KR101054891B1 - WMDE1 promoter expressed in meristem of rice leaves and roots, expression vector containing this promoter, transformant transformed with this expression vector, and method for producing the transformant - Google Patents
WMDE1 promoter expressed in meristem of rice leaves and roots, expression vector containing this promoter, transformant transformed with this expression vector, and method for producing the transformant Download PDFInfo
- Publication number
- KR101054891B1 KR101054891B1 KR1020090076434A KR20090076434A KR101054891B1 KR 101054891 B1 KR101054891 B1 KR 101054891B1 KR 1020090076434 A KR1020090076434 A KR 1020090076434A KR 20090076434 A KR20090076434 A KR 20090076434A KR 101054891 B1 KR101054891 B1 KR 101054891B1
- Authority
- KR
- South Korea
- Prior art keywords
- promoter
- rice
- transformant
- expression vector
- vector
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8202—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
- C12N15/8205—Agrobacterium mediated transformation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8222—Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
- C12N15/8223—Vegetative tissue-specific promoters
- C12N15/8225—Leaf-specific, e.g. including petioles, stomata
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8222—Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
- C12N15/8223—Vegetative tissue-specific promoters
- C12N15/8227—Root-specific
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- General Engineering & Computer Science (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
본 발명은 벼(Oryza sativa)에서 분리된 잎과 뿌리의 분열조직에서 발현하는 pDME1 프로모터 유전자, 이 유전자를 포함하는 발현벡터, 이 발현 벡터로 형질전환된 형질 전환체 및 이 형질전환체의 제조방법에 관한 것이다.The present invention is a rice ( Oryza The present invention relates to a pDME1 promoter gene expressed in meristems of leaves and roots isolated from sativa ), an expression vector comprising the gene, a transformant transformed with the expression vector, and a method for producing the transformant.
본 발명에 따른 프로모터를 이용하여 생장이 우수한 품종 개발을 위한 분열촉진 유용 유전자를 잎과 뿌리의 분열조직에서 발현되도록 할 수 있는 벡터와 형질전환체를 얻을 수 있다.By using the promoter according to the present invention, it is possible to obtain a vector and a transformant capable of expressing useful cleavage genes for the development of excellent growth varieties in the meristem of leaves and roots.
분열조직, 조직 특이적 발현, 프로모터 Meristem, tissue specific expression, promoter
Description
본 발명은 벼(Oryza sativa)에서 분리된 잎과 뿌리의 분열조직에서 발현하는 pDME1 프로모터 유전자, 이 유전자를 포함하는 발현 벡터, 이 발현 벡터로 형질전환된 형질전환체 및 이 형질전환체의 제조 방법에 관한 것이다.The present invention is a rice ( Oryza The pDME1 promoter gene expressed in the meristem of leaves and roots isolated from the sativa ), the expression vector containing this gene, the transformant transformed with this expression vector, and the manufacturing method of this transformant are provided.
벼는 세계에서 가장 중요한 식량작물의 하나로 과거 20여년 동안 꾸준히 수량증대에 힘써왔으나 현재 인구증가 추세로 볼 때 2020년이면 현재의 70%이상에 달하는 수량을 더 생산해야만 될 형편에 놓여있다. 그러나 벼가 재배되는 농지는 세계 각국의 공업화현상으로 갈수록 줄어들고 육종의 소재가 되는 새로운 유전자원은 고갈되어 외래 유용유전자의 도입이 요구되고 있다. 다행히 분자생물학의 발달로 외래 유용유전자의 분리 및 조작이 가능하게 되어 이 유용유전자를 벼를 비롯한 많은 식물세포에 형질전환하여 새로운 유전자가 조합된 형질전환체를 얻음으로서 여러 가지 생명현상을 규명하는 유전자발현 연구는 물론 육종의 좋은 소재가 되고 있 다. 이러한 형질전환을 이용한 신품종 생산은 앞으로 다가오는 21세기에는 고부가가치 산업으로 대두함은 물론이며 인류의 가장 큰 문제점으로 부각되는 식량문제를 어느 정도는 해결할 수 있으리라 생각된다. Rice is one of the world's most important food crops, and has been steadily increasing its yield over the past two decades, but the current population growth trend means that by 2020, more than 70% of the current crop will be produced. However, farmland where rice is cultivated is gradually decreasing due to industrialization of countries around the world, and new genetic resources, which are used for breeding, are depleted, and foreign useful genes are required to be introduced. Fortunately, the development of molecular biology makes it possible to isolate and manipulate foreign useful genes, transforming these useful genes into many plant cells, including rice, to obtain transformants incorporating new genes. Expression studies, of course, have become a good material for breeding. The production of new varieties using these transformations will not only emerge as a high value-added industry in the coming 21st century, but also solve the food problem, which is one of the biggest problems of mankind.
현재까지 알려진 벼 형질전환 방법은 80년대에는 원형질체에 폴리에틸렌글리콜(Polyethylene glycol(PEG))과 전기충격법(electroporation)으로 많은 형질전환체를 획득하였으며, 90년대 후반에는 유전자총 이용법이 보편화되었으며 최근에는 쌍자엽식물에서 널리 이용되어 왔던 아그로박테리움(Agrobacterium ) 이용법도 많이 이용되고 있다. 그밖에 화분법(pollen pathway), 미세주사(microinjection) 방법 등이 있다.The rice transformation method known to date has obtained a large number of transformants in the 80's with polyethylene glycol (PEG) and electroporation in the protoplasts, and in the late 90's, the use of a gene gun has become popular. ssangjayeop Agrobacterium (Agrobacterium), which has been widely used in plant How to use has also been widely used. In addition, there are pollen method and microinjection method.
벼 형질전환 효율에 영향을 미치는 프로모터(promoter)는 그 출처가 CaMV(Cauliflower mosaic virus), 벼, 옥수수, 콩 및 감자 등에서 클로닝된 것으로 형질전환 효율에 이바지하였다.Promoters affecting the rice transformation efficiency was cloned from CaMV (Cauliflower mosaic virus), rice, corn, soybeans and potatoes, and contributed to the transformation efficiency.
마커유전자 발현정도는 형질전환효율에 아주 중요한 영향을 끼치는데 그의 여러 요인은 효율적인 벡터, 적합한 프로모터, 식물게놈에서의 위치, 복제 수, 3' 비코딩서열(noncoding sequence), 코돈의 빈도 등이 있다. 프로모터는 전환유전자의 패턴을 결정하며 지금까지 2 종류 즉, 항시적인 것과 조직 특이적 프로모터가 사용되어 왔다. 이 항시적인 프로모터는 독립적으로 모든 조직에서 유전자발현을 한다. CaMV35S 프로모터는 강력하고 항시적인 것으로 흔하게 형질전환 연구에 사용되며 광범위하게 벼, 밀, 옥수수에서 사용되었다. The level of marker gene expression has a very important effect on transfection efficiency. Several factors include efficient vector, suitable promoter, location in plant genome, number of copies, 3 'noncoding sequence, and codon frequency. . Promoters determine the pattern of transgenes and two types of promoters have been used, namely, constant and tissue specific. This constitutive promoter independently expresses genes in all tissues. The CaMV35S promoter is a potent and always-on, commonly used in transformation studies and widely used in rice, wheat and corn.
목표하는 조직에서의 유전자발현은 작물개량의 가능성을 시사하고 있는데 벼 는 현재 단자엽 식물에서 유전자발현과 프로모터 연구의 모델로서 이용되고 있으며 이미 밝혀진 요소와 DNA 결합인자간 기능적 상호작용을 이해하는데 크게 도움이 될 것이다. Gene expression in target tissues suggests the potential for crop improvement. Rice is currently used as a model for gene expression and promoter research in monocotyledonous plants, and it is very helpful in understanding the functional interactions between the already identified elements and DNA binding factors. Will be.
벼의 형질전환에 대한 연구는 1980년대 후반에 원형질을 이용하여 폴리에틸렌 글리콜방법이나 전기충격법으로 이용하여 자포니카에서 형질전환체를 획득한 것을 기점으로 인디카에서도 유전자 총, 아그로박테리움(Agrobacterium )을 이용하여 형질전환체를 얻을 수 있었다는 보고가 계속되고 있다. 특히 90년대에 들어서 선발유전자로도 알려진 제초제 저항성(bar)유전자는 농업적 유용유전자로도 사용하여 형질전환연구에 가장 많이 이용되고 있으며, 그 후 계속해서 새로운 농업유용유전자가 개발, 제작되어 벼 형질전환에 이용하고 있다.Studies on the transformation of rice using the gene in the starting point that the obtained transformants in japonica by using the plasma in the late 1980s using a polyethylene glycol method and electric shock method indica gun, Agrobacterium (Agrobacterium) It is reported that a transformant can be obtained. In particular, herbicide-tolerant ( bar ) genes, also known as starting genes, have been used most often for transformational research in the 1990s, after which new agricultural genes have been developed and manufactured. We use for change over.
이와 같은 조직 특이적인 프로모터에 대하여는, 미국특허 US 5,808,034 (Bridges 등, 1998. 09. 15 등록)에 외부의 화학물질에 특이적으로 촉진되는 발현저해자(repressor)를 이용하여 식물의 웅성기관에서 유전자의 다단계 조절(cascade)이 일어나도록 함으로써 생식능력을 조절하는 기술이 개시된 바 있다. 또한, 미국특허 US 6,784,289 (Ouellet 등, 2004. 8. 31 등록)에는 숙주 생명체에서 관여된 단백질의 발현을 증가 또는 감소시킬 수 있는 트랜스레이션 조절 인자의 발현 조절에 관한 기술이 개시되어 있다. 또한, 과일 표피 조직에 특이적으로 발현되는 프로모터(KR 813,118) 및 식물체의 뿌리조직에 특이적으로 발현되는 프로모터(KR 803,390)이 개시된 바가 있다. 벼의 경우에 있어서는 대한민국공개특허 KR 2003-0081377, KR 2001-0085990 등에 조직 특이적인 프로모터에 관한 기술이 기재 되어 있다. For such tissue-specific promoters, US Pat. No. 5,808,034 (Bridges et al., Registered on Sep. 15, 1998) uses genes in the male organs of plants using expression repressors that are specifically promoted by external chemicals. Techniques for regulating fertility have been disclosed by allowing cascades of the cells to occur. In addition, US Pat. No. 6,784,289 (Ouellet et al., Aug. 31, 2004) discloses a technique for controlling expression of a translational regulator that can increase or decrease the expression of a protein involved in a host organism. In addition, promoters specifically expressed in fruit epidermal tissue (KR 813,118) and promoters specifically expressed in plant root tissues (KR 803,390) have been disclosed. In the case of rice, a technique related to a tissue-specific promoter is disclosed in Korean Patent Publication No. 2003-0081377, KR 2001-0085990 and the like.
식물의 분열조직에서 조직특이적 발현양상을 보이는 유전자에는 DME유전자가 알려져 있다. 현재 이 유전자의 기능이 명확히 밝혀져 있지는 않으나, 애기장대의 DME 유전자의 기능은 종자 생성을 위하여 수정할 시 특히 수정 전에 암술에서 특이적으로 발현하는 유전자로 세포분열이 일어날 때 일시적으로 발현이 되는 유전자로 알려져 있다. DME gene is known as a gene showing a tissue-specific expression pattern in meristem of plants. Currently, the function of this gene is not clear, but the function of Arabidopsis DME gene is a gene that is expressed specifically in pistil before modification, especially when it is modified for seed generation. have.
현재 벼의 잎끝 및 뿌리의 분열조직에 특이적으로 발현되는 프로모터를 이용하여 유용한 외래 유전자를 발현시키는 시스템에 대해서는 개시된 바가 없다. 이들 조직은 벼의 생장에 있어서 중요한 역할을 담당하는 주요 조직이며, 이들 조직에서의 유용 유전자의 발현 또는 조절은 벼의 생장 및 수확과도 직결될 수 있다. 따라서, 유용 유전자 활성의 조절을 통해 생장에 관여되는 생리적 현상을 조절할 수 있는 직접적이면서도 적합한 기술로써 이들 조직에 특이적인 유전자 발현의 조절 기술이 절실히 요구되고 있다. Currently, there is no disclosure about a system for expressing useful foreign genes by using a promoter specifically expressed in the meristem of rice leaves and roots. These tissues are major tissues that play an important role in rice growth, and expression or regulation of useful genes in these tissues can also be directly linked to rice growth and harvest. Therefore, there is an urgent need for a technique for regulating gene expression specific to these tissues as a direct and suitable technique that can regulate physiological phenomena involved in growth through regulation of useful gene activity.
본 발명은 생장이 우수한 품종 개발을 위해 벼의 잎과 뿌리의 분열조직에 특이적으로 발현되는 프로모터를 개발하는 것을 목적으로 한다. An object of the present invention is to develop a promoter specifically expressed in the meristem of the leaves and roots of rice for the development of excellent varieties.
본 발명의 일 측면에 따르면, 서열번호 1로 표시되는 염기서열을 포함하는 벼의 잎끝 및 뿌리의 분열조직에 특이적으로 발현되는 특성의 프로모터를 제공할 수 있다.According to one aspect of the present invention, it is possible to provide a promoter of a characteristic specifically expressed in the cleavage of the leaf tip and root of the rice comprising the nucleotide sequence represented by SEQ ID NO: 1.
일 실시예에 따르면, 상기의 프로모터 및 이와 작동가능하게 연결된 (operatively linked) 외래 유전자를 포함하는 벡터를 제공할 수 있다.According to one embodiment, a vector comprising the promoter and an operatively linked foreign gene may be provided.
일 실시예에 따르면, 상기 벡터에 의해 형질전환된 아그로박테리움 형질전환 체를 제공할 수 있다.According to one embodiment, an Agrobacterium transformant transformed by the vector may be provided.
일 실시예에 따르면, 상기 벡터 또는 상기 아그로박테리움 형질전환체에 의해 형질전환된 형질전환 식물체를 제공할 수 있다.According to one embodiment, a transformed plant transformed by the vector or the Agrobacterium transformant may be provided.
일 실시예에 따르면, 상기의 형질전환체는 벼(Oryza sativa)일 수 있다.According to one embodiment, the transformant may be rice (Oryza sativa).
본 발명의 또 다른 측면에 따르면, 식물을 형질전환시켜 상기 외래 유전자를 식물체에서 발현시키는 단계를 포함하는 식물의 형질전환 방법이 제공될 수 있다.According to another aspect of the present invention, there can be provided a plant transformation method comprising the step of transforming a plant to express the foreign gene in the plant.
본 발명의 또 다른 측면에 따르면, 서열번호 1로 표시되는 염기서열을 포함하는 프로모터 및 이와 작동가능하게 연결된(operatively linked) 외래 유전자를 포함하는 벡터를 제조하는 단계, 벼에 상기 발현벡터를 도입하는 단계 및 상기 발현벡터가 도입되어 벼의 잎끝 및 뿌리의 분열조직에서 외래 유전자가 특이적으로 발현되는 벼 형질전환체를 선별하는 단계를 포함하는, 벼의 잎끝 및 뿌리의 분열조직에 특이적으로 발현되는 벼 형질전환체의 제조방법이 제공될 수 있다.According to another aspect of the invention, preparing a vector comprising a promoter comprising a nucleotide sequence represented by SEQ ID NO: 1 and a foreign gene operatively linked to (operatively linked), introducing the expression vector into rice And a step of introducing the expression vector to select a rice transformant expressing a foreign gene specifically at the foliar tissue of the leaf tip and root of rice, specifically expressing the foliar tissue of the rice leaf and root A method for producing a rice transformant can be provided.
일 실시예에 다르면, 상기 벼에 발현벡터를 도입하는 단계는 상기 발현벡터로 아그로박테리움을 형질전환시키는 단계 및 형질전환된 아그로박테리움을 벼에 감염시키는 단계를 포함하는 것을 특징으로 하는 벼 형질전환체의 제조방법이 제공될 수 있다. According to one embodiment, the step of introducing the expression vector to the rice is characterized in that it comprises the step of transforming Agrobacterium with the expression vector and infecting the transformed Agrobacterium rice; A method for producing a converter can be provided.
본 발명에 따른 프로모터를 이용하여 생장이 우수한 품종 개발을 위한 분열촉진 유용 유전자를 잎과 뿌리의 분열조직에서 발현되도록 할 수 있는 벡터와 형질전환체를 얻을 수 있다.By using the promoter according to the present invention, it is possible to obtain a vector and a transformant capable of expressing useful cleavage genes for the development of excellent growth varieties in the meristem of leaves and roots.
이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 다만, 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다 할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these Examples are only for illustrating the present invention, and the scope of the present invention will not be construed as being limited by these Examples.
실시예Example 1: 게놈 1: genome DNADNA 의 of PCRPCR 에 의한 On by pDME1pDME1 프로모터 영역의 In the promoter area 클로닝Cloning 및 염기서열 분석 And sequencing
1) 유전자 발현 조절 모티프(Motif) 검색 및 프로모터 영역의 PCR 증폭 1) Gene expression regulatory motif search and PCR amplification of promoter region
PLACE(a database of Plant Cis-acting Regulatory DNA Elements) 프로그램을 이용하여 OsDME 유전자의 상위(upstream) 프로모터 부위의 모티프(Motif)를 검색하여 TATA box, CAAT box, GATA box, AMYBOX2 CBFHV, POLLEN1 등 (Prestridge, D.S, A computer program that scans DNA sequences for eukaryotic transcriptional elements, 1999)의 모티프를 포함하는 영역이 증폭 가능하도록 프라이머를 디자인한 후, PCR을 통해 OsDME 유전자의 프로모터 영역(pDME1)을 분리하였다.TATA box, CAAT box, GATA box, AMYBOX2 CBFHV, POLLEN1, etc., by searching for motifs in the upstream promoter region of the OsDME gene using the PLACE (a database of Plant Cis-acting Regulatory DNA Elements) program. , DS, A computer program that scans DNA sequences for eukaryotic transcriptional elements (1999), and primers were designed to be amplified, and then PCR region of the promoter region (pDME1) was isolated.
벼의 잎에서 게놈 DNA를 추출(Qiagen사, DNeasy Plant Mini kit 사용)하여 OsDME 유전자의 프로모터 영역으로 예상되는 628bp의 단편을 증폭하기 위한 프라이머를 디자인하여 정방향 프라이머(sense primer) pDME-S : 5-ACTGGTCCTCGTTGGAAAGGCAGTA-3'(서열목록2)와 역방향 프라이머(antisense primer) pDME-AS: 5-TTCTGTAGAGGTGCAAGTCTAGATG-3'(서열목록3)를 합성하여 Takara사의 rTaq 중합효소(polymerase)와 함께 PCR 반응액에 넣어 Applied Biosystem 9700기를 이용하여 유전자를 증폭하였다. 이용된 PCR 반응조건은 95℃에서 10 분간 변성한 후, 94℃ 1분, 56℃ 1분, 72℃ 2분을 25회 반복한 후 다시 확장 반응을 위하여 72℃에서 10 분간 처리하였다. PCR 반응이 끝난 후 증폭된 유전자를 1% 아가로즈에 전기영동 한 후 pDME1 프로모터로 추정되는 밴드를 잘라내어 QIAquick 겔 추출 키트를 이용하여 정제한 후 클로닝(cloning)에 이용하였다. Genomic DNA was extracted from the leaves of rice (Qiagen, DNeasy Plant Mini kit) to design a primer for amplifying the fragment of 628bp expected to be the promoter region of the OsDME gene to design a forward primer (sense primer) pDME-S: 5- ACTGGTCCTCGTTGGAAAGGCAGTA-3 '(SEQ ID NO: 2) and antisense primer pDME-AS: 5-TTCTGTAGAGGTGCAAGTCTAGATG-3' (SEQ ID NO: 3) was synthesized in a PCR reaction solution with Takara's r Taq polymerase. Gene was amplified using Applied Biosystem 9700. The PCR reaction conditions used were denatured at 95 ° C. for 10 minutes, and then repeated 25 times at 94 ° C. for 1 minute, 56 ° C. for 1 minute, and 72 ° C. for 2 minutes, followed by further treatment at 72 ° C. for 10 minutes for expansion reaction. After the PCR reaction, the amplified gene was electrophoresed in 1% agarose, and the band estimated to be the pDME1 promoter was cut and purified using a QIAquick gel extraction kit, and then used for cloning.
2) Topo 2.1 vector(Invitrogen 사, TOPO TA Cloning kit) 에 클로닝2) Cloning to Topo 2.1 vector (Invitrogen, TOPO TA Cloning kit)
증폭된 유전자를 형질전환(transform)하여 X-gal 이 첨가된 LB배지에 도포하여 얻어진 흰색 콜로니(white colony)를 선발하여 콜로니(colony) PCR을 실시하였다. 그 결과 밴드가 확인된 콜로니의 플라스미드를 추출하여 시퀀싱에 이용하였다. Amplified genes were transformed, and white colony obtained by applying to X-gal-added LB medium was selected and subjected to colony PCR. As a result, the plasmid of the colonies where the band was confirmed was extracted and used for sequencing.
3) 염기서열 분석3) sequencing
ABI 3700 시퀀서를 이용하여 염기서열 분석한 후, NCBI의 BLAST 검색에 의해 상기 pDME1 유전자와 일치함을 확인하였다. (서열목록 1)Sequence analysis using ABI 3700 sequencer, followed by BLAST search of NCBI It was confirmed that it matches the pDME1 gene. (SEQ ID NO: 1)
실시예Example 2: 벼 형질전환용 벡터( 2: rice transformation vector ( vectorvector ) 제작Production
1) pDME1 유전자 운반체 제작 1) pDME1 gene carrier construction
pDME1 유전자 운반체 제작에는 게이트웨이 클로닝 키트(Gateway® cloning, invitrogen사로부터 구입)를 이용하였다. 클로닝을 위해 정방향 프라이머 pDME1-S : 5-AAAAAGCAGGCTCCGAAATGTCTACACACT-3'(서열목록 4)과 역방향 프라이머인 pDME1-AS: 5-AGAAAGCTGGGTATTCTGTAGAGGTGCAAG-3'(서열목록 5)를 합성하였다. 이들 프라이머를 PCR 반응에 투입하여 95℃ 10분간 변성한 후 94℃ 1분, 55℃ 1분, 68℃ 2분 조건으로 30회 반복하고 다시 72℃ 10분간 확장 반응하여 pDME1의 유전자를 증폭시켰다. 증폭된 유전자들에 다시 어뎁터 프라이머(adapter primer)를 붙이기 위해 프라이머 attB1: 5-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3'(서열목록6)과 attB2: GGGGACCACTTTGT ACAAGAAAGCTGGGT-3' (서열목록7)를 이용하여 95℃ 3분간 변성한 후 94℃ 30초, 45℃ 3초, 68℃ 2분 조건으로 2회 반복하고 94℃ 3초, 55℃ 3초, 68℃ 2분 조건으로 19회 반복한 후 68℃에서 10 분간 확장 반응하여 pDME1 유전자의 양 말단에 각각 어뎁터 프라이머를 붙여 증폭을 완성하였다.Gateway cloning kit (Gateway® cloning, purchased from invitrogen) was used to construct the pDME1 gene carrier. For cloning, forward primers pDME1-S: 5-AAAAAGCAGGCTCCGAAATGTCTACACACT-3 '(SEQ ID NO: 4) and reverse primers pDME1-AS: 5-AGAAAGCTGGGTATTCTGTAGAGGTGCAAG-3' (SEQ ID NO: 5) were synthesized. These primers were put into a PCR reaction and denatured at 95 ° C. for 10 minutes, then repeated 30 times at 94 ° C. for 1 minute, 55 ° C. for 1 minute, and 68 ° C. for 2 minutes, and then expanded to 72 ° C. for 10 minutes to amplify the pDME1 gene. Denature the primers attB1: 5-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3 '(SEQ ID NO: 6) and attB2: GGGGACCACTTTGT ACAAGAAAGCTGGGT-3' (SEQ ID NO: 7) to reattach the adapter primers to the amplified genes. After repeating twice at 94 ℃ 30 seconds, 45 ℃ 3 seconds, 68 ℃ 2 minutes conditions, repeated 19 times at 94 ℃ 3 seconds, 55 ℃ 3 seconds, 68 ℃ 2 minutes conditions expansion reaction at 68 ℃ 10 minutes By attaching adapter primers to both ends of the pDME1 gene, amplification was completed.
2) 프로모터 발현용 pBGWFS7 벡터 제작2) Construction of pBGWFS7 vector for promoter expression
pDME1 유전자에 attB-adapter primer(Gateway® cloning 키트, Invitrogen사)를 붙인 후 BP Clonase II enzyme mix 2㎕와 혼합하여 25℃에서 1시간 이상 반응(http://www.invitrogen.com/site/us/en/home/Products-and-Services/Applications/Cloning/Gateway-Cloning/GatewayC-Misc/Protocols.html#bp 참조)시켜 pDONR221 벡터(Invitrogen사)에 도입시킨 후 다시 LR Clonase II enzyme mix 2㎕와 혼합하여 25℃에서 1시간 이상 반응(http://www.invitrogen.com/site/us/en/home/Products-and- Services/Applications/Cloning/Gateway-Cloning/GatewayC-Misc/Protocols.html#bp 참조)을 통해 목적 벡터인 pBGWFS7 벡터 (PSB 사, Plant System Biology)에 도입시켰다. 콜로니 PCR 과 시퀀싱으로 도입된 유전자를 확인한 후 벼에 형질전환하기 위하여 아그로박테리움(Agrobacterium) 감염에 의해 형질전환 하였다.Attach attB-adapter primer (Gateway® cloning kit, Invitrogen) to pDME1 gene and mix with 2µl of BP Clonase II enzyme mix for more than 1 hour at 25 ℃ (http://www.invitrogen.com/site/us /en/home/Products-and-Services/Applications/Cloning/Gateway-Cloning/GatewayC-Misc/Protocols.html#bp) and introduce it into the pDONR221 vector (Invitrogen) and again with 2 μl of LR Clonase II enzyme mix. Mix and react at 25 ° C for at least 1 hour (http://www.invitrogen.com/site/us/en/home/Products-and- Services / Applications / Cloning / Gateway-Cloning / GatewayC-Misc / Protocols.html # bp) was introduced into the target vector pBGWFS7 vector (PSB, Plant System Biology). After confirming the gene introduced by colony PCR and sequencing, it was transformed by Agrobacterium infection to transform the rice.
도 1에는 게이트웨이 시스템을 통해 제조된 벼 형질전환용 벡터의 모식도가 나타나 있다.Figure 1 shows a schematic diagram of the vector for transforming rice produced through the gateway system.
완성된 벡터를 아그로박테리움(LBA4404)에 형질전환하기 위하여 동결과 해동(freeze and thaw)을 2-3번 반복한 후, 37℃의 열충격(heat shock)방법에 의해 형질전환 한 후 YEP배지(Yeast 10g, NaCl 5g, peptone 10g, Agar 15g /1L)에서 철야배양(overnight)하여 콜로니를 확인하였다. To transform the finished vector into Agrobacterium (LBA4404), freeze and thaw were repeated 2-3 times, and then transformed by heat shock at 37 ° C., followed by YEP medium ( Yeast 10g, NaCl 5g, peptone 10g, Agar 15g / 1L) overnight culture (overnight) was confirmed colonies.
콜로니 PCR에 의해 형질전환이 확인된 콜로니는 벼에 형질전환하기 위하여 AB 배지(AB buffer(K2HPO4 60g, NaH2PO4 20g/1L), AB Salts(NH4Cl 60g, MgSO47H2O 6g, KCl 3g, CaCl22H2O 0.265g, FeSO4.7H2O 50mg/1L), Glucose 5g/1L)에서 배양하였다.Colonies confirmed to be transformed by colony PCR were prepared using AB medium (AB buffer (K 2 HPO 4 60 g, NaH 2 PO 4 20 g / 1 L), AB Salts (NH 4 Cl 60 g, MgSO 4 7H 2). O 6g, were cultured in KCl 3g, CaCl 2 2H 2 O 0.265g, FeSO 4 .7H 2 O 50mg / 1L), Glucose 5g / 1L).
실시예Example 3: 아그로박테리움을 이용한 벼 형질전환 3: Rice Transformation with Agrobacterium
1) 벼 캘러스(callus)유도1) Induction of rice callus
아그로박테리움에 의한 벼 형질전환은 MS배지(Duchefa 사 Murashinge and Skoog vitamin 포함 배지)에서 벼의 캘러스를 유도하기 위하여 종자를 락스에 세척한 후 적당히 건조시켜 MS 배지에 2,4-D 호르몬이 첨가된 배지에 치상하였다. 27℃ 에서 3-4주간 암배양하여 캘러스를 유도한 후, MS에 2,4-D 호르몬이 첨가된 새 배지에 배형성 캘러스(embryogenesis callus)를 배양(sub-culture)하였다. Agrobacterium-induced rice transformation was performed by washing seeds in lacs to induce callus of rice in MS medium (Duchefa Murashinge and Skoog vitamin containing medium), and then drying it appropriately to add 2,4-D hormone to MS medium. In the cultured medium. After induction of callus by cancer culture for 3-4 weeks at 27 ° C., embryogenic callus was sub-cultured in fresh medium to which 2,4-D hormone was added to MS.
2) 아그로박테리움 감염2) Agrobacterium Infection
배형성 캘러스(embryogenesis callus)와 아그로박테리움 형질전환된 유전자를 AB 액체배지에 배양하여 20분간 살균(disinfection) 시킨 후 3일간 암배양 하였다. 멸균수에 cefotaxime을 첨가하여 아그로박테리움이 완전히 제거될 때까지 씻은 후 다시 MS 배지에 cefotaxime과 ppt(포스피토트리신, phosphinothricin)이 첨가된 배지에서 3주간 암 배양하였다. cefotaxime과 ppt가 첨가된 MS 배지에서 갈변되지 않고 살아남은 캘러스를 다시 cefotaxime과 ppt가 첨가된 MS 배지에 옮겨 2 주간 암배양 하였다. 캘러스에서 슈팅(shooting) 유도를 위해 MSR-cefotaxime과 ppt가 첨가된 배지에 옮겨 4주간 양 배양하여 슈팅된 후 발근이 되면 온실로 옮기기 이전에 순화처리를 실시하였다.Embryonic callus and Agrobacterium transformed genes were incubated in AB liquid medium for 20 min disinfection and then cultured for 3 days. Cefotaxime was added to sterile water, washed until complete removal of Agrobacterium, and then cultured for 3 weeks in a medium containing cefotaxime and ppt (phosphitothricin, phosphinothricin) in MS medium. Callus which survived browning in the MS medium containing cefotaxime and ppt was transferred to MS medium containing cefotaxime and ppt and cultured for 2 weeks. To induce shooting in callus, the cells were transferred to medium containing MSR-cefotaxime and ppt, and cultured for 4 weeks.
3) 종자 수확 및 후대 고정 3) seed harvesting and posterior fixation
약 5-7일간 순화시킨 후 얻어진 형질전환체(T0)는 온실에서 재배하여 종자를 수확한 후 후대 고정을 위하여 Basta(=ammonium glufosinate) 저항성으로 선발하여 3:1의 분리비를 확인하였다. pDME1 프로모터 분석을 위한 형질전환체는 T2세대의 종자에서 GUS 염색에 의해 발현분석 하였다.After about 5-7 days, the obtained transformant (T 0 ) was grown in a greenhouse, harvested seeds, and selected for resistance to Basta (= ammonium glufosinate) for later fixation. Transformants for pDME1 promoter analysis were expressed by GUS staining in T 2 generation seeds.
도2에는 상기와 같이 아그로박테리움 감염을 통해 얻어진 식물체가 도시되어 있다. Figure 2 shows a plant obtained through Agrobacterium infection as described above.
실시예Example 4: 4: pDME1pDME1 프로모터의 Of promoter GUSGUS 염색에 의한 발현 분석 Expression analysis by staining
GUS 염색에 의한 pDME1 프로모터 영역의 조직화학적(histochemistry) 검정을 통해, 이 프로모터에 의해 GUS리보터 유전자는 발아 후 3일부터 잎의 분열조직에서 발현되기 시작하여 6일 전 후로 뿌리의 분열조직에서 강하게 발현됨을 확인하였다.Through histochemistry assay of the pDME1 promoter region by GUS staining, the GUS reporter gene was expressed in leaf meristem from 3 days after germination and strongly in meristem of root from 6 days before and after. It was confirmed to be expressed.
도 3에는 발아 후 3일부터 6일 전후 GUS유전자의 발현으로 인해 발색반응을 보이는 식물체가 도시되어 있다.Figure 3 is a plant showing a color reaction due to the expression of the GUS gene before and after 3 to 6 days after germination.
실시예Example 5: 5: pDME1pDME1 프로모터의 뿌리 측근 발현 분석 Root Entourage Expression Analysis of Promoters
벼에 형질전환 시킨 pDME1 프로모터 영역의 발현을 관찰한 결과, 발아 후 6일 이후부터 측근이 나오는 시기에 pDME1 프로모터가 뿌리에서 강하게 발현함을 확인하였다.As a result of observing the expression of the pDME1 promoter region transformed in rice, it was confirmed that the pDME1 promoter was strongly expressed in the root at the time of entourage from 6 days after germination.
도4는 발아 6일 내지 7일째 뿌리 측근에서 GUS가 강하게 발현되고 있는 양상이 나타나 있다.Figure 4 shows that GUS is strongly expressed in the root aides on the 6th to 7th day of germination.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항 들과 그것들의 등가물에 의하여 정의된다고 할 것이다.While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. It is therefore intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
도1은 게이트웨이 시스템(Gateway system)을 이용하여 제조된 벼 형질전환용 벡터의 모식도를 나타낸다.FIG. 1 shows a schematic diagram of a vector for transforming rice prepared using a gateway system.
도2는 아그로박테리움(Agrobacterium) 감염 형질전환에 의해 얻어진 형질전환 식물체를 나타낸다.2 shows transgenic plants obtained by Agrobacterium infection transformation.
도3은 pDME1 프로모터의 GUS 염색에 의한 수분 전과 후의 발현 양상을 나타낸다.Figure 3 shows the expression pattern before and after a few minutes by GUS staining of the pDME1 promoter.
도4는 pDME1 프로모터의 뿌리에서의 발현 양상을 나타낸다.4 shows the expression pattern at the root of the pDME1 promoter.
<110> RURAL DEVELOPMENT ADMINISTRATION <120> Recombinant expression vector comprising pDME1 promoter and transformant transformed therewith <130> NPF-15281 <160> 7 <170> KopatentIn 1.71 <210> 1 <211> 628 <212> DNA <213> Oryza sativa <400> 1 gaaatgtcta cacactttta aactagtgtt gtggtttgca agggatattc cttaaattat 60 ggaatttatt attgtggttt gcaagggaat ctaatttaaa ctaaactcca ctttacactt 120 taaagtctac aatctacaca cttaaagtag atattcctta aaactaggga atctattgtt 180 gtggtttgca agggaattta gtttaaagtg tcaagtgcac tttttattgt gagggaatct 240 acatttcctt ttaagtgttg tggttcattt gttgcttcct tagaatcctc acttagagag 300 aagattgaac tatataagtt gaaacaaatt tcgctcagac tggggtttat ttgtagaggt 360 gggattttgt tggagggatt ggggtttagt tctagagtag ttgcttgatt ataccctatt 420 tttcttgctt taatattttg agaaacacaa tcagaagtgt agttgcatgc aaccaattta 480 ctatgccatt ttcattatat tgtgattagt attgatcttt tgaatagtat atgaccatct 540 aaattgcgtc cttatgatat tgtcataggt gaaaacgacg ggaagctaac tagaaccgtg 600 cttcatctag acttgcacct ctacagaa 628 <210> 2 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> pDME-S <400> 2 actggtcctc gttggaaagg cagta 25 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> pDME-AS <400> 3 ttctgtagag gtgcaagtct agatg 25 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pDME1-S <400> 4 aaaaagcagg ctccgaaatg tctacacact 30 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pDME1-AS <400> 5 agaaagctgg gtattctgta gaggtgcaag 30 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB1 <400> 6 ggggacaagt ttgtacaaaa aagcaggct 29 <210> 7 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB2 <400> 7 ggggaccact ttgtacaaga aagctgggt 29 <110> RURAL DEVELOPMENT ADMINISTRATION <120> Recombinant expression vector comprising pDME1 promoter and transformant transformed therewith <130> NPF-15281 <160> 7 <170> KopatentIn 1.71 <210> 1 <211> 628 <212> DNA <213> Oryza sativa <400> 1 gaaatgtcta cacactttta aactagtgtt gtggtttgca agggatattc cttaaattat 60 ggaatttatt attgtggttt gcaagggaat ctaatttaaa ctaaactcca ctttacactt 120 taaagtctac aatctacaca cttaaagtag atattcctta aaactaggga atctattgtt 180 gtggtttgca agggaattta gtttaaagtg tcaagtgcac tttttattgt gagggaatct 240 acatttcctt ttaagtgttg tggttcattt gttgcttcct tagaatcctc acttagagag 300 aagattgaac tatataagtt gaaacaaatt tcgctcagac tggggtttat ttgtagaggt 360 gggattttgt tggagggatt ggggtttagt tctagagtag ttgcttgatt ataccctatt 420 tttcttgctt taatattttg agaaacacaa tcagaagtgt agttgcatgc aaccaattta 480 ctatgccatt ttcattatat tgtgattagt attgatcttt tgaatagtat atgaccatct 540 aaattgcgtc cttatgatat tgtcataggt gaaaacgacg ggaagctaac tagaaccgtg 600 cttcatctag acttgcacct ctacagaa 628 <210> 2 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> pDME-S <400> 2 actggtcctc gttggaaagg cagta 25 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> pDME-AS <400> 3 ttctgtagag gtgcaagtct agatg 25 <210> 4 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pDME1-S <400> 4 aaaaagcagg ctccgaaatg tctacacact 30 <210> 5 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> pDME1-AS <400> 5 agaaagctgg gtattctgta gaggtgcaag 30 <210> 6 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB1 <400> 6 ggggacaagt ttgtacaaaa aagcaggct 29 <210> 7 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> attB2 <400> 7 ggggaccact ttgtacaaga aagctgggt 29
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090076434A KR101054891B1 (en) | 2009-08-18 | 2009-08-18 | WMDE1 promoter expressed in meristem of rice leaves and roots, expression vector containing this promoter, transformant transformed with this expression vector, and method for producing the transformant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090076434A KR101054891B1 (en) | 2009-08-18 | 2009-08-18 | WMDE1 promoter expressed in meristem of rice leaves and roots, expression vector containing this promoter, transformant transformed with this expression vector, and method for producing the transformant |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110018797A KR20110018797A (en) | 2011-02-24 |
KR101054891B1 true KR101054891B1 (en) | 2011-08-09 |
Family
ID=43776361
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090076434A KR101054891B1 (en) | 2009-08-18 | 2009-08-18 | WMDE1 promoter expressed in meristem of rice leaves and roots, expression vector containing this promoter, transformant transformed with this expression vector, and method for producing the transformant |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101054891B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101293747B1 (en) | 2011-12-19 | 2013-08-07 | 대한민국 | Tissue-specific promoter derived from Oryza sativa and use thereof |
KR101722333B1 (en) | 2015-10-23 | 2017-03-31 | 경희대학교 산학협력단 | A root hairs specific promoter in monocotyledones and use thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101383376B1 (en) * | 2012-05-10 | 2014-04-10 | 대한민국 | OsTCP6 promoter derived from Oryza sativa and use thereof |
-
2009
- 2009-08-18 KR KR1020090076434A patent/KR101054891B1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
GenBank AP004999 Oryza sativa genomic DNA. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101293747B1 (en) | 2011-12-19 | 2013-08-07 | 대한민국 | Tissue-specific promoter derived from Oryza sativa and use thereof |
KR101722333B1 (en) | 2015-10-23 | 2017-03-31 | 경희대학교 산학협력단 | A root hairs specific promoter in monocotyledones and use thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20110018797A (en) | 2011-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1794303B1 (en) | Modification of plant development and morphology | |
KR101185845B1 (en) | Recombinant expression vector comprising pLim3 promoter and transformant transformed therewith | |
WO2006028332A1 (en) | Sucrose-inducible promoter from sweetpotato | |
CA2822289A1 (en) | Plant gene expression modulatory sequences from maize | |
US20120278948A1 (en) | Transgenic plant having increased biomass and improved environmental stress resistance, and process for production thereof | |
KR101054891B1 (en) | WMDE1 promoter expressed in meristem of rice leaves and roots, expression vector containing this promoter, transformant transformed with this expression vector, and method for producing the transformant | |
WO2018010459A1 (en) | Isolated promoter safes6 not expressed in endosperm and application of promoter safes6 | |
CN110129337B (en) | The maize high affinity phosphorus transporter zmpth 1; deletion mutant of 5 gene promoter and application thereof | |
KR101166762B1 (en) | Specific expression method in plant using BrFLC family gene promoters | |
CN110408615B (en) | Chimonanthus praecox CpVIN3 gene promoter and application thereof | |
KR101293747B1 (en) | Tissue-specific promoter derived from Oryza sativa and use thereof | |
KR20220161020A (en) | Pollen specific expression promoter from Oryza sativa Os03g52870 gene and uses thereof | |
KR102145626B1 (en) | OsNFY16 promoter specific for plant seed embryo and uses thereof | |
CN108118054B (en) | Promoter of Arabidopsis thaliana serine carboxypeptidase protein gene AtSCPL30, deletion mutant thereof and application thereof | |
KR101383376B1 (en) | OsTCP6 promoter derived from Oryza sativa and use thereof | |
KR101677067B1 (en) | Seedspecific promoter derived from Oryza sativa and use thereof | |
KR100859988B1 (en) | Above-Ground Specific Promoter and Above-Ground Specific Expression Method of Target Protein Using the Same | |
JP2004528854A (en) | New constitutive plant promoter | |
KR102081963B1 (en) | Promoter specific for plant seed embryo and uses thereof | |
WO2009022845A2 (en) | Promoter for the high level expression in plant-tissue culture and vector using the same | |
KR101825960B1 (en) | Root―specific promoter derived from Oryza sativa and use thereof | |
KR101680279B1 (en) | BrCLP 28 Promoter expressing specifically in root tissue | |
KR101680281B1 (en) | Promoter expressing specifically in root tissue | |
JP4439844B2 (en) | Cis elements that confer plant iron deficiency responsiveness and / or root-specific expression | |
KR101444215B1 (en) | BrSTY1 PROMOTER FROM BRASSICA AND PLANT TRANSFORMED WITH THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |