KR101038519B1 - Human infectious diseases-related pathogen differential diagnosis and simultaneous antibiotics resistance analysis, multiplex kit and chip comprising same - Google Patents

Human infectious diseases-related pathogen differential diagnosis and simultaneous antibiotics resistance analysis, multiplex kit and chip comprising same Download PDF

Info

Publication number
KR101038519B1
KR101038519B1 KR1020080017564A KR20080017564A KR101038519B1 KR 101038519 B1 KR101038519 B1 KR 101038519B1 KR 1020080017564 A KR1020080017564 A KR 1020080017564A KR 20080017564 A KR20080017564 A KR 20080017564A KR 101038519 B1 KR101038519 B1 KR 101038519B1
Authority
KR
South Korea
Prior art keywords
dna
chip
probe
reverse
artificial sequence
Prior art date
Application number
KR1020080017564A
Other languages
Korean (ko)
Other versions
KR20080024503A (en
Inventor
박민구
Original Assignee
굿젠 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 굿젠 주식회사 filed Critical 굿젠 주식회사
Priority to KR1020080017564A priority Critical patent/KR101038519B1/en
Publication of KR20080024503A publication Critical patent/KR20080024503A/en
Application granted granted Critical
Publication of KR101038519B1 publication Critical patent/KR101038519B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2537/00Reactions characterised by the reaction format or use of a specific feature
    • C12Q2537/10Reactions characterised by the reaction format or use of a specific feature the purpose or use of
    • C12Q2537/143Multiplexing, i.e. use of multiple primers or probes in a single reaction, usually for simultaneously analyse of multiple analysis

Abstract

종래의 감염성질환 병원체 검사방법은 비교적 낮은 정확성, 고비용, 장시간 분석의 단점과 1회 검출 가능한 병원체 갯수의 제약 등으로 분석방법의 개량 및 추가개발이 꾸준히 요구되고 있다.Conventional infectious disease pathogen screening methods are constantly being improved and further developed due to relatively low accuracy, high cost, long-term analysis disadvantages, and limitation of the number of pathogens that can be detected once.

본 발명은 대표적인 인체 감염성질환의 주요 병원체를 감별진단하는 방법에 관한 것이다. 비-침습적으로 채취한 검체로부터 분리한 핵산을 주형(template)으로 사용하여, 감염성질환 64종 병원체를 질환군별로 멀티플렉스-중합효소 연쇄반응(multiplex-PCR)으로 증폭한 후, 고-처리량 칩 혼성화 반응을 통해 병원체 감염 여부뿐 아니라 병원체 유전자형과 이의 항생제 내성 보유 유무까지 판별하는 분석방법, 키트 그리고 칩을 제공한다.The present invention relates to a method for differential diagnosis of major pathogens of representative human infectious diseases. Using a nucleic acid isolated from a non-invasive sample as a template, 64 pathogens of infectious diseases are amplified by multiplex-PCR for each disease group, followed by high-throughput chip. The hybridization reaction provides analytical methods, kits, and chips that determine not only the pathogen infection, but also the pathogen genotype and its antibiotic resistance.

본 발명은 발병기전에 있어서 상호 연관성이 증가하고 있는 인체 비뇨생식기, 비인후, 구강 감염성질환을 개별질환이 아닌 포괄범위의 단일 감염성질환군으로 규정하여 병원체 감별진단을 일괄적으로 구현함과 동시에, 감염된 병원체의 항생제 내성 유무 판별을 통해 해당 병원체가 특정 항생제에 내성을 나타낼 경우, 효과적인 대체 항생제 처방을 가능케함으로써 항생제 내성률을 감소시키고 더불어 치료기간을 단축하고 의료비용을 절감하는 등 감염초기에 효과적인 질병제어가 가능해진다.The present invention defines human genitourinary tract, nasopharyngeal and oral infectious diseases, which are increasingly correlated in the pathogenesis, as a single infectious disease group in a comprehensive range, rather than individual diseases, and simultaneously implements differential diagnosis of pathogens. Effective disease control in the early stages of infection, such as reducing the antibiotic resistance rate, shortening the treatment period, and reducing medical costs by enabling effective prescription of alternative antibiotics, if the pathogen is resistant to a specific antibiotic through the determination of antibiotic resistance of the infected pathogen. Becomes possible.

감염성질환(infectious diseases), 감별진단(differential diagnosis), 멀티플렉스-PCR(multiplex-PCR), DNA 칩(DNA chip), 항생제 내성(antibiotics resistance), 성전파성 질환(sexually transmitted diseases), 요로감염(urinary tract infection), 인유두종바이러스(human papillomavirus), 전립선염(prostatitis), 마이코박테리아(mycobacteria) .Infectious diseases, differential diagnosis, multiplex-PCR, DNA chip, antibiotics resistance, sexually transmitted diseases, urinary tract infections urinary tract infection, human papillomavirus, prostatitis, mycobacteria.

Description

인체 감염성질환 병원체 감별진단 및 이의 항생제 내성 유무 판별방법, 멀티플렉스 키트 그리고 이를 포함하는 칩{Human infectious diseases-related pathogen differential diagnosis and simultaneous antibiotics resistance analysis, multiplex kit and chip comprising same}Human infectious diseases-related pathogen differential diagnosis and simultaneous antibiotics resistance analysis, multiplex kit and chip comprising same}

본 발명은 인체 감염성질환 병원체 감별진단과 이의 유전형 및 항생제 내성 유무를 동시에 판별하는 조성물에 관한 것이다.
자세하게는, 검체로부터 분리한 핵산을 주형(template)으로, 감염성질환 질환군별 멀티플렉스-중합효소 연쇄반응(multiplex-polymerase chain reaction, 이하 "멀티플렉스-PCR"이라 합니다)을 수행하고, 해당 병원체와 특이적으로 결합하는 프로브가 고정되어있는(immobilized) 칩 반응 웰(well)내에서 혼성화(hybridization) 반응, 세척과정을 거치고, 형광 시그널 스캐닝(scanning) 및 분석 단계를 통해 최종적으로 특정 병원체 감염 여부뿐 아니라 감염된 병원체 유전자형(genotype) 및 이의 항생제 내성 보유 유무까지 일괄 판별할 수 있는 분석방법, 멀티플렉스 키트 그리고 칩에 관한 것이다.
The present invention relates to a composition for differentially diagnosing human infectious disease pathogens and determining their genotype and antibiotic resistance at the same time.
In detail, the nucleic acid separated from the sample is subjected to a template, and a multiplex-polymerase chain reaction (hereinafter referred to as "multiplex-PCR") for each infectious disease disease group is performed. In the chip reaction well immobilized, the specifically binding probe undergoes a hybridization reaction, a washing process, and finally, whether a specific pathogen is infected through fluorescence signal scanning and analysis. Rather, it relates to analytical methods, multiplex kits, and chips that can collectively identify infected pathogen genotypes and their antibiotic resistance.

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

삭제delete

전통적인 병원체(pathogen) 검출 시험법의 gold standard인 배양(culture) 검사는 검체에 존재하는 세균, 바이러스 등을 각 병원체 특성에 적합한 특수배지들을 사용하여 배양함으로써 감염균을 선별 한다는 개념이다. 그러나 일부 병원성 미생물들, 바이러스들은 배양이 까다로운(culture-resistant) 것으로 보고되었으며 이로 인해 배양검사 민감도가 현저히 낮으며, 평균 1주일의 배양기간이 소요되어 신속한 검사가 어려운 단점이 있었다. 또한 내성 확인을 위한 항생제 감수성 검사를 별도로 개별시행할 수 있으나 세균배양을 통해 분석을 하기에 오염에 의한 결과 오류의 가능성도 존재한다(Thiemo Rudolph et al., Acta Ophthalmol. Scandinavica., 82, 463-467, 2004, Van Dyck E. et. al., J of Clin. Microbiology, 39, 1751-1756, 2001, Anthony J. Schaeffer et al., The J of Urology, 163, 127-130, 2000, John N. Krieger et al., J of Clin. Microbiology, 36, 1646-1652, 1998, M. A. Pfaller et al., Emerging Infectious Diseases, 7, 312-318, 2001).The culture test, a gold standard of traditional pathogen detection methods, is a concept that selects infectious bacteria by culturing bacteria and viruses present in a sample using special media suitable for the characteristics of each pathogen. However, some pathogenic microorganisms and viruses have been reported to be culture-resistant, resulting in the low sensitivity of the culture test, which requires an average culture period of one week, making it difficult to perform a rapid test. In addition, antibiotic susceptibility testing may be performed separately to confirm resistance, but there is a possibility of error due to contamination because it is analyzed through bacterial culture (Thiemo Rudolph et al., Acta Ophthalmol. Scandinavica. , 82, 463-). 467, 2004, Van Dyck E. et.al., J of Clin.Microbiology, 39, 1751-1756, 2001, Anthony J. Schaeffer et al., The J of Urology , 163, 127-130, 2000, John N Krieger et al., J of Clin.Microbiology, 36, 1646-1652, 1998, MA Pfaller et al., Emerging Infectious Diseases , 7, 312-318, 2001).

배양검사가 용이하지 않거나 불가능한 병원체의 감염유무를 판별할 경우, 세균 또는 바이러스의 핵산을 분석하는 검사(NAT, Nucleic acid test)가 부각되었는데, 기존의 항원-항체 반응에 근거한 면역검사의 민감도 문제 그리고 감염은 되었으나 검사로 검출되지 않는 window period를 단축시킬 수 있었기 때문이다. 핵산검사(NAT)는 체외진단검사(IVD, In vitro diagnostics) 중 가장 빠른 속도로 성장하는 분야로 IVD Technology 자료(2006년 5월호, Canon Communications LLC, Los Angeles, CA, USA)에 의하면 2008년 시장점유율은 전체 진단시장의 13%에 해당하고 규모는 49억 달러에 달할 것으로 전망한 바 있다. 핵산검사의 대부분은 증폭(Amplification)방법을 이용하여 핵산을 검출한다. Target 증폭법은 Taq 중합효소와 디옥시리보뉴클레오티드 트리포스페이트(deoxyribonucleotide triphosphate, dNTPs)를 이용한 효소반응으로 목적하는 표적(target) 핵산의 단편(fragment)을 증폭시키는 방법이다. Roche Molecular Systems사의 PCR 방법이외에도 Gen-Probe사의 TMA(Transcription-mediated amplification), BioMerieux사의 NASBA(Nucleic acid sequence-based amplification), Becton Dickinson사의 SDA(Strand displacement amplification), Innogenetics Diagnostics사의 LiPA(Line-probe assay)등이 이 방법에 속한다(H.Y. Park et al., J of Clin. Microbiology, 38, 4080-4085, 2000, P. Wattiau et al., Appl. Microbiol. Biotechnol., 56, 816-819, 2001, K. Rantakokko-Jalava et al., J of Clin. Microbiology, 38, 32-39, 2000, Boddinghaus. B. et al., J of Clin. Microbiology, 28, 1751-1759, 1990, W. E. Hill et al., Bacteriological Analytical Manual 8th ed., 1998). When determining whether a pathogen is not easy or impossible, a test for analyzing bacterial or viral nucleic acids (NAT, Nucleic Acid Test) has emerged. The sensitivity of the immunoassay based on the existing antigen-antibody response, and This was because the window period, which was infected but not detected by the test, could be shortened. Nucleic acid testing (NAT) is the fastest growing field of in vitro diagnostics (IVD), and the market in 2008, according to the IVD Technology data (May 2006, Canon Communications LLC, Los Angeles, CA, USA). Its market share is estimated to be 13% of the entire diagnostic market and reach $ 4.9 billion. Most nucleic acid tests detect nucleic acids using amplification methods. Target amplification is a method of amplifying fragments of target target nucleic acids by enzymatic reaction using Taq polymerase and deoxyribonucleotide triphosphate (dNTPs). In addition to Roche Molecular Systems 'PCR method, Gen-Probe's Transcription-mediated Amplification (TMA), BioMerieux's Nucleic Acid Sequence-based Amplification (BSA), Becton Dickinson's Strand Displacement Amplification (SDA), and Innogenetics Diagnostics' LiPA (Line-probe assay) (HY Park et al., J of Clin. Microbiology , 38, 4080-4085, 2000, P. Wattiau et al., Appl. Microbiol. Biotechnol. , 56, 816-819, 2001, K. Rantakokko-Jalava et al., J of Clin.Microbiology, 38, 32-39, 2000, Boddinghaus.B. Et al., J of Clin.Microbiology, 28, 1751-1759, 1990, WE Hill et al. , Bacteriological Analytical Manual 8th ed. , 1998).

1940년대 페니실린 항생제가 도입된 직후부터 이미 항생제 내성균은 발생하였으며 이후 점점 다양한 항생제 내성균들이 증가하고 있다. 항생제 내성의 발현 및 확산 속도는 매우 빠르며 새로운 항생제의 개발 속도를 능가하고 있어 임상에서 많은 문제가 되고 있다. 일례로 요로감염의 경우, 주요 병원체가 E. Coli이기 때문에 임상에서 경험적(empirical) 항생제로 처방하는 약물 역시 Enterobacteriaciae를 중점적으로 치료할 수 있는 TMP/SMX(Trimethoprim-Sulfamethoxazole, 제품명 Bactrim) 또는 ciprofloxacin 항생제를 1차 약물로 사용해왔으나, 국내의 TMP/SMX 내성균주 비율이 38.7%로 미국의 2배 이상 상회하며, ciprofloxacin에 대한 내성률도 20%에 달하는 것으로 보고되고 있다(Lee SJ et al., Korean J Urol. 44, 697-701, 2003, Song HJ et al., Korean J Urol. 46, 68-73, 2005). 본 발명의 바람직한 구현을 통해 감염성질환 병원체 감별진단과 동시에 항생제 내성 유무 판별을 진행할 경우, TMP/SMX 또는 ciprofloxacin 내성균주가 감염 병원체로 판독되면 이들 1차 약물외에 대체 항생제인 fluoroquinolone, fosfomycin, nitrofurantoin 등을 처방함으로써 감염질환 조기 완치를 구현함과 동시에 항생제 내성균주 전파를 억제할 수 있다. 인체 감염성질환 주요 병원체의 항생제 내성 현황을 살펴보면 폐렴구균(Streptococcus pneumoniae)의 55% 이상이 페니실린-내성을 나타내며, 황색포도구균(Staphylococcus aureus)의 57% 가량이 메티실린(methicillin)-내성균일 정도로 항생제 내성률이 지속적으로 증가하고 있는 추세이다. 국내 항생제 사용량을 보면 세팔로스포린(cephalosporin) 계열이 월등히 가장 많고, 페니실린(penicillin)계열, 플로로퀴놀론(fluoroquinolone) 계열 항생제가 다음으로 많이 사용되고 있다(Uh Y et al., Yonsei Med J, 48, 773-778, 2007).
근래에는 민감도와 재현성이 높은 다중분석(Multiplex assay) platform에 대한 요구가 증가하고 있다. 가장 최근의 DNA 칩 검사법은 고-처리량(high-throughput)으로 병원체 탐색이 가능하다는 것이 주요한 장점이다. 검체로부터 목적하는 박테리아나 바이러스의 핵산 단편을 증폭한 후, 이와 결합가능한 핵산 프로브들을 칩 기판위에 미리 고정화시켜두고, 특정 annealing 온도에서 증폭된 핵산단편과 이에 특이적인 핵산 프로브간 혼성화(hybridization) 반응을 유발한 후, 비특이적인 혼성화 signal을 제거하는 세척(washing) 과정을 거치고, 특이적인 형광표지색소의 signal을 스캔하여 결과판독하는 검사방법이다(S. V. Tillib et al., Curr. Opin. in Biotechnology, 12, 53-58, 2001, J. G. Hacia et al., Nature Genetics supplement, 21, 42-47, 1999, D. G. Wang et al., Science, 280, 1077-1082, 1998).
Immediately after the introduction of penicillin antibiotics in the 1940's, antibiotic-resistant bacteria were already developed. The rate of expression and diffusion of antibiotic resistance is very fast and outpaces the development of new antibiotics, which is a problem in clinical practice. In the case of urinary tract infections, for example, because E. Coli is the main pathogen, drugs prescribed as an empirical antibiotic in the clinic may also contain TMP / SMX (Trimethoprim-Sulfamethoxazole, Bactrim) or ciprofloxacin antibiotics, which can treat Enterobacteriaciae. Although it has been used as a tea drug, the rate of TMP / SMX resistant strains in Korea is 38.7%, more than double that of the US, and the resistance to ciprofloxacin is reported to be 20% (Lee SJ et al., Korean J Urol. 44, 697-701, 2003, Song HJ et al., Korean J Urol. 46, 68-73, 2005). In the case of differential diagnosis of infectious disease pathogens and determination of antibiotic resistance at the same time through the preferred embodiment of the present invention, when TMP / SMX or ciprofloxacin-resistant strains are read as infectious agents, prescription antibiotics, fluoroquinolone, fosfomycin, nitrofurantoin, etc., are prescribed. By doing so, it is possible to realize early cure of infectious diseases and to suppress the transmission of antibiotic resistant strains. Antimicrobial resistance of major pathogens in humans shows that more than 55% of Streptococcus pneumoniae is penicillin-resistant, and approximately 57% of Staphylococcus aureus is methicillin-resistant. Immunity is on the rise. In terms of the amount of antibiotics used in Korea, cephalosporin is the most frequently used, and penicillin and fluoroquinolone antibiotics are the next most used (Uh Y et al., Yonsei Med J , 48, 773-778, 2007).
Recently, there is an increasing demand for a highly sensitive and reproducible multiplex assay platform. The most recent DNA chip test has the main advantage of being able to detect pathogens with high-throughput. After amplifying a nucleic acid fragment of a desired bacterium or virus from the sample, the nucleic acid probes that can be bound thereto are immobilized on a chip substrate, and hybridization reaction between the nucleic acid fragment amplified at a specific annealing temperature and the nucleic acid probe specific thereto is performed. After induction, washing is performed to remove the nonspecific hybridization signal, and the result is a test method that scans a signal of a specific fluorescent marker and reads the result (SV Tillib et al., Curr. Opin. In Biotechnology , 12 , 53-58, 2001, JG Hacia et al., Nature Genetics supplement, 21, 42-47, 1999, DG Wang et al., Science , 280, 1077-1082, 1998).

본 발명은 단일 감염질환의 소수 병원체를 국소적(topically)으로 판별하는 종래의 검사법을 탈피하고자, 발병부위, 감염경로, 이행경로가 밀접하게 연관된 6개 이상의 감염성질환을 감염성질환군으로 통합하여 감염 병원체 판별 그리고 이의 유전형과 항생제 내성 유무를 판별함으로써, 인체 감염성질환 진단의 정확성과 유용성을 크게 향상시킬 수 있었다. 일례로 비뇨생식기 감염원이 비인후, 구강 등 호흡기로 전파되어 비뇨생식기 감염 특이적인 증상을 나타낼 경우, 종래의 호흡기 감염검사법은 해당 비뇨생식기 감염원에 대한 분석은 포함하지 않기에 임상분석결과는 위음성이고, 그에 따른 비특이적인 항생제 처방으로 완치율 저하 가능성이 높아진다. 최근 성 생활 패턴의 변화로 구강성교 빈도가 증가하면서 요도염 원인균인 임균(Neisseria gonorrhoeae)과 Ureaplasma urealyticum 등의 비인후 검출 임상례가 증가하고 있고, 또한 질염이나 요도염을 일으키며 비뇨생식기에 기생하는 질편모충(Trichomonas vaginalis)이 구강성교 등을 통해 구강이나 비인후 호흡기 및 폐로 전파된 보고가 있으며(Osborne PT et al., Acta Cytol. 28, 136-138, 1984), 트리코모나스성 질염 감염된 임산부로부터 신생아로 이행되어 감염된 사례도 보고된 바 있다(Hersh SM et al., J Med Microbiol. 20, 1-10, 1985). 본 발명은 병원체, 병소, 병인, 감염 또는 이행경로가 동일하거나 유사한 감염성질환을 포괄질환군으로 감별진단함으로써, 특발성 진단에 따른 비특이적 항생제 처방의 가능성을 배제하고 정확한 감염 병원체 판별에 따른 특이적인 항생제 처방으로 조기 완치가 가능한 regime을 뒷받침하고자 한다.
2007년 현재 미국 FDA로부터 승인받은 분자진단 테스트 중, 멀티플렉스 진단 키트는 Digene사의 HC2 HR 그리고 LR 제품이 유일하다(http://www.fda.gov/cdrh/oivd/index.html). Digene사의 제품은 target 증폭법이 아닌 검체로부터 분리한 HPV DNA에 RNA 프로브를 반응시키는 Hybrid Capture 방식으로 인유두종바이러스 18종을 분석할 수 있다. RNA 프로브의 안정성 문제와 오염 가능성이 상존한다는 단점이 있다. PCR 방식으로는 Roche Molecular Diagnostics사의 AMPLICOR CT/NG Test 제품이 클라미디아 트라코마티스(Chlamydia trachomatis)와 임균(Neisseria gonorrhoeae) 2종의 세균만을 동시에 판별할 수 있다.
DNA 칩 기반으로 감염성질환 병원체를 분석하는 제품으로, 2008년 현재 국내 4개사(마이진, 바이오메드랩, 굿젠, 바이오코아)가 한국 식품의약품안전청으로부터 인유두종바이러스 단일질환에 대한 감염 여부를 판독할 수 있는 HPV DNA 칩 제조허가를 승인받은 바 있다.
The present invention is to break down the conventional test method for topically identifying a few pathogens of a single infectious disease, and to integrate the infectious disease group by integrating six or more infectious diseases closely related to the site of infection, the path of infection, and the transition path. By identifying pathogens and determining their genotype and antibiotic resistance, the accuracy and usefulness of diagnosis of infectious diseases in humans can be greatly improved. For example, if the genitourinary infection spreads to the respiratory tract, such as the throat, oral cavity, and exhibits symptoms specific to the genitourinary infection, the conventional respiratory infection test does not include the analysis of the genitourinary infection, and the clinical analysis results are false negatives. As a result, nonspecific antibiotics are likely to reduce the cure rate. Recently, as the frequency of oral sex increases due to changes in sexual life patterns, the number of clinical cases of the detection of nasopharyngeal diseases, such as Neisseria gonorrhoeae and Ureaplasma urealyticum, which are the causes of urethritis, is increasing.Trichomonas, which causes vaginitis or urethritis and is parasitic to the genitourinary system vaginalis has been transmitted to the oral or nasopharyngeal respiratory system and lungs through oral sex (Osborne PT et al., Acta Cytol. 28, 136-138, 1984). Cases have also been reported (Hersh SM et al., J Med Microbiol. 20, 1-10, 1985). The present invention differentially diagnoses infectious diseases with the same or similar pathogens, lesions, etiologies, infections, or paths of transition to a comprehensive disease group, thereby eliminating the possibility of non-specific antibiotics according to idiopathic diagnosis and prescribing specific antibiotics according to accurate infectious pathogens. The purpose of this study is to support a regimen that can be cured early.
Of the molecular diagnostic tests approved by the US FDA as of 2007, the multiplex diagnostic kit is the only HC2 HR and LR product from Digene (http://www.fda.gov/cdrh/oivd/index.html). Digene's product can analyze 18 human papillomaviruses by Hybrid Capture method, which reacts RNA probe to HPV DNA isolated from the sample, not target amplification method. There is a disadvantage that the stability problem and contamination potential of the RNA probe is present. By PCR, Roche Molecular Diagnostics' AMPLICOR CT / NG Test product can simultaneously identify only two bacteria, Chlamydia trachomatis and Neisseria gonorrhoeae.
This product analyzes infectious disease pathogens based on DNA chips. As of 2008, four domestic companies (Mijin, Biomedlab, Goodzen, Biocoa) can read the infection of human papillomavirus single disease from Korea Food & Drug Administration. It has been approved to manufacture HPV DNA chips.

삭제delete

그러나 단일 감염성질환의 발병기전 특성상 단일 감염성질환의 감염여부 자체에 대한 분석으로는 정확한 진단 및 처방을 위해 추가 시험이 요구되는 경우가 많다. 본 발명은 발병부위, 감염경로, 이행경로가 밀접하게 연관된 6개 이상의 감염성질환을 감염성질환군으로 통합하여 감염 병원체 판별 그리고 이의 유전형과 항생제 내성 유무를 통합하여 판별함으로써, 1회 분석만으로 감염성질환 진단의 정확성과 처방의 유용성을 크게 향상시키는 분석방법, 멀티플렉스 키트 그리고 칩을 제공한다. However, due to the nature of the pathogenesis of a single infectious disease, additional tests are often required for the accurate diagnosis and prescription of the analysis of the single infectious disease itself. The present invention integrates six or more infectious diseases closely related to the site of infection, path of infection, and transition path into an infectious disease group to identify infectious pathogens, and to determine the presence of genotypes and antibiotic resistance. We offer analytical methods, multiplex kits and chips that greatly improve the accuracy and usefulness of prescriptions.

삭제delete

근래의 미생물 분석 방법은 배양검사, 항원-항체반응에 근거한 효소면역측정법(EIA, Enzyme immunoassay) 또는 PCR-염기서열분석(PCR-sequencing) 등을 통한 검체 내 해당 병원체를 선별하는 것이 보편적인 방법이다. 배양검사는 배양이 불가능하거나 까다로운 병원체일 경우에는 민감도가 낮으며 검사기간(평균 1주일)이 길다는 단점이 있다. 박테리아나 바이러스의 단백질을 분석하는 대부분의 효소면역측정법은 특이도(specificity)는 우수하나 민감도(sensitivity)가 낮다는 문헌보고가 꾸준히 보고된 바 있고, 무엇보다 생화학적 또는 면역학적 반응을 통해 발생한 형광(fluorescence) 수준을 측정해서 제한된 수의 미생물을 판별하는 정성분석에 그친다는 것이 단점이다. PCR-sequencing 분석방법은 모든 세균들이 가지고 있는 16S rRNA(ribosomal RNA) 유전자를 증폭시킨 뒤 이 유전자의 염기서열을 분석하여 병원체를 규명하는데, 세균배양검사와 비교 시, PCR검사의 민감도는 뛰어나며, 특이도는 비슷한 것으로 공통되게 보고되고 있다. 그러나 감염성질환의 매우 다양한 병원체 중, 소수에 대해서만 검사 진행이 가능한 기술적 제약으로 인해 1회에 수십종의 병원체를 타겟으로 검사하기 어렵다. 또한 해당 병원체의 항생제 내성 보유 유무에 대한 정보를 제공할 수 없어 항생제 오남용의 가능성이 상존한다. Recently, microbial analysis is a common method of screening for pathogens in a sample through culture assay, enzyme immunoassay (EIA) based on antigen-antibody reaction or PCR-sequencing. . The culture test has the disadvantage of low sensitivity and long test period (average 1 week) in the case of difficult or difficult pathogens. Most enzyme immunoassay methods for analyzing proteins of bacteria or viruses have consistently reported literatures with high specificity but low sensitivity, and above all, fluorescence generated by biochemical or immunological reactions. The disadvantage is that it only measures the fluorescence level to identify a limited number of microorganisms. PCR-sequencing analysis amplifies 16S rRNA (ribosomal RNA) genes of all bacteria and analyzes the sequencing of these genes to identify pathogens. Compared to bacterial culture test, PCR sensitivity is superior and specific. Figures are commonly reported as similar. However, due to the technical limitation that only a few of the various pathogens of infectious diseases can be tested, it is difficult to test dozens of pathogens at a time. In addition, the possibility of misuse of antibiotics remains because there is no information on whether the pathogens possess antibiotic resistance.

이에 본 발명은, 종래의 감염성질환 병원체 검사방법의 부족한 정확성, 장시간, 고비용, 1회에 검출 가능한 미생물 갯수의 제약 등의 단점들을 극복할 수 있는 새로운 검사법을 제공하고자 한다.
복합다면적인 감염성질환의 발병기전 특성상 단일 감염성질환의 감염여부 자체에 대한 분석으로는 정확한 진단 및 처방을 위해 추가 시험이 요구되는 경우가 많기에, 본 발명은 발병부위, 감염경로, 이행경로가 밀접하게 연관된 6개 이상의 감염성질환을 단일 감염성질환군으로 규정하고 감염 병원체 판별 그리고 이의 유전형과 항생제 내성 유무를 통합하여 판별함으로써, 1회 분석만으로 감염성질환 진단의 정확성과 처방의 유용성을 크게 향상시키는 분석방법, 멀티플렉스 키트 그리고 칩을 제공하고자 한다. 또한 체액(body-fluid)을 포함하는 비-침습적(non-invasive) 채취가 가능한 검체를 대상으로 재현성이 우수하고 높은 민감도를 갖는 검사법을 제공하고자 한다.
Therefore, the present invention is to provide a new test method that can overcome the disadvantages of the lack of accuracy, long time, high cost, the number of microorganisms that can be detected at one time, the conventional infectious disease pathogen test method.
Due to the nature of the pathogenesis of multi-faceted infectious diseases, additional tests are often required for accurate diagnosis and prescription as a result of analysis of the infection of a single infectious disease itself. By defining six or more related infectious diseases as a single infectious disease group and identifying infectious pathogens and combining their genotype and antibiotic resistance, an analysis method that greatly improves the accuracy of diagnosis and the usefulness of prescription with only one analysis. , Multiplex kits and chips. In addition, to provide a highly reproducible and highly sensitive test method for non-invasive samples containing body fluid (fluid).

삭제delete

전기 본 발명의 목적을 달성하기 위하여, 감염성질환 병원체들을 감별진단할 뿐만 아니라, 유전형 분석 및 항생제 내성 유무 분석을 동시에 고-처리량 방식으로 수행하는 조성물을 제공한다.
자세하게는, 대표적인 인체 감염성질환의 주요 병원체들을 감별진단함과 동시에 예후 및 치료방향 설정에 매우 중요한 유전형(genotype) 분석, 그리고 항생제 처방에 있어 주요 지표인 항생제 내성 보유 유무까지 종합적인 분석결과를 제공함으로써, 감염성질환 조기진단 및 효과적인 항생제 처방에 따른 치료기간 단축과 그에 따른 의료비용 절감을 달성하고 항생제 내성률 억제에 기여하는 분석방법, 멀티플렉스 키트 그리고 칩을 제공한다.
그리고 더욱 자세하게 상기 분석방법에 있어서, 감염성질환 병원체 및 항생제 내성 유무 분석용 총 64종의 세균 또는 바이러스의 타겟 증폭산물과 특이적으로 결합하는 서열목록번호 91 내지 216의 염기서열을 갖는 DNA 또는 PNA 프로브를 스팟팅(spotting)하여 칩을 제작하는 단계;
검체로부터 세균 및 바이러스 게노믹(genomic) DNA를 추출하는 단계;
감염성질환 병원체별 프로브 타겟(target) 부위 및 항생제 내성 유무 분석용 프로브 타겟 부위를 멀티플렉스-PCR을 통해 증폭하면서 형광색소(fluorescent dye)가 포함되도록 타겟 DNA 증폭산물을 준비하는 단계;
타겟 DNA 증폭산물과 혼성화반응(hybridization) 용액을 칩 기판위의 반응 챔버 커버로 주입하여 칩 표면에 고정화된 프로브와 혼성화 반응을 유도하고 세척하는 단계;
형광색소에 특이적인 파장의 레이저(laser)로 칩을 스캐닝(scanning)하고 혼성화반응 결과에 따른 형광강도를 측정함으로써 감염성질환 병원체 감별진단, 병원체 유전형 분석 및 이의 항생제 내성 유무 결과를 일괄판독하는 단계; 그리고
상기 분석단계 전부를 포함하는 인체 감염성질환 병원체 감별진단과 이의 유전형 및 항생제 내성 유무를 동시에 판별하는 분석방법을 제공한다.
그리고 본 발명의 분석방법을 바람직하게 실현하기 위하여, 서열목록번호 1 내지 90의 염기서열을 갖는 올리고뉴클레오티드(oligonucleotide)로 구성된 그룹에서 선택된 하나 이상의 올리고뉴클레오티드 프라이머(primer)를 포함하는 멀티플렉스-PCR 키트를 제공한다.
또한 본 발명의 목적을 바람직하게 실현하기 위하여, 서열목록번호 91 내지 216의 염기서열을 갖는 올리고뉴클레오티드로 구성된 그룹에서 선택된 하나 이상의 프로브(probe)를 포함하는 감염성질환 64종 감별진단, 유전형 분석 및 항생제 내성 분석용 칩을 제공한다.
In order to achieve the object of the present invention, not only to differentially diagnose infectious disease pathogens, but also to provide a composition that performs genotyping and antibiotic resistance analysis simultaneously in a high-throughput manner.
In detail, by differentially diagnosing major pathogens of representative human infectious diseases, genotype analysis, which is very important for prognosis and treatment direction, and comprehensive antibiotic analysis, whether or not antibiotic resistance is a major indicator in antibiotic prescription, is provided. In addition, we provide analytical methods, multiplex kits, and chips to reduce the duration of treatment, reduce medical costs, and reduce antibiotic resistance rates by early diagnosis of infectious diseases and effective antibiotic treatment.
And in more detail in the above analysis method, DNA or PNA probe having a nucleotide sequence of SEQ ID NO: 91 to 216 specifically binding to the target amplification products of a total of 64 bacteria or viruses for analysis of the presence of infectious diseases pathogens and antibiotic resistance Spotting the chip to fabricate the chip;
Extracting bacterial and viral genomic DNA from the sample;
Preparing a target DNA amplification product such that a fluorescent dye is included while amplifying a probe target site for each infectious disease pathogen and a probe target site for antibiotic resistance analysis through multiplex-PCR;
Injecting a hybridization solution with a target DNA amplification product into a reaction chamber cover on a chip substrate to induce and wash a hybridization reaction with a probe immobilized on the chip surface;
Scanning the chip with a laser of a wavelength specific to the fluorescent dye and measuring the fluorescence intensity according to the hybridization reaction to collectively read the results of differential diagnosis of infectious diseases, pathogen genotyping and the presence of antibiotic resistance thereof; And
The present invention provides an analysis method for simultaneously identifying a human infectious disease pathogen differential diagnosis including all the above analysis steps and determining genotype and antibiotic resistance thereof.
And in order to realize preferably the analysis method of the present invention, multiplex-PCR kit comprising at least one oligonucleotide primer (primer) selected from the group consisting of oligonucleotides having a nucleotide sequence of SEQ ID NO: 1 to 90 To provide.
In addition, in order to achieve the object of the present invention preferably 64 different infectious diseases differential diagnosis, genotyping and antibiotics comprising at least one probe selected from the group consisting of oligonucleotides having a nucleotide sequence of SEQ ID NOs: 91 to 216 Provides a chip for tolerance analysis.

본 발명의 바람직한 구현을 통해, 인체 주요 감염성질환의 대표적인 병원체 감염여부뿐만 아니라 이의 유전형과 항생제 내성 유무까지 판별할 수 있다.
상세하게는, 1회 분석만으로 64종의 세균과 바이러스에 대한 고-처리량(high-throughput) 방식의 병원체 감별진단을 수행함과 동시에, 예후 및 치료방향 설정에 매우 중요한 유전형(genotype) 분석, 그리고 항생제 처방에 있어 주요 지표인 항생제 내성 보유 유무까지 통합적인 분석결과를 제공할 수 있다.
주요 인체 감염성질환 병원체의 조기진단과 더불어 감염균주에 특이적인 항생제 처방이 가능하기에, 항생제 오남용을 줄이며 치료기간을 단축하고 비용을 절감함으로써 질병회복율과 완치율을 향상시킬 수 있다. 또한 비-침습적(non-invasive) 채취 가능한 검체를 이용하여 검사의 용이함을 추구하면서, 더불어 민감도(sensitivity)와 특이도(specificity)를 향상시킬 수 있다.
Through the preferred embodiment of the present invention, it is possible to determine whether the representative pathogens of major human infectious diseases, as well as their genotype and antibiotic resistance.
Specifically, high-throughput pathogen differential diagnosis of 64 bacteria and viruses is performed in a single analysis, genotype analysis and antibiotics are very important for prognostic and therapeutic direction. It can provide a comprehensive analysis of antibiotic resistance, a key indicator in prescriptions.
In addition to early diagnosis of major human infectious disease pathogens, it is possible to prescribe antibiotics specific to infectious strains, thereby improving disease recovery and cure rates by reducing abuse of antibiotics, shortening treatment periods, and reducing costs. In addition, non-invasive collectible samples can be used to improve the sensitivity and specificity while pursuing ease of examination.

이하 도면 및 표를 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 본 명세서에 기재된 도, 표 및 실시예에 도시된 구성은 본 발명의 가장 바람직하게예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되지 않으며, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
또한 본 발명이 청구하는 범위내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형의 실시가 가능하며 이러한 변형은 본 발명의 범위에 속한다.
<실시예 1> 진단용 칩(chip) 분석을 위한 멀티플렉스 PCR 반응에 포함되는 프라이머(primer) 디자인 및 합성
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings and tables. The configurations shown in the figures, tables, and examples described herein are intended to illustrate the present invention most preferably, and the scope of the present invention is not limited by these examples, and may be substituted for them in the present application. It should be understood that there may be various equivalents and variations.
Also, within the scope of the present invention, various modifications may be made by those skilled in the art to which the present invention pertains, and such modifications are within the scope of the present invention.
Example 1 Primer Design and Synthesis in Multiplex PCR Reaction for Diagnostic Chip Analysis

대표적인 인체 감염성질환의 64종 병원체(세균, 바이러스 등을 포함)를 감별분석하는 진단용 칩(chip) 분석에 앞서, 선행되는 멀티플렉스-PCR 반응에 포함되는 프라이머(primer)는 미국 NCBI(National Center for Biotechnology Information)의 염기서열 데이터베이스인 GenBank, 일본의 DDBJ(The DNA Data Bank of Japan) 그리고 유럽연합의 EMBL(The European Molecular Biology Laboratory) 염기서열 데이터베이스로부터 검색된 64종 병원체의 염기서열을 분석하여 제작하였다. 프라이머 디자인에 사용된 64종 병원체의 타겟(target) 유전자는 5.8S, 16S, 18S, 23S, 28S rRNA(ribosomal RNA), 16S rRNA-ITS(Internal transcribed spacer)-23S rRNA 등 구조 유전자를 포함하거나, 또는 종-특이적 증폭이 가능한 개별 유전자를 프라이머 디자인의 타겟 부위(target region)로 이용하였다. 감염성질환군별로 타겟 부위 염기서열을 Clustal method를 이용하여 다중정렬(multiple alignment)을 실시하고 이에 따라 각 병원체별 특이적인(specific) 프라이머 타겟 부위를 선별하였다. 이후, 선별된 프라이머 타겟 부위로부터 프라이머 프리미어(Primer premier version 5, Premier Biosoft International, Palo Alto, CA, USA), 디엔에이시스 맥스 (DNASIS MAX Version 2.7, MiraiBio Group, South San Francisco, CA, USA) 프로그램을 응용하여 종-특이적(strain-specific) 프라이머를 디자인하였다. 프라이머 선발 조건은 다음과 같다 ; 프라이머 길이는 18 - 25 base pair, 융해온도 Tm(℃)은 58 - 63℃, 3' 말단의 GC 함량이 높지 않아야하며, 프라이머 서열내 염기 4개 이상 연속해서 상보적이지 않도록 해서 이차구조 형성을 방지하였고, 3'말단에 동일한 염기가 3개 이상 연속해서 위치하지 않도록 해서 프라이머 이합체(dimer)의 형성을 방지하였다. 또한 프라이머 염기서열이 본 발명이 목적하는 칩을 구성하는 기타 병원체와 cross-reactive한 특성을 나타내지 않음을 당해업자가 통상적으로 이용하는 다양한 염기서열 검색 툴(tool)을 활용하여 검증하였다. 대표적인 인체 감염성질환의 64종 병원체를 감별분석하는 진단용 칩(chip)에 이용되는 프라이머(primer)의 세부정보는 표 1에 기술하였다. 본 발명에 사용하는 프라이머(primer) 미국 IDT(Integrated DNA Technologies, Inc., San Jose, CA, USA)를 통해 합성하였다.
멀티플렉스-PCR 반응의 결과로 얻어지는 증폭산물은 칩 혼성화반응을 위해 형광색소(fluorescent dye)가 표지되어 있어야 하는데, 이를 위해 5' 말단 또는 3' 말단에 형광색소가 표지된 프라이머를 사용하거나 또는 형광색소가 표지되지 않은 일반적인 프라이머를 사용하고 멀티플렉스-PCR 반응 중에 형광색소가 표지된 디옥시리보뉴클레오티드 트리포스페이트가 증폭산물에 삽입되게끔 유도하여 증폭산물을 표지하는 두가지 방법을 모두 확인하였다. 본 발명에 사용하는 형광색소는 6-FAM(6-carboxyfluorescein), Cy5, Cy3, Cy5.5, JOE(6-carboxy-4', 5'-dichloro-2', 7'-dimethoxyfluorescein), Rhodamine Green, TAMRA NHS(N-hydroxysuccinimide) Ester, Texas Red 등이다. 프라이머 합성단계에서, 몰디-토프(MALDI-TOF, Matrix Assisted Laser Desorption/Ionization Time-of-Flight)를 통해 불순물 함유 여부를 확인하고 고성능 액체 크로마토그래피(HPLC, High-performance liquid chromatography)를 통해 순수 정제하였다. 프라이머의 농도는 ND-1000 분광광도계(NanoDrop Technologies, Rockland, Maine, USA)를 통해 확인하고 최종 50 - 200 pmole/uL 범위의 농도가 되도록 3차 탈이온 멸균 증류수로 재현탁하고 aliquots으로 -70℃ 냉동보관하였다.
Prior to the analysis of diagnostic chips that differentially analyze 64 pathogens (including bacteria and viruses) of representative human infectious diseases, primers included in the preceding multiplex-PCR reaction are US National Center for NCBI. The sequences of 64 pathogens retrieved from GenBank, the DNA database of Biotechnology Information (DDBJ), The DNA Data Bank of Japan (DDBJ) of Japan, and the European Molecular Biology Laboratory (EMBL) of the European Union, were analyzed. Target genes of 64 pathogens used in primer design include structural genes such as 5.8S, 16S, 18S, 23S, 28S ribosomal RNA (RNA), 16S rRNA-ITS (Internal transcribed spacer) -23S rRNA, Alternatively, individual genes capable of species-specific amplification were used as target regions of the primer design. The target site sequences for each infectious disease group were subjected to multiple alignments using the Clustal method, and thus, specific primer target sites for each pathogen were selected. Subsequently, primer primer (Primer premier version 5, Premier Biosoft International, Palo Alto, Calif., USA) and DNAiSmax (DNASIS MAX Version 2.7, MiraiBio Group, South San Francisco, CA, USA) programs were selected from the selected primer target sites. Application was made to design strain-specific primers. Primer selection conditions are as follows; Primer length is 18-25 base pair, melting temperature Tm (℃) is 58-63 ℃, GC content of 3 'end should not be high, and secondary structure formation is made by not complementary 4 or more bases in primer sequence consecutively. The formation of primer dimers was prevented by avoiding three or more identical bases consecutively located at the 3 'end. In addition, it was verified using a variety of sequencing tools commonly used by those skilled in the art that the primer sequence does not exhibit cross-reactive characteristics with other pathogens constituting the chip of the present invention. Table 1 shows the details of the primers used in the diagnostic chip for differential analysis of 64 pathogens of representative human infectious diseases. It was synthesized through the primer US IDT (Integrated DNA Technologies, Inc., San Jose, Calif., USA) used in the present invention.
The amplification product resulting from the multiplex-PCR reaction should be labeled with a fluorescent dye for chip hybridization. For this purpose, a primer labeled with a fluorescent dye at the 5 'or 3' end or fluorescent Both methods of labeling amplification products were identified by using a non-pigmented general primer and inducing the insertion of fluorescent dye-labeled deoxyribonucleotide triphosphate into the amplification product during the multiplex-PCR reaction. Fluorescent dyes used in the present invention are 6-FAM (6-carboxyfluorescein), Cy5, Cy3, Cy5.5, JOE (6-carboxy-4 ', 5'-dichloro-2', 7'-dimethoxyfluorescein), Rhodamine Green TAMRA NHS (N-hydroxysuccinimide) Ester, Texas Red. In the primer synthesis step, MALDI-TOF (Matrix Assisted Laser Desorption / Ionization Time-of-Flight) checks for impurities and purifies pure water by high-performance liquid chromatography (HPLC). It was. The concentration of the primer was checked through an ND-1000 spectrophotometer (NanoDrop Technologies, Rockland, Maine, USA) and resuspended in tertiary deionized sterile distilled water to a final range of 50-200 pmole / uL and -70 ° C as aliquots. Cryopreservation.

감염성질환 64종 병원체 멀티플렉스-PCR을 질환군별로 수행하기위한 프라이머(primer) 조합Primer combination to perform 64 infectious diseases multiplex-PCR by disease group 서열목록번호SEQ ID NO: 반응 대상
균주명
Reaction target
Strain name
프라이머 방향, 염기서열(5'-3')Primer direction, base sequence (5'-3 ') 길이Length
1One Fungus sp.
general
Fungus sp.
general
정방향, GCATCGATGAAGAACGCAGCForward, GCATCGATGAAGAACGCAGC 2020
22 역방향, TCCTCCGCTTATTGATATGCReverse, TCCTCCGCTTATTGATATGC 2020 33 Rhizopus sp.
general
Rhizopus sp.
general
정방향, ATTACCATGAGCAAATCAGAForward, ATTACCATGAGCAAATCAGA 2020
44 역방향, CAATCCAAGAATTTCACCTCTAGReverse, CAATCCAAGAATTTCACCTCTAG 2323 55 Aspergillus sp.
general
Aspergillus sp.
general
정방향, CGGCCCTTAAATAGCCCGForward, CGGCCCTTAAATAGCCCG 1818
66 역방향, GACCGGGTTTGACCAACTTTReverse, GACCGGGTTTGACCAACTTT 2020 77 Candida sp.
general
Candida sp.
general
정방향, GCATCGATGAAGAACGCAGC Forward, GCATCGATGAAGAACGCAGC 2020
88 역방향, TCCTCCGCTTATTGATATGC Reverse, TCCTCCGCTTATTGATATGC 2020 99 Mycobacterium
tuberculosis
Mycobacterium
tuberculosis
정방향, TTTCGCTGTTGTGGTTCTCAForward, TTTCGCTGTTGTGGTTCTCA 2020
1010 역방향, GGGCACTGGACCTGTATGAGReverse, GGGCACTGGACCTGTATGAG 2020 1111 Mycobacterium sp.
general
Mycobacterium sp.
general
정방향, DCCKCYTTTCTAAGGWGCACCForward, DCCKCYTTTCTAAGGWGCACC 2121
1212 역방향, GATGCTCGCAACCACTATCCAReverse, GATGCTCGCAACCACTATCCA 2121 1313 Human Papilloma
Virus
Human papilloma
Virus
정방향, TTTBTHACHGTDGTDGAYACHACForward, TTTBTHACHGTDGTDGAYACHAC 2323
1414 역방향, GAAAAATAAACTGTAAATCATATTCReverse, GAAAAATAAACTGTAAATCATATTC 2525 1515 Proteus mirabilisProteus mirabilis 정방향, GCGGTTTATCACGAAGGGForward, GCGGTTTATCACGAAGGG 1818 1616 역방향, GCTTGGCGAGATTGAGTGCReverse, GCTTGGCGAGATTGAGTGC 1919 1717 Enterobacter sp.
Enterobacter sp.
정방향, CCTGGACGAAGACTGACGCForward, CCTGGACGAAGACTGACGC 1919
1818 역방향, CGGACTACGACGCACTTTATGReverse, CGGACTACGACGCACTTTATG 2121 1919 Escherichia Coli
sp.
Escherichia Coli
sp.
정방향, AGCGTCGCAGAACATTACATForward, AGCGTCGCAGAACATTACAT 2020
2020 역방향, GGGCAACAAGCCGAAAGAReverse, GGGCAACAAGCCGAAAGA 1818 2121 Enterococcus
faecalis
Enterococcus
faecalis
정방향, AGTTTCTGCTGCTGATGGTForward, AGTTTCTGCTGCTGATGGT 1919
2222 역방향, TAACAACGCCTGAACCTACReverse, TAACAACGCCTGAACCTAC 1919 2323 Staphylococcus sp.
general
Staphylococcus sp.
general
정방향, AGTATCTGCTGCTGACGGTCCForward, AGTATCTGCTGCTGACGGTCC 2121
2424 역방향, GTAGCAACAGTACCACGACCAReverse, GTAGCAACAGTACCACGACCA 2121 2525 Staphylococcus
aureus
Staphylococcus
aureus
정방향, AATGGACGGCGGTATCTTForward, AATGGACGGCGGTATCTT 1818
2626 역방향, TCAACACGGCCTGTAGCAReverse, TCAACACGGCCTGTAGCA 1818 2727 Streptococcus
agalactiae
Streptococcus
agalactiae
정방향, TGCGGTAACGAACGAAATForward, TGCGGTAACGAACGAAAT 1818
2828 역방향, TTCACAAGGCGCTCACTCAReverse, TTCACAAGGCGCTCACTCA 1919 2929 Streptococcus
pneumoniae
Streptococcus
pneumoniae
정방향, TCGTTTCATCAAAGAGGGTAAForward, TCGTTTCATCAAAGAGGGTAA 2121
3030 역방향, CCGCAAGAAGAGTGGGATTReverse, CCGCAAGAAGAGTGGGATT 1919 3131 Corynebacterium sp.
Corynebacterium sp.
정방향, CCGCAAGGCTAAAACTCAAAGGAATForward, CCGCAAGGCTAAAACTCAAAGGAAT 2525
3232 역방향, ACCGACCACAAGGGAAAGACTReverse, ACCGACCACAAGGGAAAGACT 2121 3333 Pseudomonas
aeruginosa
Pseudomonas
aeruginosa
정방향, TGAAGGGTGACAACGAGGAGForward, TGAAGGGTGACAACGAGGAG 2020
3434 역방향, GCCCGCACTGAGGAATAAAReverse, GCCCGCACTGAGGAATAAA 1919 3535 Veillonella sp.
Veillonella sp.
정방향, TGAAAGGTGGCCTCTATTTATForward, TGAAAGGTGGCCTCTATTTAT 2121
3636 역방향, CAATCCTTCTAACTGTTCGCAAGReverse, CAATCCTTCTAACTGTTCGCAAG 2323 3737 Leptotrichia sp.
Leptotrichia sp.
정방향, CAATTCTGTGTGTGTGAAGAAGForward, CAATTCTGTGTGTGTGAAGAAG 2222
3838 역방향, ACAGTTTTGTAGGCAAGCCTATReverse, ACAGTTTTGTAGGCAAGCCTAT 2222 3939 Lactobacillus sp.
Lactobacillus sp.
정방향, TCTGCCTTGAAGATCGGAGTGCForward, TCTGCCTTGAAGATCGGAGTGC 2222
4040 역방향, ACAGTTGATAGGCATCATCTGReverse, ACAGTTGATAGGCATCATCTG 2121 4141 Enterobacteriaceae
sp.
Enterobacteriaceae
sp.
정방향, TTTCCGTGTCGCCCTTATForward, TTTCCGTGTCGCCCTTAT 1818
4242 역방향, CGACCGAGTTGCTCTTGCReverse, CGACCGAGTTGCTCTTGC 1818 4343 Enterobacteriaceae
sp.
Enterobacteriaceae
sp.
정방향, CCGCTGGGAAACGGAACTForward, CCGCTGGGAAACGGAACT 1818
4444 역방향, CCCGCAGATAAATCACCACAATReverse, CCCGCAGATAAATCACCACAAT 2222 4545 Enterobacteriaceae
sp.
Enterobacteriaceae
sp.
정방향, TGCCGCACCTCAACAAATCForward, TGCCGCACCTCAACAAATC 1919
4646 역방향, CAATAGCGTCGCCACCAAReverse, CAATAGCGTCGCCACCAA 1818 4747 Bacteria
general
Bacteria
general
정방향, TCATAGACACGCCAGGACATAForward, TCATAGACACGCCAGGACATA 2121
4848 역방향, CAGATTCGGTAAAGTTCGTCAReverse, CAGATTCGGTAAAGTTCGTCA 2121 4949 Bacteria
general
Bacteria
general
정방향, TGCTGTCCAGGCAGGTAGATForward, TGCTGTCCAGGCAGGTAGAT 2020
5050 역방향, GGCATAAATCGCCGTGAAGReverse, GGCATAAATCGCCGTGAAG 1919 5151 Bacteria
general
Bacteria
general
정방향, GAAAAGGTACTCAACCAAForward, GAAAAGGTACTCAACCAA 1818
5252 역방향, ATAAGTAACGGTACTTAAATTGReverse, ATAAGTAACGGTACTTAAATTG 2222 5353 Herpes Simplex
Virus general
Herpes Simplex
Virus general
정방향, CCGAGTACGGCGGCTCCTTCForward, CCGAGTACGGCGGCTCCTTC 2020
5454 역방향, TGCAGCTCGCACCACGCGReverse, TGCAGCTCGCACCACGCG 1818 5555 Herpes Simplex Virus, type 2Herpes Simplex Virus, type 2 정방향, CGACAAGATTAACGCCAAGGGForward, CGACAAGATTAACGCCAAGGG 2121 5656 역방향, CGTCGCCAGCACAAACTCAReverse, CGTCGCCAGCACAAACTCA 1919 5757 Haemophilus
ducreyi
Haemophilus
ducreyi
정방향, AGCGTGGGTGCCAGTAAATForward, AGCGTGGGTGCCAGTAAAT 1919
5858 역방향, GAAAGGTAGGCGTGAGAGAATCReverse, GAAAGGTAGGCGTGAGAGAATC 2222 5959 Treponema
pallidum
Treponema
pallidum
정방향, GGTATGAAGTTTGTCCCAGTTGCForward, GGTATGAAGTTTGTCCCAGTTGC 2323
6060 역방향, GCGTCATCACCGTAGTAGTCGTReverse, GCGTCATCACCGTAGTAGTCGT 2222 6161 Mycoplasma
hominis
Mycoplasma
hominis
정방향, AATGGCTAATGCCGGATACGCForward, AATGGCTAATGCCGGATACGC 2121
6262 역방향, AGGTACCGTCAGTCTGCAATCATReverse, AGGTACCGTCAGTCTGCAATCAT 2323 6363 Gardnerella
vaginalis
Gardnerella
vaginalis
정방향, GGGCGTATTGGTTGGATGCForward, GGGCGTATTGGTTGGATGC 1919
6464 역방향, CCCCGAATACGCAACACCTReverse, CCCCGAATACGCAACACCT 1919 6565 Candida
albicans
Candida
albicans
정방향, CGACCAATAGAGGCGTTACAAForward, CGACCAATAGAGGCGTTACAA 2121
6666 역방향, ACGGATTTAGGTGGCAAGGReverse, ACGGATTTAGGTGGCAAGG 1919 6767 Trichomonas
vaginalis
Trichomonas
vaginalis
정방향, CTCAGTTCGCAAAGGCAGTCForward, CTCAGTTCGCAAAGGCAGTC 2020
6868 역방향, ATGCGATTGGCTGCTTGAReverse, ATGCGATTGGCTGCTTGA 1818 6969 Ureaplasma
urealyticum
Ureaplasma
urealyticum
정방향, CAGCATTAAAAATACTGGTGACCGForward, CAGCATTAAAAATACTGGTGACCG 2424
7070 역방향, ATTCCCTAACTTGTCGTCTAACTTCReverse, ATTCCCTAACTTGTCGTCTAACTTC 2525 7171 Mycoplasma
genitalium
Mycoplasma
genitalium
정방향, AGTTGATGAAACCTTAACCCCTTForward, AGTTGATGAAACCTTAACCCCTT 2323
7272 역방향, TGAGGGGTTTTCCATTTTTGCReverse, TGAGGGGTTTTCCATTTTTGC 2121 7373 Chlamydiae
trachomatis
Chlamydiae
trachomatis
정방향, TGGAGTGCTGGCTCGTATAAAForward, TGGAGTGCTGGCTCGTATAAA 2121
7474 역방향, GACCGCTGTCTCGCAAATCReverse, GACCGCTGTCTCGCAAATC 1919 7575 Neisseria
gonorrhoeae
Neisseria
gonorrhoeae
정방향, CGGTTTCCGTGCGTTACGForward, CGGTTTCCGTGCGTTACG 1818
7676 역방향, ACTGGTTTCATCTGATTACTTTCCAReverse, ACTGGTTTCATCTGATTACTTTCCA 2525 7777 Actinobacillus
actinomycetemcomitans
Actinobacillus
actinomycetemcomitans
정방향, GGGGCTTTCTACTACGGGACForward, GGGGCTTTCTACTACGGGAC 2020
7878 역방향, AGCATCTGCGATCCCTGTATReverse, AGCATCTGCGATCCCTGTAT 2020 7979 Porphyromonas
gingivalis
Porphyromonas
gingivalis
정방향, GAATAACGGGCGATACGAGForward, GAATAACGGGCGATACGAG 1919
8080 정방향, GCTGACTTACCGAACAACCTForward, GCTGACTTACCGAACAACCT 2020 8181 Treponema
denticola
Treponema
denticola
역방향, AGAATAAGAAGAAGAGGGAATGCTReverse, AGAATAAGAAGAAGAGGGAATGCT 2424
8282 정방향, GCTTACCTAACCGCCTACATACCForward, GCTTACCTAACCGCCTACATACC 2323 8383 Tannerella
forsythensis
Tannerella
forsythensis
역방향, CGGGCTGCAATGGAACTAReverse, CGGGCTGCAATGGAACTA 1818
8484 정방향, GCTTCTCAGGTCCCAGCAAForward, GCTTCTCAGGTCCCAGCAA 1919 8585 Prevotella
intermedia
Prevotella
intermedia
역방향, CCAACCTTCCCTCCACTCGReverse, CCAACCTTCCCTCCACTCG 1919
8686 정방향, CGTCAATCCTGCACGCTACTTForward, CGTCAATCCTGCACGCTACTT 2121 8787 Fusobacterium
nucleatum
Fusobacterium
nucleatum
정방향, CATTTATTGTGATGGAGGGACGForward, CATTTATTGTGATGGAGGGACG 2222
8888 역방향, CCTCTTCACTGCGACCCTCReverse, CCTCTTCACTGCGACCCTC 1919 8989 Bacteria
general
Bacteria
general
정방향, TCCTACGGGAGGCAGCAGT Forward, TCCTACGGGAGGCAGCAGT 1919
9090 역방향, GGACTACCAGGGTATCTAATCCTGTT Reverse, GGACTACCAGGGTATCTAATCCTGTT 2626

<실시예 2> 검체 채취 및 이로부터 DNA 분리Example 2 Specimen Collection and DNA Separation Therefrom

삭제delete

본 발명이 실현하고자 하는 비-침습적(non-invasive) 진단을 위해서, 종래의 조직(tissue), 스왑(swab), 뇨(urine) 검체시료이외에도 거의 모든 종류의 체액(body fluid)으로부터 동일한 민감도와 특이도를 나타내는 검사방법이 요구되며, 이를 위해서는 검체로부터 효율적인 DNA 분리가 필수적으로 요구되었다. 본 발명에 사용되는 검체종류는 VB1(first-voided urine), VB3(third-voided urine), 전립선 분비액(EPS, expressed prostatic secretion), 정액(semen), 요도 스왑(urethral swab), 궤양 스왑(ulcer swab), 요도 분비물(urethral discharge), 자궁경부 스왑(vaginal swab), 혈액(blood), 조직(tissue), 객담(sputum), 구강 스왑(buccal swab), 비강 스왑(nasal swab)이다. 채취된 검체는 가급적 24시간 이내에 신선한 상태에서 분석하였으며, 스왑 검체는 3 - 5mL의 1X PBS(phosphate-buffered solution)용액이 충진된 용기를 사용하여 시료를 채취하였다. 1X PBS 용액은 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4를 3차 멸균 증류수 1L에 최종 pH 7.4가 되도록 조성하였다. 뇨(urine) 검체는 운송과정 중의 0.5 - 2%(w/v)의 소디움 아자이드(sodium azide), 1 - 3%(v/v)의 톨루엔(toluene) 또는 1 - 2%(w/v)의 붕산(boric acid)을 포함하는 검사용기를 통해 채취하였고 분석실로 실온조건에서 운송하였다. For the non-invasive diagnosis which the present invention intends to realize, the same sensitivity and sensitivity can be obtained from almost all kinds of body fluids in addition to conventional tissue, swab, and urine samples. A test method showing specificity is required, and efficient DNA separation from the sample is essential. Specimen used in the present invention are VB1 (first-voided urine), VB3 (third-voided urine), prostate secretion (EPS, expressed prostatic secretion), semen (semen), urethral swab (urethral swab), ulcer swap (ulcer) swabs, urethral discharges, cervical swabs, blood, tissues, sputum, buccal swabs, nasal swabs. The collected samples were analyzed in a fresh state within 24 hours as much as possible. Swap samples were collected using a container filled with 3-5 mL of 1 × PBS (phosphate-buffered solution). The 1 × PBS solution was formulated with 8 g NaCl, 0.2 g KCl, 1.44 g Na 2 HPO 4 , 0.24 g KH 2 PO 4 in 1 L of tertiary sterile distilled water to a final pH of 7.4. Urine samples contain 0.5-2% (w / v) sodium azide, 1-3% (v / v) toluene or 1-2% (w / v) during transport. ) Was taken from the test vessel containing boric acid of Transported.

상기 검체로부터 게노믹 DNA(genomic DNA)를 분리하기 위해 상용화된 DNA 추출 키트(LaboPass™ Tissue kit, 코스모진텍, 서울, 한국)를 사용하였다. 뇨 검체의 경우, 채취용기로부터 1.5 mL의 뇨 시료를 채취하여 덴빌 260D 고속 원심분리기(high-speed centrifuge, Denville Scientific Inc., Metuchen, NJ, USA)를 이용해서 12,000 rpm(revolutions per minute, 분당회전수), 1분 원심분리하였다. 상층액을 제거하고 침전물(pellet)을 500 uL의 1X PBS 용액에 풀어준 뒤 다시 동일 조건에서 원심분리하여 세척과정을 거쳤다. 기타 볼륨(volume)이 적은 검체는 시료를 1.5 mL 에펜도르프 튜브(Eppendorf tube)로로 옮긴 뒤 고속원심분리기에서 12,000 rpm, 2분 원심분리하였고 500 uL의 1X PBS 용액으로 침전물을 풀어준 뒤 동일 조건으로 원심분리하여 상층액을 제거하였다. 침전물에 시료를 분해하는 TL 완충용액(buffer) 200 uL를 첨가하여 풀어주고 단백분해효소 K(Proteinase K, 100 mg/mL) 20 uL를 첨가하고 약하게 교반(vortex)한 후 56℃, 10분간 반응시켰다. 이후 반응물에 TB 완충용액 400 uL를 첨가하고 교반하여 반응물을 혼합하였다. 이어서 반응물을 스핀 칼럼(spin column)의 상층부에 로딩(loading)하고 8,000 rpm, 1분 원심분리하였다. 컬렉션 튜브(collection tube)를 새로 교체하고 검체로 부터 추출된 DNA를 칼럼의 멤브레인(membrane)에 결합시키는 작용을 하는 BW 완충용액 700 uL를 첨가하고 상기 동일 조건으로 원심분리하였다. 컬렉션 튜브(collection tube)를 새로 교체하고 멤브레인으로부터 불순물을 제거하는 NW 완충용액 500 uL를 첨가하고 13,000 rpm, 2분 원심분리하였다. 이후 스핀 칼럼 상층부를 새로운 에펜도르프 튜브로 옮긴뒤 DNA를 용출시키기 위해 탈이온(de-ionized) 멸균 3차 증류수 100 uL를 로딩하고 실온에서 5분 처리하고 8,000 rpm, 2분 원심분리하여 순수한 DNA를 분리하였다.A commercially available DNA extraction kit (LaboPass ™ Tissue kit, Cosmojin Tech, Seoul, Korea) was used to separate genomic DNA from the sample. For urine specimens, take 1.5 mL of urine sample from the collection vessel and use a Denville 260D high-speed centrifuge (Denville Scientific Inc., Metuchen, NJ, USA) at 12,000 rpm (revolutions per minute). Water), and centrifuged for 1 minute. The supernatant was removed and the pellet was dissolved in 500 uL of 1X PBS solution and then washed again by centrifugation under the same conditions. Other low-volume samples were transferred to a 1.5 mL Eppendorf tube, centrifuged at 12,000 rpm for 2 minutes in a high-speed centrifuge, and the precipitate was freed with 500 uL of 1X PBS solution. The supernatant was removed by centrifugation. Add 200 uL of TL buffer to decompose sample to precipitate, add 20 uL of proteinase K (Proteinase K, 100 mg / mL), stir gently, and react at 56 ℃ for 10 minutes I was. Then 400 uL TB buffer was added to the reaction and stirred to mix the reaction. The reaction was then loaded onto the top of the spin column and centrifuged at 8,000 rpm for 1 minute. A new collection tube was replaced and 700 uL of BW buffer, which acts to bind the DNA extracted from the sample to the membrane of the column, was added and centrifuged under the same conditions. The collection tube was freshly replaced and 500 uL of NW buffer was added to remove impurities from the membrane and centrifuged at 13,000 rpm for 2 minutes. The top of the spin column was then transferred to a new Eppendorf tube, loaded with 100 uL of de-ionized sterile tertiary distilled water to elute DNA, treated for 5 minutes at room temperature, centrifuged at 8,000 rpm for 2 minutes, and purified pure DNA. Separated.

<실시예 3> 멀티플렉스-PCR을 통한 인체 감염성질환 64종 병원체 감별진단용 칩(chip)의 타겟(target) DNA 제조 Example 3 Preparation of Target DNA of Differential Diagnosis of Infectious Diseases of 64 Human Pathogens by Multiplex-PCR

본 발명은 감염성질환군별로 멀티플렉스-PCR를 수행하고 이와 동시에 항생제 내성 판별을 위한 멀티플렉스-PCR을 수행한 후, 그 반응산물을 칩위에 미리 고정화시켜둔 선택적 프로브와 혼성화 반응을 실시함으로써 총 64종 병원체의 감염 여부뿐 아니라 병원체 유전형 및 이의 항생제 내성 보유 유무까지 판별할 수 있는 분석방법을 제공한다. 본 실시예에서는 상기 분석방법에 포함되는 치주염(periodontitis) 원인균 판별을 위한 멀티플렉스-PCR 수행 과정을 대표 예로써 설명하고자 한다. 기타 감염성질환의 멀티플렉스-PCR 반응 조성도 프라이머 프리믹스(primer premix)의 volume의 차이에 따라 첨가되는 탈이온 3차 멸균 증류수의 volume에 차이가 있을뿐 기타 PCR 반응 조성 및 조건은 동일하다. 다양한 검체종류로부터 분리된 DNA를 주형(template)으로 사용하여, 치주염 원인균 6종 및 내부대조군 2종을 선택적으로 증폭할 수 있는 프라이머 프리믹스를 동일한 PCR 튜브(single tube)에서 1회 반응만으로 증폭하는 치주염 8종 멀티플렉스-PCR을 수행하였다. 상기 반응에 포함되는 내부 대조군(internal control)은 인간 베타클로빈 유전자 및 세균 16S 리보소말 리보핵산(ribosomal RNA)를 증폭하는 프라이머 세트(정방향 및 역방향 프라이머)이다. 멀티플렉스 PCR의 반응 조성 및 반응조건을 표 2에 나타내었다. The present invention performs a multiplex-PCR for each infectious disease group, and at the same time performs a multiplex-PCR for antibiotic resistance determination, and then performs a hybridization reaction with a selective probe immobilized on the chip. It provides an analytical method that can determine not only the infection of species pathogens, but also the pathogen genotype and its antibiotic resistance. In the present embodiment will be described as a representative example of the multiplex-PCR process for determining the periodontitis (periodontitis) causing bacteria included in the analysis method. The multiplex-PCR reaction composition of other infectious diseases also differs in the volume of deionized tertiary sterile distilled water added according to the difference in the volume of the primer premix, and the other PCR reaction compositions and conditions are the same. Periodontitis which uses DNA isolated from various specimens as a template to amplify primer premixes capable of selectively amplifying six periodontal causative bacteria and two internal controls in a single reaction in the same PCR tube. Eight multiplex-PCRs were performed. Internal controls included in the reaction are primer sets (forward and reverse primers) that amplify human betaclobin genes and bacterial 16S ribosomal ribonucleic acid (ribosomal RNA). The reaction composition and reaction conditions of the multiplex PCR are shown in Table 2.

치주염 멀티플렉스-PCR 반응 조성 및 반응조건Periodontitis Multiplex-PCR Reaction Composition and Conditions
PCR 반응액 조성

PCR reaction solution composition

부피(uL)

Volume (uL)

PCR 반응 조건

PCR reaction conditions

탈이온 3차 멸균 증류수

Deionized Tertiary Sterilized Distilled Water

7

7

초기변성
(Initial denaturation)

Initial denaturation
(Initial denaturation)

95℃, 15분

95 ° C., 15 minutes

1회

1 time

치주염 8종 프라이머
프리믹스

Periodontitis 8 primers
Premix

3


3


변성
(Denaturation)

denaturalization
(Denaturation)

95℃, 50초

95 ℃, 50 seconds




37회








Episode 37





2X PCR 프리믹스

2X PCR Premix

15

15

결합
(Annealing)

Combination
(Annealing)

58℃, 60초

58 ° C., 60 seconds

주형 DNA(40 ng 이상)

Template DNA (40 ng or more)

5

5

연장
(Extension)

extension
(Extension)

72℃, 60초

72 ° C., 60 seconds

최종 부피

Final volume

30

30

최종연장
(Extension)

Last extension
(Extension)

72℃, 10분

72 ° C., 10 minutes

1회

1 time

멀티플렉스-PCR 반응액 혼합물에 포함되는 PCR 완충용액의 최종농도는 50 mM KCl, 3.5 mM MgCl2, 10mM Tris-HCl, pH 8.2이며, 2.5 unit의 Taq 중합효소, 300 uM dNTPs(Boehringer Mannheim, Mannheim, Germany), 10 mg/mL 소혈청알부민(Bovine serum albumin)을 포함한다. 치주염 8종 프라이머 프리믹스에 포함되는 치주염 종-특이 프라이머들의 정방향(sense) 프라이머들은 이들의 5'말단에 Cy3 형광색소를 표지시켜 합성하였고(Integrated DNA Technologies, Inc., Coralville, IA, USA), 8종 정방향/역방향 프라이머들의 조성비율(단위는 pmole/uL each)은 다음과 같다. A. 액티노미세템코미탄스 5 pmole each, P. 진지발리스 5 pmole each, T. 덴티콜라 16 pmole each, T. 포시덴시스 8 pmole each, P. 인터미디아 5 pmole each, F. 뉴클리아텀 7 pmole each, 박테리아 16S rRNA 11 pmole each, 인간베타글로빈 7 pmole each 로 조제하였다. The final concentration of the PCR buffer in the multiplex-PCR reaction mixture was 50 mM KCl, 3.5 mM MgCl 2 , 10 mM Tris-HCl, pH 8.2, 2.5 unit Taq polymerase, 300 uM dNTPs (Boehringer Mannheim, Mannheim) , Germany), 10 mg / mL Bovine serum albumin. Sense primers of periodontitis species-specific primers included in the periodontitis 8 primer premix were synthesized by labeling Cy3 fluorescent dyes at their 5 'ends (Integrated DNA Technologies, Inc., Coralville, IA, USA), 8 The composition ratio (unit is pmole / uL each) of the longitudinal forward / reverse primers is as follows. A. Actinomycetem Comitans 5 pmole each, P. Seriously 5 pmole each, T. Denticola 16 pmole each, T. Posiddensis 8 pmole each, P. Intermediate 5 pmole each, F. Nuclei Atom 7 pmole each, bacteria 16S rRNA 11 pmole each, human beta globin 7 pmole each was prepared.

또한 본 발명이 구성하는 멀티플렉스 PCR 키트는 PCR 과정중에 Cy3 형광색소가 표지된 디옥시사이토신 트리포스페이트(Cy3-dCTP)가 증폭산물을 구성하는 뉴클레오티드로 첨가되도록 하여 반응의 민감도와 특이도를 향상시킬 수 있었다. Cy3-dCTP를 사용하는 치주염 8종 멀티플렉스-PCR 반응에는 형광색소가 표지되지 않은 프라이머 프리믹스를 사용하며, PCR 완충용액을 구성하는 반응물들의 최종농도는 50 mM KCl, 3.5 mM MgCl2, 10mM Tris-HCl, pH 8.2이며, 2.5 unit의 Taq 중합효소, 300 uM dATP, 300 uM dGTP, 300 uM dTTP, 25 uM dCTP, 275 uM Cy3-dCTP(FluoroLink Cy3-dCTP, Amersham Pharmacia Biotech AB, Piscataway, NJ, USA), 10 mg/mL 소혈청알부민(Bovine serum albumin)을 포함한다. In addition, the multiplex PCR kit of the present invention improves the sensitivity and specificity of the reaction by allowing Cy3 fluorescent dye-labeled deoxycytosine triphosphate (Cy3-dCTP) to be added as nucleotides constituting the amplification product during the PCR process. I could make it. In the periodontitis 8 multiplex-PCR reaction using Cy3-dCTP, a primer premix without fluorescent dye was used. The final concentrations of the reactants constituting the PCR buffer were 50 mM KCl, 3.5 mM MgCl 2 , and 10 mM Tris-. HCl, pH 8.2, 2.5 unit Taq polymerase, 300 uM dATP, 300 uM dGTP, 300 uM dTTP, 25 uM dCTP, 275 uM Cy3-dCTP (FluoroLink Cy3-dCTP, Amersham Pharmacia Biotech AB, Piscataway, NJ, USA ), 10 mg / mL bovine serum albumin.

<실시예 4> 인체 감염성질환 64종 병원체 감별진단용 칩(chip)을 구성하는 프로브(probe) 디자인 및 합성<Example 4> Design and synthesis of probes constituting chips for differential diagnosis of 64 pathogens of human infectious diseases

대표적인 인체 감염성질환의 64종 병원체 감별진단용 칩(chip)에 이용되는 고 특이도의 프로브(probe)는 미국 NCBI의 염기서열 데이터베이스인 GenBank, 일본의 DDBJ 그리고 유럽연합의 EMBL 염기서열 데이터베이스로부터 검색된 64종 병원체의 염기서열을 분석하여 제작하였다. 프로브 디자인에 사용된 64종 병원체의 타겟(target) 유전자는 5.8S, 16S, 18S, 23S, 28S rRNA(ribosomal RNA), 16S rRNA-ITS(Internal transcribed spacer)-23S rRNA 등 구조 유전자를 타겟으로 또는 플라스미드(plasmid), pseudogene, repeated elements 등 개별 유전자를 프로브 디자인의 타겟 부위로 이용하였다.
해당 감염성질환군별로 대상 부위 염기서열을 Clustal method를 이용하여 다중정렬(multiple alignment)을 실시하고 이에 따라 각 병원체별 특이적인(specific) PCR 프라이머 타겟 부위를 선별한 후, 선별된 프라이머 타겟 부위를 대상으로 프라이머 프리미어, 디엔에이시스 맥스, 또는 올리고어레이 프로그램을 응용하여 프라이머 세트로부터 증폭되는 종-특이적(strain-specific) 증폭산물내에 고 특이도로 결합하는 프로브 서열을 디자인하였다. 프로브 디자인의 선택 조건은 다음과 같다 ; 프로브 길이는 18 - 30 base pair, 융해온도 Tm(℃)은 60 - 70℃, GC 함량은 40 - 65% 범위로 한정하였고, 이차구조 형성 여부, 자가 혼성화 또는 교차 혼성화 형성 여부를 검토하였다. 또한 디자인된 프로브가 칩을 구성하는 타 병원체 프로브와 cross-reactive한 특성을 나타내지 않음을 당해업자가 통상적으로 이용하는 다양한 염기서열 검색 툴(tool)을 활용하여 검증하였다. 대표적인 인체 감염성질환의 64종 병원체 감별진단용 칩(chip)에 이용되는 프로브(probe)의 세부정보는 표 3에 기술하였다. 목적하는 DNA 또는 PNA 프로브 염기서열의 5'말단 또는 3'말단에 아미노 모디파이어(amino modifiers)를 표지하여 종-특이적 프로브를 합성하였다(MWG-Biotech AG, Ebersberg, Germany). 프로브의 5'말단에 아미노 모디파이어를 수식할 경우 탄소 6개 - 12개의 스페이서(spacer)를 첨가하여 칩 반응 효율을 촉진하였다. 프로브의 3'말단에 아미노 모디파이어를 수식할 경우에는 스페이서를 사용하지 않았다. 프로브의 아민기는 1차 아민기의 성질을 지니며, 알데히드-활성화된 또는 카르복실(carboxyl)-활성화된 칩(chip) 표면에 부착하였다. 프로브의 농도는 260nm에서 흡광도 수치를 통해 환산하였고 몰디-토프(MALDI-TOF)를 통해 불순물 함유 여부를 확인하고 고성능 액체 크로마토그래피(HPLC)를 통해 순수 정제한 후 멸균 3차 증류수에 최종농도가 100-300 pM 되도록 제조하였다.
The high-specificity probes used for the 64 pathogen differential diagnosis chips of representative human infectious diseases are 64 species searched from the US NCBI sequencing database GenBank, Japan's DDBJ and the European Union's EMBL sequencing database. The base sequence of the pathogen was analyzed and produced. Target genes of 64 pathogens used in probe design target structural genes such as 5.8S, 16S, 18S, 23S, 28S ribosomal RNA (RNA), 16S rRNA-ITS (Internal transcribed spacer) -23S rRNA, or Individual genes such as plasmids, pseudogenes, and repeated elements were used as target sites for probe design.
Multiple alignments of target site sequences by the Clustal method for each infectious disease group are performed, and accordingly, specific PCR primer target sites are selected for each pathogen, and then the selected primer target sites are targeted. Primer Premier, dienex max, or oligoarray programs were used to design probe sequences that bind with high specificity within strain-specific amplification products that are amplified from primer sets. The selection conditions for the probe design are as follows; The probe length was limited to 18-30 base pairs, melting temperature Tm (℃) was 60-70 ℃, GC content was 40-65% range, and secondary structure formation, self hybridization or cross hybridization formation was examined. In addition, it was verified that the designed probe does not exhibit cross-reactive characteristics with other pathogen probes constituting the chip using various sequencing tools commonly used in the art. Details of the probes used in the 64 differentiation chips for representative human infectious diseases are described in Table 3. A species-specific probe was synthesized by labeling amino modifiers at the 5 'end or 3' end of the DNA or PNA probe sequence of interest (MWG-Biotech AG, Ebersberg, Germany). When modifying the amino modifier at the 5 'end of the probe, 6-12 carbon spacers were added to promote chip reaction efficiency. No spacer was used when modifying the amino modifier at the 3 'end of the probe. The amine groups of the probe have the properties of primary amine groups and are attached to the aldehyde-activated or carboxyl-activated chip surface. The concentration of the probe was converted to absorbance value at 260 nm, and it was checked for impurities by MALDI-TOF, purified by high performance liquid chromatography (HPLC), and then the final concentration was 100 in sterile tertiary distilled water. Prepared to be -300 pM.

인체 감염성질환 64종 병원체 감별진단용 칩을 구성하는 프로브(probe) 조합Probe combinations that make up 64 different pathogens for human infectious diseases 서열
목록
번호
order
List
number
반응 대상
균주명
Reaction target
Strain name
프로브 방향, 염기서열(5'-3')Probe orientation, nucleotide sequence (5'-3 ') 길이Length

91

91
Fungus sp.
general
Fungus sp.
general

역방향, GCATCGATGAAGAACGCAGC

Reverse, GCATCGATGAAGAACGCAGC

20

20

92

92
Fungus sp.
general
Fungus sp.
general
정방향, TTGACCTCRRATCAGGTAGGRATACCCGCTGAACTTAAForward, TTGACCTCRRATCAGGTAGGRATACCCGCTGAACTTAA
38

38

93

93
Rhizopus sp.
general
Rhizopus sp.
general

역방향, CTAGCGGCCAAATACAAATGC

Reverse, CTAGCGGCCAAATACAAATGC

21

21

94

94
Rhizopus sp.
general
Rhizopus sp.
general

역방향, TTCACCTCTAGCGGCCAAAT

Reverse, TTCACCTCTAGCGGCCAAAT

20

20

95

95
Aspergillus sp.
general
Aspergillus sp.
general

역방향, GGCTTGAGCCGATAGTCCCC

Reverse, GGCTTGAGCCGATAGTCCCC

20

20

96

96
Aspergillus sp.
general
Aspergillus sp.
general

정방향, TCAAGCCGATGGAAGTGCG

Forward, TCAAGCCGATGGAAGTGCG

19

19

97

97
Candida sp.
general
Candida sp.
general

역방향, GAAGGCAACACCAAACCCG

Reverse, GAAGGCAACACCAAACCCG

19

19

98

98
Candida sp.
general
Candida sp.
general

역방향, TCCTACCTGATTTGAGGGCGA

Reverse, TCCTACCTGATTTGAGGGCGA

21

21

99

99
Mycobacterium
avium
Mycobacterium
avium

정방향, GACCGAGTGTTGTCTCAGGGC

Forward, GACCGAGTGTTGTCTCAGGGC

21

21

100

100
Mycobacterium
chelonae
Mycobacterium
chelonae

정방향, ATTTCCCAGCCGAATGAGC

Forward, ATTTCCCAGCCGAATGAGC

19

19

101

101
Mycobacterium
flavescens
Mycobacterium
flavescens

정방향, GGTCTGGTGTCGCCCTGTCTT

Forward, GGTCTGGTGTCGCCCTGTCTT

21

21

102

102
Mycobacterium
gordonae
Mycobacterium
gordonae

정방향, CTCGGGTGCTGTCCCTCCA

Forward, CTCGGGTGCTGTCCCTCCA

19

19

103

103
Mycobacterium
kansasii
Mycobacterium
kansasii

정방향, GAGGCAACACTCGGGCTCTG

Forward, GAGGCAACACTCGGGCTCTG

20

20

104

104
Mycobacterium
simiae
Mycobacterium
simiae

정방향, TTCGGTTGAAGTGGTGTCCCTC

Forward, TTCGGTTGAAGTGGTGTCCCTC

22

22

105

105
Mycobacterium
szulgai
Mycobacterium
szulgai

정방향, CGGCAACGAACAAGCCAGACA

Forward, CGGCAACGAACAAGCCAGACA

21

21

106

106
Mycobacterium
vaccae
Mycobacterium
vaccae

정방향, CGGCGAGGGAAATCATCAGACA

Forward, CGGCGAGGGAAATCATCAGACA

22

22

107

107
Mycobacterium
fortuitum
Mycobacterium
fortuitum

정방향, GTCTTACCCGAGCCGTGAGGA

Forward, GTCTTACCCGAGCCGTGAGGA

21

21

108

108
Mycobacterium
intracellulare
Mycobacterium
intracellulare

정방향, CCCTGAGACAACACTCGGTCG

Forward, CCCTGAGACAACACTCGGTCG

21

21

109

109
Mycobacterium
tuberculosis
Mycobacterium
tuberculosis

정방향, TTGGGTCCTGAGGCAACACTCG

Forward, TTGGGTCCTGAGGCAACACTCG

22

22

110

110
Mycobacterium
abscessus
Mycobacterium
abscessus

정방향, TTGGGTCCTGAGGCAACACG

Forward, TTGGGTCCTGAGGCAACACG

20

20

111

111
Mycobacterium
bovis
Mycobacterium
bovis

정방향, TTGGGTCCTGAGGCAACACTCG

Forward, TTGGGTCCTGAGGCAACACTCG

22

22

112

112
Human Papilloma Virus
type 16
Human Papilloma Virus
type 16

정방향, ACCTCCAGCACCTAAAGAAGAT

Forward, ACCTCCAGCACCTAAAGAAGAT

22

22

113

113
Human Papilloma Virus type 18Human Papilloma Virus type 18
역방향, GGACCCGTGTATACAGGCACAT

Reverse, GGACCCGTGTATACAGGCACAT

23

23

114

114
Human Papilloma Virus type 31Human Papilloma Virus type 31
역방향, ATGGATCTTCCTTGGGCTTTT

Reverse, ATGGATCTTCCTTGGGCTTTT

21

21

115

115
Human Papilloma Virus
type 33
Human Papilloma Virus
type 33

정방향, CAGGCTATTACGTGTCAAAAAAC

Forward, CAGGCTATTACGTGTCAAAAAAC

23

23

116

116
Human Papilloma Virus
type 35
Human Papilloma Virus
type 35

역방향, CCAGAAGGCGGTGGTGTAAG

Reverse, CCAGAAGGCGGTGGTGTAAG

20

20

117

117
Human Papilloma Virus
type 39
Human Papilloma Virus
type 39

역방향, CAAACTGGCAGATGGTGGAG

Reverse, CAAACTGGCAGATGGTGGAG

20

20

118

118
Human Papilloma Virus
type 52
Human Papilloma Virus
type 52

정방향, CCCCACCACCGTCTGCATC

Forward, CCCCACCACCGTCTGCATC

19

19

119

119
Human Papilloma Virus
type 56
Human Papilloma Virus
type 56

정방향, GGGTTATCCCCGCCAGTG

Forward, GGGTTATCCCCGCCAGTG

18

18

120

120
Human Papilloma Virus
type 58
Human Papilloma Virus
type 58

역방향, GTCCTGTAAACTGGCAGACGG

Reverse, GTCCTGTAAACTGGCAGACGG

21

21

121

121
Human Papilloma Virus
type 6
Human Papilloma Virus
type 6

정방향, CCCCAAATGGTACATTAGAAGATA

Forward, CCCCAAATGGTACATTAGAAGATA

24

24

122

122
Human Papilloma Virus
type 11
Human Papilloma Virus
type 11

역방향, CCATTTGGTGGAGGCGATA

Reverse, CCATTTGGTGGAGGCGATA

19

19

123

123
Human Papilloma Virus
type 30
Human Papilloma Virus
type 30

정방향, AACTCCACTTTACTTGAGGGCTG

Forward, AACTCCACTTTACTTGAGGGCTG

23

23

124

124
Human Papilloma Virus
type 54
Human Papilloma Virus
type 54

역방향, TGCAGGGGCATTATTCTTTTG

Reverse, TGCAGGGGCATTATTCTTTTG

21

21

125

125
Human Papilloma Virus
type 62
Human Papilloma Virus
type 62

정방향, TCACTATTTGCAGTCTCGGGCTA

Forward, TCACTATTTGCAGTCTCGGGCTA

23

23

126

126
Proteus
mirabilis
Proteus
mirabilis

정방향, CGCACTCAATCTCGCCAAG

Forward, CGCACTCAATCTCGCCAAG

19

19

127

127
Proteus
mirabilis
Proteus
mirabilis

역방향, ATGGCATTTAGAGGATGTAGCA

Reverse, ATGGCATTTAGAGGATGTAGCA

22

22

128

128
Proteus
mirabilis
Proteus
mirabilis

정방향, GCGGTTTATCACGAAGGGGT

Forward, GCGGTTTATCACGAAGGGGT

20

20

129

129
Enterobacter sp.
general
Enterobacter sp.
general

역방향, GACATCGTTTACGGCGTGGACT

Reverse, GACATCGTTTACGGCGTGGACT

22

22

130

130
Enterobacter sp.
general
Enterobacter sp.
general

역방향, CCTCAAGGGCACAACCTCCAAG

Reverse, CCTCAAGGGCACAACCTCCAAG

22

22

131

131
Enterobacter sp.
general
Enterobacter sp.
general

역방향, TCAGGTGCGAAAGCGTGGG

Reverse, TCAGGTGCGAAAGCGTGGG

19

19

132

132
Escherichia Coli sp.
general
Escherichia Coli sp.
general

역방향, CGTCCGATCACCTGCGTCAA

Reverse, CGTCCGATCACCTGCGTCAA

20

20

133

133
Escherichia Coli sp.
general
Escherichia Coli sp.
general

역방향, GCGAAGAGGCAGTCAACGGG

Reverse, GCGAAGAGGCAGTCAACGGG

20

20

134

134
Escherichia Coli sp.
general
Escherichia Coli sp.
general

역방향, GGGCAACAAGCCGAAAGAACTG

Reverse, GGGCAACAAGCCGAAAGAACTG

22

22

135

135
Enterococcus
faecalis
Enterococcus
faecalis

역방향, GGAACATCATCGCCTGGGAA

Reverse, GGAACATCATCGCCTGGGAA

20

20

136

136
Enterococcus
faecalis
Enterococcus
faecalis

역방향, GATAACTGGAACATCATCGCC

Reverse, GATAACTGGAACATCATCGCC

21

21

137

137
Enterococcus
faecalis
Enterococcus
faecalis

역방향, ATGATGTTCCAGTTATCGCAGG

Reverse, ATGATGTTCCAGTTATCGCAGG

22

22

138

138
Staphylococcus sp.
general
Staphylococcus sp.
general

역방향, CGTATTGAGCATCGCCTTCTA

Reverse, CGTATTGAGCATCGCCTTCTA

21

21

139

139
Staphylococcus sp.
general
Staphylococcus sp.
general

역방향, CGTATTGAGCATCGCCTTC

Reverse, CGTATTGAGCATCGCCTTC

19

19

140

140
Staphylococcus sp.
general
Staphylococcus sp.
general

역방향, TTAGAAGGCGATGCTCAATAC

Reverse, TTAGAAGGCGATGCTCAATAC

21

21

141

141
Staphylococcus
aureus
Staphylococcus
aureus

역방향, TCGTATTGAGCATCGCCTT

Reverse, TCGTATTGAGCATCGCCTT

19

19

142

142
Staphylococcus
aureus
Staphylococcus
aureus

역방향, CTTCGTATTGAGCATCGCC

Reverse, CTTCGTATTGAGCATCGCC

19

19

143

143
Staphylococcus
aureus
Staphylococcus
aureus

정방향, AAGGCGATGCTCAATACGA

Forward, AAGGCGATGCTCAATACGA

19

19

144

144
Streptococcus agalactiaeStreptococcus agalactiae
정방향, GAGTATCAAGCAGCCCACG

Forward, GAGTATCAAGCAGCCCACG

19

19

145

145
Streptococcus agalactiaeStreptococcus agalactiae
정방향, ATCAAGCAGCCCACGATTC

Forward, ATCAAGCAGCCCACGATTC

19

19

146

146
Streptococcus agalactiaeStreptococcus agalactiae
역방향, AAGGAATACATGCTGTTGCG

Reverse, AAGGAATACATGCTGTTGCG

20

20

147

147
Streptococcus pneumoniaeStreptococcus pneumoniae
정방향, GCTACCCGATGAGTTTGTTGTT

Forward, GCTACCCGATGAGTTTGTTGTT

22

22

148

148
Streptococcus pneumoniaeStreptococcus pneumoniae
정방향, AGCTACCCGATGAGTTTGTTGTT

Forward, AGCTACCCGATGAGTTTGTTGTT

23

23

149

149
Streptococcus pneumoniaeStreptococcus pneumoniae
역방향, CGATAACAACAAACTCATCGGGT

Reverse, CGATAACAACAAACTCATCGGGT

23

23

150

150
Corynebacterium sp.
general
Corynebacterium sp.
general

정방향, GCACAAGCGGCGGAGCAT

Forward, GCACAAGCGGCGGAGCAT

18

18

151

151
Corynebacterium sp.
general
Corynebacterium sp.
general

역방향, ATGCTCCGCCGCTTGTGC

Reverse, ATGCTCCGCCGCTTGTGC

18

18

152

152
Corynebacterium sp.
general
Corynebacterium sp.
general

정방향, TGCAACGCGAAGAACCTTACCT

Forward, TGCAACGCGAAGAACCTTACCT

22

22

153

153
Pseudomonas
aeruginosa
Pseudomonas
aeruginosa

역방향, CCGTACACGCCGGTAGCA

Reverse, CCGTACACGCCGGTAGCA

18

18

154

154
Pseudomonas
aeruginosa
Pseudomonas
aeruginosa

역방향, GCCGGGTCCAGGATGCCC

Reverse, GCCGGGTCCAGGATGCCC

18

18

155

155
Veillonella sp.
general
Veillonella sp.
general

역방향, CCACATTGGGACTGAGACACGG

Reverse, CCACATTGGGACTGAGACACGG

22

22

156

156
Veillonella sp.
general
Veillonella sp.
general

정방향, TCCTACGGGAGGCAGCAGTG

Forward, TCCTACGGGAGGCAGCAGTG

20

20

157

157
Veillonella sp.
general
Veillonella sp.
general

정방향, CTACGGGAGGCAGCAGTGGG

Forward, CTACGGGAGGCAGCAGTGGG

20

20

158

158
Leptotrichia sp.
general
Leptotrichia sp.
general

역방향, CGGATAACGCTCGCAACATA

Reverse, CGGATAACGCTCGCAACATA

20

20

159

159
Leptotrichia sp.
general
Leptotrichia sp.
general

정방향, TATGTTGCGAGCGTTATCCG

Forward, TATGTTGCGAGCGTTATCCG

20

20

160

160
Leptotrichia sp.
general
Leptotrichia sp.
general

정방향, AGGCGGTAAGACAAGTTGAAGG

Forward, AGGCGGTAAGACAAGTTGAAGG

22

22

161

161
Lactobacillus sp.
general
Lactobacillus sp.
general

역방향, CGTGTTACTCACCCGTCCGC

Reverse, CGTGTTACTCACCCGTCCGC

20

20

162

162
Lactobacillus sp.
general
Lactobacillus sp.
general

정방향, CGGCGGACGGGTGAGTAA

Forward, CGGCGGACGGGTGAGTAA

18

18

163

163
Lactobacillus sp.
general
Lactobacillus sp.
general

정방향, AGCGGCGGACGGGTGAGT

Forward, AGCGGCGGACGGGTGAGT

18

18

164

164
Enterobacteriaceae
sp.
Enterobacteriaceae
sp.

역방향, GAATAAGGGCGACACGGAAA

Reverse, GAATAAGGGCGACACGGAAA

20

20

165

165
Enterobacteriaceae
sp.
Enterobacteriaceae
sp.

정방향, TTTCCGTGTCGCCCTTATTC

Forward, TTTCCGTGTCGCCCTTATTC

20

20

166

166
Enterobacteriaceae
sp.
Enterobacteriaceae
sp.

역방향, CAGCACGGAGCGGATCAACG

Reverse, CAGCACGGAGCGGATCAACG

20

20

167

167
Enterobacteriaceae
sp.
Enterobacteriaceae
sp.

정방향, CGCCCTGCTTGGCCCGAATA

Forward, CGCCCTGCTTGGCCCGAATA

20

20

168

168
Enterobacteriaceae
sp.
Enterobacteriaceae
sp.

역방향, CGTTGATTTGTTGAGGTGCGG

Reverse, CGTTGATTTGTTGAGGTGCGG

21

21

169

169
Enterobacteriaceae
sp.
Enterobacteriaceae
sp.

역방향, TACCGCCACCGCCATACC

Reverse, TACCGCCACCGCCATACC

18

18

170

170
Bacteria
general
Bacteria
general

역방향, CGAGTTTGTGCTTGTACGCCAT

Reverse, CGAGTTTGTGCTTGTACGCCAT

22

22

171

171
Bacteria
general
Bacteria
general

정방향, AAAGATGGCGTACAAGCACAAAC

Forward, AAAGATGGCGTACAAGCACAAAC

23

23

172

172
Bacteria
general
Bacteria
general

정방향, TGATCTTCACGGCGATTTATGC

Forward, TGATCTTCACGGCGATTTATGC

22

22

173

173
Bacteria
general
Bacteria
general

정방향, CATTGGACCGCTGATCTTCACG

Forward, CATTGGACCGCTGATCTTCACG

22

22

174

174
Bacteria
general
Bacteria
general

역방향, TTGGCGTGTTTCATTGCTTG

Reverse, TTGGCGTGTTTCATTGCTTG

20

20

175

175
Bacteria
general
Bacteria
general

역방향, ATCAAGCAATGAAACACGCCAA

Reverse, ATCAAGCAATGAAACACGCCAA

22

22

176

176
Herpes Simplex Virus
general
Herpes Simplex Virus
general

정방향, CACATCAAGGTGGGCCAGCCGC

Forward, CACATCAAGGTGGGCCAGCCGC

22

22

177

177
Herpes Simplex Virus
general
Herpes Simplex Virus
general

역방향, TGCGGCTGGCCCACCTTGATG

Reverse, TGCGGCTGGCCCACCTTGATG

21

21

178

178
Herpes Simplex Virus
general
Herpes Simplex Virus
general

역방향, CCAGGTAGTACTGCGGCTGGCC

Reverse, CCAGGTAGTACTGCGGCTGGCC

22

22

179

179
Herpes Simplex Virus
type 2
Herpes Simplex Virus
type 2

역방향, CCGTGGAGCGGCAGACCCC

Reverse, CCGTGGAGCGGCAGACCCC

19

19

180

180
Herpes Simplex Virus
type 2
Herpes Simplex Virus
type 2

역방향, GCCGTGGAGCGGCAGACC

Reverse, GCCGTGGAGCGGCAGACC

18

18

181

181
Herpes Simplex Virus
type 2
Herpes Simplex Virus
type 2

역방향, TGGCCGTGGAGCGGCAGACC

Reverse, TGGCCGTGGAGCGGCAGACC

20

20

182

182
Haemophilus
ducreyi
Haemophilus
ducreyi

정방향, GCGCCGTATCGGTTGGGT

Forward, GCGCCGTATCGGTTGGGT

18

18

183

183
Haemophilus
ducreyi
Haemophilus
ducreyi

역방향, AAGGTAGGCGTGAGAGAATCAAAAA

Reverse, AAGGTAGGCGTGAGAGAATCAAAAA

25

25

184

184
Haemophilus
ducreyi
Haemophilus
ducreyi

역방향, CGTAGGCATCAAGAAGGTAAAGCG

Reverse, CGTAGGCATCAAGAAGGTAAAGCG

24

24

185

185
Treponema
pallidum
Treponema
pallidum

역방향, AGGAACCGCAACTGGGACAAA

Reverse, AGGAACCGCAACTGGGACAAA

21

21

186

186
Treponema
pallidum
Treponema
pallidum

역방향, GAGGAACCGCAACTGGGACA

Reverse, GAGGAACCGCAACTGGGACA

20

20

187

187
Treponema
pallidum
Treponema
pallidum

정방향, TGAAGTTTGTCCCAGTTGCGGT

Forward, TGAAGTTTGTCCCAGTTGCGGT

22

22

188

188
Mycoplasma
hominis
Mycoplasma
hominis

역방향, ACTAATGTTCCGCACCCTCATCT

Reverse, ACTAATGTTCCGCACCCTCATCT

23

23

189

189
Mycoplasma
hominis
Mycoplasma
hominis

정방향, AGATGAGGGTGCGGAACATTAGT

Forward, AGATGAGGGTGCGGAACATTAGT

23

23

190

190
Gardnerella
vaginalis
Gardnerella
vaginalis

정방향, GCTGCCGAGTGGGCTTTG

Forward, GCTGCCGAGTGGGCTTTG

18

18

191

191
Gardnerella
vaginalis
Gardnerella
vaginalis

정방향, GTCAGGTGTTGCGTATTCGGG

Forward, GTCAGGTGTTGCGTATTCGGG

21

21

192

192
Candida
albicans
Candida
albicans

역방향, GCATCTCCAATCATTCGCCTA

Reverse, GCATCTCCAATCATTCGCCTA

21

21

193

193
Candida
albicans
Candida
albicans

정방향, AGATGCCTTGCCACCTAAATCC

Forward, AGATGCCTTGCCACCTAAATCC

22

22

194

194
Trichomonas
vaginalis
Trichomonas
vaginalis

역방향, GGACTGCCTTTGCGAACTGA

Reverse, GGACTGCCTTTGCGAACTGA

20

20

195

195
Trichomonas
vaginalis
Trichomonas
vaginalis

역방향, GGCTGCTTGACCATCCGAAA

Reverse, GGCTGCTTGACCATCCGAAA

20

20

196

196
Ureaplasma
urealyticum
Ureaplasma
urealyticum

정방향, GGGGATGAACTCTACTATGAAGTTA

Forward, GGGGATGAACTCTACTATGAAGTTA

25

25

197

197
Ureaplasma
urealyticum
Ureaplasma
urealyticum

역방향, GTTAACTAAGCCGTTTACACCTCAA

Reverse, GTTAACTAAGCCGTTTACACCTCAA

25

25

198

198
Mycoplasma
genitalium
Mycoplasma
genitalium

역방향, ATATTTAAGTTGTCATTTTGGCTTC

Reverse, ATATTTAAGTTGTCATTTTGGCTTC

25

25

199

199
Mycoplasma
genitalium
Mycoplasma
genitalium

정방향, AAGAAGCCAAAATGACAACTTAAAT

Forward, AAGAAGCCAAAATGACAACTTAAAT

25

25

200

200
Chlamydiae
trachomatis
Chlamydiae
trachomatis

역방향, GAGATAGGAAACCAACTCTACGCTG

Reverse, GAGATAGGAAACCAACTCTACGCTG

25

25

201

201
Chlamydiae
trachomatis
Chlamydiae
trachomatis

정방향, CAGCGTAGAGTTGGTTTCCTATCTC

Forward, CAGCGTAGAGTTGGTTTCCTATCTC

25

25

202

202
Neisseria
gonorrhoeae
Neisseria
gonorrhoeae

역방향, GCAGGCGTATAGGCGGACTTG

Reverse, GCAGGCGTATAGGCGGACTTG

21

21

203

203
Neisseria
gonorrhoeae
Neisseria
gonorrhoeae

역방향, GGGAATCGTAACGCACGGAAA

Reverse, GGGAATCGTAACGCACGGAAA

21

21

204

204
Actinobacillus actinomycetemcomitansActinobacillus actinomycetemcomitans
정방향, GGGGCTTTCTACTACGGGACCT

Forward, GGGGCTTTCTACTACGGGACCT

22

22

205

205
Actinobacillus actinomycetemcomitansActinobacillus actinomycetemcomitans
역방향, CAGCATCTGCGATCCCTGTAT

Reverse, CAGCATCTGCGATCCCTGTAT

21

21

206

206
Porphyromonas gingivalisPorphyromonas gingivalis
역방향, TACCGAACAACCTACGCACCCT

Reverse, TACCGAACAACCTACGCACCCT

22

22

207

207
Porphyromonas gingivalisPorphyromonas gingivalis
정방향, GCGGTAATACGGAGGATGCG

Forward, GCGGTAATACGGAGGATGCG

20

20

208

208
Treponema
denticola
Treponema
denticola

역방향, GCCTACATACCCTTTACGCCCA

Reverse, GCCTACATACCCTTTACGCCCA

22

22

209

209
Treponema
denticola
Treponema
denticola

역방향, GGGCTTATTCGCATGACTACCG

Reverse, GGGCTTATTCGCATGACTACCG

22

22

210

210
Tannerella forsythensisTannerella forsythensis
역방향, CGGGCGTGGGATTGGTGATG

Reverse, CGGGCGTGGGATTGGTGATG

20

20

211

211
Tannerella forsythensisTannerella forsythensis
역방향, TGTATCGGGCGTGGGATTGGT

Reverse, TGTATCGGGCGTGGGATTGGT

21

21

212

212
Prevotella
intermedia
Prevotella
intermedia

정방향, ATGGCATCTGACGTGGACCAAA

Forward, ATGGCATCTGACGTGGACCAAA

22

22

213

213
Prevotella
intermedia
Prevotella
intermedia

역방향, CGTAGCCTTGGTGGGCCGTTA

Reverse, CGTAGCCTTGGTGGGCCGTTA

21

21

214

214
Fusobacterium nucleatumFusobacterium nucleatum
역방향, TTCTGCGTCCCTCCATCACA

Reverse, TTCTGCGTCCCTCCATCACA

20

20

215

215
Fusobacterium nucleatumFusobacterium nucleatum
역방향, ACTTCCGTTCGTCCGTGC

Reverse, ACTTCCGTTCGTCCGTGC

18

18

216

216
Bacteria
general
Bacteria
general

역방향, CGTATTACCGCGGCTGCTGGCAC

Reverse, CGTATTACCGCGGCTGCTGGCAC

23

23

<실시예 5> 인체 감염성질환 64종 병원체 감별진단용 칩(chip) 제작 <Example 5> Chips for differential diagnosis of 64 pathogens for human infectious diseases

본 발명을 구성하는 대표적인 인체 감염성질환 병원체 프로브를 분석결과 해석의 용이함을 위해 질환군별로 구분하고 더불어 항생제 내성 분석군을 포함한 총 7개 그룹으로 칩 그리드(grid)를 작성하였다(도1 참조). 하나의 칩 기판위에 8개의 그리드를 작성하고 8 웰 혼성화 반응 챔버(8 well hybridization reaction chamber)를 통해 서로 다른 8개의 검체에 대한 분석을 동시진행할 수 있도록 고안하였다. 영하 70℃ 보관중인 프로브 스탁(stock)을 실온에서 해동한 후, 탈이온 멸균 3차 증류수에 최종농도 10 nM이 되도록 희석하여 워킹 스탁(working stock)으로 사용하였다. 워킹 스탁을 50배 희석한 프로브를 3X SSC 스포팅 용액(500 mM NaCl, 3 mM sodium citrate, 1.5 M N,N,N-trimethylglycine, pH 6.8)과 1 : 5 - 10 비율(v/v)로 혼합하여 최종 96 웰 플레이트(well plate)에 분주되는 프로브의 농도범위가 20 - 40 pmole/uL 가 되도록 하였다. 상기 플레이트를 Microssys 5100 microarrayer(Cartesian Technologies, Ann Arbor, MI, USA)에 장착하고 이로부터 알데하이드-, 티오이소시아네이트-, 또는 카르복실-활성화된 글라스 슬라이드(CEL associates Inc., Houston, TX, USA)에, 또는 에폭시-활성화된 플라스틱 칩 표면에 프로브들을 순서에 따라 2개씩 duplicate으로 스포팅하였다. 스팟(spot)의 평균 크기(diameter)는 80 - 150 마이크로미터(micrometer)이며 스팟간 크로스-토크(cross-talk)효과를 최소화하기 위해 스팟간의 거리는 400 - 500 마이크로미터를 유지하였다. 칩 제작은 74% 습도(humidity)를 유지하는 클래스 10,000 룸에서 실시하였다. 프로브가 스팟팅된 칩을 120℃, 1시간 베이킹(baking)한 후, 0.25% SDS(sodium dodecyl sulfate)용액에서 3분간 세척하고 멸균 3차 증류수로 다시 세척하였다. 이후 칩을 0.2% 소디움 보로하이드라이드(NaBH4)를 포함하는 용액에 반응시켜 프로브를 블럭킹(blocking)하였다. 이후 3차 증류수로 2회 세척하고 물기를 제거한 후 사용시점까지 데시케이터(dessicator)에 보관하였다.Representative human infectious disease pathogen probe constituting the present invention for the ease of analysis of the analysis results were divided into a group of diseases, and a chip grid was prepared in a total of seven groups including the antibiotic resistance analysis group (see Figure 1). Eight grids were prepared on one chip substrate and designed to perform simultaneous analysis of eight different samples through an 8 well hybridization reaction chamber. After thawing at 70 ° C., the probe stock was stored at room temperature, and then diluted with deionized sterile tertiary distilled water to a final concentration of 10 nM and used as a working stock. A 50-fold dilution of the working stock was mixed with 3X SSC spotting solution (500 mM NaCl, 3 mM sodium citrate, 1.5 MN, N, N-trimethylglycine, pH 6.8) in a 1: 5-10 ratio (v / v). The concentration range of the probe dispensed into the final 96 well plate was 20-40 pmole / uL. The plate was mounted on a Microssys 5100 microarrayer (Cartesian Technologies, Ann Arbor, MI, USA) and from this to an aldehyde-, thioisocyanate-, or carboxyl-activated glass slide (CEL associates Inc., Houston, TX, USA). Or, spotted duplicates of the probes in sequence on the epoxy-activated plastic chip surface. The average diameter of the spots is 80-150 micrometers and the distance between spots was maintained at 400-500 micrometers to minimize cross-talk effects between spots. Chip fabrication was carried out in a class 10,000 room maintaining 74% humidity. The probe spotted chips were baked at 120 ° C. for 1 hour, and then washed for 3 minutes in 0.25% SDS (sodium dodecyl sulfate) solution and again with sterile tertiary distilled water. The probe was then blocked by reacting the chip with a solution containing 0.2% sodium borohydride (NaBH 4 ). After washing twice with 3 distilled water, the water was removed and stored in a desiccator (dessicator) until the point of use.

<실시예 6> 인체 감염성질환 64종 병원체 감별진단용 칩(chip) 혼성화(hybridization) 반응 및 결과 분석<Example 6> Chip hybridization reaction and results analysis for differential diagnosis of 64 pathogens for human infectious diseases

본 발명의 바람직한 일실시예에 따른 대표적인 인체 감염성질환 64종 병원체 감별진단을 위해, 6대 감염성질환별로 그리고 항생제 내성 유무 분석을 위한 멀티플렉스-PCR 반응을 각각 수행한 후, 각 PCR 반응산물 6 uL씩 총 42 uL에 탈이온 3차 멸균 증류수 42 uL를 첨가하여 95℃, 5분간 열변성시킨 후 얼음위에 5분간 보존하고 원심분리기로 스핀다운(spin down)하였다. 칩(chip) 표면에는 8 웰 혼성화 반응 챔버를 위치시키고 웰 커버(cover)로 웰 상층부를 덮어두었다. 이후 반응시키고자하는 웰(well)에 상기 반응 혼합용액과 혼성화 반응 온도인 56℃로 미리 가열해둔 80 uL의 혼성화 반응 용액(3X SSC, 0.1% SDS, 0.2 mg/mL 소혈청알부민, pH 7)을 첨가하여 혼합한 후, 웰 커버의 구멍(hole)을 통해 반응액 혼합물을 주입하고 버블(bubble)이 발생하지 않도록 주의하였다. 챔버 리드(lid)를 고정시킨 후 56℃, 30분간 혼성화 반응을 통해 칩 표면의 프로브와 멀티플렉스-PCR 반응산물간 특이적인 뉴클레오티드 상보적(complementary) 결합을 유도하였다. 혼성화 반응이 종료된 칩 표면의 웰 커버를 제거하고 칩을 세척버퍼 1(0.1X SSC, 0.05% SDS) 용액에 담그고 2분간 2,000 rpm에서 교반하면서 세척(washing)하고 이를 1회 반복하였다. 이후 세척버퍼 2(2X SSC, 0.1% SDS) 용액에 2분간 2,000 rpm에서 교반하면서 세척하고 이를 1회 반복하였다. 이후 탈이온 3차 멸균 증류수에 담가 2회 세척하고 1,000 rpm에서 원심분리하여 칩을 건조하였다. 상기 칩을 스캔어래이 라잇(ScanArray Lite, Packard Instrument Co., Meriden, CT, USA) 스캐너를 이용하여 판독하였고, 분석 소프트웨어(QuantArray 2.0)를 이용하여 양성 대조군 스팟들의 평균 형광강도(fluorescence intensity) 및 표준오차를 스팟 주변의 값들과 비교하여 signal-to-noise(S/R) 비율을 구한 뒤 이 값이 5 이상일 경우 양성 값으로 스코어링(scoring) 처리하였다. For differential diagnosis of 64 pathogens of representative human infectious diseases in accordance with one preferred embodiment of the present invention, each PCR reaction product 6 uL after each of the six major infectious diseases and for the analysis of antibiotic resistance 42 uL of deionized tertiary sterile distilled water was added to 42 uL, which was thermally denatured at 95 ° C. for 5 minutes, and then preserved on ice for 5 minutes and spun down with a centrifuge. An 8 well hybridization reaction chamber was placed on the chip surface and the well top layer was covered with a well cover. Thereafter, 80 uL of the hybridization reaction solution (3X SSC, 0.1% SDS, 0.2 mg / mL bovine serum albumin, pH 7), which was previously heated to 56 ° C., the hybridization temperature of the reaction mixture solution, in the well to be reacted. After the addition and mixing, the reaction mixture was injected through the hole of the well cover, and care was taken not to generate bubbles. After fixing the chamber lid, hybridization reaction was performed at 56 ° C. for 30 minutes to induce specific nucleotide complementary bonds between the probe on the chip surface and the multiplex-PCR reaction product. The well cover of the chip surface where the hybridization reaction was completed was removed, the chip was immersed in the washing buffer 1 (0.1X SSC, 0.05% SDS) solution, washed with stirring at 2,000 rpm for 2 minutes, and this was repeated once. After washing with washing buffer 2 (2X SSC, 0.1% SDS) solution at 2,000 rpm for 2 minutes and this was repeated once. Thereafter, the chips were dried by immersion in deionized tertiary sterile distilled water twice and centrifuged at 1,000 rpm. The chip was read using a ScanArray Lite, Packard Instrument Co., Meriden, CT, USA scanner and the mean fluorescence intensity and standard of positive control spots using analytical software (QuantArray 2.0). The signal-to-noise (S / R) ratio was obtained by comparing the error with the values around the spot, and when this value was 5 or more, it was scored as a positive value.

<실시예 7> 인체 감염성질환 64종 병원체 감별진단용 칩(chip)과 종래기술과의 비교시험을 통한 성능확인<Example 7> Performance verification through comparison test between 64 types of pathogen differential diagnosis chip of human infectious disease

본 발명은 인체 감염성질환의 주요 병원체 감염 여부뿐 아니라 감염된 병원체 유전형 및 항생제 내성 유무까지 일괄 감별분석하는 조성물을 제공한다. 본 실시예는 본 발명을 구성하는 6대 주요 감염성질환 중 요로감염 병원체 그룹에 대한 칩 분석결과를 종래의 검사법 중 최신기술인 PCR 방법론과 비교하여 본 발명의 성능을 확인하였다. 임상검체를 통한 비교시험에 앞서, 한국생명공학연구원 생물자원센터(KCTC, 대전, 한국) 또는 미국 ATCC(American Tissue Type Collection, Manassas, VA, USA)로부터 분양받은 표준균주를 이용하여 두 방법간의 검사 민감도와 특이도를 비교하였다. 비교에 사용한 표준균주는 슈도모나스 애루지노사(Pseudomonas aeruginosa, KCTC1637), 쉬겔라 플렉스너리(Shigella flexneri, KCTC2008), 살모넬라 티피뮤리움(Salmonella typhimurium, KCTC2057), 대장균 K12(Escherichia Coli, ATCC29425), 캠필로박터 제주니(Camphylobacter jejuni, ATCC43431), 엔테로코커스 패칼리스(Enterococcus faecalis, ATCC10741), 엔테로박터 클로애이시(Enterobacter cloacae, ATCC10699), 스태필로코커스 오리우스(Staphylococcus aureus, ATCC10390), 스트렙토코커스 아갈락티애(Streptococcus agalactiae, ATCC14364), 클렙시엘라 옥시토카(Klebsiella oxytoca, ATCC13182), 해모필러스 인플루엔자(Haemophilus influenzae, ATCC10211), 락토바실러스(Lactobacillus sp., ATCC10746), 아시네토박터(Acinetobacter sp., ATCC11171) 총 13종이다. 비교방법은 음성으로 판별된 체액(body fluid) 시료 3 mL에 계대배양한 상기 균주를 최종 1 X 101 - 105 CFU(colony forming unit)/mL2이 되도록 첨가하고 균주별 단일감염, 중복감염 및 다중감염을 모의(simulation)하여 총 130여 검체를 비교하였다. 비교결과는 표 4에 요약되어 있다. The present invention provides a composition that differentially analyzes not only the main pathogen infection of human infectious diseases, but also the infected pathogen genotype and antibiotic resistance. This example confirmed the performance of the present invention by comparing the results of the chip analysis of the urinary tract infection pathogen group among the six major infectious diseases constituting the present invention with the PCR methodology, which is the state of the art. Prior to comparative testing with clinical specimens, screening between the two methods using standard strains obtained from the Korea Institute of Bioscience and Biotechnology Center (KCTC, Daejeon, Korea) or US ATCC (American Tissue Type Collection, Manassas, VA, USA) Sensitivity and specificity were compared. Standard strains used for comparison were Pseudomonas aeruginosa (KCTC1637), Shigella flexneri (KCTC2008), Salmonella typhimurium (KCTC2057), E. coli K12 (Escherichibacter Co., Ltd. Camphylobacter jejuni (ATCC43431), Enterococcus faecalis (ATCC10741), Enterobacter cloacae (ATCC10699), Staphylococcus aureus (ATCC10390), Streptococcus streptococcus agalactiae, ATCC14364), Klebsiella oxytoca (ATCC13182), Haemophilus influenzae (ATCC10211), Lactobacillus sp. (ATCC10746), Acinetobacter (Acinetobacter 71 sp.) It's a species. The comparative method is added to the final culture of the body fluid (negatively determined) 3 mL of the strain is added to the final 1 X 10 1-10 5 CFU (colony forming unit) / mL 2 single strain, double infection by strain And a total of 130 samples were compared by simulating multiple infections. The comparison results are summarized in Table 4.

요로감염 원인균 그룹에 대한 칩(chip)과 종래기술(PCR)과의 비교Comparison of chips and prior art (PCR) for urinary tract infectious bacteria group
비교 대상 그룹 또는 조건

Compare group or condition

진단용 칩(chip)
(백분율,%)

Diagnostic chip
(percentage,%)

멀티플렉스-PCR
(백분율,%)

Multiplex-PCR
(percentage,%)

13종 개별 단일감염 모의군
(N=130)

13 individual single infection mock groups
(N = 130)

126
(96.9)

126
(96.9)

121
(93.1)

121
(93.1)

13종 중복감염 모의군
(N=65)

13 kinds of duplicate infection group
(N = 65)

64
(96.9)

64
(96.9)

53
(81.5)

53
(81.5)

13종 다중 단일감염 모의군
(N=45)

13 multiple mono-infection mock groups
(N = 45)

43
(95.6)

43
(95.6)

34
(75.6)

34
(75.6)

양성 대조군
(N=10)

Positive control
(N = 10)

10
(100)

10
(100)

9
(90)

9
(90)

음성 대조군
(N=10)

Negative control
(N = 10)

10
(100)

10
(100)

10
(100)

10
(100)

검체로부터 DNA 분리방법

DNA Separation from Specimen

동일

same

동일

same

검사 소요시간

Inspection time

3.5시간

3.5 hours

2.5시간

2.5 hours

1회 분석 가능 검체 수

Number of samples available for one analysis

1,000개 미만

Less than 1,000

100개 미만

Less than 100

판독가능한 대상균주

Readable target strain

60 - 90종

60 to 90 species

6 - 8종

6-8 types

감염성질환 병원체 감별진단용 칩(chip) 분석의 경우, 실시예 2와 동일한 방법으로 체액(body fluid) 유래 검체로부터 DNA를 분리한 후 실시예 3에 전기한 바와 동일한 방법으로 멀티플렉스-PCR 반응을 수행하였다. 단, 사용된 요로감염 10종 프라이머 프리믹스 volume은 4 uL이며 PCR 반응조건은 표 5와 같다. 이후 실시예 5와 동일한 방법으로 칩(chip)을 제작하고 실시예 6과 동일한 과정으로 혼성화 반응, 세척, 칩 스캐닝(scanning)을 진행하였다.  In case of chip analysis for differential diagnosis of infectious disease pathogen, DNA was separated from body fluid-derived sample in the same manner as in Example 2, and then the multiplex-PCR reaction was performed in the same manner as described in Example 3. It was. However, the used 10 urinary infection primer premix volume is 4 uL and PCR reaction conditions are shown in Table 5. Thereafter, a chip was manufactured in the same manner as in Example 5, and hybridization, washing, and chip scanning were performed in the same process as in Example 6.

요로감염 멀티플렉스-PCR 반응 조성 및 반응조건Urinary Tract Infection Multiplex-PCR Reaction Composition and Conditions
PCR 반응액 조성

PCR reaction solution composition

부피(uL)

Volume (uL)

PCR 반응 조건

PCR reaction conditions

탈이온 3차 멸균 증류수

Deionized Tertiary Sterilized Distilled Water

6

6

초기변성
(Initial denaturation)

Initial denaturation
(Initial denaturation)

95℃, 15분

95 ° C., 15 minutes

1회

1 time

요로감염 10종 프라이머
프리믹스

Urinary Tract Infection 10 Primers
Premix

4


4


변성
(Denaturation)

denaturalization
(Denaturation)

95℃, 50초

95 ℃, 50 seconds




37회








Episode 37





2X PCR 프리믹스

2X PCR Premix

15

15

결합
(Annealing)

Combination
(Annealing)

58℃, 60초

58 ° C., 60 seconds

주형 DNA(40 ng 이상)

Template DNA (40 ng or more)

5

5

연장
(Extension)

extension
(Extension)

72℃, 60초

72 ° C., 60 seconds

최종 부피

Final volume

30

30

최종연장
(Extension)

Last extension
(Extension)

72℃, 10분

72 ° C., 10 minutes

1회

1 time

멀티플렉스-PCR 분석의 경우, 상기 기술한 요로감염 10종 멀티플렉스-PCR 반응단계까지 실시하고 그 반응산물을 아가로즈 젤 전기영동(agarose gel electrophoresis)를 통해 반응산물의 크기를 확인함으로써 결과를 판독하거나 필요한 경우 당해업자에게 매우 보편적인 DNA 자동염기서열 분석기(ABI3130xL genetic analyzer, Applied Biosystems Inc., Foster city, CA, USA)를 통해 그 염기서열을 확인하였다. 상기 비교시험은 서로 다른 검사자가 동일검체를 개별적으로 2차례 중복 시험하고 그 결과를 판독하는 이중검맹(duplicate blind)방식으로 진행하였고 결과가 일치하지 않을 경우 검사 오류(failure)로 분류하였다.  In the case of multiplex-PCR analysis, the results are read by performing the above 10 urinary tract infection multiplex-PCR reaction steps and checking the size of the reaction product through agarose gel electrophoresis. Or, if necessary, the nucleotide sequence was confirmed through a very common DNA automatic base sequence analyzer (ABI3130xL genetic analyzer, Applied Biosystems Inc., Foster city, CA, USA). The comparison test was conducted in a duplicate blind method in which two different examiners duplicated the same specimen individually and read the results, and classified the test failures when the results were not identical.

도 1은 본 발명에 따라 제작된 감염성질환 64종 병원체 및 항생제 내성 유무 분석용 유전자들이 그룹별로 배열된 칩(chip)을 나타낸 것이고, 형광물질이 표지된 타겟 DNA와 칩 위에 배열된 프로브간 혼성화(hybridization)반응이 이루어지는 8웰 혼성화 반응 챔버를 나타냈으며, 칩위에 스팟팅(spotting)된 프로브들의 질환 그룹별 그리드(grid) 배열을 나타냈다.Figure 1 shows a chip (chip) arranged in groups of 64 infectious diseases pathogens and antibiotic resistance analysis according to the present invention, grouped by group, hybridization between the target DNA labeled with the fluorescent material and the probe arranged on the chip ( An 8 well hybridization reaction chamber in which a hybridization reaction is performed is shown, and a grid arrangement for each disease group of probes spotted on a chip is shown.

도 2는 본 발명이 포함하는 특이도가 높으며 해당 병원체를 제외한 기타 세균 또는 바이러스들과 교차반응(cross-talk)이 발생하지 않는 프로브를 설계하는 과정을 나타낸 흐름도이다.FIG. 2 is a flowchart illustrating a process of designing a probe having high specificity and having no cross-talk with other bacteria or viruses except for the pathogen.

도 3은 본 발명에 따라 다양한 검체로부터 DNA를 분리하여 멀티플렉스-PCR 반응을 통해 타겟 DNA를 증폭한 뒤, 감염성질환 64종 병원체에 대한 감염여부, 유전형 및 이들의 항생제 내성 보유 유무를 분석하는 칩(chip) 분석과정의 주요 단계를 나타낸 흐름도이다.3 is a chip for amplifying target DNA through a multiplex-PCR reaction by separating DNA from various samples according to the present invention, and analyzing the presence, infection, genotype and antibiotic resistance of 64 infectious diseases pathogens (chip) A flow chart showing the major steps in the analysis process.

도 4는 본 발명의 실시예 2에 따라 다양한 검체로부터 DNA를 분리한 후, 아가로스 젤 전기영동(agarose gel electrophoresis)을 통해 검체종류별 DNA 농도를 상대비교하는 그림이다. 웰(well) 번호 1 - 19는 자궁경부 스왑, 번호 20 - 39는 혈액, 번호 39-49는 VB1 뇨, 번호 50 - 69는 구강 스왑, 번호 70 - 79는 전립선 분비액, 번호 80 - 96는 조직으로부터 분리한 DNA를 확인할 수 있다.4 is a diagram comparing DNA concentrations by sample type by agarose gel electrophoresis after separating DNA from various samples according to Example 2 of the present invention. Well numbers 1-19 are cervical swaps, numbers 20-39 are blood, numbers 39-49 are VB1 urine, numbers 50-69 are oral swabs, numbers 70-79 are prostate secretions, numbers 80-96 are tissues DNA isolated from can be identified.

도 5는 본 발명에 따라 구강 스왑 검체로부터 DNA를 분리하고 치주염 8종 멀 티플렉스-PCR 반응을 통해 증폭한 임상검체 3례의 타겟 DNA 분포양상을 확인할 수 있다. 검체 S1은 3개, S2는 2개의 치주염 원인균 감염을 확인할 수 있고 검체 S3은 음성의 결과를 확인할 수 있다.FIG. 5 shows the target DNA distribution of three clinical specimens isolated from oral swab samples according to the present invention and amplified by periodontitis eight multiplex-PCR reactions. Three specimens of S1 and two of S2 could identify infections of the periodontal causative organism, and sample S3 could confirm negative results.

도 6은 본 발명에 따라 감염성질환 64종 병원체 및 항생제 내성 유무 분석용 유전자들의 분석결과를 나타내는 칩 스캔 이미지와 칩 그리드를 나타낸다. 해당검체는 인유두종 바이러스 type 35, 성전파성질환 그룹에서 허피스 심플렉스 바이러스(HSV) type 2, 마이코플라즈마 호미니스, 유레아플라즈마 유레아라이티쿰, 클라미디아 트라코마티스, 나이세리아 고노레아, 요로감염 그룹에서 대장균, 스트렙토코커스 아갈락티애, 슈도모나스 애루지노사등이 감염되었고 이들 균들은 세팔로스포린/페니실린계, 테트라사이클린계, 마크로리드계 항생제에 대한 내성을 보유하고 있음을 확인할 수 있다.Figure 6 shows a chip scan image and chip grid showing the analysis results of 64 infectious diseases pathogens and antibiotic resistance analysis in accordance with the present invention. The subjects were human papilloma virus type 35, Herpes simplex virus (HSV) type 2 in mysterious disease group, Mycoplasma hominis, ureaplasma urea lyticum, Chlamydia trachomatis, Neisseria gonorrea, and E. coli in UTI. Streptococcus agalactia and Pseudomonas aeruginosa were infected and these bacteria were resistant to cephalosporin / penicillin, tetracycline and macrolide antibiotics.

도 7은 본 발명에 따라 감염성질환 64종 병원체 및 항생제 내성 유무 분석용 유전자들의 분석결과를 나타내는 또 다른 칩 스캔 이미지와 칩 그리드를 나타낸다. 해당검체는 요로감염 그룹에서 스태필로코커스 오리우스, 엔테로코커스 패칼리스, 마이코박테리아 그룹에서 마이코박테리움 포튜이텀, 마이코박테리움 인트라셀룰리, 치주염 그룹에서 트레포니마 덴티콜라, 퓨소박테리움 뉴클리아텀, 부비동염 그룹에서 곰팡이 및 캔디다 균 등이 감염되었고 이들 균들은 세팔로스포린/페니실린계, 테트라사이클린계, 마크로리드계 항생제에 대한 내성을 보유하고 있음을 확인할 수 있다.
도 8은 본 발명의 바람직한 구현에 따른 인체 주요 감염성질환 감별진단용 칩과 종래의 단일 감염증 진단용 칩을 비교한 도식이다.
Figure 7 shows another chip scan image and chip grid showing the analysis results of 64 infectious diseases pathogens and antibiotic resistance analysis in accordance with the present invention. The subjects were Staphylococcus aureus, Enterococcus faecalis in the urinary tract infection group, Mycobacterium fortuitum in the mycobacteria group, Mycobacterium intracellular and periodontitis group in the group of treponima dentica, Fusobacter Fungal and Candida bacteria were infected in the Leeum nucleatum and sinusitis groups, and these bacteria were resistant to cephalosporin / penicillin, tetracycline, and macrolide antibiotics.
8 is a schematic diagram comparing the main diagnosis of infectious disease differential diagnosis chip and the conventional single infectious disease diagnosis chip according to a preferred embodiment of the present invention.

<110> PARK, MinKoo <120> Novel probes, multiplex-PCR kit, DNA chip, PNA chip required for multiplex-PCR and antibiotics resistance analysis to detect infectious diseases-related microorganisms and method thereof <160> 216 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Fungus spp. <400> 1 gcatcgatga agaacgcagc 20 <210> 2 <211> 20 <212> DNA <213> Fungus spp. <400> 2 tcctccgctt attgatatgc 20 <210> 3 <211> 20 <212> DNA <213> Rhizopus spp. <400> 3 attaccatga gcaaatcaga 20 <210> 4 <211> 23 <212> DNA <213> Rhizopus spp. <400> 4 caatccaaga atttcacctc tag 23 <210> 5 <211> 18 <212> DNA <213> Aspergillus spp. <400> 5 cggcccttaa atagcccg 18 <210> 6 <211> 20 <212> DNA <213> Aspergillus spp. <400> 6 gaccgggttt gaccaacttt 20 <210> 7 <211> 20 <212> DNA <213> Candida spp. <400> 7 gcatcgatga agaacgcagc 20 <210> 8 <211> 20 <212> DNA <213> Candida spp. <400> 8 tcctccgctt attgatatgc 20 <210> 9 <211> 20 <212> DNA <213> Mycobacterium tuberculosis <400> 9 tttcgctgtt gtggttctca 20 <210> 10 <211> 20 <212> DNA <213> Mycobacterium tuberculosis <400> 10 gggcactgga cctgtatgag 20 <210> 11 <211> 21 <212> DNA <213> Mycobacterium spp. <400> 11 dcckcytttc taaggwgcac c 21 <210> 12 <211> 21 <212> DNA <213> Mycobacterium spp. <400> 12 gatgctcgca accactatcc a 21 <210> 13 <211> 23 <212> DNA <213> Human Papilloma Virus L1 region <400> 13 tttbthachg tdgtdgayac hac 23 <210> 14 <211> 25 <212> DNA <213> Human Papilloma Virus L1 region <400> 14 gaaaaataaa ctgtaaatca tattc 25 <210> 15 <211> 18 <212> DNA <213> Proteus mirabilis <400> 15 gcggtttatc acgaaggg 18 <210> 16 <211> 19 <212> DNA <213> Proteus mirabilis <400> 16 gcttggcgag attgagtgc 19 <210> 17 <211> 19 <212> DNA <213> Enterobacter sp. <400> 17 cctggacgaa gactgacgc 19 <210> 18 <211> 21 <212> DNA <213> Enterobacter sp. <400> 18 cggactacga cgcactttat g 21 <210> 19 <211> 20 <212> DNA <213> Escherichia coli sp. <400> 19 agcgtcgcag aacattacat 20 <210> 20 <211> 18 <212> DNA <213> Escherichia coli sp. <400> 20 gggcaacaag ccgaaaga 18 <210> 21 <211> 19 <212> DNA <213> Enterococcus faecalis <400> 21 agtttctgct gctgatggt 19 <210> 22 <211> 19 <212> DNA <213> Enterococcus faecalis <400> 22 taacaacgcc tgaacctac 19 <210> 23 <211> 21 <212> DNA <213> Staphylococcus sp. <400> 23 agtatctgct gctgacggtc c 21 <210> 24 <211> 21 <212> DNA <213> Staphylococcus sp. <400> 24 gtagcaacag taccacgacc a 21 <210> 25 <211> 18 <212> DNA <213> Staphylococcus aureus <400> 25 aatggacggc ggtatctt 18 <210> 26 <211> 18 <212> DNA <213> Staphylococcus aureus <400> 26 tcaacacggc ctgtagca 18 <210> 27 <211> 18 <212> DNA <213> Streptococcus agalactiae <400> 27 tgcggtaacg aacgaaat 18 <210> 28 <211> 19 <212> DNA <213> Streptococcus agalactiae <400> 28 ttcacaaggc gctcactca 19 <210> 29 <211> 21 <212> DNA <213> Streptococcus pneumoniae <400> 29 tcgtttcatc aaagagggta a 21 <210> 30 <211> 19 <212> DNA <213> Streptococcus pneumoniae <400> 30 ccgcaagaag agtgggatt 19 <210> 31 <211> 25 <212> DNA <213> Corynebacterium sp. <400> 31 ccgcaaggct aaaactcaaa ggaat 25 <210> 32 <211> 21 <212> DNA <213> Corynebacterium sp. <400> 32 accgaccaca agggaaagac t 21 <210> 33 <211> 20 <212> DNA <213> Pseudomonas aeruginosa <400> 33 tgaagggtga caacgaggag 20 <210> 34 <211> 19 <212> DNA <213> Pseudomonas aeruginosa <400> 34 gcccgcactg aggaataaa 19 <210> 35 <211> 21 <212> DNA <213> Veillonella sp. <400> 35 tgaaaggtgg cctctattta t 21 <210> 36 <211> 23 <212> DNA <213> Veillonella sp. <400> 36 caatccttct aactgttcgc aag 23 <210> 37 <211> 22 <212> DNA <213> Leptotrichia sp. <400> 37 caattctgtg tgtgtgaaga ag 22 <210> 38 <211> 22 <212> DNA <213> Leptotrichia sp. <400> 38 acagttttgt aggcaagcct at 22 <210> 39 <211> 22 <212> DNA <213> Lactobacillus sp. <400> 39 tctgccttga agatcggagt gc 22 <210> 40 <211> 21 <212> DNA <213> Lactobacillus sp. <400> 40 acagttgata ggcatcatct g 21 <210> 41 <211> 18 <212> DNA <213> Enterobacteriaceae sp. <400> 41 tttccgtgtc gcccttat 18 <210> 42 <211> 18 <212> DNA <213> Enterobacteriaceae sp. <400> 42 cgaccgagtt gctcttgc 18 <210> 43 <211> 18 <212> DNA <213> Enterobacteriaceae sp. <400> 43 ccgctgggaa acggaact 18 <210> 44 <211> 22 <212> DNA <213> Enterobacteriaceae sp. <400> 44 cccgcagata aatcaccaca at 22 <210> 45 <211> 19 <212> DNA <213> Enterobacteriaceae sp. <400> 45 tgccgcacct caacaaatc 19 <210> 46 <211> 18 <212> DNA <213> Enterobacteriaceae sp. <400> 46 caatagcgtc gccaccaa 18 <210> 47 <211> 21 <212> DNA <213> Bacteria general <400> 47 tcatagacac gccaggacat a 21 <210> 48 <211> 21 <212> DNA <213> Bacteria general <400> 48 cagattcggt aaagttcgtc a 21 <210> 49 <211> 20 <212> DNA <213> Bacteria general <400> 49 tgctgtccag gcaggtagat 20 <210> 50 <211> 19 <212> DNA <213> Bacteria general <400> 50 ggcataaatc gccgtgaag 19 <210> 51 <211> 18 <212> DNA <213> Bacteria general <400> 51 gaaaaggtac tcaaccaa 18 <210> 52 <211> 22 <212> DNA <213> Bacteria general <400> 52 ataagtaacg gtacttaaat tg 22 <210> 53 <211> 20 <212> DNA <213> Herpes Simples Virus <400> 53 ccgagtacgg cggctccttc 20 <210> 54 <211> 18 <212> DNA <213> Herpes Simplex Virus <400> 54 tgcagctcgc accacgcg 18 <210> 55 <211> 21 <212> DNA <213> Herpes Simplex Virus type 2 <400> 55 cgacaagatt aacgccaagg g 21 <210> 56 <211> 19 <212> DNA <213> Herpes Simplex Virus type 2 <400> 56 cgtcgccagc acaaactca 19 <210> 57 <211> 19 <212> DNA <213> Haemophilus ducreyi <400> 57 agcgtgggtg ccagtaaat 19 <210> 58 <211> 22 <212> DNA <213> Haemophilus ducreyi <400> 58 gaaaggtagg cgtgagagaa tc 22 <210> 59 <211> 23 <212> DNA <213> Treponema pallidum <400> 59 ggtatgaagt ttgtcccagt tgc 23 <210> 60 <211> 22 <212> DNA <213> Treponema pallidum <400> 60 gcgtcatcac cgtagtagtc gt 22 <210> 61 <211> 21 <212> DNA <213> Mycoplasma hominis <400> 61 aatggctaat gccggatacg c 21 <210> 62 <211> 23 <212> DNA <213> Mycoplasma hominis <400> 62 aggtaccgtc agtctgcaat cat 23 <210> 63 <211> 19 <212> DNA <213> Gardnerella vaginalis <400> 63 gggcgtattg gttggatgc 19 <210> 64 <211> 19 <212> DNA <213> Gardnerella vaginalis <400> 64 ccccgaatac gcaacacct 19 <210> 65 <211> 21 <212> DNA <213> Candida albicans <400> 65 cgaccaatag aggcgttaca a 21 <210> 66 <211> 19 <212> DNA <213> Candida albicans <400> 66 acggatttag gtggcaagg 19 <210> 67 <211> 20 <212> DNA <213> Trichomonas vaginalis <400> 67 ctcagttcgc aaaggcagtc 20 <210> 68 <211> 18 <212> DNA <213> Trichomonas vaginalis <400> 68 atgcgattgg ctgcttga 18 <210> 69 <211> 24 <212> DNA <213> Ureaplasma urealyticum <400> 69 cagcattaaa aatactggtg accg 24 <210> 70 <211> 25 <212> DNA <213> Ureaplasma urealyticum <400> 70 attccctaac ttgtcgtcta acttc 25 <210> 71 <211> 23 <212> DNA <213> Mycoplasma genitalium <400> 71 agttgatgaa accttaaccc ctt 23 <210> 72 <211> 21 <212> DNA <213> Mycoplasma genitalium <400> 72 tgaggggttt tccatttttg c 21 <210> 73 <211> 21 <212> DNA <213> Chlamydiae trachomatis <400> 73 tgaggggttt tccatttttg c 21 <210> 74 <211> 19 <212> DNA <213> Chlamydiae trachomatis <400> 74 gaccgctgtc tcgcaaatc 19 <210> 75 <211> 18 <212> DNA <213> Neisseria gonorrhoeae <400> 75 cggtttccgt gcgttacg 18 <210> 76 <211> 25 <212> DNA <213> Neisseria gonorrhoeae <400> 76 actggtttca tctgattact ttcca 25 <210> 77 <211> 20 <212> DNA <213> Actonobacillus actinomycetemcomitans <400> 77 ggggctttct actacgggac 20 <210> 78 <211> 20 <212> DNA <213> Actinobacillus actinomycetemcomitans <400> 78 agcatctgcg atccctgtat 20 <210> 79 <211> 19 <212> DNA <213> Porphyromonas gingivalis <400> 79 gaataacggg cgatacgag 19 <210> 80 <211> 20 <212> DNA <213> Porphyromonas gingivalis <400> 80 gctgacttac cgaacaacct 20 <210> 81 <211> 24 <212> DNA <213> Treponema denticola <400> 81 agaataagaa gaagagggaa tgct 24 <210> 82 <211> 23 <212> DNA <213> Treponema denticola <400> 82 gcttacctaa ccgcctacat acc 23 <210> 83 <211> 18 <212> DNA <213> Tannerella forsythensis <400> 83 cgggctgcaa tggaacta 18 <210> 84 <211> 19 <212> DNA <213> Tannerella forsythensis <400> 84 gcttctcagg tcccagcaa 19 <210> 85 <211> 19 <212> DNA <213> Prevotella intermedia <400> 85 ccaaccttcc ctccactcg 19 <210> 86 <211> 21 <212> DNA <213> Prevotella intermedia <400> 86 cgtcaatcct gcacgctact t 21 <210> 87 <211> 22 <212> DNA <213> Fusobacterium nucleatum <400> 87 catttattgt gatggaggga cg 22 <210> 88 <211> 19 <212> DNA <213> Fusobacterium nucleatum <400> 88 cctcttcact gcgaccctc 19 <210> 89 <211> 19 <212> DNA <213> Bacteria general <400> 89 tcctacggga ggcagcagt 19 <210> 90 <211> 26 <212> DNA <213> Bacteria general <400> 90 ggactaccag ggtatctaat cctgtt 26 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Fungus spp. <400> 91 gcatcgatga agaacgcagc 20 <210> 92 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Fungus spp. <400> 92 ttgacctcrr atcaggtagg ratacccgct gaacttaa 38 <210> 93 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Rhizopus spp. <400> 93 ctagcggcca aatacaaatg c 21 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Rhizopus spp. <400> 94 ttcacctcta gcggccaaat 20 <210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Aspergillus spp. <400> 95 ggcttgagcc gatagtcccc 20 <210> 96 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Aspergillus spp. <400> 96 tcaagccgat ggaagtgcg 19 <210> 97 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Candida spp. <400> 97 gaaggcaaca ccaaacccg 19 <210> 98 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Candida spp. <400> 98 tcctacctga tttgagggcg a 21 <210> 99 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium avium <400> 99 gaccgagtgt tgtctcaggg c 21 <210> 100 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium chelonae <400> 100 atttcccagc cgaatgagc 19 <210> 101 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium flavescens <400> 101 ggtctggtgt cgccctgtct t 21 <210> 102 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium gordonae <400> 102 ctcgggtgct gtccctcca 19 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium kansasii <400> 103 gaggcaacac tcgggctctg 20 <210> 104 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium simiae <400> 104 ttcggttgaa gtggtgtccc tc 22 <210> 105 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium szulgai <400> 105 cggcaacgaa caagccagac a 21 <210> 106 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium vaccae <400> 106 cggcgaggga aatcatcaga ca 22 <210> 107 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium fortuitum <400> 107 gtcttacccg agccgtgagg a 21 <210> 108 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium intracellulare <400> 108 ccctgagaca acactcggtc g 21 <210> 109 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Mycobacterium tuberculosis <400> 109 ttgggtcctg aggcaacact cg 22 <210> 110 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium abscessus <400> 110 ttgggtcctg aggcaacacg 20 <210> 111 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium bovis <400> 111 ttgggtcctg aggcaacact cg 22 <210> 112 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HPV type 16 <400> 112 acctccagca cctaaagaag at 22 <210> 113 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HPV type 18 <400> 113 ggacccgtgt atacaggcac at 22 <210> 114 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HPV type 31 <400> 114 atggatcttc cttgggcttt t 21 <210> 115 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HPV type 33 <400> 115 caggctatta cgtgtcaaaa aac 23 <210> 116 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 35 <400> 116 ccagaaggcg gtggtgtaag 20 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 39 <400> 117 caaactggca gatggtggag 20 <210> 118 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 52 <400> 118 ccccaccacc gtctgcatc 19 <210> 119 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 56 <400> 119 gggttatccc cgccagtg 18 <210> 120 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 58 <400> 120 gtcctgtaaa ctggcagacg g 21 <210> 121 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 6 <400> 121 ccccaaatgg tacattagaa gata 24 <210> 122 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 11 <400> 122 ccatttggtg gaggcgata 19 <210> 123 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 30 <400> 123 aactccactt tacttgaggg ctg 23 <210> 124 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 54 <400> 124 tgcaggggca ttattctttt g 21 <210> 125 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 62 <400> 125 tcactatttg cagtctcggg cta 23 <210> 126 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Proteus mirabilis <400> 126 cgcactcaat ctcgccaag 19 <210> 127 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Proteus mirabilis <400> 127 atggcattta gaggatgtag ca 22 <210> 128 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Proteus mirabilis <400> 128 gcggtttatc acgaaggggt 20 <210> 129 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Enterobacteriaceae spp. <400> 129 gacatcgttt acggcgtgga ct 22 <210> 130 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Enterobacteriaceae spp. <400> 130 cctcaagggc acaacctcca ag 22 <210> 131 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Enterobacteriaceae spp. <400> 131 tcaggtgcga aagcgtggg 19 <210> 132 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Enterobacteriaceae spp. <400> 132 cgtccgatca cctgcgtcaa 20 <210> 133 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Escherichia coli sp. <400> 133 gcgaagaggc agtcaacggg 20 <210> 134 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Escherichia coli sp. <400> 134 gggcaacaag ccgaaagaac tg 22 <210> 135 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Enterococcus faecalis <400> 135 ggaacatcat cgcctgggaa 20 <210> 136 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Enterococcus faecalis <400> 136 gataactgga acatcatcgc c 21 <210> 137 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Enterococcus faecalis <400> 137 atgatgttcc agttatcgca gg 22 <210> 138 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Staphylococcus spp. <400> 138 cgtattgagc atcgccttct a 21 <210> 139 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Staphylococcus spp. <400> 139 cgtattgagc atcgccttc 19 <210> 140 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Staphylococcus spp. <400> 140 ttagaaggcg atgctcaata c 21 <210> 141 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Staphylococcus aureus <400> 141 tcgtattgag catcgcctt 19 <210> 142 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Staphylococcus aureus <400> 142 cttcgtattg agcatcgcc 19 <210> 143 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Staphylococcus aureus <400> 143 aaggcgatgc tcaatacga 19 <210> 144 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Streptococcus agalactiae <400> 144 gagtatcaag cagcccacg 19 <210> 145 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Streptococcus agalactiae <400> 145 atcaagcagc ccacgattc 19 <210> 146 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Streptococcus agalactiae <400> 146 aaggaataca tgctgttgcg 20 <210> 147 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Streptococcus pneumoniae <400> 147 gctacccgat gagtttgttg tt 22 <210> 148 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Streptococcus pneumoniae <400> 148 agctacccga tgagtttgtt gtt 23 <210> 149 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Streptococcus pneumoniae <400> 149 cgataacaac aaactcatcg ggt 23 <210> 150 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Corynebacterium sp. <400> 150 gcacaagcgg cggagcat 18 <210> 151 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Corynebacterium sp. <400> 151 atgctccgcc gcttgtgc 18 <210> 152 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Corynebacterium sp. <400> 152 tgcaacgcga agaaccttac ct 22 <210> 153 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Pseudomonas aeruginosa <400> 153 ccgtacacgc cggtagca 18 <210> 154 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Pseudomonas aeruginosa <400> 154 gccgggtcca ggatgccc 18 <210> 155 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Veillonella sp. <400> 155 ccacattggg actgagacac gg 22 <210> 156 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Veillonella sp. <400> 156 tcctacggga ggcagcagtg 20 <210> 157 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Veillonella sp. <400> 157 ctacgggagg cagcagtggg 20 <210> 158 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Leptotrichia sp. <400> 158 cggataacgc tcgcaacata 20 <210> 159 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Leptotrichia sp. <400> 159 tatgttgcga gcgttatccg 20 <210> 160 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Leptotrichia sp. <400> 160 aggcggtaag acaagttgaa gg 22 <210> 161 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Lactobacillus sp. <400> 161 cgtgttactc acccgtccgc 20 <210> 162 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Lactobacillus sp. <400> 162 cggcggacgg gtgagtaa 18 <210> 163 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Lactobacillus sp. <400> 163 agcggcggac gggtgagt 18 <210> 164 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for plasmid-borne beta-lactamase TEM gene <400> 164 gaataagggc gacacggaaa 20 <210> 165 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for plasmid-borne beta-lactamase TEM gene <400> 165 tttccgtgtc gcccttattc 20 <210> 166 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for plasmid-borne beta-lactamase SHV gene <400> 166 cagcacggag cggatcaacg 20 <210> 167 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for plasmid-borne beta-lactamase SHV gene <400> 167 cgccctgctt ggcccgaata 20 <210> 168 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for chromosomal beta-lactamase AmpC gene <400> 168 cgttgatttg ttgaggtgcg g 21 <210> 169 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for chromosomal beta-lactamase AmpC gene <400> 169 taccgccacc gccatacc 18 <210> 170 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for TetM gene <400> 170 cgagtttgtg cttgtacgcc at 22 <210> 171 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for TetM gene <400> 171 aaagatggcg tacaagcaca aac 23 <210> 172 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for TetC gene <400> 172 tgatcttcac ggcgatttat gc 22 <210> 173 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for TetC gene <400> 173 cattggaccg ctgatcttca cg 22 <210> 174 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for ermB gene <400> 174 ttggcgtgtt tcattgcttg 20 <210> 175 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for emrB gene <400> 175 atcaagcaat gaaacacgcc aa 22 <210> 176 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HSV <400> 176 cacatcaagg tgggccagcc gc 22 <210> 177 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HSV <400> 177 tgcggctggc ccaccttgat g 21 <210> 178 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HSV <400> 178 ccaggtagta ctgcggctgg cc 22 <210> 179 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HSV type 2 <400> 179 ccgtggagcg gcagacccc 19 <210> 180 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HSV type 2 <400> 180 gccgtggagc ggcagacc 18 <210> 181 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HSV type 2 <400> 181 tggccgtgga gcggcagacc 20 <210> 182 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Haemophilus ducreyi <400> 182 gcgccgtatc ggttgggt 18 <210> 183 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Haemophilus ducreyi <400> 183 aaggtaggcg tgagagaatc aaaaa 25 <210> 184 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Haemophilus ducreyi <400> 184 cgtaggcatc aagaaggtaa agcg 24 <210> 185 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Treponema pallidum <400> 185 aggaaccgca actgggacaa a 21 <210> 186 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Treponema pallidum <400> 186 gaggaaccgc aactgggaca 20 <210> 187 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Treponema pallidum <400> 187 tgaagtttgt cccagttgcg gt 22 <210> 188 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycoplasma hominis <400> 188 actaatgttc cgcaccctca tct 23 <210> 189 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycoplasma hominis <400> 189 agatgagggt gcggaacatt agt 23 <210> 190 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Gardnerella vaginalis <400> 190 gctgccgagt gggctttg 18 <210> 191 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Gardnerella vaginalis <400> 191 gtcaggtgtt gcgtattcgg g 21 <210> 192 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Candida albicans <400> 192 gcatctccaa tcattcgcct a 21 <210> 193 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Candida albicans <400> 193 agatgccttg ccacctaaat cc 22 <210> 194 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Trichomonas vaginalis <400> 194 ggactgcctt tgcgaactga 20 <210> 195 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Trichomonas vaginalis <400> 195 ggctgcttga ccatccgaaa 20 <210> 196 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Ureaplasma urealyticum <400> 196 ggggatgaac tctactatga agtta 25 <210> 197 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Ureaplasma urealyticum <400> 197 gttaactaag ccgtttacac ctcaa 25 <210> 198 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycoplasma genitalium <400> 198 atatttaagt tgtcattttg gcttc 25 <210> 199 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycoplasma genitalium <400> 199 aagaagccaa aatgacaact taaat 25 <210> 200 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Chlamydiae trachomatis <400> 200 gagataggaa accaactcta cgctg 25 <210> 201 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Chlamydiae trachomatis <400> 201 cagcgtagag ttggtttcct atctc 25 <210> 202 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Neisseria gonorrhoeae <400> 202 gcaggcgtat aggcggactt g 21 <210> 203 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Neisseria gonorrhoeae <400> 203 gggaatcgta acgcacggaa a 21 <210> 204 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Actinobacillus actinomycetemcomitans <400> 204 ggggctttct actacgggac ct 22 <210> 205 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Actinobacillus actinomycetemcomitans <400> 205 cagcatctgc gatccctgta t 21 <210> 206 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Porphyromonas gingivalis <400> 206 taccgaacaa cctacgcacc ct 22 <210> 207 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Porphyromonas gingivalis <400> 207 gcggtaatac ggaggatgcg 20 <210> 208 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Treponema denticola <400> 208 gcctacatac cctttacgcc ca 22 <210> 209 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Treponema denticola <400> 209 gggcttattc gcatgactac cg 22 <210> 210 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Tannerella forsythensis <400> 210 cgggcgtggg attggtgatg 20 <210> 211 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Tannerella forsythensis <400> 211 tgtatcgggc gtgggattgg t 21 <210> 212 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Prevotella intermedia <400> 212 atggcatctg acgtggacca aa 22 <210> 213 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Prevotella intermedia <400> 213 cgtagccttg gtgggccgtt a 21 <210> 214 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Fusobacterium nucleatum <400> 214 ttctgcgtcc ctccatcaca 20 <210> 215 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Fusobacterium nucleatum <400> 215 acttccgttc gtccgtgc 18 <210> 216 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for bacterial 16S ribosomal RNA <400> 216 cgtattaccg cggctgctgg cac 23 <110> PARK, MinKoo <120> Novel probes, multiplex-PCR kit, DNA chip, PNA chip required for          multiplex-PCR and antibiotics resistance analysis to detect          infectious diseases-related microorganisms and method <160> 216 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Fungus spp. <400> 1 gcatcgatga agaacgcagc 20 <210> 2 <211> 20 <212> DNA <213> Fungus spp. <400> 2 tcctccgctt attgatatgc 20 <210> 3 <211> 20 <212> DNA <213> Rhizopus spp. <400> 3 attaccatga gcaaatcaga 20 <210> 4 <211> 23 <212> DNA <213> Rhizopus spp. <400> 4 caatccaaga atttcacctc tag 23 <210> 5 <211> 18 <212> DNA <213> Aspergillus spp. <400> 5 cggcccttaa atagcccg 18 <210> 6 <211> 20 <212> DNA <213> Aspergillus spp. <400> 6 gaccgggttt gaccaacttt 20 <210> 7 <211> 20 <212> DNA Candida spp. <400> 7 gcatcgatga agaacgcagc 20 <210> 8 <211> 20 <212> DNA Candida spp. <400> 8 tcctccgctt attgatatgc 20 <210> 9 <211> 20 <212> DNA <213> Mycobacterium tuberculosis <400> 9 tttcgctgtt gtggttctca 20 <210> 10 <211> 20 <212> DNA <213> Mycobacterium tuberculosis <400> 10 gggcactgga cctgtatgag 20 <210> 11 <211> 21 <212> DNA <213> Mycobacterium spp. <400> 11 dcckcytttc taaggwgcac c 21 <210> 12 <211> 21 <212> DNA <213> Mycobacterium spp. <400> 12 gatgctcgca accactatcc a 21 <210> 13 <211> 23 <212> DNA <213> Human Papilloma Virus L1 region <400> 13 tttbthachg tdgtdgayac hac 23 <210> 14 <211> 25 <212> DNA <213> Human Papilloma Virus L1 region <400> 14 gaaaaataaa ctgtaaatca tattc 25 <210> 15 <211> 18 <212> DNA <213> Proteus mirabilis <400> 15 gcggtttatc acgaaggg 18 <210> 16 <211> 19 <212> DNA <213> Proteus mirabilis <400> 16 gcttggcgag attgagtgc 19 <210> 17 <211> 19 <212> DNA <213> Enterobacter sp. <400> 17 cctggacgaa gactgacgc 19 <210> 18 <211> 21 <212> DNA <213> Enterobacter sp. <400> 18 cggactacga cgcactttat g 21 <210> 19 <211> 20 <212> DNA Escherichia coli sp. <400> 19 agcgtcgcag aacattacat 20 <210> 20 <211> 18 <212> DNA Escherichia coli sp. <400> 20 gggcaacaag ccgaaaga 18 <210> 21 <211> 19 <212> DNA <213> Enterococcus faecalis <400> 21 agtttctgct gctgatggt 19 <210> 22 <211> 19 <212> DNA <213> Enterococcus faecalis <400> 22 taacaacgcc tgaacctac 19 <210> 23 <211> 21 <212> DNA <213> Staphylococcus sp. <400> 23 agtatctgct gctgacggtc c 21 <210> 24 <211> 21 <212> DNA <213> Staphylococcus sp. <400> 24 gtagcaacag taccacgacc a 21 <210> 25 <211> 18 <212> DNA <213> Staphylococcus aureus <400> 25 aatggacggc ggtatctt 18 <210> 26 <211> 18 <212> DNA <213> Staphylococcus aureus <400> 26 tcaacacggc ctgtagca 18 <210> 27 <211> 18 <212> DNA <213> Streptococcus agalactiae <400> 27 tgcggtaacg aacgaaat 18 <210> 28 <211> 19 <212> DNA <213> Streptococcus agalactiae <400> 28 ttcacaaggc gctcactca 19 <210> 29 <211> 21 <212> DNA <213> Streptococcus pneumoniae <400> 29 tcgtttcatc aaagagggta a 21 <210> 30 <211> 19 <212> DNA <213> Streptococcus pneumoniae <400> 30 ccgcaagaag agtgggatt 19 <210> 31 <211> 25 <212> DNA <213> Corynebacterium sp. <400> 31 ccgcaaggct aaaactcaaa ggaat 25 <210> 32 <211> 21 <212> DNA <213> Corynebacterium sp. <400> 32 accgaccaca agggaaagac t 21 <210> 33 <211> 20 <212> DNA <213> Pseudomonas aeruginosa <400> 33 tgaagggtga caacgaggag 20 <210> 34 <211> 19 <212> DNA <213> Pseudomonas aeruginosa <400> 34 gcccgcactg aggaataaa 19 <210> 35 <211> 21 <212> DNA <213> Veillonella sp. <400> 35 tgaaaggtgg cctctattta t 21 <210> 36 <211> 23 <212> DNA <213> Veillonella sp. <400> 36 caatccttct aactgttcgc aag 23 <210> 37 <211> 22 <212> DNA <213> Leptotrichia sp. <400> 37 caattctgtg tgtgtgaaga ag 22 <210> 38 <211> 22 <212> DNA <213> Leptotrichia sp. <400> 38 acagttttgt aggcaagcct at 22 <210> 39 <211> 22 <212> DNA <213> Lactobacillus sp. <400> 39 tctgccttga agatcggagt gc 22 <210> 40 <211> 21 <212> DNA <213> Lactobacillus sp. <400> 40 acagttgata ggcatcatct g 21 <210> 41 <211> 18 <212> DNA <213> Enterobacteriaceae sp. <400> 41 tttccgtgtc gcccttat 18 <210> 42 <211> 18 <212> DNA <213> Enterobacteriaceae sp. <400> 42 cgaccgagtt gctcttgc 18 <210> 43 <211> 18 <212> DNA <213> Enterobacteriaceae sp. <400> 43 ccgctgggaa acggaact 18 <210> 44 <211> 22 <212> DNA <213> Enterobacteriaceae sp. <400> 44 cccgcagata aatcaccaca at 22 <210> 45 <211> 19 <212> DNA <213> Enterobacteriaceae sp. <400> 45 tgccgcacct caacaaatc 19 <210> 46 <211> 18 <212> DNA <213> Enterobacteriaceae sp. <400> 46 caatagcgtc gccaccaa 18 <210> 47 <211> 21 <212> DNA <213> Bacteria general <400> 47 tcatagacac gccaggacat a 21 <210> 48 <211> 21 <212> DNA <213> Bacteria general <400> 48 cagattcggt aaagttcgtc a 21 <210> 49 <211> 20 <212> DNA <213> Bacteria general <400> 49 tgctgtccag gcaggtagat 20 <210> 50 <211> 19 <212> DNA <213> Bacteria general <400> 50 ggcataaatc gccgtgaag 19 <210> 51 <211> 18 <212> DNA <213> Bacteria general <400> 51 gaaaaggtac tcaaccaa 18 <210> 52 <211> 22 <212> DNA <213> Bacteria general <400> 52 ataagtaacg gtacttaaat tg 22 <210> 53 <211> 20 <212> DNA <213> Herpes Simples Virus <400> 53 ccgagtacgg cggctccttc 20 <210> 54 <211> 18 <212> DNA <213> Herpes Simplex Virus <400> 54 tgcagctcgc accacgcg 18 <210> 55 <211> 21 <212> DNA <213> Herpes Simplex Virus type 2 <400> 55 cgacaagatt aacgccaagg g 21 <210> 56 <211> 19 <212> DNA <213> Herpes Simplex Virus type 2 <400> 56 cgtcgccagc acaaactca 19 <210> 57 <211> 19 <212> DNA <213> Haemophilus ducreyi <400> 57 agcgtgggtg ccagtaaat 19 <210> 58 <211> 22 <212> DNA <213> Haemophilus ducreyi <400> 58 gaaaggtagg cgtgagagaa tc 22 <210> 59 <211> 23 <212> DNA <213> Treponema pallidum <400> 59 ggtatgaagt ttgtcccagt tgc 23 <210> 60 <211> 22 <212> DNA <213> Treponema pallidum <400> 60 gcgtcatcac cgtagtagtc gt 22 <210> 61 <211> 21 <212> DNA <213> Mycoplasma hominis <400> 61 aatggctaat gccggatacg c 21 <210> 62 <211> 23 <212> DNA <213> Mycoplasma hominis <400> 62 aggtaccgtc agtctgcaat cat 23 <210> 63 <211> 19 <212> DNA <213> Gardnerella vaginalis <400> 63 gggcgtattg gttggatgc 19 <210> 64 <211> 19 <212> DNA <213> Gardnerella vaginalis <400> 64 ccccgaatac gcaacacct 19 <210> 65 <211> 21 <212> DNA Candida albicans <400> 65 cgaccaatag aggcgttaca a 21 <210> 66 <211> 19 <212> DNA Candida albicans <400> 66 acggatttag gtggcaagg 19 <210> 67 <211> 20 <212> DNA <213> Trichomonas vaginalis <400> 67 ctcagttcgc aaaggcagtc 20 <210> 68 <211> 18 <212> DNA <213> Trichomonas vaginalis <400> 68 atgcgattgg ctgcttga 18 <210> 69 <211> 24 <212> DNA <213> Ureaplasma urealyticum <400> 69 cagcattaaa aatactggtg accg 24 <210> 70 <211> 25 <212> DNA <213> Ureaplasma urealyticum <400> 70 attccctaac ttgtcgtcta acttc 25 <210> 71 <211> 23 <212> DNA <213> Mycoplasma genitalium <400> 71 agttgatgaa accttaaccc ctt 23 <210> 72 <211> 21 <212> DNA <213> Mycoplasma genitalium <400> 72 tgaggggttt tccatttttg c 21 <210> 73 <211> 21 <212> DNA <213> Chlamydiae trachomatis <400> 73 tgaggggttt tccatttttg c 21 <210> 74 <211> 19 <212> DNA <213> Chlamydiae trachomatis <400> 74 gaccgctgtc tcgcaaatc 19 <210> 75 <211> 18 <212> DNA <213> Neisseria gonorrhoeae <400> 75 cggtttccgt gcgttacg 18 <210> 76 <211> 25 <212> DNA <213> Neisseria gonorrhoeae <400> 76 actggtttca tctgattact ttcca 25 <210> 77 <211> 20 <212> DNA <213> Actonobacillus actinomycetem comitans <400> 77 ggggctttct actacgggac 20 <210> 78 <211> 20 <212> DNA <213> Actinobacillus actinomycetem comitans <400> 78 agcatctgcg atccctgtat 20 <210> 79 <211> 19 <212> DNA <213> Porphyromonas gingivalis <400> 79 gaataacggg cgatacgag 19 <210> 80 <211> 20 <212> DNA <213> Porphyromonas gingivalis <400> 80 gctgacttac cgaacaacct 20 <210> 81 <211> 24 <212> DNA <213> Treponema denticola <400> 81 agaataagaa gaagagggaa tgct 24 <210> 82 <211> 23 <212> DNA <213> Treponema denticola <400> 82 gcttacctaa ccgcctacat acc 23 <210> 83 <211> 18 <212> DNA <213> Tannerella forsythensis <400> 83 cgggctgcaa tggaacta 18 <210> 84 <211> 19 <212> DNA <213> Tannerella forsythensis <400> 84 gcttctcagg tcccagcaa 19 <210> 85 <211> 19 <212> DNA <213> Prevotella intermedia <400> 85 ccaaccttcc ctccactcg 19 <210> 86 <211> 21 <212> DNA <213> Prevotella intermedia <400> 86 cgtcaatcct gcacgctact t 21 <210> 87 <211> 22 <212> DNA <213> Fusobacterium nucleatum <400> 87 catttattgt gatggaggga cg 22 <210> 88 <211> 19 <212> DNA <213> Fusobacterium nucleatum <400> 88 cctcttcact gcgaccctc 19 <210> 89 <211> 19 <212> DNA <213> Bacteria general <400> 89 tcctacggga ggcagcagt 19 <210> 90 <211> 26 <212> DNA <213> Bacteria general <400> 90 ggactaccag ggtatctaat cctgtt 26 <210> 91 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Fungus spp. <400> 91 gcatcgatga agaacgcagc 20 <210> 92 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Fungus spp. <400> 92 ttgacctcrr atcaggtagg ratacccgct gaacttaa 38 <210> 93 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Rhizopus spp. <400> 93 ctagcggcca aatacaaatg c 21 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Rhizopus spp. <400> 94 ttcacctcta gcggccaaat 20 <210> 95 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Aspergillus spp. <400> 95 ggcttgagcc gatagtcccc 20 <210> 96 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Aspergillus spp. <400> 96 tcaagccgat ggaagtgcg 19 <210> 97 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Candida spp. <400> 97 gaaggcaaca ccaaacccg 19 <210> 98 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Candida spp. <400> 98 tcctacctga tttgagggcg a 21 <210> 99 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium avium <400> 99 gaccgagtgt tgtctcaggg c 21 <210> 100 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium chelonae <400> 100 atttcccagc cgaatgagc 19 <210> 101 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium flavescens <400> 101 ggtctggtgt cgccctgtct t 21 <210> 102 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium gordonae <400> 102 ctcgggtgct gtccctcca 19 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium kansasii <400> 103 gaggcaacac tcgggctctg 20 <210> 104 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium simiae <400> 104 ttcggttgaa gtggtgtccc tc 22 <210> 105 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium szulgai <400> 105 cggcaacgaa caagccagac a 21 <210> 106 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium vaccae <400> 106 cggcgaggga aatcatcaga ca 22 <210> 107 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium fortuitum <400> 107 gtcttacccg agccgtgagg a 21 <210> 108 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium intracellulare <400> 108 ccctgagaca acactcggtc g 21 <210> 109 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Mycobacterium tuberculosis <400> 109 ttgggtcctg aggcaacact cg 22 <210> 110 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium abscessus <400> 110 ttgggtcctg aggcaacacg 20 <210> 111 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycobacterium bovis <400> 111 ttgggtcctg aggcaacact cg 22 <210> 112 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HPV type 16 <400> 112 acctccagca cctaaagaag at 22 <210> 113 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HPV type 18 <400> 113 ggacccgtgt atacaggcac at 22 <210> 114 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HPV type 31 <400> 114 atggatcttc cttgggcttt t 21 <210> 115 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HPV type 33 <400> 115 caggctatta cgtgtcaaaa aac 23 <210> 116 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 35 <400> 116 ccagaaggcg gtggtgtaag 20 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 39 <400> 117 caaactggca gatggtggag 20 <210> 118 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 52 <400> 118 ccccaccacc gtctgcatc 19 <210> 119 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 56 <400> 119 gggttatccc cgccagtg 18 <210> 120 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 58 <400> 120 gtcctgtaaa ctggcagacg g 21 <210> 121 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 6 <400> 121 ccccaaatgg tacattagaa gata 24 <210> 122 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 11 <400> 122 ccatttggtg gaggcgata 19 <210> 123 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 30 <400> 123 aactccactt tacttgaggg ctg 23 <210> 124 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 54 <400> 124 tgcaggggca ttattctttt g 21 <210> 125 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for HPV type 62 <400> 125 tcactatttg cagtctcggg cta 23 <210> 126 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Proteus mirabilis <400> 126 cgcactcaat ctcgccaag 19 <210> 127 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Proteus mirabilis <400> 127 atggcattta gaggatgtag ca 22 <210> 128 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Proteus mirabilis <400> 128 gcggtttatc acgaaggggt 20 <210> 129 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Enterobacteriaceae spp. <400> 129 gacatcgttt acggcgtgga ct 22 <210> 130 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Enterobacteriaceae spp. <400> 130 cctcaagggc acaacctcca ag 22 <210> 131 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Enterobacteriaceae spp. <400> 131 tcaggtgcga aagcgtggg 19 <210> 132 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Enterobacteriaceae spp. <400> 132 cgtccgatca cctgcgtcaa 20 <210> 133 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Escherichia coli sp. <133> 133 gcgaagaggc agtcaacggg 20 <210> 134 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Escherichia coli sp. <400> 134 gggcaacaag ccgaaagaac tg 22 <210> 135 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Enterococcus faecalis <400> 135 ggaacatcat cgcctgggaa 20 <210> 136 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Enterococcus faecalis <400> 136 gataactgga acatcatcgc c 21 <210> 137 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Enterococcus faecalis <400> 137 atgatgttcc agttatcgca gg 22 <210> 138 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Staphylococcus spp. <400> 138 cgtattgagc atcgccttct a 21 <139> <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe seqeunce for Staphylococcus spp. <400> 139 cgtattgagc atcgccttc 19 <210> 140 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Staphylococcus spp. <400> 140 ttagaaggcg atgctcaata c 21 <210> 141 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Staphylococcus aureus <400> 141 tcgtattgag catcgcctt 19 <210> 142 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Staphylococcus aureus <400> 142 cttcgtattg agcatcgcc 19 <210> 143 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Staphylococcus aureus <400> 143 aaggcgatgc tcaatacga 19 <210> 144 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Streptococcus agalactiae <400> 144 gagtatcaag cagcccacg 19 <210> 145 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Streptococcus agalactiae <400> 145 atcaagcagc ccacgattc 19 <210> 146 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Streptococcus agalactiae <400> 146 aaggaataca tgctgttgcg 20 <210> 147 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Streptococcus pneumoniae <400> 147 gctacccgat gagtttgttg tt 22 <210> 148 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Streptococcus pneumoniae <400> 148 agctacccga tgagtttgtt gtt 23 <210> 149 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Streptococcus pneumoniae <400> 149 cgataacaac aaactcatcg ggt 23 <210> 150 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Corynebacterium sp. <400> 150 gcacaagcgg cggagcat 18 <210> 151 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Corynebacterium sp. <400> 151 atgctccgcc gcttgtgc 18 <210> 152 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Corynebacterium sp. <400> 152 tgcaacgcga agaaccttac ct 22 <210> 153 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Pseudomonas aeruginosa <400> 153 ccgtacacgc cggtagca 18 <210> 154 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Pseudomonas aeruginosa <400> 154 gccgggtcca ggatgccc 18 <210> 155 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Veillonella sp. <400> 155 ccacattggg actgagacac gg 22 <210> 156 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Veillonella sp. <400> 156 tcctacggga ggcagcagtg 20 <210> 157 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Veillonella sp. <400> 157 ctacgggagg cagcagtggg 20 <210> 158 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Leptotrichia sp. <400> 158 cggataacgc tcgcaacata 20 <210> 159 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Leptotrichia sp. <400> 159 tatgttgcga gcgttatccg 20 <210> 160 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Leptotrichia sp. <400> 160 aggcggtaag acaagttgaa gg 22 <210> 161 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Lactobacillus sp. <400> 161 cgtgttactc acccgtccgc 20 <210> 162 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Lactobacillus sp. <400> 162 cggcggacgg gtgagtaa 18 <210> 163 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Lactobacillus sp. <400> 163 agcggcggac gggtgagt 18 <210> 164 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for plasmid-borne beta-lactamase TEM gene <400> 164 gaataagggc gacacggaaa 20 <210> 165 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for plasmid-borne beta-lactamase TEM gene <400> 165 tttccgtgtc gcccttattc 20 <210> 166 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for plasmid-borne beta-lactamase SHV gene <400> 166 cagcacggag cggatcaacg 20 <210> 167 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for plasmid-borne beta-lactamase SHV gene <400> 167 cgccctgctt ggcccgaata 20 <210> 168 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for chromosomal beta-lactamase AmpC gene <400> 168 cgttgatttg ttgaggtgcg g 21 <210> 169 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for chromosomal beta-lactamase AmpC gene <400> 169 taccgccacc gccatacc 18 <210> 170 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for TetM gene <400> 170 cgagtttgtg cttgtacgcc at 22 <210> 171 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for TetM gene <400> 171 aaagatggcg tacaagcaca aac 23 <210> 172 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for TetC gene <400> 172 tgatcttcac ggcgatttat gc 22 <210> 173 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for TetC gene <400> 173 cattggaccg ctgatcttca cg 22 <210> 174 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for ermB gene <400> 174 ttggcgtgtt tcattgcttg 20 <175> 175 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for emrB gene <400> 175 atcaagcaat gaaacacgcc aa 22 <210> 176 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HSV <400> 176 cacatcaagg tgggccagcc gc 22 <210> 177 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HSV <400> 177 tgcggctggc ccaccttgat g 21 <210> 178 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HSV <400> 178 ccaggtagta ctgcggctgg cc 22 <210> 179 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HSV type 2 <400> 179 ccgtggagcg gcagacccc 19 <210> 180 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HSV type 2 <400> 180 gccgtggagc ggcagacc 18 <210> 181 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for HSV type 2 <400> 181 tggccgtgga gcggcagacc 20 <210> 182 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Haemophilus ducreyi <400> 182 gcgccgtatc ggttgggt 18 <210> 183 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Haemophilus ducreyi <400> 183 aaggtaggcg tgagagaatc aaaaa 25 <210> 184 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Haemophilus ducreyi <400> 184 cgtaggcatc aagaaggtaa agcg 24 <210> 185 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Treponema pallidum <400> 185 aggaaccgca actgggacaa a 21 <210> 186 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Treponema pallidum <400> 186 gaggaaccgc aactgggaca 20 <210> 187 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Treponema pallidum <400> 187 tgaagtttgt cccagttgcg gt 22 <210> 188 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycoplasma hominis <400> 188 actaatgttc cgcaccctca tct 23 <210> 189 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycoplasma hominis <400> 189 agatgagggt gcggaacatt agt 23 <210> 190 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Gardnerella vaginalis <400> 190 gctgccgagt gggctttg 18 <210> 191 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Gardnerella vaginalis <400> 191 gtcaggtgtt gcgtattcgg g 21 <210> 192 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Candida albicans <400> 192 gcatctccaa tcattcgcct a 21 <210> 193 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Candida albicans <400> 193 agatgccttg ccacctaaat cc 22 <210> 194 <211> 20 <212> DNA <213> Artificial Sequence <220> Trichomonas vaginalis <400> 194 ggactgcctt tgcgaactga 20 <210> 195 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Trichomonas vaginalis <400> 195 ggctgcttga ccatccgaaa 20 <210> 196 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Ureaplasma urealyticum <400> 196 ggggatgaac tctactatga agtta 25 <210> 197 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Ureaplasma urealyticum <400> 197 gttaactaag ccgtttacac ctcaa 25 <210> 198 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycoplasma genitalium <400> 198 atatttaagt tgtcattttg gcttc 25 <210> 199 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Mycoplasma genitalium <400> 199 aagaagccaa aatgacaact taaat 25 <210> 200 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Chlamydiae trachomatis <400> 200 gagataggaa accaactcta cgctg 25 <210> 201 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Chlamydiae trachomatis <400> 201 cagcgtagag ttggtttcct atctc 25 <210> 202 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Neisseria gonorrhoeae <400> 202 gcaggcgtat aggcggactt g 21 <210> 203 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Neisseria gonorrhoeae <400> 203 gggaatcgta acgcacggaa a 21 <210> 204 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Actinobacillus actinomycetem comitans <400> 204 ggggctttct actacgggac ct 22 <210> 205 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Actinobacillus actinomycetem comitans <400> 205 cagcatctgc gatccctgta t 21 <206> 206 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Porphyromonas gingivalis <400> 206 taccgaacaa cctacgcacc ct 22 <210> 207 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Porphyromonas gingivalis <400> 207 gcggtaatac ggaggatgcg 20 <210> 208 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Treponema denticola <400> 208 gcctacatac cctttacgcc ca 22 <210> 209 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Treponema denticola <400> 209 gggcttattc gcatgactac cg 22 <210> 210 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Tannerella forsythensis <400> 210 cgggcgtggg attggtgatg 20 <210> 211 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Tannerella forsythensis <400> 211 tgtatcgggc gtgggattgg t 21 <210> 212 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Prevotella intermedia <400> 212 atggcatctg acgtggacca aa 22 <210> 213 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Prevotella intermedia <400> 213 cgtagccttg gtgggccgtt a 21 <210> 214 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Fusobacterium nucleatum <400> 214 ttctgcgtcc ctccatcaca 20 <210> 215 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for Fusobacterium nucleatum <400> 215 acttccgttc gtccgtgc 18 <210> 216 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Probe sequence for bacterial 16S ribosomal RNA <400> 216 cgtattaccg cggctgctgg cac 23  

Claims (13)

감염성질환 원인 균의 탐지, 유전자형 분석 및 항생제 내성 유전자형의 분석용 칩으로서, 상기 칩은 서열번호 91 내지 216의 염기서열을 갖는 올리고뉴클레오티드 프로브들을 모두 포함하고, 상기 감염성질환은 요로감염(Urinary tract infection), 비부비동염(Rhinosinusitis), 치주염(Periodontitis), 성전파성질환(Sexually transmitted disease), 인유두종 바이러스(Human papilloma virus) 감염 또는 마이코박테리아 감염증인 것을 특징으로 하는 칩.As a chip for the detection of infectious diseases, genotyping and antibiotic resistance genotyping, the chip includes all oligonucleotide probes having a nucleotide sequence of SEQ ID NOs: 91 to 216, and the infectious disease includes urinary tract infection ), Rhinosinusitis (Rhinosinusitis), periodontitis (Periodontitis), sexually transmitted disease (Sexually transmitted disease), human papilloma virus infection or mycobacterial infection. 제 1 항에 있어서, 상기 프로브는 DNA(deoxyribonucleic acid) 또는 PNA(peptide nucleic acid)로 이루어지는 것을 특징으로 하는 칩.The chip of claim 1, wherein the probe comprises DNA (deoxyribonucleic acid) or PNA (peptide nucleic acid). 제 1 항에 있어서, 상기 칩은 프로브를 집적할 수 있는 집적부위(well)가 8개로 구획되어 있는 것을 특징으로 하는 칩.The chip of claim 1, wherein the chip is divided into eight wells in which the probe can be integrated. 제 1 항 내지 제 3 항 중 어느 한 항에 따른 칩, 상기 감염성질환 원인균 유래의 핵산을 증폭하기 위한 프라이머 세트, 및 상기 증폭된 핵산을 검출하기 위한 표지수단을 포함하는, 감염성질환 원인균의 탐지, 유전자형 분석 및 항생제 내성 유전자형의 분석용 키트.4. The detection of a causative agent of infectious disease, comprising a chip according to any one of claims 1 to 3, a primer set for amplifying a nucleic acid derived from the causative agent of infectious disease, and a labeling means for detecting the amplified nucleic acid. Kit for genotyping and analysis of antibiotic resistance genotypes. 제 4 항에 있어서, 상기 프라이머세트는 서열번호 1 내지 90으로 이루어지는 군에서 선택되는 염기서열을 갖는 올리고뉴클레오티드인 것을 특징으로 하는 키트.The kit according to claim 4, wherein the primer set is an oligonucleotide having a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1 to 90. 다음의 단계를 포함하는, 요로감염(Urinary tract infection), 비부비동염(Rhinosinusitis), 치주염(Periodontitis), 성전파성질환(Sexually transmitted disease), 인유두종 바이러스(Human papilloma virus) 감염 또는 마이코박테리아 감염증에서 선택되는 감염성질환 원인균의 탐지, 유전자형 분석 및 항생제 내성 유전자형의 분석방법:Selected from Urinary tract infection, Rhinosinusitis, Periodontitis, Sexually transmitted disease, Human papilloma virus infection, or Mycobacteria infection, including the following steps: Detection of genotypes of infectious diseases, genotyping and analysis of antibiotic resistance genotypes: (a) 상기 감염성질환 원인균의 핵산 증폭용 프라이머를 이용하여 상기 핵산을 다중(multiplex) PCR 증폭방법에 의해 증폭하는 단계;(a) amplifying the nucleic acid by a multiplex PCR amplification method using a nucleic acid amplification primer of the causative agent of infectious disease; (b) 제 1 항 내지 제 3 항 중 어느 한 항에 따른 칩에 상기 증폭된 핵산 단편을 혼성화시키는 단계; 및(b) hybridizing the amplified nucleic acid fragments to a chip according to any one of claims 1 to 3; And (c) 상기 혼성화에 의해 얻어진 혼성화물을 검출하는 단계.(c) detecting the hybridization obtained by the hybridization. 제 6 항에 있어서, 상기 단계 (a)의 프라이머는 서열번호 1 내지 90으로 이루어지는 군에서 선택되는 염기서열을 갖는 올리고뉴클레오티드인 것을 특징으로 하는 방법.The method of claim 6, wherein the primer of step (a) is characterized in that the oligonucleotide having a nucleotide sequence selected from the group consisting of SEQ ID NO: 1 to 90. 제 7 항에 있어서, 상기 단계 (a)의 다중 PCR 증폭시, 6-FAM(6-carboxyfluorescein), Cy5, Cy3, Cy5.5, JOE(6'-carboxy-4',5'-dichloro-2',7'-dimethoxyfluorescein), Rhodamine Green, TAMRA NHS(N-hydroxysuccinimide) Ester 및 Texas Red로 이루어진 군에서 선택되는 형광색소가 표지된 디옥시시티딘 트리포스페이트(deoxycytidine triphosphate, dCTP) 또는 디옥시유리딘 트리포스페이트(deoxyuridine triphosphate, dUTP)를 사용하여, 증폭된 핵산 단편 내에 무작위적으로 형광색소를 표지 시키는 것을 특징으로 하는 방법.8. The method of claim 7, wherein the multiple PCR amplification of step (a), 6-FAM (6-carboxyfluorescein), Cy5, Cy3, Cy5.5, JOE (6'-carboxy-4 ', 5'-dichloro-2 Deoxycytidine triphosphate (dCTP) or deoxyuridine labeled with fluorescent dyes selected from the group consisting of ', 7'-dimethoxyfluorescein), Rhodamine Green, TAMRA NHS (N-hydroxysuccinimide) Ester and Texas Red A method for labeling fluorescent dyes randomly in amplified nucleic acid fragments using triphosphate (deoxyuridine triphosphate, dUTP). 제 8 항에 있어서, 상기 단계 (c)는 형광색소에 특이적인 파장의 레이저로 칩을 스캐닝(scanning)하여 형광강도를 측정하는 것임을 특징으로 하는 방법.The method of claim 8, wherein the step (c) is to measure the fluorescence intensity by scanning the chip with a laser of a wavelength specific to the fluorescent dye. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020080017564A 2008-02-27 2008-02-27 Human infectious diseases-related pathogen differential diagnosis and simultaneous antibiotics resistance analysis, multiplex kit and chip comprising same KR101038519B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080017564A KR101038519B1 (en) 2008-02-27 2008-02-27 Human infectious diseases-related pathogen differential diagnosis and simultaneous antibiotics resistance analysis, multiplex kit and chip comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080017564A KR101038519B1 (en) 2008-02-27 2008-02-27 Human infectious diseases-related pathogen differential diagnosis and simultaneous antibiotics resistance analysis, multiplex kit and chip comprising same

Publications (2)

Publication Number Publication Date
KR20080024503A KR20080024503A (en) 2008-03-18
KR101038519B1 true KR101038519B1 (en) 2011-06-02

Family

ID=39412756

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080017564A KR101038519B1 (en) 2008-02-27 2008-02-27 Human infectious diseases-related pathogen differential diagnosis and simultaneous antibiotics resistance analysis, multiplex kit and chip comprising same

Country Status (1)

Country Link
KR (1) KR101038519B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210089040A (en) 2020-01-07 2021-07-15 주식회사 이원생명과학연구원 Kits for Detecting Carbapenem Resistant Enterobacteriaceae
KR102370561B1 (en) * 2021-07-21 2022-03-07 주식회사 에이아이더뉴트리진 Detection method using paper chip capable of multi-nucleic acid colorimetric detection with one-step
KR102370566B1 (en) * 2021-07-21 2022-03-07 주식회사 에이아이더뉴트리진 Diagnostic method for detecting multiple nucleic acid with one-step
KR102370553B1 (en) * 2021-07-21 2022-03-07 주식회사 에이아이더뉴트리진 Detection method using lateral-flow paper chip capable of multi-nucleic acid colorimetric detection with one-step
KR102370572B1 (en) * 2021-07-21 2022-03-07 주식회사 에이아이더뉴트리진 Colorimetric diagnostic method using strutcture with opener-based paper chip for controlling lateral flow that can diagnose multiple nucleic acids in one step
KR102370580B1 (en) * 2021-07-21 2022-03-07 주식회사 에이아이더뉴트리진 Strutcture with opener-based paper chip for controlling lateral flow that can diagnose multiple nucleic acids in one step
KR20220143408A (en) 2021-04-16 2022-10-25 주식회사 이원생명과학연구원 Kits for Detecting Macrolide drug Resistant Mycoplasma pneumoniae
WO2023003082A1 (en) * 2021-07-21 2023-01-26 주식회사 에이아이더뉴트리진 Lab-on-paper for detection of coronavirus and coronavirus diagnosis system using same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145616B1 (en) * 2008-07-09 2012-05-16 박민구 DNA chip and PNA chip for respiratory infectious pathogen differential diagnosis and simultaneous antibiotics resistance analysis, diagnostic kit comprising the same
KR101272017B1 (en) 2011-09-23 2013-06-07 주식회사 랩 지노믹스 DNA Chip for Diagnosing Urogenital Infection Disease
CN109790531A (en) * 2016-07-11 2019-05-21 三菱化学株式会社 Intraoral examination method
WO2018128286A1 (en) * 2017-01-06 2018-07-12 배진현 Method for rapidly detecting nucleic acid, and method for rapidly diagnosing disease using same
KR101967730B1 (en) * 2017-12-08 2019-04-11 대한민국 PNA Probe for Discrimination of Tetracycline Antibiotic Resistant Bacteria and Method for Discrimination of Antibiotic Resistant Bacteria Using the Same
KR101967733B1 (en) * 2018-06-14 2019-04-11 대한민국 PNA Probe for Discrimination of Tetracycline Antibiotic Resistant Bacteria and Method for Discrimination of Antibiotic Resistant Bacteria Using the Same
CN110993114B (en) * 2019-11-26 2023-06-27 泰康保险集团股份有限公司 Medical data analysis method and device, storage device and electronic equipment
CN117025809B (en) * 2023-10-09 2024-03-19 广州精微医学科技有限公司 Mycobacterium tuberculosis complex identification and drug-resistant site detection primer combination, kit, method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100619189B1 (en) 2004-10-08 2006-08-31 굿젠 주식회사 Probe of Bacteria Causing Sexually Transmitted Diseases DNA chip Genotyping Kit and Genotyping Method Using The Same
KR100633525B1 (en) 2004-10-04 2006-10-16 굿젠 주식회사 Probe Of Human Papillomavirus Oligonucleotide Microarray And Genotyping Kit Comprising The Same And Genotyping Method For Human Papillomavirus Using The Same
KR20070032043A (en) * 2004-07-02 2007-03-20 미합중국 (관리부서 : 미합중국 해군성) Resequencing pathogen microarray

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070032043A (en) * 2004-07-02 2007-03-20 미합중국 (관리부서 : 미합중국 해군성) Resequencing pathogen microarray
KR100633525B1 (en) 2004-10-04 2006-10-16 굿젠 주식회사 Probe Of Human Papillomavirus Oligonucleotide Microarray And Genotyping Kit Comprising The Same And Genotyping Method For Human Papillomavirus Using The Same
KR100619189B1 (en) 2004-10-08 2006-08-31 굿젠 주식회사 Probe of Bacteria Causing Sexually Transmitted Diseases DNA chip Genotyping Kit and Genotyping Method Using The Same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210089040A (en) 2020-01-07 2021-07-15 주식회사 이원생명과학연구원 Kits for Detecting Carbapenem Resistant Enterobacteriaceae
KR20220098113A (en) 2020-01-07 2022-07-11 주식회사 이원바이오텍 Kits for Detecting Carbapenem Resistant Enterobacteriaceae
KR20220143408A (en) 2021-04-16 2022-10-25 주식회사 이원생명과학연구원 Kits for Detecting Macrolide drug Resistant Mycoplasma pneumoniae
KR102370561B1 (en) * 2021-07-21 2022-03-07 주식회사 에이아이더뉴트리진 Detection method using paper chip capable of multi-nucleic acid colorimetric detection with one-step
KR102370566B1 (en) * 2021-07-21 2022-03-07 주식회사 에이아이더뉴트리진 Diagnostic method for detecting multiple nucleic acid with one-step
KR102370553B1 (en) * 2021-07-21 2022-03-07 주식회사 에이아이더뉴트리진 Detection method using lateral-flow paper chip capable of multi-nucleic acid colorimetric detection with one-step
KR102370572B1 (en) * 2021-07-21 2022-03-07 주식회사 에이아이더뉴트리진 Colorimetric diagnostic method using strutcture with opener-based paper chip for controlling lateral flow that can diagnose multiple nucleic acids in one step
KR102370580B1 (en) * 2021-07-21 2022-03-07 주식회사 에이아이더뉴트리진 Strutcture with opener-based paper chip for controlling lateral flow that can diagnose multiple nucleic acids in one step
WO2023003082A1 (en) * 2021-07-21 2023-01-26 주식회사 에이아이더뉴트리진 Lab-on-paper for detection of coronavirus and coronavirus diagnosis system using same
WO2023003070A1 (en) * 2021-07-21 2023-01-26 주식회사 에이아이더뉴트리진 Paper chip capable of one-step diagnosis of multiple nucleic acids

Also Published As

Publication number Publication date
KR20080024503A (en) 2008-03-18

Similar Documents

Publication Publication Date Title
KR101038519B1 (en) Human infectious diseases-related pathogen differential diagnosis and simultaneous antibiotics resistance analysis, multiplex kit and chip comprising same
Fukushima et al. Detection and identification of Mycobacterium species isolates by DNA microarray
JP3109599B2 (en) Hybridization probe for detecting non-viral microorganisms derived from spacer region between 16S and 23S rRNA genes
CN110914458A (en) Biomarkers and uses thereof
JP5276648B2 (en) Methods and kits for identifying antibiotic-resistant microorganisms
WO2007039319A2 (en) Dna microarray for rapid identification of candida albicans in blood cultures
WO2007114511A1 (en) Probe, probe set, probe-immobilized carrier, and genetic testing method
JP2018171053A (en) Assay for diagnosis of dermatophytosis
EP1969145B1 (en) Oligonucleotide microarray and method for identification of pathogens
EP2014775B1 (en) Method for the detection of bacterial species of the genera Anaplasma/Ehrlichia and Bartonella
JP2006525809A5 (en)
EP3103884B1 (en) Nucleic acid detection or quantification method using mask oligonucleotide, and device for same
Jannes et al. A review of current and future molecular diagnostic tests for use in the microbiology laboratory
JP2002537824A (en) Bacterial identification
US7659388B2 (en) Method and compositions for detecting respiratory disease-causing bacterial species
KR101623489B1 (en) High Definition Probe for detecting microorganism causing sexually transmitted disease and kit using the same
JP2010515451A (en) DNA chip for E. coli detection
KR20060128797A (en) Novel oligonucleotide probes, dna chip and detection kit for diagnosing sexual transmitted disease and method of manufacturing thereof
JPH0690798A (en) Probe for detecting staphylococcus aureus and method for detecting the same
WO2005028679A2 (en) Method and kit for identifying vancomycin-resistant enterococcus
KR20110052794A (en) Reverse transcription - polymerase chain reaction - enzyme-linked immunosorbent assay (rt-pcr-elisa) for hepatitis a virus
JP2010515452A (en) DNA chip for detection of Staphylococcus aureus
KR100935919B1 (en) DNA chip for detection of infectious bacteria
JP2004534536A (en) Gram-positive bacteria detection method
US20070059714A1 (en) Detection of presence and antibiotic susceptibility of enterococci

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 4

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160504

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170504

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180525

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190502

Year of fee payment: 9