KR101035401B1 - 압입시험의 변수를 이용한 각진 압입자의 접촉면적의 평가방법 - Google Patents

압입시험의 변수를 이용한 각진 압입자의 접촉면적의 평가방법 Download PDF

Info

Publication number
KR101035401B1
KR101035401B1 KR1020090053000A KR20090053000A KR101035401B1 KR 101035401 B1 KR101035401 B1 KR 101035401B1 KR 1020090053000 A KR1020090053000 A KR 1020090053000A KR 20090053000 A KR20090053000 A KR 20090053000A KR 101035401 B1 KR101035401 B1 KR 101035401B1
Authority
KR
South Korea
Prior art keywords
indentation
indenter
depth
contact
correction function
Prior art date
Application number
KR1020090053000A
Other languages
English (en)
Other versions
KR20100134391A (ko
Inventor
강승균
권동일
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020090053000A priority Critical patent/KR101035401B1/ko
Publication of KR20100134391A publication Critical patent/KR20100134391A/ko
Application granted granted Critical
Publication of KR101035401B1 publication Critical patent/KR101035401B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/42Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/62Manufacturing, calibrating, or repairing devices used in investigations covered by the preceding subgroups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0076Hardness, compressibility or resistance to crushing
    • G01N2203/0078Hardness, compressibility or resistance to crushing using indentation
    • G01N2203/0082Indentation characteristics measured during load

Landscapes

  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

본 발명은 압입시험의 변수를 이용한 각진 압입자의 접촉면적의 평가방법에 관한 것으로, 이는 각진 압입자를 이용한 압입시험을 통해 최대 압입깊이와 최종 압입깊이를 구하는 단계와, 이들 최대 압입깊이와 최종 압입깊이를 보정함수에 대입하여 보정함수값을 구하는 단계와, 이 보정함수값에 의해 접촉깊이를 구하고 이 접촉깊이를 이용해서 접촉면적을 구하는 단계를 포함하여서, 광학적인 관측과 같은 추가적인 시험이 필요 없게 되어 소재의 물성 평가가 간편하게 됨은 물론 정확성이 보증되는 효과가 있게 된다.

Description

압입시험의 변수를 이용한 각진 압입자의 접촉면적의 평가방법 {Evaluation method for contact depth, contact area and hardness, and calibration method for indenter using instrumented indentation technique with sharp indenter}
본 발명은 전체적으로 각진 압입자를 이용하는 계장화 압입시험에 관한 것으로, 더욱 상세하게는 예컨대 사각뿔형 압입자와 같은 각진 압입자를 이용한 계장화 압입시험에서 소재의 탄소성 변형을 고려한 접촉깊이를 압입시험의 변수로 나타낸 함수로 정의하고, 불완전한 압입자의 형상을 반영하여 접촉깊이와 접촉면적 및 경도를 측정하는 보정방법을 제공함으로써, 예컨대 광학적인 관측과 같은 추가적인 시험이 필요 없게 되어 소재의 물성 평가가 간편하게 됨은 물론 정확성이 보증되는, 압입시험의 변수를 이용한 각진 압입자의 접촉면적의 평가방법에 관한 것이다.
소성변형에 대한 저항성으로 정의되는 경도는 소재의 대표적인 기계적인 물성이다. 단단한 압입자를 이용하여 소재에 하중을 인가하고 이에 따라 발생하는 압흔(indentation)을 관측함으로써 경도를 평가한다.
최근에는 이와 같은 기존 시험방식을 한 차원 발전시켜 압입이 진행되는 상황에서 연속적으로 하중과 변위를 측정하는 계장화 압입시험에 대한 연구가 활발하 게 진행되어왔다. 이러한 계장화 압입시험에서는 측정되는 하중-변위의 연속적인 곡선을 통해서 탄성계수, 경도, 강도 등의 물성을 평가할 수 있는데, 이의 가장 큰 장점은 바로 광학적인 관측 없이 하중-변위 곡선을 직접적으로 분석함으로써 접촉깊이를 평가하고 이어서 압입자의 기하학적인 형상을 계산함으로써 접촉깊이로부터 접촉면적을 평가할 수 있다는 것이다.
하지만, 실제로는 압입자 주변에서 발생하는 복잡한 탄소성 변형 때문에 정확한 접촉깊이를 평가하기가 쉽지 않기 때문에 이를 해결하기 위한 연구가 많이 진행되었다.
한편, 상기와 같은 압입시험에는 압입자가 사용되는데, 이는 실질적으로 재료에 압입하중을 인가하는 부재로서, 그 형태는 용도에 따라 구형이나, 원뿔형, 사각뿔형 등을 사용한다.
상기와 같은 압입자를 활용하여 소재를 압입하게 되면, 소재 주변에서는 탄성변형인 탄성휨(elastic deflection:hd)과 소성변형인 파일업(pile-up:hp)이 발생한다. 따라서, 기준평면으로부터 최대로 압입된 깊이 즉 최대 압입깊이(hmax)만을 반영하는 계장화 압입시험의 측정변위만으로는 소재와 압입자의 접촉깊이를 평가할 수 없다. 일반적으로 압입자와 소재가 맞닿는 접촉깊이(hc)는 도 1 및 아래의 식과 같이 표현된다.
Figure 112009036085577-pat00001
소재의 탄성휨(hd) 현상은 탄성식의 해석에 기반을 둔 연구를 바탕으로 유도되었으며, 일반적으로 다음 식으로 나타낼 수 있다.
Figure 112009036085577-pat00002
여기서, Lmax는 최대 압입하중이고, S는 강성도(stiffness)이며, ε은 압입자 형상에 의존하는 상수로, 예들 들어 사각뿔형의 각진 압입자인 경우에는 0.75를 사용한다.
소재의 압입하중을 제거하게 되면, 탄성변형에 의해 나타난 탄성휨은 회복되고 소성변형에 의한 파일업만 남게 된다. 해석적 풀이가 존재하는 탄성휨과 다르게, 소성변형에 의한 파일업은 그 현상이 복잡하여 해석적 풀이가 존재하지 않는다. 이에 따라 대부분의 관련 연구는 소재의 물성과 파일업 관계를 제시하는 방법으로 진행되어왔다.
파일업 형상을 보정하여 각진 압입자의 접촉깊이를 정확하게 결정하기 위한 다양한 연구가 진행되었다. 이와 관련하여 원뿔형 압입자에 대한 Yang-Tse Cheng(1998)의 연구가 가장 잘 알려져 있는바, 이는 유한요소해석에 기반을 둔 무차원 변수의 해석을 통해 인장물성을 경도와 탄성계수의 비로 표현하려는 시도를 하였고, 이를 바탕으로 파일업이 반영된 접촉면적을 이용한 경도 및 탄성계수를 구하는 식을 제시하였다. 이 제시된 방법은 모든 변수를 압입시험을 통해 평가할 수 있다는 장점이 있지만, 시뮬레이션 결과에 기반한 것으로 실험적으로 직접 검증되지 않았다는 한계가 있다.
Jorge Alcala(2000) 역시 유한요소해석을 도입하여 사각뿔형 압입자의 파일업 현상을 해석하였는데, 소재의 파일업 현상이 가공경화지수(n)와 밀접한 관계가 있음을 확인하였고, 6종의 소재에 대해 이를 검증하였다.
또한, 최열 및 권동일(2004)의 연구에 의하면 소재의 파일업 현상은 가공경화지수(n)와 더불어 경도 및 탄성계수의 비(H/E)에 관계가 있음을 확인하였고, 접촉깊이를 보정하기 위한 함수(f)를 정의하여 가공경화지수(n)와, 항복강도 및 탄성계수의 비(σy/E)로 유한요소해석을 통해 아래의 식과 같이 나타내었다.
Figure 112009036085577-pat00003
하지만, 이들 연구는 모두 인장 물성을 알아야 적용이 가능하다는 단점을 갖고 있다.
더구나, 압입자의 가공이 완벽하지 않거나 사용환경 등으로 압입자에 변형이 발생하게 되면, 측정된 물성의 정확성을 보장할 수 없게 된다는 문제점도 있었다.
이에 본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로, 각진 압입자를 이용한 계장화 압입시험에서 소재의 탄소성 변형을 고려한 접촉깊이를 압입시험의 변수로 평가하는 함수를 제시하여 예컨대 광학적인 관측과 같은 추가적인 시험 없이 간편하게 소재의 물성을 평가할 수 있게 하는 각진 압입자의 접촉면적의 평가방법을 제공하는 데에 그 목적이 있다.
또한, 본 발명의 다른 목적은, 불완전한 압입자의 형상을 반영하여 접촉면적을 평가할 수 있는 각진 압입자의 접촉면적의 평가방법을 제공하는 것이다.
상기와 같은 목적을 성취하기 위한 본 발명에 따른 각진 압입자의 접촉면적의 평가방법은, 각진 압입자를 이용한 압입시험을 통해 최대 압입깊이와 최종 압입깊이를 구하는 단계와, 이들 최대 압입깊이와 최종 압입깊이를 보정함수에 대입하여 보정함수값을 구하는 단계와, 이 보정함수값에 의해 접촉깊이를 구하는 단계 및, 이 접촉깊이를 이용해서 접촉면적을 구하는 단계를 포함하는 것을 특징으로 한다.
본 발명에 따른 각진 압입자의 접촉면적의 평가방법에서, 상기 보정함수값은 최대 압입깊이와 최종 압입깊이를 통해
Figure 112009036085577-pat00004
으로 계산될 수 있는 것을 특징으로 한다.
이상과 같이 본 발명에 의하면, 각진 압입자를 이용한 계장화 압입시험에서 소재의 탄소성 변형을 고려한 접촉깊이를 압입시험의 변수로 나타낸 함수로 정의하 고, 불완전한 압입자의 형상을 반영하여 접촉깊이와 접촉면적 및 경도를 측정하는 보정방법을 제공함으로써, 예컨대 광학적인 관측과 같은 추가적인 시험이 필요 없게 되어 소재의 물성 평가가 간편하게 됨은 물론 정확성이 보증되는 효과가 있다.
이하, 본 발명의 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 당업자에게 자명하거나 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
우선, 경도 및 탄성계수의 비(H/E)는 압입시험에서의 전체 변형 에너지에 대한 비가역 에너지의 비로서, 이는 아래의 식과 같이 표현될 수 있다고 알려져 있다.
Figure 112009036085577-pat00005
여기서, Wtot은 압입시험에서의 전체 에너지를 의미하고, Wu는 압입하중의 제거시 회복되는 에너지를 의미한다. 압입곡선을 직선으로 근사하게 되면 (Wtot-Wu)/ Wtot은 최대 압입깊이(hmax)와 최종 압입깊이(hf)를 이용해서 나타낼 수 있게 된다.
Figure 112009036085577-pat00006
따라서, 상기 경도 및 탄성계수의 비(H/E)는 압입시험의 변수들, 즉 최대 압입깊이(hmax)와 최종 압입깊이(hf)로 대체가 가능하다.
이어서, 소재의 접촉깊이를 보정하기 위한 보정함수(f)와, 가공경화지수(n) 그리고 경도 및 탄성계수의 비(H/E) 사이의 관계를 실험을 통해 밝혀서, 압입시험의 변수들로 대체하여도 정확한 접촉깊이를 평가할 수 있는지를 검증하기로 한다.
이하에서는, 각진 압입자 중 대표적인 사각뿔형 압입자를 이용한 비커스 (Vickers) 경도의 평가실험을 예로 들어 설명하기로 한다. 이 비커스 경도는 대면각(對面角)이 136°인 사각뿔형 다이아몬드 압입자를 소재의 표면에 살짝 대고 눌러서 압흔을 만들고, 하중을 제거한 후 남은 압흔의 표면적으로 하중을 나눈 값을 나타낸 것으로, 압입하중을 L(N), 압흔의 대각선의 길이를 d(mm)라 하면, 비커스 경도(Hv)는 0.1891 L/d2이 된다. 비커스 경도는 압흔이 정사각형으로 소재의 표면상에서 경계가 명확하게 보이고, 압흔이 닮은꼴이 되므로 하중의 크기 또는 압입깊이에 관계없이 경도의 수치가 일정하게 되는 특징이 있으며, 정사각형 양변의 교점을 관찰하는 것으로 이루어지는 대각선 길이의 측정이 반드시 이행되어야 한다.
<실험예 - 비커스 경도의 평가>
실험에 사용된 소재는 탄소강, API강, 스테인리스강, 알루미늄합금, 마그네슘합금, 니켈합금, 구리합금, 티타늄합금 등으로 총 24종의 금속 소재가 사용되었으며, 각 소재의 표면은 #2000의 사포에 의해 연마하였다. 마이크로 압입시험기로는 모델명 S3000((주)프론틱스)이 사용되었고, 사각뿔형 압입자는 다이아몬드로 제작되었다. 압입시험은 80㎛의 변위제어를 사용하였으며, 압입속도는 0.3mm/min으로 진행되었다. 이 압입시험기에 의해 최대 압입깊이(hmax)와 최종 압입깊이(hf)를 측정하였다. 또한, 모델명 PMG3-613U(올림푸스社)인 광학현미경을 통하여 압흔의 대각선 길이(d)를 측정한 후, 사각뿔형 압입자의 형상에 의해 기하학적으로 결정된 아래의 식을 통해 접촉깊이(hc V)가 계산되었다.
Figure 112009036085577-pat00007
여기서, θ는 비커스 압입자의 압입 반각으로서, 이 실험의 경우에 그 크기는 68°여서, 결국 비커스 경도의 접촉깊이(hc V)는 d/7로 된다.
비커스 경도의 접촉깊이(hc V)를 보정하기 위한 보정함수(fv)를 다음 식과 같이 정의하고, 소재의 기계적 특성 중 파일업 현상과 연관성이 깊다고 알려진 가공경화지수(n)와 탄성계수 및 경도의 비(E/H) 각각에 대하여 상기 접촉깊이를 보정하 기 위한 보정함수(fv) 사이의 관계를 확인하였다.
Figure 112009036085577-pat00008
경도는 일반적으로 인장강도와 비례관계에 있다고 가정할 수 있으며, 이에 따라 탄성계수 및 경도의 비(E/H)는 탄성계수 및 항복강도의 비(E/σy)로 대체될 수 있다. 또, 항복강도 및 탄성계수의 비(σy/E)는 곧 항복변형률에 해당하므로, 결국 소재의 파일업 현상은 소재의 항복이 발생할 때까지의 변형률과 반비례 관계에 있음을 유추할 수 있다.
도 2의 (a)에 도시된 것과 같이 보정함수(fv)와 탄성계수 및 항복강도의 비(E/σy) 사이, 즉 보정함수(fv)와 탄성계수 및 경도의 비(E/H) 사이에는 상관관계가 있다는 것을 알 수 있다. 이에 반하여 도 2의 (b)에 도시된 보정함수(fv)와 가공경화지수(n)의 관계를 살펴보면 상관관계가 형성되지 않음을 볼 수 있다.
상기 수학식 4 및 상기 수학식 5를 이용하면, E/H 및 hmax/(hmax-hf)가 상관관계를 갖는다고 예측할 수 있으며, 도 3의 (a) 및 (b)를 통해 E/H 및 E/σy가 hmax/(hmax-hf)에 대해 비례관계에 있음을 확인할 수 있다.
따라서, 보정함수(fv)와 상관관계를 갖고 있는 E/H를 hmax/(hmax-hf)으로 대체 할 수 있으며, 소재의 파일업을 반영한 접촉깊이(hc V)를 순수하게 계장화 압입시험의 데이터만을 이용하여 평가할 수 있게 되는 것이다.
도 4는 보정함수(fv)와 hmax/(hmax-hf)의 상관관계를 나타낸 것으로, 이러한 관계는 아래의 상관관계식으로 나타내어진다.
Figure 112009036085577-pat00009
여기서, a와 b는 치환된 상수이다.
위의 수학식 8을 변형하게 되면 아래의 식을 얻을 수 있는데, (hc V-hmax)/hmax는 최대 압입깊이에 대한 기준평면으로부터 발생한 파일업의 높이를 의미하며, 그 값이 곧 비가역 에너지에 대한 가역 에너지의 비인 hmax/(hmax-hf)로 나타내어짐을 확인할 수 있다.
Figure 112009036085577-pat00010
다음으로, 광학적인 관측을 통해 평가된 접촉깊이 및 비커스 경도의 결과치와, 상기 수학식 8을 통해 평가된 결과치를 표 1에 비교하였다. 이 표 1을 살펴보 면, 접촉깊이의 결과는 3% 내외에서 평가가 잘 이루어짐을 확인할 수 있다.
접촉면적을 통해 평가되는 경도의 경우에, 접촉면적이 접촉깊이의 제곱차수에 비례하기 때문에 상대적으로 큰 오차가 나타나지만, 모두 5% 내외의 결과로 소재군에 상관없이 일관적인 결과를 얻었다. 특히 FCC 구조를 갖는 오스테나이트강은 선형적인 가공경향을 갖는 소재로서 BCC 구조의 탄소강과 차별적인 소성변형을 보임에도 일관적인 결과가 나타났다. 알루미늄합금과 티타늄합금 등도 강보다 낮은 탄성계수, 낮은 최대 인장변형률을 갖고 있음에도 잘 일치하였다. 이것은 소재의 파일업 현상이 가공경화의 양상보다는 소재의 최대 항복변형률에 밀접한 연관이 있음을 의미한다.
재료 hc(mm) 식에 의한 hc(mm) 접촉깊이의 오차 HV 식에 의한 HV 비커스 경도의 오차
Al 합금 Al6061 84.95 87.81 3.37 117.38 109.85 -6.42
Al7075 84.77 83.76 -1.20 173.47 177.71 2.44
Mg 합금 AZ61 85.52 86.53 1.18 44.94 43.90 -2.31
AZ910 83.49 85.48 2.38 58.44 55.75 -4.60
Cu 합금 C1010 88.26 91.24 3.38 80.30 75.14 -6.42
C5101 86.52 88.85 2.70 85.66 81.22 -5.18
C62400 83.61 83.48 -0.16 212.68 213.36 0.32
Ti 합금 Ti10V-2Fe-3Al 79.85 82.15 2.87 360.48 340.65 -5.50
Ti7Al-4Mo 80.32 82.70 2.97 341.86 322.40 -5.69
Ni 합금 Inconell600 83.54 85.86 2.77 228.10 215.96 -5.32
탄소강 S45C 90.71 88.67 -2.25 181.61 190.06 4.65
SCM21 90.03 89.40 -0.70 160.11 162.36 1.41
SCM4 83.78 83.81 0.03 285.95 285.78 -0.06
SKD61 89.62 87.55 -2.31 189.86 198.96 4.79
SKS3 89.78 88.38 -1.56 182.22 188.03 3.19
SUJ2 88.71 87.43 -1.44 195.36 201.12 2.95
API강 X100 87.85 85.30 -2.90 240.19 254.77 6.07
X70 87.37 86.18 -1.36 216.69 222.68 2.77
페라이트계 스테인리스강 SUS303F 87.40 87.37 -0.03 175.06 175.18 0.07
SUS310S 93.86 93.89 0.04 129.46 129.36 -0.08
SUS316L 89.77 91.18 1.58 158.28 153.40 -3.09
오스테나이트계 스테인리스강 SUS403 90.91 91.38 0.52 165.73 164.02 -1.04
SUS410 90.26 90.31 0.05 166.53 166.37 -0.10
SUS420J2 88.61 87.29 -1.48 204.08 210.26 3.03
상기 수학식 9의 두 변수 사이에 있는 비례상수의 의미를 살펴보기 위하여, 압입 반각이 각기 다른 사각뿔형 압입자들로 동일한 실험을 수행하였다. 제2압입자와 제3압입자의 압입 반각(θ)은 각각 56.6°와 74.5°이다. 도 5를 통해 서로 다른 압입 반각을 갖는 압입자에서도 상관관계가 나타남을 확인할 수 있다. 또한, 압입 반각(θ)이 증가함에 따라 수학식 9의 기울기가 증가하며, tanθ에 비례하는 것을 확인하였다. 수학식 7에 압입 반각(θ)의 영향을 반영하여 아래의 식을 유도하였는데, 이는 압입 반각(θ)을 갖는 각진 압입자에 대한 일반적인 접촉면적 보정을 위한 함수로 활용할 수 있을 것으로 생각된다.
Figure 112009036085577-pat00011
상기와 같이 검증된 보정함수를 이용해서 비커스 경도(HV)를 평가하자면, 사각뿔형 압입자를 이용하는 압입시험기에 의해 최대 압입깊이(hmax)와 최종 압입깊이(hf)를 측정하고 나서, 이들 최대 압입깊이(hmax)와 최종 압입깊이(hf)를 상기 보정함수(fV)에 대입하여 보정함수값을 구한다.
이 보정함수값을 수학식 7에 대입하면, 비커스 경도의 접촉깊이(hc V)를 구할 수 있으며, 이어서 이 접촉깊이(hc V)를 수학식 6에 대입하면, 압흔의 대각선 길 이(d)를 구할 수 있게 된다. 물론, 이 대각선 길이(d)를 이용하면 용이하게 접촉면적, 즉 후술하는 대각면적(Ac V)을 구할 수 있게 되는 것이다.
또는 접촉깊이 및 압입 반각을 알 수 있기 때문에 이를 이용해서 접촉면적을 구할 수 있게 되는 것이다.
요컨대, 본 발명에 따른 각진 압입자의 접촉면적의 평가방법에서는, 보정함수값이 최대 압입깊이와 최종 압입깊이를 통해
Figure 112009036085577-pat00012
으로 계산될 수 있으며, 이에 따라 예컨대 광학적인 관측과 같은 별도의 추가적인 과정을 통해 대각선 길이를 측정할 필요가 없게 되어 접촉면적과 이를 이용한 물성의 평가가 매우 간편하게 되는 장점이 있게 된다.
<압입자 보정>
각진 압입자의 경우에는, 가공의 한계 혹은 사용 중의 마모 등으로 인하여 압입자의 형상이 이상적인 형태에서 벗어나게 된다. 불완전한 압입자를 사용하게 되면 압입되는 상황은 압입 반각(θ)이 이상적인 값을 벗어난 상태로 이해할 수 있다. 이와 같이 압입자의 압입 반각(θ)이 이상적인 형태에서 벗어나게 되면 접촉깊이를 계산하기 위한 보정함수도 영향을 받게 되는 한편, 접촉깊이로부터 접촉면적을 환산하는 과정에서도 비이상적인 압입 반각이 반영되어야 한다. 따라서, 비이상적인 압입자의 압입 반각을 반영한 접촉깊이를 보정하기 위한 보정함수를 제시하는 것이 필요하다.
압입자의 압입 반각을 알고 있다면 상기 수학식 10과 같은 관계식에 의해 직접적으로 상기 보정함수(fv)를 적용하는 것이 가능하지만, 일반적으로 압입자의 압입 반각을 사전에 측정하기 어렵다. 또, 압흔의 면적과 접촉깊이를 통해 압입자의 압입 반각을 예상할 수는 있으나, 압입시 발생하는 소재의 탄소성 변형을 반영한 접촉깊이를 정확히 평가할 수 없기 때문에 정확한 압입 반각을 계산할 수 없다.
이와 같은 이유로 표준 경도 시편을 활용하여 압입자의 불완전성을 반영한 접촉깊이를 보정하는 보정함수를 유도하고자 한다.
이하에서는, 다시금 각진 압입자 중 대표적인 사각뿔형 압입자를 이용하는 비커스 경도를 예로 들어 설명하기로 한다.
이상적인 압입자에서 압흔의 대각선 길이(d)와 접촉깊이(hc V) 사이에는 상기 수학식 6이 성립한다. 하지만, 압입 반각이 변화하면 압입자의 기하학적인 형상이 변하기 때문에 다음 식을 통해 관계를 표현할 수 있다.
Figure 112009036085577-pat00013
여기서, α는 압입자의 이상적인 압입 반각(θ)과 실제 가공각(θm)의 tangent 비, 즉 tanθ/tanθm이다. 상기 수학식 10과 수학식 11을 연립하여 정리하 면, 새로운 보정함수(fV')를 얻을 수 있다.
Figure 112009036085577-pat00014
여기서, a'와 b'는 치환된 상수이다.
압입자마다 a' 및 b'의 값을 측정하게 되면 불완전한 압입자의 경우에도 hmax/(hmax-hf)를 통해 보정함수(fV')의 값을 계산하게 되고, 대각선의 길이와 접촉면적, 비커스 경도 등을 평가할 수 있다.
위의 보정 과정을 검증하기 위한 절차로 3종의 표준 비커스 경도 시편을 이용하였다. 표준 비커스 경도 시편들을 통해 압흔의 대각선 길이(d)를 측정하여 보정함수(fV')의 값들을 산출하고, 이들 보정함수의 값과 hmax/(hmax-hf)의 함수관계에서 각 압입자의 접촉깊이 보정함수를 유도하였다. 압입 반각이 반영된 보정함수(fV')를 이용하여 일반 금속소재에 대해서 비커스 경도를 산출하였을 때 그 값이 잘 일치함을 도 6을 통해 확인하였다.
표준 경도 시편이 아닌 경우에도 대각선의 길이를 측정하여 이용할 수 있지만, 표준 비커스 경도 시편의 경우에는 대각선의 길이가 추가적이고 직접적인 관측시험 없이 아래의 식을 통해 비커스 경도값(HV)으로 계산될 수 있다.
Figure 112009036085577-pat00015
단, 여기서 압입하중(L)의 단위는 N, 대각선 길이(d)의 단위는 mm이다.
이와 같이 상기 수학식 13을 활용하여 비커스 경도로부터 대각선의 길이를 유추함으로써, 예컨대 광학적인 관측 없이도 압입각이 반영된 접촉깊이를 보정하기 위한 보정함수를 유도할 수 있으며, 그 일련의 과정은 도 7에 나타나 있다.
<투영면적에의 적용>
한편, 최근 계장화 압입시험이 개발되면서 접촉면적의 평가방법에 따라 기존의 비커스 경도와 차별되는 경도가 제시되었다. 다시 말해서, 비커스 경도는 소재와 맞닿는 압입자의 옆면의 넓이를 접촉면적으로 계산하는 반면, 최근에 제시된 경도는 압입방향으로의 투영면의 넓이를 이용한다. 비커스 경도의 경우에는 대각선의 길이를 통해서 정의되는 정사각형의 대각면적(Ac V)을 고려하여 접촉깊이를 환산하기 때문에, 압흔의 변에서 탄소성 변형으로 발생하는 볼록한 면 또는 오목한 면의 면적을 반영하지 않는 반면에, 상기 계장화 압입시험에서 정의되는 경도는 투영면적(Ac)을 반영한다. 따라서, 대각선의 길이만 반영한 비커스 경도의 접촉깊이(hc V)와 투영면적을 반영한 접촉깊이(hc)는 다른 의미를 갖는다.
도 8에는 대각면적(Ac V)과 투영면적(Ac)을 비교하여 나타내었는바, 두 면적 사이의 직선적인 비례관계를 확인할 수 있으며, 파일업에 의해 모서리 바깥으로 쌓이는 부분의 면적이 포함된 투영면적(Ac)의 크기가 약 2% 정도 크게 나타남을 확인할 수 있다. 더구나, 두 면적의 크기가 비례적인 관계를 갖기 때문에 압흔의 꼭지점에서 발생하는 파일업의 크기와 모서리에서 발생하는 파일업의 양이 비례적인 관계에 있음을 예측할 수 있으며, 소성 변형에 의해 발생하는 파일업의 분포 형상이 자기 유사성을 갖고 있음을 알 수 있다. 따라서, 투영면적을 반영한 접촉깊이(hc) 또한, 비커스 경도의 접촉깊이(hc V)와 동일한 방법으로 보정하는 것이 가능하며, hmax/(hmax-hf)와 상관관계가 있음을 예측할 수 있다. 도 9는 투영면적을 반영한 접촉깊이를 보정하기 위한 보정함수(f)와 hmax/(hmax-hf) 사이의 비례관계를 보여주고 있으며, 이에 따라
Figure 112009036085577-pat00016
를 통하여 투영면적을 반영한 접촉깊이 및 접촉면적의 보정이 동일한 절차로 진행될 수 있음을 확인하였다.
결론적으로, 각진 압입자를 이용하여 계장화 압입시험을 진행할 때 발생하는 파일업을 반영한 접촉깊이를 계장화 압입시험의 변수로 나타내었으며, 접촉깊이를 보정하기 위한 함수를 통해 유도되는 예컨대 비커스 경도와 같은 물성은 24종의 다 양한 금속소재에 적용이 가능함은 물론, 5% 내외의 일치성을 보여주고 있다는 것이 증명되었다.
또한, 압입 반각을 반영하여 보정함수를 정의함으로써 압입자의 불완전성을 반영할 수 있는 접촉깊이를 보정하기 위한 함수도 제시하였는바, 표준 시편을 통해 광학적인 관측 없이 압입자별 보정함수를 구하는 방법을 소개하였다.
끝으로, 비커스 경도에서 정의되는 접촉깊이와 투영면적을 통해 정의되는 접촉깊이의 비례관계를 확인함으로써, 투영면적을 통해 접촉깊이 및 접촉면적과 경도도 측정이 가능하게 되었다.
본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예들에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
도 1은 본 발명에 이용되는 접촉깊이와, 탄성휨, 파일업 및, 최대 압입깊이 사이의 관계를 설명하기 위한 도면이다.
도 2는 인장물성들과 보정함수의 관계를 나타낸 그래프이다.
도 3은 E/σy 및 E/H와 hmax/(hmax-hf)의 관계를 나타낸 그래프이다.
도 4는 보정함수와 hmax/(hmax-hf)의 관계를 나타낸 그래프이다.
도 5는 압입 반각에 따른 보정함수의 변화를 나타낸 그래프이다.
도 6은 압입자에 따른 보정함수를 나타낸 그래프들이다.
도 7은 압입자의 불완전성을 반영한 보정함수를 구하는 알고리즘이다.
도 8은 대각면적(Ac V)과 투영면적(Ac)을 비교하여 나타낸 그래프이다.
도 9는 투영면적을 반영한 보정함수와 hmax/(hmax-hf)의 관계를 나타낸 그래프이다.

Claims (4)

  1. 각진 압입자를 이용한 압입시험을 통해 최대 압입깊이(hmax)와 최종 압입깊이(hf)를 구하는 단계와, 이들 최대 압입깊이(hmax)와 최종 압입깊이(hf)를 보정함수에 대입하여 보정함수값을 구하는 단계와, 이 보정함수값에 의해 접촉깊이를 구하고 이 접촉깊이를 이용해서 접촉면적을 구하는 단계를 포함하는 것을 특징으로 하는 각진 압입자의 접촉면적의 평가방법.
  2. 제1항에 있어서, 상기 보정함수값은,
    최대 압입깊이(hmax)와 최종 압입깊이(hf)를 통해
    Figure 112009036085577-pat00017
    으로 계산될 수 있는 것을 특징으로 하는 각진 압입자의 접촉면적의 평가방법.
  3. 제1항에 있어서, 상기 접촉면적을 구하는 단계에서는,
    구해진 접촉깊이(hc V)를
    Figure 112009036085577-pat00018
    에 대입하여 압흔의 대각선 길이(d)를 구하되, 여기서 θ는 비커스 압입자의 압입 반각인 단계와;
    이 대각선 길이(d)를 이용하여 접촉면적을 구하는 단계;를 더 포함할 수 있는 것을 특징으로 하는 각진 압입자의 접촉면적의 평가방법.
  4. 제1항에 있어서, 상기 보정함수는,
    다수의 표준 경도 시편을 이용한 압입시험을 통해 각 압흔의 대각선 길이(d)를 측정하는 단계와;
    이들 대각선 길이(d)를
    Figure 112009036085577-pat00019
    Figure 112009036085577-pat00020
    에 대입하여 다수의 보정함수값을 구하되, 여기서 α는 압입자의 이상적인 압입 반각(θ)과 실제 가공각(θm)의 tangent 비(tanθ/tanθm)인 단계; 및,
    이들 보정함수값으로 보정함수를 유도하는 단계;에 의해,
    해당 압입자의 보정함수로 결정되는 것을 특징으로 하는 각진 압입자의 접촉면적의 평가방법.
KR1020090053000A 2009-06-15 2009-06-15 압입시험의 변수를 이용한 각진 압입자의 접촉면적의 평가방법 KR101035401B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090053000A KR101035401B1 (ko) 2009-06-15 2009-06-15 압입시험의 변수를 이용한 각진 압입자의 접촉면적의 평가방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090053000A KR101035401B1 (ko) 2009-06-15 2009-06-15 압입시험의 변수를 이용한 각진 압입자의 접촉면적의 평가방법

Publications (2)

Publication Number Publication Date
KR20100134391A KR20100134391A (ko) 2010-12-23
KR101035401B1 true KR101035401B1 (ko) 2011-05-20

Family

ID=43509330

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090053000A KR101035401B1 (ko) 2009-06-15 2009-06-15 압입시험의 변수를 이용한 각진 압입자의 접촉면적의 평가방법

Country Status (1)

Country Link
KR (1) KR101035401B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102212003B1 (ko) * 2014-01-06 2021-02-05 삼성전자주식회사 압입자 및 이를 이용한 압입자 모듈
CN105716974B (zh) * 2016-01-29 2018-12-14 宝利泰橡胶科技扬州有限公司 一种胶辊中高补偿的测算方法
KR20240030240A (ko) 2022-08-30 2024-03-07 한국수력원자력 주식회사 미소경도 측정장치 및 측정방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517857B1 (ko) 2004-12-16 2005-09-30 (주)프론틱스 연속압입시험법을 이용한 잔류응력 측정방법
JP2006071632A (ja) 2004-08-04 2006-03-16 Mitsutoyo Corp 押込み試験方法及び押込み試験機
KR100965226B1 (ko) 2010-02-25 2010-06-22 (주)프론틱스 연속압입시험법을 이용한 잔류응력 측정방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006071632A (ja) 2004-08-04 2006-03-16 Mitsutoyo Corp 押込み試験方法及び押込み試験機
KR100517857B1 (ko) 2004-12-16 2005-09-30 (주)프론틱스 연속압입시험법을 이용한 잔류응력 측정방법
KR100965226B1 (ko) 2010-02-25 2010-06-22 (주)프론틱스 연속압입시험법을 이용한 잔류응력 측정방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문2006.10

Also Published As

Publication number Publication date
KR20100134391A (ko) 2010-12-23

Similar Documents

Publication Publication Date Title
Guo et al. The correction of temperature-dependent Vickers hardness of cemented carbide base on the developed high-temperature hardness tester
KR101707492B1 (ko) 연속압입시험법을 이용한 파괴인성 측정방법
Min et al. A non-quadratic constitutive model under non-associated flow rule of sheet metals with anisotropic hardening: modeling and experimental validation
Kang et al. Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests
Milosevic et al. Measurement of local deformation fields in dental composites using 3D optical system
Kim et al. An indentation method for evaluation of residual stress: Estimation of stress-free indentation curve using stress-independent indentation parameters
KR101035401B1 (ko) 압입시험의 변수를 이용한 각진 압입자의 접촉면적의 평가방법
Lord et al. 25 year perspective Aspects of strain and strength measurement in miniaturised testing for engineering metals and ceramics
KR100965226B1 (ko) 연속압입시험법을 이용한 잔류응력 측정방법
Kang et al. Effect of contact angle on contact morphology and Vickers hardness measurement in instrumented indentation testing
Podulka et al. Topography measurement methods evaluation for entire bending-fatigued fracture surfaces of specimens obtained by explosive welding
Santus et al. Torsional-loaded notched specimen fatigue strength prediction based on mode I and mode III critical distances and fracture surface investigations with a 3D optical profilometer
Casavola et al. Discussion on local approaches for the fatigue design of welded joints
KR101332264B1 (ko) 압흔영상분석을 기반으로 하는 구형 압흔의 유동곡선 획득방법
Park et al. Fatigue strength evaluation of a welded structure by a concentrated load close to the welded joint
Böhme et al. Assessment of Dynamic Fracture Toughness Values KJc and Reference Temperatures T0, x determined for a German RPV steel at elevated loading rates according to ASTM E1921
JP3312298B2 (ja) 応力拡大係数の計測方法
Kang et al. Effective indenter radius and frame compliance in instrumented indentation testing using a spherical indenter
KR100982462B1 (ko) 연속적 유효반지름 유도를 통한 구형 압입자의 불완전형상 보정방법
Horn et al. Out-of-plane constraint loss in three point bend specimens with notches
CN105987846A (zh) 一种确定全焊桁架桥疲劳抗力的方法
Mokhtarishirazabad et al. Some observations on failure of austenitic stainless steel: Effects of in-and out of plane constraint
Shinko et al. Ductile crack growth resistance and rotation behavior of miniature C (T) specimen
Shrama et al. Fatigue crack monitoring in mild steel specimens using acoustic emission and digital image correlation
JP6650328B2 (ja) 残留応力推定方法及び残留応力推定装置

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140428

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160128

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170421

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180425

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 9