KR101065387B1 - 연료 전지 시스템 및 연료 전지 시스템의 구동 방법 - Google Patents

연료 전지 시스템 및 연료 전지 시스템의 구동 방법 Download PDF

Info

Publication number
KR101065387B1
KR101065387B1 KR1020090023631A KR20090023631A KR101065387B1 KR 101065387 B1 KR101065387 B1 KR 101065387B1 KR 1020090023631 A KR1020090023631 A KR 1020090023631A KR 20090023631 A KR20090023631 A KR 20090023631A KR 101065387 B1 KR101065387 B1 KR 101065387B1
Authority
KR
South Korea
Prior art keywords
fuel
fuel cell
flow rate
resistor
cell stack
Prior art date
Application number
KR1020090023631A
Other languages
English (en)
Other versions
KR20100104912A (ko
Inventor
박정건
윤성기
나영승
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR1020090023631A priority Critical patent/KR101065387B1/ko
Priority to US12/711,122 priority patent/US20100239936A1/en
Priority to EP10156881.4A priority patent/EP2230710B1/en
Publication of KR20100104912A publication Critical patent/KR20100104912A/ko
Application granted granted Critical
Publication of KR101065387B1 publication Critical patent/KR101065387B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/10Means for stopping flow from or in pipes or hoses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명에 따른 연료 전지 시스템은 연료 전지 스택으로 안정적인 양의 연료를 공급할 수 있도록 본 발명의 일 실시예에 따른 연료 전지 시스템은, 연료와 산화제의 전기 화학적인 반응에 의해 전기 에너지를 발생시키는 연료 전지 스택과, 연료를 상기 연료 전지 스택으로 공급하는 연료 공급부와 산화제를 상기 연료 전지 스택으로 공급하는 산화제 공급부, 및 상기 연료 공급부와 상기 연료 전지 스택 사이에 설치되며, 연료를 가압하는 이송 펌프와 상기 이송 펌프의 전단에 연결 설치되어 유량을 감소시키는 제1 저항체와 상기 이송 펌프의 후단에 연결 설치되어 유량을 감소시키는 제2 저항체를 포함하는 유량 조절부를 포함한다.
또한, 본 발명의 일 실시예에 따른 연료 전지 시스템의 구동 방법은 연료 공급부에서 연료 전지 스택으로 연료를 공급함에 있어서, 제1 저항체로 유량을 감소시키는 제1 유량 감소 단계와, 이송 펌프를 작동시키는 가동 단계와, 제2 저항체로 유량을 감소시키는 제2 유량 감소 단계, 및 이송 펌프의 작동을 중지하는 정지 단계를 포함한다.
연료 전지, 저항체, 펌프, 유량, 연료

Description

연료 전지 시스템 및 연료 전지 시스템의 구동 방법{FUEL CELL SYSTEM AND OPERATING METHOD THEREOF}
본 발명은 연료 전지 시스템 및 연료 전지 시스템의 구동 방법에 관한 것으로서, 보다 상세하게는 연료를 공급하는 구조를 개선한 연료 전지 시스템 및 연료 전지 시스템의 구동 방법에 관한 것이다.
연료 전지는 연료(수소 또는 개질 가스)와 산화제(산소 또는 공기)를 이용하여 전기 화학적으로 전력을 생산하는 장치로서, 외부에서 지속적으로 공급되는 연료(수소 또는 개질 가스)와 산화제(산소 또는 공기)를 전기 화학 반응에 의하여 직접 전기에너지로 변환시키는 장치이다.
연료 전지의 산화제로는 순수 산소나 산소가 다량 함유되어 있는 공기를 이용하며, 연료로는 순수 수소 또는 탄화수소계 연료(LNG, LPG, CH3OH)를 개질 하여 생성된 수소가 다량 함유된 연료를 사용한다.
이러한 연료 전지는 크게, 고분자 전해질형 연료 전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC)와, 직접 산화형 연료 전지(Direct Oxydation Fuel Cell), 및 직접 메탄올형 연료 전지(Direct Methanol Fuel Cell: DMFC)로 구분될 수 있다.
고분자 전해질형 연료 전지는 스택(stack)이라 불리는 연료 전지 본체를 포함하며, 개질기로부터 공급되는 수소 가스와, 공기펌프 또는 팬의 가동에 의해 공급되는 공기의 전기 화학적인 반응을 통해 전기 에너지를 발생시키는 구조로서 이루어진다. 여기서 개질기는 연료를 개질하여 이 연료로부터 수소 가스를 발생시키고, 이 수소 가스를 스택으로 공급하는 연료처리장치로서의 기능을 한다.
직접 산화형 연료 전지는 고분자 전해질형 연료 전지와 달리, 수소 가스를 사용하지 않고 연료인 알코올류를 직접적으로 공급받아 이 연료 중에 함유된 수소와, 별도로 공급되는 공기의 전기 화학적인 반응에 의해 전기 에너지를 발생시키는 구조로서 이루어진다. 직접 메탄올형 연료 전지는 직접 산화형 연료 전지 중에서 메탄올을 연료로 사용하는 전지를 말한다.
이하, 설명의 편의를 위하여 이러한 연료 전지 중 직접 메탄올형 연료 전지(DMFC)를 중심으로 설명한다.
연료 전지 시스템에서 균일한 양의 연료를 공급하는 것은 매우 중요하다. 20W급 직접 메탄올형 연료 전지 시스템의 경우, 0.03cc/min의 유량이 변화하면 약 10%의 연료 효율 차이가 발생한다. 이러한 유량의 변화는 운전 농도, 운전 온도, 및 운전 압력 등의 운전 상태 변화를 유발하여 연료 전지 스택의 안정성을 저하시키고 수명을 감소시키는 원인이 된다.
미세 유량 제어를 위한 가장 보편적인 방법은 정밀 유량계 및 고정밀 펌프를 사용하는 것이다. 그러나 유량이 큰 유량을 측정하는 정밀 유량계는 상용화되어 있으나, 작은 유량을 측정하는 정밀 유량계는 고가이며, 온도, 압력, 펌프의 맥동에 영향을 많이 받아서 정확한 유량을 측정하기 어려운 문제가 있다.
또한, 고정밀 펌프는 압력의 변화에 영향을 많이 받아서 정밀하게 연료를 공급하기 어려운 문제가 있다. 운전 압력의 변화는 연료 카트리지의 잔량 변화와 시스템 운전 방향의 변화, 또는 연료의 이동 압력 변화 등 다양한 원인에 따라 발생한다. 따라서 이러한 운전 압력 변화를 원천적으로 차단하기 어려운 실정에서 고정밀 펌프를 이용하여 정밀한 유량을 제어하는 것은 현실적으로 매우 어렵다.
또한, 저유량 고정밀 펌프를 이용하는 경우, 액체 펌프에서 배관 내부에 기체가 차 있을 때, 액체를 끌어당길 수 있는 셀프 프라이밍(self-priming)이 어려운 문제가 있다. 즉, 이는 저유량 고정밀 펌프의 경우 작동 압력이 낮게 설계되기 때문이며, 배관에 기체가 차서 음압이 걸리는 경우에는 연료 공급이 중지되는 문제가 발생할 수 있다.
또한, 저유량 고정밀 펌프의 경우 정밀한 유량을 공급하기 위해서 rpm 제어, frequency 제어, PWM 제어 등의 정교한 제어가 필요하고 이러한 제어를 수행하는 회로의 구성이 복잡해지며, 고장 발생이 잦은 문제가 있다.
또한, 저유량 고정밀 펌프의 경우, 이물질의 유입에 취약하고 장시간 사용시 성능의 저하가 심하여 내구성이 약한 문제가 있다. 저유량 고정밀 펌프는 통상적으로 실험실에서 사용하기 위해 제조된 것으로서, 이물질이 많은 연료를 오랜 시간 공급하는 곳에 사용되기에는 내구성이 취약한 문제가 있는 것이다.
또한, 저유량 고정밀 펌프의 경우, 펌프의 가격이 매우 비싸서 실제적으로 연료 전지에 적용하기에는 무리가 있다.
본 발명은 상기한 바와 같은 문제를 해결하기 위해 안출된 것으로서, 본 발명의 목적은 안정적인 유량의 연료를 스택으로 공급할 수 있는 연료 전지 스택 및 이의 제조 방법을 제공함에 있다.
본 발명의 다른 목적은 제조 원가를 절감할 수 있는 연료 전지 시스템을 제공함에 있다.
본 발명의 일 실시예에 따른 연료 전지 시스템은, 연료와 산화제의 전기 화학적인 반응에 의해 전기 에너지를 발생시키는 연료 전지 스택과, 연료를 상기 연료 전지 스택으로 공급하는 연료 공급부와 산화제를 상기 연료 전지 스택으로 공급하는 산화제 공급부, 및 상기 연료 공급부와 상기 연료 전지 스택 사이에 설치되며, 연료를 가압하는 이송 펌프와 상기 이송 펌프의 전단에 연결 설치되어 유량을 감소시키는 제1 저항체와 상기 이송 펌프의 후단에 연결 설치되어 유량을 감소시키는 제2 저항체를 포함하는 유량 조절부를 포함한다.
상기 제1 저항체는 상기 제1 저항체로 연료가 유입되는 쪽에 설치된 관의 단면적보다 더 작은 최소 단면적은 갖도록 형성될 수 있으며, 상기 제2 저항체는 상기 제2 저항체로 연료가 유입되는 쪽에 설치된 관의 단면적보다 더 작은 최소 단면 적은 갖도록 형성될 수 있다.
상기 제1 저항체는 일방향 밸브(check valve)로 이루어질 수 있으며, 상기 제1 저항체는 노즐(nozzle) 또는 밸브(valve)로 이루어질 수도 있다. 또한, 상기 제2 저항체는 일방향 밸브로 이루어질 수 있으며, 상기 제2 저항체는 노즐 또는 밸브로 이루어질 수도 있다.
상기 이송 펌프는 상기 연료 전지 스택으로 공급되는 연료 유량의 100배지 800배 큰 정격 유량을 갖는 펌프로 이루어질 수 있으며, 상기 연료 전지 시스템은 직접 메탄올형으로 이루어질 수 있다.
한편, 상기 이송 펌프의 최대 압력을 P_max, 이송 펌프에 의한 최대 유량을 R_max, 제1 저항체 및 제2 저항체에 의하여 감소된 유량을 R1이라 하고, 제1 저항체 및 제2 저항체에서 발생하는 저항 압력의 합을 P0라 할 때 유량과 압력이 직선적인 관계가 있다고 가정하면, P0=(R_max - R1)×P_max/R_max를 만족할 수 있다. 실제 펌프의 경우 유량과 압력이 반드시 직선적인 관계에 있는 것은 아니지만, 거의 직선에 가까운 관계에 있으므로 상기한 식을 적용할 수 있다. 또한, 상기 제2 저항체와 상기 연료 전지 스택 사이에는 버퍼가 설치될 수 있다.
본 발명의 일 실시예에 따른 연료 전지 시스템의 구동 방법은 연료 공급부에서 연료 전지 스택으로 연료를 공급함에 있어서, 제1 저항체로 유량을 감소시키는 제1 유량 감소 단계와, 이송 펌프를 작동시키는 가동 단계와, 제2 저항체로 유량을 감소시키는 제2 유량 감소 단계, 및 이송 펌프의 작동을 중지하는 정지 단계를 포 함한다.
제1 저항체 및 제2 저항체로 감소된 후 유동하는 유량을 R1, 이송 펌프가 동작하는 작동 시간을 t1, 이송 펌프의 작동이 멈추는 휴지 시간을 t2, 상기 연료 전지 스택으로 공급되는 목표 유량을 R2라 할 때, R2=(R1×t1)/(t1+t2)을 만족할 수 있다.
상기 가동 단계와 상기 정지 단계는 교대로 단계 수행될 수 있으며, 상기 제1 저항체는 일방향 밸브, 노즐, 밸브로 이루어진 군에서 선택되는 어느 하나로 이루어질 수 있다. 또한, 상기 제2 저항체는 일방향 밸브, 노즐, 밸브로 이루어진 군에서 선택되는 어느 하나로 이루어질 수 있다.
상기 이송 펌프는 상기 연료 전지 스택으로 공급되는 목표 연료 유량의 100배지 800배 큰 정격 유량을 갖는 펌프 일 수 있으며, 연료 전지 시스템의 구동 방법은 제2 저항체와 연료 전지 스택 사이에 설치된 버퍼를 이용하여 연료의 이동을 분산시키는 단계를 더 포함할 수 있다.
상기와 같이 본 발명에 따르면 저항체들과 펌프를 이용하여 압력의 변화에 관계없이 정밀한 유량의 연료를 연료 전지 스택으로 공급할 수 있다.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 당업자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되는 것은 아니다.
도 1은 본 발명의 제1 실시예에 따른 연료 전지 시스템 개략적으로 도시한 구성도이다.
상기한 도면을 참조하여 설명하면, 본 실시예에 따른 연료 전지 시스템(100)은 메탄올과 산소의 직접적인 반응에 의하여 전기 에너지를 발생시키는 직접 메탄올형 연료 전지(Direct Methanol Fuel Cell) 방식을 채용할 수 있다.
다만 본 발명이 이에 제한되는 것은 아니며, 본 실시예에 따른 연료 전지 시스템은 에탄올, LPG, LNG, 가솔린, 부탄 가스 등과 같이 수소를 함유한 액체 또는 기체 연료를 산소와 반응시키는 직접 산화형 연료 전지(Direct Oxidation Fuel Cell) 방식으로서 구성될 수 있다. 또한, 연료를 수소가 풍부한 개질가스로 개질하여 사용하는 고분자 전해질형 연료 전지(Polymer Electrode Membrane Fuel Cell; PEMFC)로 이루어질 수도 있다.
이러한 연료 전지 시스템(100)에 사용되는 연료라 함은 메탄올, 에탄올 또는 천연가스, LPG 등과 같이 액상 또는 기체 상태로 이루어진 탄화수소계 연료를 통칭한다.
그리고 본 연료 전지 시스템(100)은 수소와 반응하는 산화제로서 별도의 저장 수단에 저장된 산소 가스를 사용할 수 있으며, 공기를 사용할 수도 있다.
본 실시예에 따른 연료 전지 시스템(100)은 연료와 산화제를 이용하여 전력을 발생시키는 연료 전지 스택(30)과 연료 전지 스택(30)으로 연료를 공급하는 연료 공급부(10)와, 전기 생성을 위한 산화제를 연료 전지 스택(30)으로 공급하는 산화제 공급부(20), 및 연료 전지 스택(30)과 연료 공급부(10) 사이에 설치된 유량 조절부(40)를 포함한다.
연료 공급부(10)는 연료 전지 스택(30)으로 연료를 공급하는 것으로서, 액상의 연료를 저장하는 연료 탱크(12)와, 연료 탱크(12)에 연결 설치되는 연료 펌프(14)를 구비한다. 상기한 연료 펌프(14)는 소정의 펌핑력에 의해 연료 탱크(12)에 저장된 액상의 연료를 연료 탱크(12)의 내부로부터 배출시키는 기능을 갖는다. 본 실시예에서 연료 공급부(10)에 저장된 연료는 메탄올로 이루어질 수 있다.
산화제 공급부(20)는 연료 전지 스택(30)과 연결 설치되며, 소정의 펌핑력으로 외부 공기를 흡입하여 연료 전지 스택(30)으로 공급할 수 있는 산화제 펌프(25)를 구비한다.
도 2는 도 1에 도시한 연료 전지 스택의 구조를 나타낸 분해 사시도이다.
도 1 및 도 2를 참조하여 연료 전지 스택에 대하여 자세히 살펴본다. 본 연료 전지 스택(30)은 연료와 산화제의 산화/환원 반응을 유도하여 전기 에너지를 발생시키는 복수의 전기 생성부들(35)을 구비한다.
각각의 전기 생성부(35)는 전기를 발생시키는 단위 셀을 의미하며, 연료와 산화제 중의 산소를 산화/환원시키는 막-전해 집합체(Membrane Electrode assembly: MEA)(31) 및, 연료와 산화제를 막-전극 집합체(31)로 공급하기 위한 세퍼레이터(당 업계에서는 바이폴라 플레이트라고도 한다.)(separator)(32, 33)를 포함한다.
전기 생성부(35)는 막-전극 집합체(31)를 중심에 두고 이의 양측에 세퍼레이터(32, 33)가 각각 배치된 구조를 갖는다. 막-전극 집합체(31)는 중앙에 배치된 전해질막과 전해질막의 일측에 배치된 캐소드 전극과 전해질막의 타측에 배치된 애노드 전극을 포함한다.
세퍼레이터(32, 33)는 막-전극 집합체(31)를 사이에 두고 밀착 배치되어, 막-전극 집합체(31)의 양측에 각각 연료통로와 공기통로를 형성한다. 이 때 연료통로는 막-전극 집합체(31)의 애노드 전극 측에 배치되고, 공기통로는 막-전극 집합체(31)의 캐소드 전극 측에 배치된다. 그리고 전해질막은 애노드 전극에서 생성된 수소 이온을 캐소드 전극으로 이동시켜, 캐소드 전극의 산소와 결합되어 물을 생성시키는 이온 교환을 가능하게 한다
이로써 상기 애노드 전극에서는 산화 반응을 통해 수소를 전자와 프로톤(수소이온)으로 분해한다. 그리고 프로톤이 전해질막을 통하여 캐소드 전극으로 이동되고, 전자는 전해질막을 통하여 이동되지 못하고 세퍼레이터(33)를 통해 이웃하는 막-전극 집합체(31)의 캐소드 전극으로 이동되는데 이 때 전자의 흐름으로 전류를 발생시킨다. 또한 캐소드 전극에서는 이동된 프로톤 및 전자와 산소의 환원 반응을 통해 수분이 생성된다.
본 연료 전지 시스템(100)은 위와 같은 복수의 전기 생성부(35)가 연속적으로 배치됨으로써 연료 전지 스택(30)을 구성하게 된다. 여기서 연료 전지 스택(30)의 제일 외각에는 연료 전지 스택(30)을 일체로 고정하는 엔드 플레이트(37, 38)가 설치된다.
본 실시예에 따른 연료 전지 스택(30)은 용량인 작은 20w급 연료 전지 스택(30)으로 이루어진 것을 예로서 설명한다. 다만 본 발명이 이에 제한되는 것은 아니다.
한편, 연료 전지 스택(30)과 연료 공급부(10) 사이에 설치된 유량 조절부(40)는 이송 펌프(41)와 제1 일방향 밸브(check valve)(42), 제2 일방향 밸브(43)를 포함한다.
이송 펌프(41)는 고유량 펌프로 이루어지는데, 연료 전지 스택(30)으로 공급되는 목표 유량이 0.4cc/min인 경우, 100cc/min의 정격 유량을 갖는 펌프로 이루어질 수 있다.
보다 자세히 설명하면 본 실시예에 따른 이송 펌프(41)는 목표 유량에 비하여 100배 내지 800배 더 큰 정격 유량을 갖는다. 이와 같이 이송 펌프(41)가 고유량 펌프로 이루어지면 이송 펌프(41)가 수십 ㎪의 범위에서 작동하므로 10㎪ 범위 내의 작동 압력의 변화는 이송 펌프(41)에 큰 영향을 미치지 못한다.
따라서 수두가 변화하더라도 안정적으로 연료를 공급할 수 있으며, 작동 압력이 높으므로 셀프 프라이밍(self priming)이 가능하다. 또한, 고유량 펌프는 유량에 따라 고장의 발생이 낮으므로 연료 전지 시스템의 내구성이 향상되고, 제조 단가를 낮출 수 있다.
또한, 이송 펌프(41)는 정밀도가 낮은 펌프로 이루어질 수 있다. 이송 펌프(41)가 저정밀 펌프로 이루어지더라도 제1 일방향 밸브(42), 및 제2 일방향 밸브(43)가 이송 펌프(41)의 유량을 감소시키므로 충분히 유량의 정밀도를 확보할 수 있다.
즉, 100cc/min의 유량을 갖는 이송 펌프(41)에서 유량 오차가 3%인 3cc/min 정도 발생한다고 가정하면, 이의 유량을 4/1000로 감소시켜서 0.4cc/min로 감소시키면 실질적인 유량 오차는 0.0012cc/min으로 아주 작아지는 것을 알 수 있다.
큰 유량을 갖는 펌프에서 오차를 3%로 설정하는 것은 쉽지만 미세한 유량을 갖는 펌프에서 오차를 3%로 제어하는 것은 매우 어렵다.
제1 일방향 밸브(42)는 이송 펌프(41)와 연료 공급부(10) 사이에 설치되며 연료의 유량을 감소시키는 제1 저항체로서 역할을 한다. 본 기재에서 저항체라 함은 유로의 단면적을 감소시켜서 저항체의 전방에서 압력은 증가하고 저항체를 통과하는 유량은 감소되는 장치를 의미한다.
제1 일방향 밸브(42)에서 연료가 통과하는 최소 단면적은 제1 일방향 밸브(42)의 입구 쪽에 설치된 관의 단면적보다 작게 형성된다. 이에 따라 제1 일방향 밸브(42)를 통과하는 과정에서 저항 압력이 발생하여, 제1 일방향 밸브(42)는 1차적으로 유량을 감소시키고, 연료 공급부(10)에서 전달되는 압력의 변화를 완충시킬 수 있다.
연료 탱크(12)의 높이에 따른 수두율의 변화와 연료 펌프(14)의 맥동에 따른 압력 변화 등에 따라 이송 펌프(41)로 압력의 변화가 전달되는데, 제1 일방향 밸브(42)는 이러한 변화를 완충시킨다.
제2 일방향 밸브(43)는 이송 펌프(41)와 연료 전지 스택(30) 사이에 설치되며 연료의 유량을 감소시키는 제2 저항체로 역할을 한다. 제1 일방향 밸브(42)에서 연료가 통과하는 최소 단면적은 제1 일방향 밸브(42)의 입구 쪽에 설치된 관의 단면적보다 작게 형성된다. 이에 따라 제2 일방향 밸브는 이송 펌프(41)에서 나온 연료 유량을 감소시키며, 이송 펌프(41)에서 발생하는 맥동 압력을 감소시킬 수 있다.
이와 같이 제1 일방향 밸브(42)와 제2 일방향 밸브(42)를 이용하여 유량을 감소시키면 더욱 정밀하게 소량의 연료를 연료 전지 스택(30)으로 공급할 수 있다. 또한, 일방향 밸브를 적용함으로써 연료가 역류하는 것을 방지할 수 있을 뿐만 아니라, 미리 적정한 저항을 설정하여 유량을 조절할 수 있다.
100cc/min의 유량을 갖는 이송 펌프(41)를 적용할 때, 제1 일방향 밸브(42)에서 유량을 1/2로 감소시키고, 제2 일방향 밸브(43)에서 유량을 1/5로 감소시키면 제2 일방향 밸브(43)를 통과하는 유량을 10cc/min으로 감소시킬 수 있다. 이 상태에서 이송 펌프(41)의 작동을 제어하여 작동 시간을 1초, 미작동 시간을 24초로 하면, 연료 전지 스택(30)으로 0.4cc/min의 연료를 공급할 수 있다.
이송 펌프(41)의 최대 압력을 P_max, 이송 펌프(41)에 의한 최대 유량을 R_max, 제1 일방향 밸브(42) 및 제2 일방향 밸브(43)에 의하여 감소될 유량을 R1이라 하면, 제1 일방향 밸브(42) 및 제2 일방향 밸브(43)에서 발생하는 저항 압력의 합 P0를 아래의 식 1과 같이 나타낼 수 있다.
[식 1]
P0=(R_max - R1)×P_max/R_max
상기한 식 1을 통해서 제1 일방향 밸브(42) 및 제2 일방향 밸브(43)에 의하여 발생될 저항 압력을 용이하게 설정할 수 있다.
일방향 밸브들(42, 43)을 설치하지 않고 대용량 펌프를 적용하는 경우에는 펌프의 작동 시간이 너무 짧고 짧은 시간 동안 공급되는 유량이 너무 커서 연료 효율이 저하되고 연료의 분출 압력으로 연료 전지 스택의 수명이 저하되는 문제가 있다.
또한, 하나의 일방향 밸브만 설치된 경우에도 어느 정도 유량이 감소될 수는 있으나, 펌프에서 배출되는 유량이 너무 많아서 펌프의 작동 시간이 너무 짧아지고 이에 따라 연료 효율이 저하될 뿐만 아니라, 연료 전지 스택에 무리한 압력이 가해지는 문제가 발생된다.
그러나 본 실시예와 같이 2개의 일방향 밸브(42, 43)를 이용하여 2단계로 유량을 감소시키면 작동 시간의 조절을 통해서 적정한 양의 연료를 연료 전지 스택(30)으로 공급할 수 있다.
유량 조절부(40)는 제2 일방향 밸브(43)와 연료 전지 스택(30) 사이에 설치된 버퍼(buffer)(46)를 더 포함할 수 있다. 버퍼(46)는 작동 기간과 정지 기간 사이에 발생하는 유량의 변화를 완충하는 역할을 한다. 버퍼(46)에 일시적으로 저장된 연료는 이송 펌프(41)에 의한 가압력으로 점진적으로 연료 전지 스택(30)으로 공급된다.
본 실시예에 따른 연료 전지 시스템(100)의 구동 방법에 대하여 이하에서 살펴 본다.
본 실시예에 따른 연료 전지 시스템(100)의 구동 방법은 제1 저항체로 유량을 감소시키는 제1 유량 감소 단계와, 이송 펌프(41)를 작동시키는 가동 단계와, 제2 저항체로 유량을 감소시키는 제2 유량 감소 단계, 및 이송 펌프(41)의 작동을 중지하는 정지 단계를 포함한다.
여기서 제1 저항체는 제1 일방향 밸브(42)로 이루어지며, 제2 저항체는 제2 일방향 밸브(43)로 이루어진다. 다만 본 발명이 이에 제한되는 것은 아니며, 제1 저항체 및 제2 저항체는 다음에서 설명하는 노즐 또는 밸브로 이루어질 수도 있다.
제1 저항체 및 제2 저항체로 감소된 후 유동하는 유량을 R1, 이송 펌프(41)가 동작하는 가동 시간을 t1, 이송 펌프(41)의 작동이 멈추는 정지 시간을 t2, 연료 전지 스택(30)으로 공급되는 목표 유량을 R2라 하면, t1과 t2의 관계는 아래의 [식 2]으로 나타낼 수 있다.
[식 2]
R2=(R1×t1)/(t1+t2)
이와 같이 가동 시간과 정지 시간을 설정하면, 가동 단계 내지 정지 단계를 반복적으로 실시하여 적정한 양의 연료를 연료 전지 스택(30)으로 공급할 수 있다. 가동 시간 동안 분출된 연료는 천천히 연료 전지 스택(30)으로 공급된다. 이는 연료 전지 스택(30) 내부의 연료가 급격하게 배출되는 것이 아니라 작은 유로를 통해서 일정한 속도로 이동하기 때문이다. 따라서 추가로 공급된 연료도 관 내에서 대기하고 있다가 정지 기간 동안 천천히 연료 전지 스택(30)으로 유입된다.
또한, 본 실시예에 따른 연료 전지 시스템(100)의 구동 방법은 버퍼(46)를 이용하여 연료 전지 스택(30)으로 공급되는 연료의 이동을 분산시키는 단계를 더 포함한다. 이 단계에서는 일시적으로 버퍼(46)에 연료를 저장하였다가 정지 기간 동안 천천히 연료 전지 스택(30)으로 연료를 공급한다.
이 단계를 통해서 이송 펌프에 의하여 연료 전지 스택으로 가해지는 압력을 완화시킬 수 있으며, 연료가 연료 전지 스택(30) 전체로 더욱 균일하게 공급될 수 있다.
도 6은 본 발명 제1 실시예에 따른 연료 전지 시스템의 연료 전지 스택으로 유입되는 연료의 유량을 나타낸 그래프이다.
본 측정에 사용된 연료 전지 시스템은 용량이 40W급이며, 목표 연료 유량은 0.4cc/min이다. 도 6을 살펴보면, 일정한 편차는 있지만 거의 균일한 양의 연료가 연료 전지 스택(30)으로 유입되는 것을 알 수 있다. 이와 같이 고유량 이송 펌프를 적용하더라도 정밀도가 높게 유량을 제어할 수 있었다.
도 7은 본 발명의 제1 실시예에 따른 연료 전지 시스템에서 수두의 변화에 따라 연료 전지 스택으로 유입되는 연료의 유량을 나타낸 그래프이다.
본 측정에 사용된 연료 전지 시스템은 용량이 40W급이며, 목표 연료 유량은 0.22cc/min이다.
연료 탱크의 수두가 0cm인 경우와, 70cm인 경우, -70cm인 경우를 각각 비교하여 실험한 결과 도 7에 도시된 바와 같이 유량이 크게 변하지 않고 연료 전지 스택(30)으로 공급됨을 알 수 있다.
도 8a는 본 발명의 제1 실시예에 따른 연료 전지 시스템의 출력 및 전압을 나타낸 그래프이고, 도 8b는 본 발명의 제1 실시예에 따른 연료 전지 시스템의 연료 농도 및 셀 편차를 나타낸 그래프이며, 도 8c는 본 발명의 제1 실시예에 따른 연료 전지 스택의 애노드 출구 온도를 나타낸 그래프이다.
본 측정에 사용된 연료 전지 시스템은 용량이 40W급이며 공급되는 연료의 유량의 0.4cc/min이다. 이송 펌프의 가동 시간은 1초이며 정지 시간은 9.5초이다.
도 8a에 도시된 바와 같이 연료 공급 초기에는 전압 및 출력이 불안정한 면이 있었으나, 안정화 된 이후에는 거의 일정한 전압과 출력을 나타낸 것을 알 수 있다. 전압 및 출력이 주기적으로 감소하는 것은 리커버링을 위하여 공기 및 연료의 공급을 조절하였기 때문이다.
한편, 도 8b에 도시된 바와 같이 셀의 전압 편차도 거의 일정하게 유지되었으며, 수두 변화에도 불구하고 연료의 농도도 거의 일정하게 유지되었다. 수두의 변화에 따른 운전 압력은 ±5㎪이었으며, 이러한 운전 압력의 변화에도 연료의 농도는 0.705±0.038㏖로 매우 안정적으로 유지되었다. 셀 편차 및 농도의 변화가 주기적으로 증가하는 이유는 상기한 리커버링을 위한 공정 때문이다.
한편, 도 8c에 도시된 바와 같이 애노드 출구에서 배출되는 미반응 연료의 온도를 측정한 결과 온도는 거의 60℃로 꾸준하게 유지되었다.
상기한 바와 같이 본 발명의 제1 실시예에 따른 연료 전지 시스템(100)의 성능을 평가한 결과 전반적으로 우수한 안정성을 얻을 수 있었다.
도 3은 본 발명의 제2 실시예에 따른 연료 전지 시스템의 유량 조절부를 나타낸 구성도이다.
본 실시예에 따른 유량 조절부(50)는 연료 공급부(10)와 연료 전지 스택(30) 사이에 설치된 이송 펌프(51)와 제1 노즐(52), 및 제2 노즐(53)을 포함한다.
제1 노즐(52)은 이송 펌프(51)와 연료 공급부(10) 사이에 설치되며 연료의 유량을 감소시키는 제1 저항체로서 역할을 한다.
연료 탱크(12)의 높이에 따른 수두율의 변화와 연료 펌프(14)의 맥동에 따른 압력 변화 등에 따라 이송 펌프(51)로 압력의 변화가 전달되는데, 제1 노즐(52)은 이러한 변화를 완충시킨다. 또한, 제1 노즐은 일차적으로 유량을 감소시켜서 이송 펌프(51)로 유입되는 연료의 양을 감소시킨다.
제2 노즐(53)은 이송 펌프(51)와 연료 전지 스택(30) 사이에 설치되며 연료의 유량을 감소시키는 제2 저항체로 역할을 한다. 노즐들(52, 53)의 출구를 작게 설정하면 노즐들(52, 53)에서 유속은 빨라지나, 노즐들(52, 53)의 앞에서 압력은 증가하고 노즐들(52, 53)을 통과하는 유량은 감소하게 된다.
도 4는 본 발명의 제3 실시예에 따른 연료 전지 시스템의 유량 조절부를 나타낸 구성도이다.
본 실시예에 따른 유량 조절부(60)는 연료 공급부(10)와 연료 전지 스택(30) 사이에 설치된 이송 펌프(61)와 제1 밸브(62), 및 제2 밸브(63)를 포함한다.
제1 밸브(62)는 이송 펌프(61)와 연료 공급부(10) 사이에 설치되며 연료의 유량을 감소시키는 제1 저항체로서 역할을 한다. 제2 밸브(63)는 이송 펌프(61)와 연료 전지 스택(30) 사이에 설치되며 연료의 유량을 감소시키는 제2 저항체로 역할을 한다.
제1 밸브(62) 및 제2 밸브(63)를 조절하면 밸브를 통과하는 유체의 유량을 용이하게 설정할 수 있다. 제1 밸브(62)와 제2 밸브(63)에서 유로 단면적은 연료 가 유입되는 쪽에 설치된 관의 단면적보다 더 작게 형성된다.
이에 따라 제1 밸브(62) 및 제2 밸브(63)의 전방에서 압력은 증가하며 전체적인 유량은 감소하게 된다.
도 5는 본 발명의 제4 실시예에 따른 연료 전지 시스템의 유량 조절부를 나타낸 구성도이다.
본 실시예에 따른 유량 조절부(70)는 연료 공급부(10)와 연료 전지 스택(30) 사이에 설치된 이송 펌프(71)와 이송 펌프(71)의 전단에 설치된 일방향 밸브(72), 이송 펌프(71)의 후단에 설치된 노즐(73)을 포함한다.
일방향 밸브(72)는 이송 펌프(71)와 연료 공급부(10) 사이에 설치되고, 노즐(73)은 이송 펌프(71)와 연료 전지 스택(30) 사이에 설치된다. 일방향 밸브(72)와 노즐(73)은 각각 연료의 유량을 감소시키는 저항체로서 역할을 한다.
일방향 밸브(72)에서 연료가 통과하는 통로의 단면적을 조절하여 유량을 조절할 수 있으며, 노즐(73)에서 출구의 단면적으로 작게 형성하여 유량을 조절할 수 있다. 이에 따라 일방향 밸브(72) 및 노즐(73)에서 저항 압력이 발생하고 일방향 밸브(72) 및 노즐(72)을 통과하는 유량은 감소하게 된다.
본 실시예에서는 일방향 밸브(72)가 이송 펌프(71)의 전단에 설치되고 노즐(73)이 후단에 설치된 것으로 예시하고 있으나, 본 발명이 이에 제한되는 것은 아니다. 따라서 노즐(73)이 이송 펌프(71)의 전단에 설치되고 일방향 밸브(72)가 후단에 설치될 수도 있다. 또한, 일방향 밸브와 통상적인 밸브가 함께 저항체로서 적용될 수 있으며, 노즐과 통상적인 밸브가 함께 저항체로서 적용될 수도 있다.
상기에서는 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.
도 1은 본 발명의 제1 실시예에 따른 연료 전지 시스템 개략적으로 도시한 구성도이다.
도 2는 도 1에 도시한 연료 전지 스택의 구조를 나타낸 분해 사시도이다.
도 3은 본 발명의 제2 실시예에 따른 연료 전지 시스템의 유량 조절부를 나타낸 구성도이다.
도 4는 본 발명의 제3 실시예에 따른 연료 전지 시스템의 유량 조절부를 나타낸 구성도이다.
도 5는 본 발명의 제4 실시예에 따른 연료 전지 시스템의 유량 조절부를 나타낸 구성도이다.
도 6은 본 발명 제1 실시예에 따른 연료 전지 시스템의 연료 전지 스택으로 유입되는 연료의 유량을 나타낸 그래프이다.
도 7은 본 발명의 제1 실시예에 따른 연료 전지 시스템에서 수두의 변화에 따라 연료 전지 스택으로 유입되는 연료의 유량을 나타낸 그래프이다.
도 8a는 본 발명의 제1 실시예에 따른 연료 전지 시스템의 출력 및 전압을 나타낸 그래프이고, 도 8b는 본 발명의 제1 실시예에 따른 연료 전지 시스템의 연료 농도 및 셀 편차를 나타낸 그래프이며, 도 8c는 본 발명의 제1 실시예에 따른 연료 전지 스택의 애노드 출구 온도를 나타낸 그래프이다.
- 도면의 주요 부분에 대한 부호의 설명 -
100: 연료 전지 시스템 10: 연료 공급부
12: 연료 탱크 14: 연료 펌프
20: 산화제 공급부 25: 산화제 펌프
30: 연료 전지 스택 31: 막-전극 집합체
32, 33: 세퍼레이터 35: 전기 생성부
37, 38: 엔드 플레이트 40: 유량 조절부
41: 이송 펌프 42: 제1 일방향 밸브
43: 제2 일방향 밸브 46: 버퍼
52: 제1 노즐 53: 제2 노즐
62: 제1 밸브 63: 제2 밸브

Claims (18)

  1. 연료와 산화제의 전기 화학적인 반응에 의해 전기 에너지를 발생시키는 연료 전지 스택;
    연료를 상기 연료 전지 스택으로 공급하는 연료 공급부;
    산화제를 상기 연료 전지 스택으로 공급하는 산화제 공급부; 및
    상기 연료 공급부와 상기 연료 전지 스택 사이에 설치되며, 연료를 가압하는 이송 펌프와 상기 이송 펌프의 전단에 연결 설치되어 유량을 감소시키는 제1 저항체와 상기 이송 펌프의 후단에 연결 설치되어 유량을 감소시키는 제2 저항체를 포함하는 유량 조절부;
    를 포함하며
    상기 제1 저항체는 상기 제1 저항체로 연료가 유입되는 쪽에 설치된 관의 단면적보다 더 작은 최소 단면적은 갖는 연료 전지 시스템.
  2. 삭제
  3. 연료와 산화제의 전기 화학적인 반응에 의해 전기 에너지를 발생시키는 연료 전지 스택;
    연료를 상기 연료 전지 스택으로 공급하는 연료 공급부;
    산화제를 상기 연료 전지 스택으로 공급하는 산화제 공급부; 및
    상기 연료 공급부와 상기 연료 전지 스택 사이에 설치되며, 연료를 가압하는 이송 펌프와 상기 이송 펌프의 전단에 연결 설치되어 유량을 감소시키는 제1 저항체와 상기 이송 펌프의 후단에 연결 설치되어 유량을 감소시키는 제2 저항체를 포함하는 유량 조절부;
    를 포함하며
    상기 제2 저항체는 상기 제2 저항체로 연료가 유입되는 쪽에 설치된 관의 단면적보다 더 작은 최소 단면적은 갖는 연료 전지 시스템.
  4. 삭제
  5. 제1 항에 있어서,
    상기 제1 저항체는 노즐(nozzle)인 연료 전지 시스템.
  6. 삭제
  7. 제1 항에 있어서,
    상기 제2 저항체는 노즐인 연료 전지 시스템.
  8. 제1 항에 있어서,
    상기 이송 펌프는 상기 연료 전지 스택으로 공급되는 연료 유량의 100배지 800배 큰 정격 유량을 갖는 연료 전지 시스템.
  9. 제1 항에 있어서,
    상기 연료 전지 시스템은 직접 메탄올형인 연료 전지 시스템.
  10. 연료와 산화제의 전기 화학적인 반응에 의해 전기 에너지를 발생시키는 연료 전지 스택;
    연료를 상기 연료 전지 스택으로 공급하는 연료 공급부;
    산화제를 상기 연료 전지 스택으로 공급하는 산화제 공급부; 및
    상기 연료 공급부와 상기 연료 전지 스택 사이에 설치되며, 연료를 가압하는 이송 펌프와 상기 이송 펌프의 전단에 연결 설치되어 유량을 감소시키는 제1 저항체와 상기 이송 펌프의 후단에 연결 설치되어 유량을 감소시키는 제2 저항체를 포함하는 유량 조절부;
    를 포함하며
    상기 이송 펌프의 최대 압력을 P_max, 이송 펌프에 의한 최대 유량을 R_max, 제1 저항체 및 제2 저항체에 의하여 감소된 유량을 R1이라 하고, 제1 저항체 및 제2 저항체에서 발생하는 저항 압력의 합을 P0라 할 때,
    P0=(R_max - R1)×P_max/R_max
    인 연료 전지 시스템.
  11. 연료와 산화제의 전기 화학적인 반응에 의해 전기 에너지를 발생시키는 연료 전지 스택;
    연료를 상기 연료 전지 스택으로 공급하는 연료 공급부;
    산화제를 상기 연료 전지 스택으로 공급하는 산화제 공급부; 및
    상기 연료 공급부와 상기 연료 전지 스택 사이에 설치되며, 연료를 가압하는 이송 펌프와 상기 이송 펌프의 전단에 연결 설치되어 유량을 감소시키는 제1 저항체와 상기 이송 펌프의 후단에 연결 설치되어 유량을 감소시키는 제2 저항체를 포함하는 유량 조절부;
    를 포함하며
    상기 제2 저항체와 상기 연료 전지 스택 사이에는 버퍼가 설치된 연료 전지 시스템.
  12. 연료 공급부에서 연료 전지 스택으로 연료를 공급함에 있어서,
    제1 저항체로 유량을 감소시키는 제1 유량 감소 단계;
    이송 펌프를 작동시키는 가동 단계;
    제2 저항체로 유량을 감소시키는 제2 유량 감소 단계; 및
    이송 펌프의 작동을 중지하는 정지 단계;
    를 포함하는 연료 전지 시스템의 구동 방법.
  13. 제12 항에 있어서,
    제1 저항체 및 제2 저항체로 감소된 후 유동하는 유량을 R1, 이송 펌프가 동 작하는 작동 시간을 t1, 이송 펌프의 작동이 멈추는 휴지 시간을 t2, 상기 연료 전지 스택으로 공급되는 목표 유량을 R2라 할 때,
    R2=(R1×t1)/(t1+t2)
    인 연료 전지 시스템의 구동 방법.
  14. 제12 항에 있어서,
    상기 가동 단계 내지 상기 정지 단계는 반복적으로 실시되는 연료 전지 시스템의 구동 방법.
  15. 제12 항에 있어서,
    상기 제1 저항체는 일방향 밸브, 노즐, 밸브로 이루어진 군에서 선택되는 어느 하나로 이루어진 연료 전지 시스템의 구동 방법.
  16. 제12 항에 있어서,
    상기 제2 저항체는 일방향 밸브, 노즐, 밸브로 이루어진 군에서 선택되는 어느 하나로 이루어진 연료 전지 시스템의 구동 방법.
  17. 제12 항에 있어서,
    상기 이송 펌프는 상기 연료 전지 스택으로 공급되는 목표 연료 유량의 100배지 800배 큰 정격 유량을 갖는 연료 전지 시스템의 구동 방법.
  18. 제12 항에 있어서,
    제2 저항체와 연료 전지 스택 사이에 설치된 버퍼를 이용하여 연료의 이동을 분산시키는 단계를 더 포함하는 연료 전지 시스템의 구동 방법.
KR1020090023631A 2009-03-19 2009-03-19 연료 전지 시스템 및 연료 전지 시스템의 구동 방법 KR101065387B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020090023631A KR101065387B1 (ko) 2009-03-19 2009-03-19 연료 전지 시스템 및 연료 전지 시스템의 구동 방법
US12/711,122 US20100239936A1 (en) 2009-03-19 2010-02-23 Fuel cell system and method of operating the same
EP10156881.4A EP2230710B1 (en) 2009-03-19 2010-03-18 Fuel cell system and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090023631A KR101065387B1 (ko) 2009-03-19 2009-03-19 연료 전지 시스템 및 연료 전지 시스템의 구동 방법

Publications (2)

Publication Number Publication Date
KR20100104912A KR20100104912A (ko) 2010-09-29
KR101065387B1 true KR101065387B1 (ko) 2011-09-16

Family

ID=42121378

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090023631A KR101065387B1 (ko) 2009-03-19 2009-03-19 연료 전지 시스템 및 연료 전지 시스템의 구동 방법

Country Status (3)

Country Link
US (1) US20100239936A1 (ko)
EP (1) EP2230710B1 (ko)
KR (1) KR101065387B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101374048B1 (ko) * 2012-06-14 2014-03-13 한국과학기술연구원 유체 펌핑 장치, 이를 이용하는 연료전지 장치 및 연료 가스 재순환 방법
KR101435390B1 (ko) * 2012-08-23 2014-08-28 삼성중공업 주식회사 연료 전지 시스템 및 이를 구비한 선박
US11708835B2 (en) 2017-09-13 2023-07-25 Watt Fuel Cell Corp. Air intake assembly for centrifugal blower system and fuel cell incorporating same
CN111276727B (zh) * 2018-12-05 2021-11-09 中国科学院大连化学物理研究所 一种高效紧固燃料电池堆组装装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024028A (ja) 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd 超小型減圧流量制御装置
JP2006210177A (ja) * 2005-01-28 2006-08-10 Matsushita Electric Works Ltd 燃料電池システム
JP2007220429A (ja) 2006-02-15 2007-08-30 Matsushita Electric Works Ltd 燃料電池システム
KR20070102311A (ko) * 2006-04-14 2007-10-18 삼성에스디아이 주식회사 개폐밸브를 이용한 연료공급장치를 이용한 연료전지 시스템

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE508435C2 (sv) * 1993-02-23 1998-10-05 Erik Stemme Förträngningspump av membranpumptyp
US20040180246A1 (en) * 2003-03-10 2004-09-16 Smedley Stuart I. Self-contained fuel cell
US7217470B2 (en) * 2004-05-11 2007-05-15 Societe Bic Cartridge with fuel supply and membrane electrode assembly stack
US7205060B2 (en) * 2004-08-06 2007-04-17 Ultracell Corporation Method and system for controlling fluid delivery in a fuel cell
JP4759960B2 (ja) * 2004-09-14 2011-08-31 コニカミノルタホールディングス株式会社 燃料電池装置
JP2007329002A (ja) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd 燃料電池システム
KR100873633B1 (ko) * 2006-09-13 2008-12-12 삼성에스디아이 주식회사 액츄에이터 제어수단을 구비하는 연료전지 및 그 운전방법
JP2008103279A (ja) * 2006-10-20 2008-05-01 Aisin Seiki Co Ltd 燃料電池システム
JP2008243740A (ja) * 2007-03-28 2008-10-09 Toshiba Corp 燃料電池
JP5360452B2 (ja) * 2007-07-06 2013-12-04 ソニー株式会社 燃料電池および電子機器
JP2009080964A (ja) * 2007-09-25 2009-04-16 Toshiba Corp 燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024028A (ja) 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd 超小型減圧流量制御装置
JP2006210177A (ja) * 2005-01-28 2006-08-10 Matsushita Electric Works Ltd 燃料電池システム
JP2007220429A (ja) 2006-02-15 2007-08-30 Matsushita Electric Works Ltd 燃料電池システム
KR20070102311A (ko) * 2006-04-14 2007-10-18 삼성에스디아이 주식회사 개폐밸브를 이용한 연료공급장치를 이용한 연료전지 시스템

Also Published As

Publication number Publication date
US20100239936A1 (en) 2010-09-23
KR20100104912A (ko) 2010-09-29
EP2230710B1 (en) 2015-07-01
EP2230710A1 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
JP2009087741A (ja) 燃料電池の劣化検出装置及び燃料電池システム
WO2012101819A1 (ja) 燃料電池システム
KR101065387B1 (ko) 연료 전지 시스템 및 연료 전지 시스템의 구동 방법
US20060216557A1 (en) Fuel cell system and method of operating fuel cell system
KR101309154B1 (ko) 연료 전지 시스템의 구동 방법
KR101212199B1 (ko) 연료 전지 시스템
KR101423853B1 (ko) 연료 전지 시스템
WO2013137017A1 (ja) 燃料電池システム及び燃料電池システムの制御方法
US20110136031A1 (en) Fuel cell system and electronic device
JP4590261B2 (ja) 燃料電池における反応物質供給方法
JP2009054546A (ja) 燃料電池装置の駆動方法
JP2007220429A (ja) 燃料電池システム
KR100830299B1 (ko) 연료 잔여량을 산정하는 연료 전지 시스템
KR101002647B1 (ko) 연료 전지 시스템 및 연료 전지 시스템의 구동 방법
WO2010013709A1 (ja) 燃料電池システム及び電子機器
JP5617218B2 (ja) 燃料電池
JP4950424B2 (ja) 燃料電池システム
KR101233323B1 (ko) 연료전지 시스템
JP2005044748A (ja) 燃料電池システム
US20090110982A1 (en) Sensing pipe and fuel cell system using the same
US20090081503A1 (en) Fuel cell system and driving method thereof
JP2008084822A (ja) 燃料電池装置
WO2010013714A1 (ja) 燃料電池システム及び充電装置
KR20070035853A (ko) 연료농도 측정장치를 구비한 연료전지 시스템
KR20070035854A (ko) 연료농도 측정장치를 구비한 연료전지 시스템

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140822

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150820

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160816

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170809

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee