhang, Xiaoujun et al.,Biomacromolecules, 10:707, 2009).
그러나, 상기 기술은 PHB(poly-R-3-hydroxybutyrate)에서 R-3하이드록시부티레이트 메틸에스테르로의 전환율이 52%에 불과하며, 생산되는 R-3하이드록시부티레이트 메틸에스테르의 순도가 저하되는 단점이 있다.
이에, 본 발명자들은 미생물을 이용하여 바이오디젤을 생산하는 새로운 방법을 개발하고자 예의 노력한 결과, Alcaligenes latus 균주를 이용하여 poly(3-hydroxybutyrate)를 생산하고, 이를 균주 내에서 자가분해시킨후, 알킬에스테르화하는 경우, 고효율로 3-HB alkylester를 생산할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.
결국, 본 발명의 목적은 폴리하이드록시알카노에이트 생산균주를 이용하여, in vivo에서 자가분해시켜, 하이드록시알카노에이트 단량체를 제조하는 것을 특징으로 하는 하이드록시알카노에이트 알킬에스테르를 고효율로 제조하는 방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 폴리하이드록시알카노에이트 생성능을 가지는 미생물을 배양하여, 폴리하이드록시알카노에이트를 생성시키는 단계; (b) 상기 폴리하이드록시알카노에이트를 함유하는 미생물에서 폴리하이드록시알카노에이트를 자가분해시켜, 하이드록시알카노에이트을 제조하는 단계; 및 (c) 상기 제조된 하이드록시알카노에이트에 알코올을 첨가하고, 반응시켜 하이드록시알카노에이 알킬에스테르를 제조하는 단계를 포함하는 하이드록시알카노에이트 알킬에스테르의 제조방법을 제공한다.
또한, 본 발명은 (a) 폴리하이드록시알케노에이트 생성능을 가지는 미생물을 배양하여, 폴리하이드록시알케노에이트를 생성시키는 단계; (b) 상기 폴리하이드록시알케노에이트를 함유하는 미생물에서 폴리하이드록시알케노에이트를 자가분해시켜, 하이드록시알케노에이트를 제조하는 단계; 및 (c) 상기 제조된 하이드록시알케노에이트에 알코올을 첨가하고, 반응시켜 하이드록시알케노에이트 알킬에스테르를 제조하는 단계를 포함하는 하이드록시알케노에이트 알킬에스테르의 제조방법을 제공한다.
또한, 본 발명은 (a) 폴리하이드록시알키노에이트 생성능을 가지는 미생물을 배양하여, 폴리하이드록시알키노에이트를 생성시키는 단계; (b) 상기 폴리하이드록시알키노에이트를 함유하는 미생물에서 폴리하이드록시알키노에이트를 자가분해시켜, 하이드록시알키노에이트를 제조하는 단계; 및 (c) 상기 제조된 하이드록시알키노에이트에 알코올을 첨가하고, 반응시켜 하이드록시알키노에이트 알킬에스테르를 제조하는 단계를 포함하는 하이드록시알키노에이트 알킬에스테르의 제조방법을 제공한다.
본 발명은 또한, (a) 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)} 생성능을 가지는 미생물을 배양하여, 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)}를 생성시키는 단계; (b) 상기 생성된 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)}을 함유하는 미생물에서 폴리-3-하이드록시부티레이트을 자가분해시켜, 3-하이드록시부티레이트를 제조하는 단계; 및 (c) 상기 3-하이드록시부티레이트에 메탄올을 첨가하고, 반응시켜 3-하이드록시부티레이트 메틸에스테르를 제조하는 단계를 포함하는 3-하이드록시부티레이트 메틸에스테르의 제조방법을 제공한다.
본 발명에 따르면, 미생물이 생산하는 poly(3-hydroxybutyrate)를 100% 전환 효율로 3-하이드록시부티레이트 알킬에스테르(3-HB alkylester)로 전환할 수 있어, 최근 바이오디젤로의 효용가치가 확인된 3-하이드록시부티레이트 알킬에스테르의 산업적 생산 방법으로 유용하다.
일 관점에서, 본 발명은 (a) 폴리하이드록시알카노에이트 생성능을 가지는 미생물을 배양하여, 폴리하이드록시알카노에이트를 생성시키는 단계; (b) 상기 폴리하이드록시알카노에이트를 함유하는 미생물에서 폴리하이드록시알카노에이트를 자가분해시켜, 하이드록시알카노에이트을 제조하는 단계; 및 (c) 상기 제조된 하이드록시알카노에이트에 알코올을 첨가하고, 반응시켜 하이드록시알카노에이트 알킬에스테르를 제조하는 단계를 포함하는 하이드록시알카노에이트 알킬에스테르의 제조방법에 관한 것이다.
본 발명에 있어서, 하이드록시알카노에이트는 방향족 고리기, 에폭시기, 시아노기, 할로겐기로 구성된 군에서 선택되는 치환기로 수식된 것을 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에서, 폴리하이드록시알카노에이트의 자가분해는 세포내에 축적된 폴리하이드록시알카노에이트가 세포내 분해효소에 의하여 자가분해되는 것을 의미하며, 통상 폴리하이드록시알카노에이트의 자가분해는 균체를 pH 2~12의 조건에서 정치하였을 경우에 수행하며, 바람직하게는, 배양액의 pH를 2~5로 조절하고, 34~50℃에서 정치반응시켜 수행할 수 있다.
본 발명의 일 양태에서, Alcaligenes latus의 경우, pH 3~4에서 반응온도 37℃에서 30분~10시간 정치반응하였을 때, 가장 높은 자가분해능을 나타내었다.
본 발명에 있어서, 상기 (c) 단계는 유기용매를 추가로 첨가하여 수행하는 것을 특징으로 할 수 있으며, 바람직하게는 클로로포름을 첨가하여 수행할 수 있다.
본 발명에 있어서, 폴리하이드록시알카노에이트 생성능을 가지는 미생물은 예를 들면, Aeromonas 속 미생물, Achromobacter 속 미생물, Acidovorax delafieldii, Acidovax facilis,, Acinetobacter 속 미생물, Actinomyces 속 미생물, Aeromonas 속 미생물, Alcaligenes 속 미생물, Alteromonas 속 미생물, Amoebobacter 속 미생물, Aphanocapa sp., Aphanothece sp. Aquaspirillum autotrophicum, Azorhizobium caulinodans, Azospirillum sp., Azospirillum 속 미생물, Azotobacter 속 미생물, Bacillus 속 미생물, Beggiatoa 속 미생물, Beijerinckia 속 미생물, Beneckea 속 미생물, Bordetella pertussis, Bradyrhizobium japonicum, Caryophamon latum, Caulobacter 속 미생물, Chlorogloea 속 미생물, Chromatium 속 미생물, Chromobacterium 속 미생물, Clostridium 속 미생물, Comamonas 속 미생물, Corynebacterium 속 미생물, Cyanobacteria 속 미생물, Derxia 속 미생물, Desulfonema 속 미생물, Desulfosacina variabilis, Desulfovibrio sapovorans, Ectothiorhodospira 속 미생물, Ferrobacillus ferroxidans, Flavobacterium sp., Haemophilus influenzae, Halobacterium 속 미생물, Haloferax mediterranei, Hydroclathratus clathratus, Hydrogenomonas facilis, Hydrogenophaga 속 미생물, Hyphomicrobium 속 미생물, Ilyobacter delafieldii, Labrys monachus, Lamprocystis reseopersicina, Lampropedia hyalina, Legionella sp., Leptothrix discophorus, Methylobacterium 속 미생물, Methylosinus 속 미생물, Micrococcus 속 미생물, Mycobacterium 속 미생물, Nitrobacter 속 미생물, Nocardia 속 미생물, Paracoccus dentrificans, Oscillatoria limosa, Penicillium cyclopium, Photobacterium 속 미생물, Physarum ploycephalum, Pseudomonas 속 미생물, Ralstonia 속 미생물, Rhizobium 속 미생물, Rhodobacillus 속 미생물, Rhodobacter 속 미생물, Rhodococcus 속 미생물, Rhodocyclus 속 미생물, Rhodomicrobium vannielii, Rhodopseudomonas 속 미생물, Rhodospirillum 속 미생물, Sphingomonas paucimobilis, Spirillum 속 미생물, Spirulina 속 미생물, Staphylococcus 속 미생물, Stella 속 미생물, Streptomyces 속 미생물, Syntrophomonas wolfei, Thermophilic cyanobacteria, Thermus thermophilus, Thiobacillus A2, Thiobacillus 속 미생물, Thiocapsa 속 미생물, Thiocystis violacea, Vibrio parahaemolyticus, Xanthobacter autotrophicus, Xanthomonas maltophilia, Zoogloea 속, 폴리하이드록시알카노에이트 생성능을 가지는 효소를 코딩하는 유전자로 형질전환된 미생물을 들 수 있다.
본 발명에 있어서, 상기 하이드록시알카노에이트는 락테이트(lactate), 2-하이드록시부탄산(hydroxybutyrate), 3-하이드록시프로피온산(hydroxypropionate), 3-하이드록시부티레이트(hydroxybutyrate), 3-하이드록시발레르산(hydroxyvalerate), 4-하이드록시부탄산(hydroxybutyrate), 탄소수가 6~14개인 중간사슬 길이의 (D)-3-하이드록시카르복실산(hydroxycarboxylic acids), 3-하이드록시프로피온산(hydroxypropionic acid), 3-하이드록시헥산산(hydroxyhexanoic acid), 3-하이드록시헵탄산(hydroxyheptanoic acid), 3-하이드록시옥탄산(hydroxyoctanoic acid), 3-하이드록시노난산(hydroxynonanoic acid), 3-하이드록시데칸산(hydroxydecanoic acid), 3-하이드록시운데칸산(hydroxyundecanoic acid), 3-하이드록시 도데칸산(hydroxydodecanoic acid), 3-하이드록시테트라데칸산(hydroxytetradecanoic acid), 3-하이드록시헥사데칸산(hydroxyhexadecanoic acid), 4-하이드록시발레르산(hydroxyvaleric acid), 4-하이드록시헥산산(hydroxyhexanoic acid), 4-하이드록시헵탄산(hydroxyheptanoic acid), 4-하이드록시옥탄산(hydroxyoctanoic acid), 4-하이드록시데칸산(hydroxydecanoic acid), 5-하이드록시발레르산(hydroxyvaleric acid), 5-하이드록시헥산산(hydroxyhexanoic acid), 6-하이드록시도데칸산(hydroxydodecanoic acid), 3-하이드록시(hydroxy)-4-펜텐산(pentenoic acid), 3-하이드록시(hydroxy)-4-trans-헥센산(hexenoic acid), 3-하이드록시(hydroxy)-4-cis-헥센산(hexenoic acid), 3-하이드록시(hydroxy)-5-헥센산(hexenoic acid), 3-하이드록시(hydroxy)-6-trans-옥텐산(octenoic acid), 3-하이드록시(hydroxy)-6-cis-옥텐산(octenoic acid), 3-하이드록시(hydroxy)-7-옥텐산(octenoic acid), 3-하이드록시(hydroxy)-8-노넨산(nonenoic acid), 3-하이드록시(hydroxy)-9-데센산(decenoic acid), 3-하이드록시(hydroxy)-5-cis-도데센산(dodecenoic acid), 3-하이드록시(hydroxy)-6-cis-도데센산(dodecenoic acid), 3-하이드록시(hydroxy)-5-cis-테트라데센산(tetradecenoic acid), 3-하이드록 시(hydroxy)-7-cis-테트라데센산(tetradecenoic acid), 3-하이드록시(hydroxy)-5,8-cis-cis-테트라데센산(tetradecenoic acid), 3-하이드록시(hydroxy)-4-메틸발레르산(methylvaleric acid), 3-하이드록시(hydroxy)-4-메틸헥산산(methylhexanoic acid), 3-하이드록시(hydroxy)-5-메틸헥산산(methylhexanoic acid), 3-하이드록시(hydroxy)-6-메틸헵탄산(methylheptanoic acid), 3-하이드록시(hydroxy)-4-메틸옥탄산(methyloctanoic acid), 3-하이드록시(hydroxy)-5-메틸옥탄산(methyloctanoic acid), 3-하이드록시(hydroxy)-6-메틸옥탄산(methyloctanoic acid), 3-하이드록시(hydroxy)-7-메틸옥탄산(methyloctanoic acid), 3-하이드록시(hydroxy)-6-메틸노난산(methylnonanoic acid), 3-하이드록시(hydroxy)-7-메틸노난산(methylnonanoic acid), 3-하이드록시(hydroxy)-8-메틸노난산(methylnonanoic acid), 3-하이드록시(hydroxy)-7-메틸데칸산(methyldecanoic acid), 3-하이드록시(hydroxy)-9-메틸데칸산(methyldecanoic acid), 3-하이드록시(hydroxy)-7-메틸-6-옥텐산(octenoic acid), 말산(malic acid), 3-하이드록시숙신산(hydroxysuccinic acid)-메틸에스테르, 3-하이드록시아디핀산(hydroxyadipinic acid)-메틸에스테르, 3-하이드록시스베린산(hydroxysuberic acid)-메틸에스테르, 3-하이드록시아젤라인산(hydroxyazelaic acid)-메틸에스테르, 3-하이드록시세바신산(hydroxysebacic acid,)-메틸에스테르, 3-하이드록시스베린산(hydroxysuberic acid)-에틸에스테르, 3-하이드록시세바신산(hydroxysebacic acid)-에틸에스테르, 3-하이드록시피메린산(hydroxypimelic acid)-프로필에스테르, 3-하이드록시세바신산(hydroxysebacic acid)-벤질에스테르, 3-하이드록시(hydroxy)-8-아세톡시옥탄산(acetoxyoctanoic acid), 3-하이드록시(hydroxy)-9-아세톡시노난산(acetoxynonanoic acid), 페녹시(phenoxy)-3-하이드록시부티레이트(hydroxybutyric acid), 페녹시(phenoxy)-3-하이드록시발레르산(hydroxyvaleric acid), 페녹시(phenoxy)-3-하이드록시헵탄산(hydroxyheptanoic acid), 페녹시(phenoxy)-3-하이드록시옥탄산(hydroxyoctanoic acid), para-시아노페녹시(cyanophenoxy)-3-하이드록시부티레이트(hydroxybutyric acid), para-시아노페녹시(cyanophenoxy)-3-하이드록시발레르산(hydroxyvaleric acid), para-시아노페녹시(cyanophenoxy)-3-하이드록시헥산산(hydroxyhexanoic acid), para-니트로페녹시(nitrophenoxy)-3-하이드록시헥산산(hydroxyhexanoic acid), 3-하이드록시(hydroxy)-5-페닐발레르산(phenylvaleric acid), 3-하이드록시(hydroxy)-6-페닐헥산(phenylhexanoic acid), 3-하이드록시(hydroxy)-7-페닐헵탄산(phenylheptanoic acid), 3-하이드록시(hydroxy)-8-페닐옥탄산(phenyloctanoic acid), 3-하이드록시(hydroxy)-9-페닐노난산(phenylnonanoic acid), 3-하이드록시(hydroxy)-10-페닐데칸산(phenyldecanoic acid), 3-하이드록시(hydroxy)-5-시클로헥실부탄산(cyclohexylbutyric acid), 3-하이드록시(hydroxy)-5-시클로헥실부탄산(cyclohexylbutyric acid), 3,12-디하이드록시도데칸산(dihydroxydodecanoic acid), 3,8-디하이드록시(dihydroxy)-5-cis-테트라데센산(tetradecenoic acid), 3-하이드록시(hydroxy)-4,5-에폭시데칸산(epoxydecanoic acid), 3-하이드록시(hydroxy)-6,7-에폭시도데칸산(epoxydodecanoic acid), 3-하이드록시(hydroxy)-8,9-에폭시(epoxy)-5,6-cis-테트라데칸산(tetradecanoic acid), 7-시아노(cyano)-3-하이드록시헵탄산(hydroxyheptanoic acid), 9-시아노(cyano)-3-하이드록시노난 산(hydroxynonanoic acid), 3-하이드록시(hydroxy)-7-플루오로헵탄산(fluoroheptanoic acid), 3-하이드록시(hydroxy)-9-플루오로노난산(fluorononanoic acid), 3-하이드록시(hydroxy)-6-클로로헥산산(chlorohexanoic acid), 3-하이드록시(hydroxy)-8-클로로옥탄산(chlorooctanoic acid), 3-하이드록시(hydroxy)-6-브로모헥산산(bromohexanoic acid), 3-하이드록시(hydroxy)-8-브로모옥탄산(bromooctanoic acid), 3-하이드록시(hydroxy)-11-브로모운데칸산(bromoundecanoic acid), 3-하이드록시(hydroxy)-2-부텐산(butenoic acid), 6-하이드록시(hydroxy)-3-도데센산(dodecenoic acid), 3-하이드록시(hydroxy)-2-메틸부탄산(methylbutyric acid), 3-하이드록시(hydroxy)-2-메틸발레르산(methylvaleric acid) 및 3-하이드록시(hydroxy)-2,6-디메틸-5-헵텐산(heptenoic acid)로 구성된 군 (Steinbㆌchel, A and Valentin, H. E., FEMS Microbiology Letters, 128: 219-228, 1995)에서 선택된 하나 이상인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 (a) 단계의 배양은 질소원이 제한된 배지에서 수행하는 것을 특징으로 할 수 있으며, 상기 (d) 단계의 반응은 80~120℃에서 1~24시간 수행하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 (d) 단계의 알코올은 methanol (C1)을 포함한 1차, 2차, 3차 구조의 모든 알코올인 것을 특징으로 할 수 있다.
본 발명의 일 양태에서는 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)}생성능을 가지는 Alacligenes latus를 배양하여 폴리-3-하이드록 시부티레이트을 생성시켰으며, 상기 배양은 균체증식을 위한 1단계 배양과 폴리-3-하이드록시부티레이트 생성을 위한 2단계 배양으로 나누어 수행하였다. 상기 폴리-3-하이드록시부티레이트 생성을 위한 2단계 배양은 질소원을 제한한 배지를 사용하여 폴리-3-하이드록시부티레이트의 생성을 유도하였다.
본 발명의 바람직한 양태에서, Alacligenes latus에 의해 생성된 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)}은 in vivo 상태에서 배양액의 pH를 4로 조절하고 30분간 정치하여, 자가분해시켜 3-하이드록시부티레이트(폴리-3-하이드록시부티레이트 단량체)을 제조하였다. 상기 배양액의 폴리-3-하이드록시부티레이트의 농도는 0.42g/L이었으며, pH를 조절한 후 정치반응하여 수득된 용액 내의 3-하이드록시부티레이트가 농도는 0.42g/L로 약 95%의 수율로 3-하이드록시부티레이트가 생성되었다.
본 발명의 바람직한 양태에서, 상기 수득된 3-하이드록시부티레이트 용액은 동결건조하여 물을 제거한 후, 클로로포름을 첨가하고, H2SO4를 포함하는 메탄올을 첨가한 후, 100℃에서 12시간 반응시키고, 물을 첨가한 다음, 유기용매층을 분리하여 3-하이드록시부티레이트 메틸에스테르를 수득하였으며, 생성된 3-하이드록시부티레이트 메틸에스테르(R3HB methyl ester)의 농도는 0.40g/L이였으며, 이는 100%의 수율로 3-하이드록시부티레이트로부터 3-하이드록시부티레이트 메틸에스테르로의 전환이 이루어 졌음을 의미한다.
다른 관점에서, 본 발명은 (a) 폴리하이드록시알케노에이트 생성능을 가지는 미생물을 배양하여, 폴리하이드록시알케노에이트를 생성시키는 단계; (b) 상기 폴리하이드록시알케노에이트를 함유하는 미생물에서 폴리하이드록시알케노에이트를 자가분해시켜, 하이드록시알케노에이트를 제조하는 단계; 및 (c) 상기 제조된 하이드록시알케노에이트에 알코올을 첨가하고, 반응시켜 하이드록시알케노에이트 알킬에스테르를 제조하는 단계를 포함하는 하이드록시알케노에이트 알킬에스테르의 제조방법에 관한 것이다.
본 발명에 있어서, 하이드록시알케노에이트는 방향족 고리기, 에폭시기, 시아노기, 할로겐기로 구성된 군에서 선택되는 치환기로 수식된 것을 사용할 수 있으나, 이에 한정되는 것은 아니다.
또 다른 관점에서, 본 발명은 (a) 폴리하이드록시알키노에이트 생성능을 가지는 미생물을 배양하여, 폴리하이드록시알키노에이트를 생성시키는 단계; (b) 상기 폴리하이드록시알키노에이트를 함유하는 미생물에서 폴리하이드록시알키노에이트를 자가분해시켜, 하이드록시알키노에이트를 제조하는 단계; 및 (c) 상기 제조된 하이드록시알키노에이트에 알코올을 첨가하고, 반응시켜 하이드록시알키노에이트 알킬에스테르를 제조하는 단계를 포함하는 하이드록시알키노에이트 알킬에스테르의 제조방법에 관한 것이다.
본 발명에 있어서, 하이드록시알키노에이트는 방향족 고리기, 에폭시기, 시아노기, 할로겐기로 구성된 군에서 선택되는 치환기로 수식된 것을 사용할 수 있으나, 이에 한정되는 것은 아니다.
본 발명은 (a) 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)} 생성 능을 가지는 미생물을 배양하여, 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)}를 생성시키는 단계; (b) 상기 생성된 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)}을 함유하는 미생물에서 폴리-3-하이드록시부티레이트을 자가분해시켜, 3-하이드록시부티레이트를 제조하는 단계; 및 (c) 상기 3-하이드록시부티레이트에 메탄올을 첨가하고, 반응시켜 3-하이드록시부티레이트 메틸에스테르를 제조하는 단계를 포함하는 3-하이드록시부티레이트 메틸에스테르의 제조방법에 관한 것이다.
본 발명에 있어서, 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)} 생성능을 가지는 미생물은 Alacligenes latus인 것을 특징으로 할 수 있고, 상기 (a) 단계의 배양은 질소원이 제한된 배지에서 수행하는 것을 특징으로 할 수 있다.
본 발명에 있어서, 상기 (d) 단계의 반응은 80~120℃에서 1~24시간 수행하는 것을 특징으로 할 수 있으며, 상기 (e) 단계의 유기용매는 클로로포름인 것을 특징으로 할 수 있다.
이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
특히, 하기 실시예에서는 대표적인 폴리하이드록시알카노에이트 및 하이드록 시알카노에이트의 일종인 폴리-3-하이드록시부티레이트 {poly(3-hydroxybutyrate)} 중합체, 3-하이드록시부티레이트 (3-hydroxybutyrate) 단량체 및 3-하이드록시부티레이트 메틸에스테르를 생산하였으나, 본 발명에서의 하이드록시알카노에이트는 3번째 위치(3-hydroxy)를 포함하는 여러 가지 다른 위치의 하이드록시기의 알카노에이트 (alkanoate)를 모두 포함하고, 알카노에이트 뿐 아니라, 알케노이트 (alkenoate)와 알키노에이트 (alkynoate) 또한 포함한다는 것 역시 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
하기 실시예에서는, 하이드록시알카노에이트는 하이드록시기 뿐 아니라, 방향족 고리기, 에폭시기, 시아노기, 또는 할로겐 원소 등으로 추가로 수식된 것을 포함하는 것 역시 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
하기 실시예에서는 Alcaligenes latus를 숙주 미생물로 이용하였으나, 다른 대장균이나, 박테리아, 효모 및 곰팡이를 사용하여 poly(3-hydroxybutyrate) 생성능을 향상시키고, 3-hydroxybutyrate 단량체로부터 3-HB alkylester를 제조하는 것 역시 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
또한, 하기 실시예에서는 poly(3-hydroxybutyrate)를 이용하여, 3-hydroxybutyrate alkylester를 제조하는 방법만을 기재하였으나, poly(3-hydroxybutyrate)가 속하는 폴리하이드록시알카노에이트를 이용하여, 하이드록시알카노에이트 알킬에스테르를 제조할 수 있다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
또한, 하기 실시예에서는 3-hydroxybutyrate의 esterification 과정에서 메 탄올(methanol)만을 사용하였으나, 기타 alcohol을 사용하여 3-hydroxybutyrate 및 hydroxyalkanoate를 esterification 시킴으로써 다양한 종류의 3-hydroxybutyrate alkylester 및 hydroxyalkanoate akylester를 제조하는 것 역시 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
아울러, 하기 실시예에서는 특정 배지와 배양방법만을 예시하였으나, 문헌에 보고된 바와 같이, 유청(whey), CSL(corn steep liquor) 등의 당화액과 다른 배지를 사용한 경우나, 유가배양(fed-batch culture), 연속배양 등 다양한 방법을 사용하는 것 (Lee et al., Bioprocess Biosyst. Eng., 26: 63, 2003; Lee et al., Appl. Microbiol. Biotechnol., 58: 663, 2002; Lee et al., Biotechnol. Lett., 25: 111, 2003; Lee et al., Appl. Microbiol. Biotechnol., 54: 23, 2000; Lee et al., Biotechnol. Bioeng., 72: 41, 2001)도 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실시예: Alcaligenes latus 균주를 이용한 (R)-3-하이드록시부티레이트 메틸에스테르의 생산
(1) Alcaligenes latus 균주의 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)}생산을 위한 배양
Alacligenes latus ATCC 29712 균주를 배양하는데 있어서, 배지 내에 질소원(nitrogen)을 제한하여, poly(3-hydroxybutyrate) {P(3HB)} 생산을 하기 위하여, 2단계 배양을 시행하였다(Wang, F. and Lee, S. Y., Appl. Environ. Microbiol., 63: 3703, 1997; 대한민국 특허등록 제199,995호).
먼저, 1 단계배양으로는, A. latus 균주를 100 ml 의 nutrient broth (NB)를 함유한 250 ml 플라스크에서 30 ℃, 250 rpm 으로 24시간 배양하였다. 상기 배양액을 6000rpm에서 10분간 원심분리하여 균체를 회수하고, 2단계 배양에 사용되어지는 AL1 배지로 세포에 남아있는 NB 배지성분을 세척한 후, 다시 6000rpm에서 10분간 원심분리하여 균체를 회수하고, 100ml의 AL1 배지에 현탁시켰다. AL1 배지(pH 7.0)의 조성은 다음과 같다: 증류수 1 liter 당 KH2PO4 1.5 g, Na2HPO4ㅇ12H2O 9 g, MgSO4ㅇ7H2O 0.2 g, CaCl2ㅇ2H2O 0.01 g, citric acid 0.1 g, trace element solution 1 ml.
Trace element solution의 조성은 다음과 같다: 증류수 1 liter 당 FeSO4ㅇ7H2O 20 g, H3BO4 0.3 g, CoCl2ㅇ6H2O 0.2 g, ZnSO4ㅇ7H2O 0.03 g, MnCl2ㅇ4H2O 0.03 g, (NH4)6Mo7O24ㅇ4H2O 0.03 g, NiSO4ㅇ7H2O 0.03 g, CuSO4ㅇ5H2O 0.01 g .
100ml의 AL1 배지에 현탁시킨 세균은 탄소원으로 20 g/l의 수크로오스를 첨가한 후, 30 ℃, 250 rpm 으로 24시간 배양하였다.. 배양 종료 후, 배양액을 6000 rpm,에서 10분간 원심분리하여 세포를 회수하였다. 회수한 세포를 증류수로 한 번 씻어낸 후 100 ℃의 건조기에서 24시간 건조하였다.
건조된 세포로 가스크로마토그래피(gas chromatography) 분석을 수행하여, 세포 내 합성된 P(3HB) 함량을 측정하였다. 2 단계 플라스크 배양 결과, 총 건조세포무게(농도)는 0.48 g/l 이었고, 그 중 P(3HB) 무게(농도)는 0.42 g/l 로, 세포 내에 약 88 wt%의 P(3HB)가 생성된 것을 확인하였다.
(2) in vivo 에서의 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)}의 depolymerization을 통한 (R)-3-하이드록시부티레이트의 생산
(1)의 2 단계 배양이 끝난 A. latus 배양액에 H2SO4를 첨가하여 배양액의 pH를 4가 되도록 조정한 후, 37 ℃에서 30분 동안 정치(no shaking)하였다. 그 후, 배양액을 6000 rpm에서 10분간 원심분리하여, 상등액(supernatant)을 분리하였다. 상등액에 녹아있는 (R)-3-hydroxybutyrate (R3HB) 의 농도를 측정하기 위해 고성능 리퀴드크로마토그래피(high-performance liquid chromatography) 분석을 수행하였다. 그 결과, 상등액의 R3HB 농도는 0.40 g/l 로, 약 95%의 수율로 P(3HB)로부터 생성되었다 (Lee, S.Y. et al., Biotechnol. Bioeng., 65:363, 1999; 한국등록특허 제 250,830호).
(3) (R)-3-hydroxybutyrate (R3HB) 에서 R3HB methyl ester 로의 전환
상기 (2)에서 얻은 상등액에 녹아있는 R3HB 형태를 동결건조를 통해 물을 제거하였다. 물이 제거된 R3HB에 클로로포름 2ml을 첨가하고, 3% (v/v) H2SO4 를 포함하는 메탄올 1 ml 을 첨가한 후, 이 혼합물을 100 ℃에서 12 시간 동안 반응시켰 다. 반응이 끝난 후, 혼합물을 상온까지 식히고, 혼합물에 증류수 1ml을 첨가하여 5분 동안 격렬히 섞어 주어, 유기용매(chloroform) 층과 물(수용액) 층이 분리시키고, 10,000 rpm에서 10분간 원심분리하여, 유기용매 층만 채취하여 가스크로마토그래피(gas chromatography) 분석을 수행함으로써, 생성된 R3HB 메틸 에스테르 농도를 측정하였다. 그 결과, R3HB methyl ester 농도는 0.40g/l로, 100%의 수율로 R3HB로부터 전환되었다. 클로로포름에 녹아있는 R3HB methyl ester 형태에서 용매인 클로로포름을 증발시켜 R3HB 메틸에스테르를 얻었다.
비교예: poly(3-hydroxybutyrate)을 이용한 R3HB methyl ester의 in vitro생산
시판되는 P(3HB)(Jiangsu, China)를 사용하여, in vitro에서 R3HB methyl ester를 제조하였다 (Xiaojun Zhang et al., Biomacromolecules, 10: 707, 2009).
15 g의 PHB를 200mL의 클로로포름용액에 용해시키고, 200mL의 산성메탄올(15%(v/v) H2SO4 in methanol)을 첨가하고, 100℃에서 1시간 환류시켰다. 상기 혼합액을 실온에서 냉각시킨 다음, 40mL의 포화 NaCl용액을 첨가하고, 10분간 교반하여, 유기용매층과 물층을 분리하였다. 물층을 50mL의 클로로포름으로 3회 추출하고, 건조시킨 후, Na2SO4를 이용하여, 유기용매층과 혼합하고, 진공상태에서 증발시켜, 점성있는 투명한 액체인 R3HB methyl ester를 수득하였다.
비교예에서 수득한 R3HB methyl ester와 실시예에서 수득한 R3HB methyl ester의 전환율을 측정한 결과, P(3HB)를 in vitro 전환시킨 실시예의 R3HB methyl ester 최종수율은 95%로, 비교예의 최종수율 52%보다 월등히 높은 생산수율을 나타내었다(표 1).
실시예와 비교예의 R3HB methyl ester 전환율 비교
비교예 실시예

시작물질

시판 P(3HB)
[정제된 P(3HB)]
미생물균주배양을 통한
P(3HB) 직접 생산
[미생물세포내에 축적된 P(3HB)]



전환방법


산을 촉매로한 P(3HB)의 가수분해
세포내에서 P(3HB)의 생분해를 통한 R3HB 생산 [전환수율: 95%]
산을 촉매로 한 에스테르화 반응을 통한 R3HB로부터
R3HB methyl ester의 생산
[전환수율: 100%]
최종산물 R3HB methyl ester R3HB methyl ester
최종수율 52% 95%
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
도 1은 A. latus ATCC 29712 균주를 이용하여 3HB methyl ester를 고효율로 제조하는 공정을 나타낸 것이다.

Claims (20)

  1. 다음 단계를 포함하는 하이드록시알카노에이트 알킬에스테르의 제조방법:
    (a) 폴리하이드록시알카노에이트 생성능을 가지는 미생물을 배양하여, 폴리하이드록시알카노에이트를 생성시키는 단계;
    (b) 상기 폴리하이드록시알카노에이트를 함유하는 미생물을 함유하는 배양액의 pH를 2~5로 조절하고, 34~50℃에서 정치반응시켜, 폴리하이드록시알카노에이트를 자가분해시키고, 하이드록시알카노에이트를 제조하는 단계; 및
    (c) 상기 제조된 하이드록시알카노에이트에 알코올을 첨가하고, 80~120℃에서 1~24시간 반응시켜 하이드록시알카노에이트 알킬에스테르를 제조하는 단계.
  2. 제1항에 있어서, 하이드록시알카노에이트는 방향족 고리기, 에폭시기, 시아노기 및 할로겐기로 구성된 군에서 선택되는 치환기로 수식된 것임을 특징으로 하는 방법.
  3. 삭제
  4. 제1항에 있어서, (c) 단계는 유기용매를 추가로 첨가하여 수행하는 것을 특징으로 하는 하이드록시알카노에이트 알킬에스테르의 제조방법.
  5. 제1항에 있어서, 폴리하이드록시알카노에이트 생성능을 가지는 미생물은 Aeromonas 속 미생물, Achromobacter 속 미생물, Acidovorax delafieldii, Acidovax facilis,, Acinetobacter 속 미생물, Actinomyces 속 미생물, Aeromonas 속 미생물, Alcaligenes 속 미생물, Alteromonas 속 미생물, Amoebobacter 속 미생물, Aphanocapa sp., Aphanothece sp. Aquaspirillum autotrophicum, Azorhizobium caulinodans, Azospirillum sp., Azospirillum 속 미생물, Azotobacter 속 미생물, Bacillus 속 미생물, Beggiatoa 속 미생물, Beijerinckia 속 미생물, Beneckea 속 미생물, Bordetella pertussis, Bradyrhizobium japonicum, Caryophamon latum, Caulobacter 속 미생물, Chlorogloea 속 미생물, Chromatium 속 미생물, Chromobacterium 속 미생물, Clostridium 속 미생물, Comamonas 속 미생물, Corynebacterium 속 미생물, Cyanobacteria 속 미생물, Derxia 속 미생물, Desulfonema 속 미생물, Desulfosacina variabilis, Desulfovibrio sapovorans, Ectothiorhodospira 속 미생물, Ferrobacillus ferroxidans, Flavobacterium sp., Haemophilus influenzae, Halobacterium 속 미생물, Haloferax mediterranei, Hydroclathratus clathratus, Hydrogenomonas facilis, Hydrogenophaga 속 미생물, Hyphomicrobium 속 미생물, Ilyobacter delafieldii, Labrys monachus, Lamprocystis reseopersicina, Lampropedia hyalina, Legionella sp., Leptothrix discophorus, Methylobacterium 속 미생물, Methylosinus 속 미생물, Micrococcus 속 미생물, Mycobacterium 속 미생물, Nitrobacter 속 미생물, Nocardia 속 미생물, Paracoccus dentrificans, Oscillatoria limosa, Penicillium cyclopium, Photobacterium 속 미생물, Physarum ploycephalum, Pseudomonas 속 미생물, Ralstonia 속 미생물, Rhizobium 속 미생물, Rhodobacillus 속 미생물, Rhodobacter 속 미생물, Rhodococcus 속 미생물, Rhodocyclus 속 미생물, Rhodomicrobium vannielii, Rhodopseudomonas 속 미생물, Rhodospirillum 속 미생물, Sphingomonas paucimobilis, Spirillum 속 미생물, Spirulina 속 미생물, Staphylococcus 속 미생물, Stella 속 미생물, Streptomyces 속 미생물, Syntrophomonas wolfei, Thermophilic cyanobacteria, Thermus thermophilus, Thiobacillus A2, Thiobacillus 속 미생물, Thiocapsa 속 미생물, Thiocystis violacea, Vibrio parahaemolyticus, Xanthobacter autotrophicus, Xanthomonas maltophilia, Zoogloea 속 및 폴리하이드록시알카노에이트 생성능을 가지는 효소를 코딩하는 유전자로 형질전환된 미생물로 구성된 군에서 선택되는 것을 특징으로 하는 하이드록시알카노에이트 알킬에스테르의 제조방법.
  6. 제1항에 있어서, 하이드록시알카노에이트는 락테이트(lactate), 2-하이드록시부탄산(hydroxybutyrate), 3-하이드록시프로피온산(hydroxypropionate), 3-하이드록시부티레이트(hydroxybutyrate), 3-하이드록시발레르산(hydroxyvalerate), 4-하이드록시부탄산(hydroxybutyrate), 탄소수가 6~14개인 중간사슬 길이의 (D)-3-하이드록시카르복실산(hydroxycarboxylic acids), 3-하이드록시프로피온산(hydroxypropionic acid), 3-하이드록시헥산산(hydroxyhexanoic acid), 3-하이드록시헵탄산(hydroxyheptanoic acid), 3-하이드록시옥탄산(hydroxyoctanoic acid), 3-하이드록시노난산(hydroxynonanoic acid), 3-하이드록시데칸산(hydroxydecanoic acid), 3-하이드록시운데칸산(hydroxyundecanoic acid), 3-하이드록시 도데칸산(hydroxydodecanoic acid), 3-하이드록시테트라데칸산(hydroxytetradecanoic acid), 3-하이드록시헥사데칸산(hydroxyhexadecanoic acid), 4-하이드록시발레르산(hydroxyvaleric acid), 4-하이드록시헥산산(hydroxyhexanoic acid), 4-하이드록시헵탄산(hydroxyheptanoic acid), 4-하이드록시옥탄산(hydroxyoctanoic acid), 4-하이드록시데칸산(hydroxydecanoic acid), 5-하이드록시발레르산(hydroxyvaleric acid), 5-하이드록시헥산산(hydroxyhexanoic acid), 6-하이드록시도데칸산(hydroxydodecanoic acid), 3-하이드록시(hydroxy)-4-메틸발레르산(methylvaleric acid), 3-하이드록시(hydroxy)-4-메틸헥산산(methylhexanoic acid), 3-하이드록시(hydroxy)-5-메틸헥산산(methylhexanoic acid), 3-하이드록시(hydroxy)-6-메틸헵탄산(methylheptanoic acid), 3-하이드록시(hydroxy)-4-메틸옥탄산(methyloctanoic acid), 3-하이드록시(hydroxy)-5-메틸옥탄산(methyloctanoic acid), 3-하이드록시(hydroxy)-6-메틸옥탄산(methyloctanoic acid), 3-하이드록시(hydroxy)-7-메틸옥탄산(methyloctanoic acid), 3-하이드록시(hydroxy)-6-메틸노난산(methylnonanoic acid), 3-하이드록시(hydroxy)-7-메틸노난산(methylnonanoic acid), 3-하이드록시(hydroxy)-8-메틸노난산(methylnonanoic acid), 3-하이드록시(hydroxy)-7-메틸데칸산(methyldecanoic acid), 3-하이드록시(hydroxy)-9-메틸데칸산(methyldecanoic acid), 말산(malic acid), 3-하이드록시(hydroxy)-8-아세톡시옥탄산(acetoxyoctanoic acid), 3-하이드록시(hydroxy)-9-아세톡시노난산(acetoxynonanoic acid), 페녹시(phenoxy)-3-하이드록시부티레이트(hydroxybutyric acid), 페녹시(phenoxy)-3-하이드록시발레르산(hydroxyvaleric acid), 페녹시(phenoxy)-3-하이드록시헵탄산(hydroxyheptanoic acid), 페녹시(phenoxy)-3-하이드록시옥탄산(hydroxyoctanoic acid), para-시아노페녹시(cyanophenoxy)-3-하이드록시부티레이트(hydroxybutyric acid), para-시아노페녹시(cyanophenoxy)-3-하이드록시발레르산(hydroxyvaleric acid), para-시아노페녹시(cyanophenoxy)-3-하이드록시헥산산(hydroxyhexanoic acid), para-니트로페녹시(nitrophenoxy)-3-하이드록시헥산산(hydroxyhexanoic acid), 3-하이드록시(hydroxy)-5-페닐발레르산(phenylvaleric acid), 3-하이드록시(hydroxy)-6-페닐헥산(phenylhexanoic acid), 3-하이드록시(hydroxy)-7-페닐헵탄산(phenylheptanoic acid), 3-하이드록시(hydroxy)-8-페닐옥탄산(phenyloctanoic acid), 3-하이드록시(hydroxy)-9-페닐노난산(phenylnonanoic acid), 3-하이드록시(hydroxy)-10-페닐데칸산(phenyldecanoic acid), 3-하이드록시(hydroxy)-5-시클로헥실부탄산(cyclohexylbutyric acid), 3,12-디하이드록시도데칸산(dihydroxydodecanoic acid), 3-하이드록시(hydroxy)-4,5-에폭시데칸산(epoxydecanoic acid), 3-하이드록시(hydroxy)-6,7-에폭시도데칸산(epoxydodecanoic acid), 3-하이드록시(hydroxy)-8,9-에폭시(epoxy)-5,6-cis-테트라데칸산(tetradecanoic acid), 7-시아노(cyano)-3-하이드록시헵탄산(hydroxyheptanoic acid), 9-시아노(cyano)-3-하이드록시노난산(hydroxynonanoic acid), 3-하이드록시(hydroxy)-7-플루오로헵탄산(fluoroheptanoic acid), 3-하이드록시(hydroxy)-9-플루오로노난산(fluorononanoic acid), 3-하이드록시(hydroxy)-6-클로로헥산산(chlorohexanoic acid), 3-하이드록시(hydroxy)-8-클로로옥탄산(chlorooctanoic acid), 3-하이드록시(hydroxy)-6-브로모헥산산(bromohexanoic acid), 3-하이드록시(hydroxy)-8-브로모옥탄산(bromooctanoic acid), 3-하이드록시(hydroxy)-11-브로모운데칸산(bromoundecanoic acid), 3-하이드록시(hydroxy)-2-메틸부탄산(methylbutyric acid) 및 3-하이드록시(hydroxy)-2-메틸발레르산(methylvaleric acid)로 구성된 군에서 선택된 하나 이상인 것을 특징으로 하는 하이드록시알카노에이트 알킬에스테르의 제조방법.
  7. 제1항에 있어서, (a) 단계의 배양은 질소원이 제한된 배지에서 수행하는 것을 특징으로 하는 하이드록시알카노에이트 알킬에스테르의 제조방법.
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 다음 단계를 포함하는 3-하이드록시부티레이트 메틸에스테르의 제조방법:
    (a) 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)} 생성능을 가지는 미생물을 배양하여, 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)}를 생성시키는 단계;
    (b) 상기 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)}을 함유하는 미생물을 함유하는 ,배양액의 pH를 2~5로 조절하고, 34~50℃에서 정치반응시켜, 폴리-3-하이드록시부티레이트를 자가분해시키고, 3-하이드록시부티레이트를 제조하는 단계; 및
    (c) 상기 3-하이드록시부티레이트에 메탄올을 첨가하고, 80~120℃에서 1~24시간 반응시켜 3-하이드록시부티레이트 메틸에스테르를 제조하는 단계.
  14. 삭제
  15. 제13항에 있어서, (c) 단계는 유기용매를 추가로 첨가하여 수행하는 것을 특징으로 하는 3-하이드록시부티레이트 메틸에스테르의 제조방법.
  16. 제13항에 있어서, 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)} 생성능을 가지는 미생물은 Aeromonas 속 미생물, Achromobacter 속 미생물, Acidovorax delafieldii, Acidovax facilis,, Acinetobacter 속 미생물, Actinomyces 속 미생물, Aeromonas 속 미생물, Alcaligenes 속 미생물, Alteromonas 속 미생물, Amoebobacter 속 미생물, Aphanocapa sp., Aphanothece sp. Aquaspirillum autotrophicum, Azorhizobium caulinodans, Azospirillum sp., Azospirillum 속 미생물, Azotobacter 속 미생물, Bacillus 속 미생물, Beggiatoa 속 미생물, Beijerinckia 속 미생물, Beneckea 속 미생물, Bordetella pertussis, Bradyrhizobium japonicum, Caryophamon latum, Caulobacter 속 미생물, Chlorogloea 속 미생물, Chromatium 속 미생물, Chromobacterium 속 미생물, Clostridium 속 미생물, Comamonas 속 미생물, Corynebacterium 속 미생물, Cyanobacteria 속 미생물, Derxia 속 미생물, Desulfonema 속 미생물, Desulfosacina variabilis, Desulfovibrio sapovorans, Ectothiorhodospira 속 미생물, Ferrobacillus ferroxidans, Flavobacterium sp., Haemophilus influenzae, Halobacterium 속 미생물, Haloferax mediterranei, Hydroclathratus clathratus, Hydrogenomonas facilis, Hydrogenophaga 속 미생물, Hyphomicrobium 속 미생물, Ilyobacter delafieldii, Labrys monachus, Lamprocystis reseopersicina, Lampropedia hyalina, Legionella sp., Leptothrix discophorus, Methylobacterium 속 미생물, Methylosinus 속 미생물, Micrococcus 속 미생물, Mycobacterium 속 미생물, Nitrobacter 속 미생물, Nocardia 속 미생물, Paracoccus dentrificans, Oscillatoria limosa, Penicillium cyclopium, Photobacterium 속 미생물, Physarum ploycephalum, Pseudomonas 속 미생물, Ralstonia 속 미생물, Rhizobium 속 미생물, Rhodobacillus 속 미생물, Rhodobacter 속 미생물, Rhodococcus 속 미 생물, Rhodocyclus 속 미생물, Rhodomicrobium vannielii, Rhodopseudomonas 속 미생물, Rhodospirillum 속 미생물, Sphingomonas paucimobilis, Spirillum 속 미생물, Spirulina 속 미생물, Staphylococcus 속 미생물, Stella 속 미생물, Streptomyces 속 미생물, Syntrophomonas wolfei, Thermophilic cyanobacteria, Thermus thermophilus, Thiobacillus A2, Thiobacillus 속 미생물, Thiocapsa 속 미생물, Thiocystis violacea, Vibrio parahaemolyticus, Xanthobacter autotrophicus, Xanthomonas maltophilia, Zoogloea 속 및 폴리-3-하이드록시부티레이트 생성능을 가지는 효소를 코딩하는 유전자로 형질전환된 미생물로 구성된 군에서 선택되는 것을 특징으로 하는 3-하이드록시부티레이트 메틸에스테르의 제조방법.
  17. 제14항에 있어서, 폴리-3-하이드록시부티레이트{poly(3-hydroxybutyrate)} 생성능을 가지는 미생물은 Alacligenes latus인 것을 특징으로 하는 3-하이드록시부티레이트 메틸에스테르의 제조방법.
  18. 제13항에 있어서, (a) 단계의 배양은 질소원이 제한된 배지에서 수행하는 것을 특징으로 하는 3-하이드록시부티레이트 메틸에스테르의 제조방법.
  19. 삭제
  20. 제15항에 있어서, 유기용매는 클로로포름인 것을 특징으로 하는 3-하이드록시부티레이트 메틸에스테르의 제조방법.
KR1020090060496A 2009-07-03 2009-07-03 폴리하이드록시알카노에이트 생성능을 가지는 미생물을 이용한 하이드록시알카노에이트 알킬에스테르의 제조방법 KR101076043B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090060496A KR101076043B1 (ko) 2009-07-03 2009-07-03 폴리하이드록시알카노에이트 생성능을 가지는 미생물을 이용한 하이드록시알카노에이트 알킬에스테르의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090060496A KR101076043B1 (ko) 2009-07-03 2009-07-03 폴리하이드록시알카노에이트 생성능을 가지는 미생물을 이용한 하이드록시알카노에이트 알킬에스테르의 제조방법

Publications (2)

Publication Number Publication Date
KR20110002951A KR20110002951A (ko) 2011-01-11
KR101076043B1 true KR101076043B1 (ko) 2011-10-21

Family

ID=43611012

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090060496A KR101076043B1 (ko) 2009-07-03 2009-07-03 폴리하이드록시알카노에이트 생성능을 가지는 미생물을 이용한 하이드록시알카노에이트 알킬에스테르의 제조방법

Country Status (1)

Country Link
KR (1) KR101076043B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407233B1 (ko) 2012-03-05 2014-06-16 한국생명공학연구원 보트리오코커스 브라우니의 생장 촉진 및 지방산 함량 증가 특성을 가진 신규 미생물 리조비움 속 kb10
CN104830709B (zh) * 2015-02-16 2017-10-17 南京大学 一株耐高温的好氧反硝化菌及其应用
CN112940969A (zh) * 2021-02-07 2021-06-11 兴安盟莱绅生物农业有限公司 一种新型微生物菌剂及大豆种植方法

Also Published As

Publication number Publication date
KR20110002951A (ko) 2011-01-11

Similar Documents

Publication Publication Date Title
Obruca et al. Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates
Kumar et al. Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate
Poomipuk et al. Poly-β-hydroxyalkanoates production from cassava starch hydrolysate by Cupriavidus sp. KKU38
US9322004B2 (en) Method of producing fatty acid alkyl ester using microorganisms having ability to produce oil
US6472188B1 (en) Method for producing hydroxycarboxylic acids by auto-degradation of polyhydroxyalkanoates
Ibrahim et al. Zobellella denitrificans strain MW1, a newly isolated bacterium suitable for poly (3‐hydroxybutyrate) production from glycerol
Ng et al. Evaluation of jatropha oil to produce poly (3-hydroxybutyrate) by Cupriavidus necator H16
Lakshman et al. Extraction of polyhydroxyalkanoate from Sinorhizobium meliloti cells using Microbispora sp. culture and its enzymes
CN102325883B (zh) 微生物的培养方法及利用微生物制造物质的方法
Diniz et al. High-cell-density cultivation of Pseudomonas putida IPT 046 and medium-chain-length polyhydroxyalkanoate production from sugarcane carbohydrates
Xu et al. Comparative study on the production of poly (3-hydroxybutyrate) by thermophilic Chelatococcus daeguensis TAD1: a good candidate for large-scale production
JP2004535754A (ja) 3−ヒドロキシカルボン酸の製造ならびに枝分れポリマーにおける使用
US5871980A (en) Process for the microbiological production of pha-polymers
Walsh et al. Plant oils and products of their hydrolysis as substrates for polyhydroxyalkanoate synthesis
US20120219993A1 (en) Method of producing microbial intracellular products from volatile fatty acids
CN102597199B (zh) 制备麻疯树油甲酯和副产物的综合方法
Cruz et al. A process engineering approach to improve production of P (3HB) by Cupriavidus necator from used cooking oil
KR101076043B1 (ko) 폴리하이드록시알카노에이트 생성능을 가지는 미생물을 이용한 하이드록시알카노에이트 알킬에스테르의 제조방법
CN101892271A (zh) 发酵法生产聚羟基脂肪酸酯
Szacherska et al. Effect of short-and medium-chain fatty acid mixture on polyhydroxyalkanoate production by Pseudomonas strains grown under different culture conditions
CN101235400A (zh) 利用活性污泥生产聚羟基脂肪酸酯的方法
WO2023079455A1 (en) Integrated process for the production of polyhydroxyalkanoates and bioethanol from lignocellulose hydrolyzate
CN101760485A (zh) 一种新型生物材料多聚羟基烷酸的制备方法
Aremu et al. Production of polyhydroxybutyrate (PHB) by Pseudomonas putida strain KT2440 on cassava hydrolysate medium
Alvarado-Cordero et al. Production of polyhydroxybutyrate (PHB) by bacillus megaterium DSM 32 from residual glycerol of the bioenergy industry

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140826

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151015

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171017

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 8