KR101030787B1 - Merging application apparatus and the method for dyeing waste-water and food waste-water using moving bed biofilm reactor - Google Patents
Merging application apparatus and the method for dyeing waste-water and food waste-water using moving bed biofilm reactor Download PDFInfo
- Publication number
- KR101030787B1 KR101030787B1 KR20100098837A KR20100098837A KR101030787B1 KR 101030787 B1 KR101030787 B1 KR 101030787B1 KR 20100098837 A KR20100098837 A KR 20100098837A KR 20100098837 A KR20100098837 A KR 20100098837A KR 101030787 B1 KR101030787 B1 KR 101030787B1
- Authority
- KR
- South Korea
- Prior art keywords
- wastewater
- dyeing
- tank
- treatment
- dyeing wastewater
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/08—Aerobic processes using moving contact bodies
- C02F3/085—Fluidized beds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/101—Arranged-type packing, e.g. stacks, arrays
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1236—Particular type of activated sludge installations
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/34—Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
Description
본 발명은 폐수의 생물학적 처리방법에 관한 것으로, 보다 상세하게는 부유성 담체를 충전하고, 상기 담체 표면에 미생물을 부착시킨 부유메디아 생물막 반응기(Moving Bed Biofilm Reactor:MBBR)을 이용하여 염색폐수와 음식물폐수를 병합한 폐수를 처리함으로써 각각의 폐수를 처리하는 공정보다 효율적으로 처리할 수 있는 병합처리장치 및 그 방법에 관한 것이다.The present invention relates to a method for biological treatment of wastewater, and more specifically, dyeing wastewater and food using a floating bed biofilm reactor (MBBR) in which a floating carrier is filled and microorganisms are attached to the surface of the carrier. The present invention relates to a merger treatment apparatus and a method for treating the wastewater more efficiently by treating the wastewater in which the wastewater is merged.
염색폐수는 그 성분이 일반적으로 매우 복잡하며, 작업공정 가동상황에 따라 수질변동이 큰 것이 특징으로 각 공정에서 배출되는 염료, 보조화학물질, PVA(Poylvinyl Alchol), 전분, WAX 등이 포함되고, 통상 염색가공공정에서 사용되는 염료 중 약 20% 정도가 폐수로 배출되는데 이들 색도유발물질들은 미관상뿐만 아니라 가수분해나 다른 화학반응을 통하여 부산물을 유발한다.Dyeing wastewater is generally very complex, and the water quality fluctuates largely depending on the operation status of the work process, and includes dyes, auxiliary chemicals, PVA (Polyvinyl Alchol), starch, WAX, etc. In general, about 20% of the dyes used in the dyeing process are discharged into the waste water. These color-causing substances cause by-products not only through aesthetic appearance but also through hydrolysis or other chemical reactions.
이들 염색폐수를 처리하기 위해 현재까지 보편적으로 사용되고 있는 처리공정은 원수를 1차적으로 물리, 화학적 전처리(응집침전, 펜톤산화, 가압부상 등)한 후 2차적으로 생물학적 처리공법(표준활성슬러지법, 밀폐식순산소포기법 등)을 사용하고 있다. 그러나 이러한 공법은 물리, 화학적 전처리 비용, 화학 및 생물학적 처리공정에서 발생되는 슬러지의 처리비용 등 과다한 비용발생과 함께 최종 처리효율의 한계성에 직면해 왔으며, 강화되는 국내외적 환경규제에 능동적인 대처가 어려운 실정이다. 이로 인해 폐수처리에 대한 각종 환경부담 비용의 증가는 국내 섬유/염색 가공업체들의 생산성 및 제품의 국제 경쟁력을 날로 저하시키고 있다. 따라서 기존 염색폐수 처리공정보다 운영비, 화학 약품비, 슬러지 처리비 등을 획기적으로 줄이면서 처리효율을 향상시킬 수 있는 처리기술 개발이 절실히 요구된다.The treatment process that is commonly used to treat these dyeing wastewaters is the first biological and chemical pretreatment (aggregation precipitation, fenton oxidation, pressurization, etc.) of raw water, and then the second biological treatment method (standard activated sludge method, Closed pure oxygen defoaming method, etc.) is used. However, these methods have faced limitations of final treatment efficiency along with excessive costs such as physical and chemical pretreatment costs, sludge treatment costs from chemical and biological treatment processes, and it is difficult to proactively cope with the strengthening domestic and international environmental regulations. It is true. As a result, increased environmental burdens on wastewater treatment are lowering the productivity and product competitiveness of domestic textile and dyeing processors. Therefore, there is an urgent need to develop a treatment technology that can improve treatment efficiency while drastically reducing operating costs, chemical costs, and sludge treatment costs, compared to conventional dyeing wastewater treatment processes.
또한 다양한 음식물쓰레기 자원화 처리시설에서 동일한 문제가 발생하고 있는데, 그것은 우리나라의 음식물쓰레기 특성상 수분이 많고, 악취 및 다량의 폐수발생으로 인한 2차 환경오염의 초래이다. 특히 음식물폐수는 고농도의 폐수로 자원화 처리시설의 주된 문제점이 되어왔고, 최근 들어 주요한 오염원으로 인식되기 시작했다. 직매립 금지 이후 음식물폐수의 육상처리보다 단가가 저렴한 해양배출이 급증하는 추세이다. 그러나 점차 증가되는 음식물쓰레기 처리폐수의 해양배출은 런던협약 96 의정서에 의해 연차적으로 배출량의 저감과 고형물 농도규제로 해양배출의 제약이 강화되고 있다. 특히 2012년부터 해양배출이 전면금지가 예정됨에 따라 음식물폐수의 육상처리 방법의 개발이 시급한 상태이다.In addition, the same problem occurs in various food waste recycling facilities, which is caused by the nature of food waste in Korea, the secondary environmental pollution caused by the generation of odor and a large amount of waste water. In particular, food wastewater is a high concentration of wastewater, which has become a major problem in resource treatment facilities, and has recently been recognized as a major source of pollution. Since the ban on direct landfilling, marine discharges, which are cheaper than land treatment of food wastewater, have soared. However, marine emissions of food waste treatment wastes, which are gradually increasing, have been tightened by the London Protocol 96 by restricting their emissions by reducing emissions and restricting solid concentrations annually. In particular, the development of a terrestrial treatment method for food wastewater is urgent due to the total ban on marine discharges from 2012.
따라서 상기와 같은 문제점을 해결하기 위하여, 본 발명의 목적은 기존 염색폐수의 처리공정 대신 생물학적 처리를 강화시켜 화학처리 약품비, 슬러지 처리비 등 운영비를 획기적으로 줄이고, 음식물폐수의 육상처리 대안으로의 활용가치를 높이는 염색폐수와 음식물폐수의 병합처리장치 및 그 방법을 제공하는 것이다.Therefore, in order to solve the above problems, an object of the present invention is to reduce the operating costs such as chemical treatment chemical costs, sludge treatment costs by strengthening biological treatment instead of the conventional dyeing wastewater treatment process, the value of utilization as an alternative to land treatment of food wastewater It is to provide a combined treatment apparatus and method of dyeing wastewater and food wastewater to increase the.
상기 목적을 달성하기 위해 본 발명은, 염색폐수의 유입구가 구비되고, 상기 염색폐수의 pH를 중화하기 위한 중화조; 상기 중화조에서 이송된 염색폐수를 음식물폐수와 혼합시키는 혼합장치; 및 상기 혼합장치에서 이송된 폐수를 생물막이 부착된 유동상 담체를 이용하여 처리하는 반응조를 포함하며, 상기 반응조는 부유성 담체가 충전된 유동상 생물막 반응기(Moving Bed Biofilm Reactor:MBBR)인 것을 특징으로 하는 염색폐수와 음식물폐수의 병합처리장치에 관한 것이다.In order to achieve the above object, the present invention is provided with an inlet for dyeing wastewater, a neutralization tank for neutralizing the pH of the dyeing wastewater; A mixing device for mixing the dyeing wastewater transferred from the neutralization tank with the food wastewater; And a reaction tank for treating the wastewater transferred from the mixing apparatus using a fluidized bed carrier having a biofilm, wherein the reactor is a fluidized bed biofilm reactor (MBBR) filled with a floating carrier. The present invention relates to a combined treatment apparatus of dyeing wastewater and food wastewater.
본 발명에서, 상기 혼합장치는 상기 염색폐수의 유입구에 설치되는 배플(baffle)을 포함한다. 또한 본 발명에서, 상기 혼합장치는 상기 혼합된 폐수를 균일한 성상이 되도록 저장하는 저장조를 포함한다.In the present invention, the mixing device includes a baffle installed at the inlet of the dyeing wastewater. In addition, in the present invention, the mixing device includes a reservoir for storing the mixed waste water to have a uniform property.
또한 본 발명은, 상기 반응조에서 이송된 처리수의 고형물을 응집 및 침전시키는, 응집조 및 침전조를 포함한다. The present invention also includes an agglomeration tank and a precipitation tank for agglomeration and precipitation of solids of the treated water transferred from the reaction tank.
또한 본 발명에서, 상기 반응조는 상기 혼합장치에서 이송된 폐수를 호기성 미생물을 이용하여 1차로 처리하는 제 1호기성 반응조, 및 상기 제 1호기성 반응조에서 이송된 처리수를 호기성 미생물을 이용하여 2차로 처리하는 제 2호기성 반응조를 포함한다.In the present invention, the reaction tank is a first aerobic reaction tank for treating the wastewater transferred from the mixing device first by using aerobic microorganisms, and the treated water transferred in the first aerobic reaction tank for secondary treatment using aerobic microorganisms It includes a second aerobic reactor.
본 발명은 염색폐수를 중화조에 유입시켜 상기 염색폐수를 pH 5.8~8.6으로 중화시키는 제 1단계; 상기 중화된 염색폐수에 음식물폐수를 혼합시키는 제 2단계; 상기 혼합된 폐수를 생물막이 부착된 유동상 담체가 충전된 유동상 생물막 반응기(Moving Bed Biofilm Reactor:MBBR)를 이용하여 처리하는 제 3단계; 및 상기 처리된 처리수에 응집제를 첨가하여 고형물을 응집 및 침전시키고, 최종 처리수를 방류하는 제 4단계를 포함하는 것을 특징으로 하는 염색폐수와 음식물폐수의 병합처리방법에 관한 것이다.The present invention comprises the first step of neutralizing the dyeing wastewater to pH 5.8 ~ 8.6 by introducing the dyeing wastewater into the neutralization tank; A second step of mixing food wastewater with the neutralized dye wastewater; A third step of treating the mixed wastewater using a moving bed biofilm reactor (MBBR) filled with a fluidized bed carrier having a biofilm; And a fourth step of coagulating and precipitating solids by adding a flocculant to the treated water, and discharging the final treated water.
또한 본 발명에서, 상기 제 2단계는 상기 혼합된 폐수를 균일한 성상이 되도록 저장하는 단계를 포함한다. 또한 본 발명에서, 상기 제 3단계는 상기 혼합장치에서 이송된 폐수를 호기성 미생물을 이용하여 1차로 처리하는 단계; 및 상기 1차로 처리된 처리수를 호기성 미생물을 이용하여 2차로 처리하는 단계를 포함한다. In the present invention, the second step includes the step of storing the mixed waste water to be in a uniform shape. In the present invention, the third step is the first step of treating the wastewater transported by the mixing device using aerobic microorganisms; And secondly treating the first treated water using an aerobic microorganism.
본 발명에 따른 염색폐수와 음식물폐수의 병합처리장치 및 방법은 기존의 생물학적 처리공정에서는 긴 체류시간에도 불구하고 색도 등 오염물질의 처리효율이 낮았던 것과는 달리, 유동상 생물막 담체를 이용한 생물학적 처리가 매우 신속하게 일어나기 때문에 체류시간이 짧고 음식물폐수를 병합함으로써 적정한 유기물부하를 유지시킴으로써 생물막의 연령(Biofilm Retention Time, BRT)이 젊어 활성도가 좋다. 따라서 짧은 체류시간에도 처리효율이 좋아 처리시설의 규모축소가 가능하며, 매우 경제적이면서 신속하게 폐수를 처리할 수 있게 되었다. 또한 본 발명은 기존의 응집에 의한 1차 전처리 공정이 필요 없어 슬러지 발생량을 현저히 감소시킬 수 있으며, 생물학적 처리만으로 배출허용기준을 만족할 경우 별도 후처리 없이 바로 방류를 가능하게 한다. The combined treatment system and method of dyeing wastewater and food wastewater according to the present invention is very biological treatment using fluidized biofilm carriers, unlike the conventional biological treatment process, despite the long residence time, the treatment efficiency of pollutants such as color is low. Because it occurs quickly, the residence time is short, and the food wastewater is merged to maintain an appropriate organic load so that the biofilm age (BRT) is young and the activity is good. Therefore, it is possible to reduce the scale of treatment facilities because of its high treatment efficiency even in short residence time, and it is possible to treat wastewater very quickly and economically. In addition, the present invention does not require the first pretreatment process by the existing flocculation can significantly reduce the amount of sludge generated, it is possible to immediately discharge without additional post-treatment if the discharge tolerance is satisfied only biological treatment.
도 1은 본 발명의 실시예에 따른 염색폐수와 음식물폐수의 병합처리장치를 나타낸 도면이다.
도 2는 도 1의 장치 중 염색폐수와 음식물폐수의 혼합장치를 나타낸 도면이다.
도 3은 본 발명의 실시예에 따른 염색폐수와 음식물폐수의 병합처리방법을 나타낸 흐름도이다.
도 4a와 도 4b는 본 발명의 처리방법을 이용한 염색폐수를 단독 처리한 경우의 COD 및 색도변화 결과를 나타낸 그래프이다.
도 5a와 도 5b는 본 발명의 처리방법을 이용한 염색폐수와 음식물폐수를 병합처리한 경우의 COD 및 색도변화 결과를 나타낸 그래프이다.
도 6a와 도 6b는 본 발명의 처리방법을 이용한 염색폐수를 단독 처리한 경우와, 염색폐수와 음식물폐수를 병합처리한 경우의 유동상 생물막 담체표면의 전자현미경(SEM) 사진이다.
도 7a는 본 발명의 처리방법을 이용한 염색폐수를 단독 처리한 경우와, 염색폐수와 음식물폐수를 병합처리한 경우의 DGGE 프로필 사진이다.
도 7b는 본 발명의 처리방법을 이용한 염색폐수를 단독 처리한 경우와, 염색폐수와 음식물폐수를 병합처리한 경우의 Dendrogram 사진이다.1 is a view showing a combined treatment of dyeing wastewater and food wastewater according to an embodiment of the present invention.
2 is a view showing a mixing device of the dyeing wastewater and food wastewater of the apparatus of FIG.
Figure 3 is a flow chart showing a combined treatment method of dyeing wastewater and food wastewater according to an embodiment of the present invention.
4A and 4B are graphs showing the results of COD and chromaticity change when the dye wastewater is treated alone using the treatment method of the present invention.
5A and 5B are graphs showing the results of COD and chromaticity change when the dyeing wastewater and the food wastewater are treated by using the treatment method of the present invention.
6A and 6B are electron microscopy (SEM) images of the surface of the fluidized biofilm carrier when the dyeing wastewater using the treatment method of the present invention is treated alone and when the dyeing wastewater and the food wastewater are combined.
Figure 7a is a DGGE profile picture when the dyeing wastewater using the treatment method of the present invention alone and when the dyeing wastewater and food wastewater are combined treatment.
Figure 7b is a Dendrogram photograph of the case of treating the dyeing wastewater by using the treatment method of the present invention alone, and when the dyeing wastewater and food wastewater combined treatment.
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 명세서 전체에 걸쳐서 동일한 참조번호는 동일한 구성요소를 나타낸다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. Like numbers refer to like elements throughout the specification.
도 1은 본 발명의 실시예에 따른 염색폐수와 음식물폐수의 병합처리장치를 나타낸 도면이고, 도 2는 도 1의 장치 중 염색폐수와 음식물폐수를 혼합시키는 혼합장치를 나타내는 도면이다. 도 1을 참조하면, 병합처리장치(100)는 중화조(110), 혼합장치(120), 반응조(130) 및 응집조(140)를 포함한다. 1 is a view showing a combined treatment device of the dyeing wastewater and food wastewater according to an embodiment of the present invention, Figure 2 is a view showing a mixing device for mixing the dyeing wastewater and food wastewater of the apparatus of FIG. Referring to FIG. 1, the
중화조(110)에는 염색폐수의 유입구가 연결되며, 중화조(110)에 H2SO4를 주입하여 pH 5.6~8.6으로 상기 염색폐수를 중화시킨다. 상기 pH는 H2SO4를 이용하여 조절할 수 있으나, 반드시 이에 한정되는 것은 아니다. 이는 염색폐수의 경우 대부분 알칼리성을 나타내기 때문에 중성으로 중화시켜 생물학적으로 처리가 가능하도록 하기 위함이다. 일례로, 상기 염색폐수는 COD 200~500ppm 및 색도 500~2,000[C.U]를 사용하기로 한다.The
혼합장치(120)는 중화조(110)에서 이송된 염색폐수를 음식물폐수와 혼합시킨다. 혼합장치(120)는 상기 중화된 염색폐수에 음식물폐수 1~5%를 빠른 시간 내에 완전혼합을 시켜 악취발생이 없도록 한다. 일례로, 상기 음식물폐수는 COD 30,000~70,000ppm, BOD 30,000~90,000ppm, T-N 1,000~7,000ppm, T-P 1,000~2,000ppm, 색도 1,000~4,000[C.U]를 사용하기로 한다. 혼합장치(120)에는 상기 중화된 염색폐수의 유입구에 배플(baffle,121)이 설치된다. 배플(baffle,121)은 염색폐수의 흐름을 음식물폐수의 유입 관로와 교차시킴으로써 1차적으로 악취를 방지한다. 그리고 1차 방지장치로 억제하지 못한 악취는 염색폐수의 유입 전단계에 폐수가 항상 고여있도록 하여 U-Trap과 동일한 효과를 내도록 하였다. 또한 혼합장치(120)는 상기 혼합된 폐수를 균일한 성상이 되도록 저장하는 저장조(122)를 포함한다.The
반응조(130)는 상기 혼합된 폐수를 생물막이 부착된 유동상 담체가 충전된 유동상 생물막 반응기(Moving Bed Biofilm Reactor:MBBR)이다. 반응조(130)는 염색폐수에 포함된 난분해성 오염물질과 음식물폐수에 포함된 유기성 오염물질, 질소, 및 인을 분해한다. 이때, 반응조(130)는 2개의 조로 구분될 수 있으며, 혼합장치(120)에서 이송된 폐수를 호기성 미생물을 이용하여 1차로 처리하는 제 1호기성 반응조(131), 및 상기 제 1호기성 반응조(131)에서 이송된 처리수를 호기성 미생물을 이용하여 2차로 처리하는 제 2호기성 반응조(132)를 포함한다. 혼합된 폐수의 오염물질 부하량에 따라 반응조 배열을 혐기성 반응조-호기성 반응조의 순서로 적용할 수도 있다.
응집조(140)는 반응조(130)에서 이송된 처리수에 응집제를 첨가하여 고형물을 응집시키고, 최종적으로 침전조(150)에서 상기 고형물을 침전시키고 최종 처리수를 방류한다. 이때 최종 방류수는 BOD 80ppm, COD 90ppm, T-N 60ppm, T-P 8ppm 및 색도 400[C.U]의 배출허용기준을 만족시키도록 한다.The agglomeration tank 140 adds a flocculant to the treated water transferred from the
도 3은 본 발명의 실시예에 따른 염색폐수와 음식물폐수의 병합처리방법을 나타낸 흐름도이다. 도 3을 참조하면, 염색폐수를 중화조에 유입시켜 상기 염색폐수를 pH 5.8~8.6으로 중화시킨다(S110). 그리고 상기 중화된 염색폐수에 음식물폐수를 혼합시킨다(S120). 혼합장치(120)는 상기 혼합된 폐수를 균일한 성상이 되도록 저장하는 저장조(122)를 포함한다. 혼합장치(120)에는 음식물폐수 이송관이 연결되어 있고 음식물폐수를 정량적으로 이송하기 위한 이송펌프가 연결 및 설치된다. Figure 3 is a flow chart showing a combined treatment method of dyeing wastewater and food wastewater according to an embodiment of the present invention. Referring to Figure 3, the dyeing wastewater is introduced into the neutralization tank to neutralize the dyeing wastewater to pH 5.8 ~ 8.6 (S110). And the food waste water is mixed with the neutralized wastewater (S120). Mixing
그리고 상기 혼합된 폐수를 생물막이 부착된 유동상 담체가 충전된 유동상 생물막 반응기(Moving Bed Biofilm Reactor:MBBR)를 이용하여 처리한다(S130). 상기 담체는 담체표면의 비표면적을 크게 하고 생물막의 부착능력을 좋게 하기 위한 무기물질 및 비중조절 물질을 담지한 Poly Ethylene Module Type(PEMT)담체이다. 이러한 담체표면에 생물막을 부착시킨 유동상 생물막 반응기를 이용하여 2단의 호기성 반응조로 구성된 생물학적 공정을 사용함으로써, 오염물질의 처리효율을 높일 수 있다. 상기 호기성 반응조의 하단에는 공기공급을 위한 공기공급장치가 설치되고 반응조 사이에는 유동상 생물막 담체의 유실을 막아주면서 처리수를 이송시키는 다공형 배관이 연결 및 설치된다. In addition, the mixed wastewater is treated using a fluidized bed biofilm reactor (MBBR) filled with a fluidized bed carrier having a biofilm attached (S130). The carrier is a Poly Ethylene Module Type (PEMT) carrier carrying an inorganic material and a specific gravity control material to increase the specific surface area of the carrier surface and improve the adhesion of the biofilm. By using a biological process composed of two stages of aerobic reactor using a fluidized bed biofilm reactor having a biofilm attached to the surface of the carrier, treatment efficiency of contaminants can be improved. An air supply device for supplying air is installed at the bottom of the aerobic reaction tank, and a porous pipe for transporting the treated water while preventing the loss of the fluidized bed biofilm carrier is connected between the reaction tanks.
마지막으로, 상기 처리된 처리수에 응집제를 첨가하여 고형물을 응집 및 침전시키고, 최종 처리수를 방류한다(S140). Finally, a flocculant is added to the treated water to aggregate and precipitate the solids, and the final treated water is discharged (S140).
이하, 본 발명의 실시예에 의거하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것으로서 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, it demonstrates further in detail based on the Example of this invention. However, the following examples are for illustrating the present invention and the present invention is not limited to the following examples.
본 발명에서는 실시예 1과 같이 PEMT 유동상 생물막 담체를 이용하여 염색폐수를 단독으로 처리했을 경우와 염색폐수에 음식물폐수를 일정비율로 병합하여 처리했을 경우의 COD 및 색도처리 효율을 비교하였다. 참고로, 하기 표 1은 본 발명에 적용된 염색폐수의 오염물질 농도를 나타낸 것이며, 표 2는 병합되는 음식물폐수의 농도를 나타낸 것이다.In the present invention, as in Example 1, the COD and chromatic treatment efficiency were compared when the dyeing wastewater was treated with PEMT fluidized bed biofilm carrier alone and when the food wastewater was treated with the dyeing wastewater at a constant ratio. For reference, Table 1 below shows the contaminant concentrations of the dye wastewater applied to the present invention, and Table 2 shows the concentrations of the food wastewater to be merged.
(비교예 1)(Comparative Example 1)
PEMT 유동상 생물막 이용한 염색폐수의 단독처리Single treatment of dyeing wastewater using PEMT fluidized bed biofilm
본 발명에 적용된 오염물질 농도 COD 200~500ppm, 색도 500~2,000[C.U]인 염색폐수에 대해 도 1의 장치와 도 3의 방법을 이용하여 처리하였다. 각각의 반응조에 PEMT 유동상 담체를 부피비로 약 40% 충전하여 미생물을 담체에 seeding시키는 과정부터 지속적으로 분석을 실시한 결과, 처리효율이 안정화되는 기간이 약 1개월 소요되는 것으로 나타났으며, 이 후 HRT를 감소시키는 방법으로 처리부하를 증가시켜 처리효율을 관찰하였다. COD 및 색도의 분석방법은 수질오염공정시험법에 준하였으며, 실험결과를 다음의 표 3과 도 4a 및 도 4b에 나타내었다.
(1)COD 처리효율(1) COD processing efficiency
도 4a에서 보는 바와 같이 최초 가동부터 HRT 12시간까지는 거의 유입수에 연동하여 유출수의 농도도 변화가 크게 나타나는데, 이는 투입된 담체에 생물막이 아직 완전히 착상되지 못하여 활성슬러지 공법과 유사하게 부유미생물에 의해 주로 처리되는 것으로 볼 수 있으며 유입수 변동에 취약한 것을 알 수 있다. 초기 불안정한 상태 이후에는 유입수의 농도변화가 거의 100ppm 이상으로 심하지만 유출수의 농도는 일정하게 유지되는 것을 관찰할 수가 있었다. 이때 HRT를 4시간까지 줄여 부하를 늘리는 테스트를 진행하였는데, 호기조 1의 제거율은 하락한 반면, 호기조 2의 제거율이 증가하여 최종 처리수의 수질은 일정하게 유지되는 것을 확인할 수 있다.As shown in FIG. 4A, the concentration of the effluent is largely changed in conjunction with the influent from the first operation to the HRT 12 hours, which is mainly treated by suspended microorganisms similar to the activated sludge method because the biofilm is not yet completely implanted in the carrier. It can be seen that it is vulnerable to inflow fluctuations. After the initial unstable state, the concentration change of the influent was more than 100ppm, but the concentration of the effluent was observed to be constant. At this time, the test was carried out to increase the load by reducing the HRT to 4 hours, the removal rate of the aerobic tank 1 was lowered, while the removal rate of the aerobic tank 2 increased, it can be seen that the water quality of the final treated water is kept constant.
(2)색도 처리효율(2) chromatic processing efficiency
색도 처리효율은 도 4b에서 보는 바와 같이, 유입수의 농도에 영향을 많이 받는 것으로 나타나는데, COD의 처리효율이 안정화된 시기에도 색도의 경우에는 유입수에 따라 크게 변화를 일으키는 것을 알 수 있다. 또한 색도의 경우, HRT 6시간 미만에서는 그 처리효율이 급격히 떨어지는 것을 확인할 수 있으며, 후단 응집처리 효율을 통해 알 수 있듯이 색도의 안정적인 처리를 위해서는 응집처리 등의 추가적인 후단처리가 반드시 필요함을 알 수 있다.As shown in FIG. 4B, the color treatment efficiency is shown to be affected by the concentration of the influent, and it can be seen that the chromaticity greatly changes depending on the influent even when COD treatment efficiency is stabilized. In addition, in the case of chromaticity, it can be seen that the treatment efficiency drops sharply at less than 6 hours of HRT, and as shown by the post-aggregation efficiency, additional post-treatment such as coagulation treatment is necessary for stable treatment of chromaticity. .
(3)응집처리 실험(3) flocculation experiment
도 4a 및 도 4b에서 보는 바와 같이 호기조 1,2를 거친 유출수에 대해 화학약품에 의한 응집효과를 확인하기 위해 무기 응집제인 황산알루미늄[Al2(SO4)3]을 사용하여 투입농도별로 응집실험을 한 결과, 표 3에서 보듯이 약 30~40%의 추가적인 처리효율을 나타내어 최종 방류수의 수질이 COD 86ppm, 색도 266[C.U]로 모두 배출허용기준을 만족하는 것으로 나타났다. 응집처리의 경우, 무기 응집제의 종류에 따라 그 처리효율이 달라질 수 있으므로 생물학적 처리수에 대해 최적화할 수 있는 응집처리공정을 도입하면 본 발명에서 실시한 테스트보다 더 양호한 결과를 도출할 수 있을 것이다.
As shown in FIGS. 4A and 4B, in order to confirm the flocculation effect of the chemicals on the effluents having passed through the aerobic tanks 1 and 2 , the flocculation experiment by the input concentration using the inorganic sulfate aluminum sulfate [Al 2 (SO 4 ) 3 ]. As a result, as shown in Table 3, it showed additional treatment efficiency of about 30 ~ 40%, and the water quality of final discharged water was 86ppm of COD and 266 [CU] of chromaticity. In the case of the flocculation treatment, the treatment efficiency may vary depending on the type of the inorganic flocculant, and thus, the introduction of the flocculation treatment process that can be optimized for the biologically treated water may lead to better results than the tests conducted in the present invention.
(비교예 2)(Comparative Example 2)
PEMT 유동상 생물막 이용 염색폐수와 음식물폐수의 병합처리Combined treatment of dyeing wastewater and food wastewater using PEMT fluidized bed biofilm
비교예 1의 실험에 사용된 염색폐수와 COD 30,000~70,000ppm, BOD 30,000~90,000ppm, T-N 1,000~7,000ppm, T-P 1,000~2,000ppm, 색도 1,000~4,000[C.U]의 오염물질 농도를 가지는 음식물폐수를 일정비율 혼합하여 비교예 1의 실험에서 사용된 도 3의 방법 및 도 2에 나타낸 혼합장치와 음식물폐수 투입을 위한 부대설비를 설치하여 병합처리에 대한 실험을 실시하였다.Dye wastewater used in the experiment of Comparative Example 1 and food wastewater having a concentration of pollutants of COD 30,000 ~ 70,000ppm, BOD 30,000 ~ 90,000ppm, TN 1,000 ~ 7,000ppm, TP 1,000 ~ 2,000ppm, chromaticity 1,000 ~ 4,000 [CU] 3 was used in the experiment of Comparative Example 1 by mixing a certain ratio and the mixing apparatus shown in FIG.
각 호기조에 충진된 PEMT 유동상 담체는 비교예 1의 실험과 같이 하였으며, 비교예 1의 실험을 통해 이미 담체에 생물막이 seeding된 상태의 호기조를 이용하였으므로 비교예 1의 실험과 같이 초기 안정화시키기 위한 일정기간의 소요가 필요없었으며, 실험을 통해 안정적 처리가 가능했던 HRT 6~12시간 중 8시간과 12시간에 대해 병합처리 실험을 수행하였다. COD 및 색도의 분석방법은 수질오염공정시험법에 준하였으며, 실험결과를 다음의 표 4와 도 5a 및 도 5b에 나타내었다. PEMT fluidized bed carriers filled in each aerobic tank was performed in the same manner as in Experiment 1, and the aerobic tank in which the biofilm was already seeded in the carrier through the experiment of Comparative Example 1 was used for initial stabilization as in the experiment of Comparative Example 1. There was no need for a certain period of time, and the experiment was carried out for 8 and 12 hours of 6-12 hours of HRT, which was stable through the experiment. The COD and chromaticity analysis methods were based on the water pollution process test method, and the experimental results are shown in Table 4 and FIGS. 5A and 5B.
상기 표 4와 도 5a 및 도 5b의 병합처리 결과는 음식물폐수의 특성인 높은 고형분 함량으로 인해 병합처리 실험 수행 중 정량투입 조건을 찾기가 어려워 많은 시행착오를 거쳤으며, 시행착오 과정에서 나타난 비정상적인 Data는 본 발명을 입증하기 위한 자료산정에서는 제외시켰음을 밝혀둔다.Table 4 and the merged results of FIGS. 5A and 5B are difficult to find the quantitative input conditions during the merged treatment experiment due to the high solids content of the food wastewater, went through a lot of trial and error, abnormal data appeared in the trial and error process It is noted that is excluded from the data calculation to demonstrate the present invention.
(1)COD 처리효율(1) COD processing efficiency
표 4와 도 5a에서 보는 바와 같이, 병합처리를 통한 COD 처리효율은 최종 처리수의 경우 호기조 HRT(8시간, 12시간)에 관계없이 거의 일정하였으며 비교예 1의 실험에서 실시한 생물막 처리수에 대한 응집처리를 하지 않았음에도 그 평균농도가 단지 생물막에 의한 처리만으로도 배출허용기준을 준수할 수 있는 수준인 약 87ppm으로 나타났다. 이는 높은 유기성분을 함유한 음식물폐수를 난분해성 오염물질이 많은 염색폐수에 병합함으로써 미생물의 먹이원이 충분히 공급되고, 그 결과 미생물의 종 다양성을 확보할 수 있으며 또한 그 개체수도 확연히 늘어난 것을 도 6a 및 6b, 도 7a 및 7b에서와 같이 미생물 상태변화에 대한 실험을 통해 입증하였다.As shown in Table 4 and FIG. 5A, the COD treatment efficiency through the merged treatment was almost constant regardless of the aerobic HRT (8 hours, 12 hours) for the final treated water, and for the biofilm treated water performed in the experiment of Comparative Example 1 Even though the flocculation process was not performed, the average concentration was about 87 ppm, which is a level that can comply with the emission limit standard only by treatment with biofilm. This suggests that food wastewater containing a high organic content is incorporated into dyed wastewater containing a large amount of hardly degradable contaminants, thereby providing a sufficient source of microorganisms, thereby ensuring species diversity of the microorganisms and increasing the number of populations significantly. And 6b, experiments on microbial state changes as shown in Figures 7a and 7b.
(2)색도 처리효율(2) chromatic processing efficiency
표 4와 도 5b에서 보는 바와 같이, 병합처리를 통한 색도 처리효율은 COD와 마찬가지로 생물막에 의한 처리만으로도 최종처리수의 평균농도가 배출허용기준을 준수할 수 있는 것으로 나타나지만, 농도변화가 COD에 비해 커 안정적인 처리를 위해서는 응집처리 등 후처리를 통해 색도를 추가적으로 제거해야 할 필요가 있다. As shown in Table 4 and FIG. 5B, the color treatment efficiency through the merge treatment is similar to the COD, and the average concentration of the final treated water appears to be able to comply with the emission limit standards only by treatment with the biofilm. It is necessary to remove chromaticity additionally through post-treatment such as coagulation treatment for stable treatment.
DNA 추출과 DGGE 분석을 위해 본 발명의 처리방법에서 유동상 생물막 반응기 내 담체를 50개 가량 취하고 500ml 플라스크에 넣은 후 50ml 가량의 증류수를 첨가한 후 플라스크 내에서 강하게 교반하여 Media에 붙어있는 미생물을 떼어내었다.For DNA extraction and DGGE analysis, about 50 carriers in the fluidized bed biofilm reactor were added in a 500 ml flask, 50 ml of distilled water was added, and then stirred in a flask to remove microorganisms from the media. Came out.
미생물이 제거된 담체를 건져낸 후 용액을 원심분리하여 미생물을 분리하고 DNA Extraction kit(PowerSoil DNA isolation kit, MO BIO Laboratories, USA)를 이용하여 미생물의 DNA를 추출하였으며, 추출한 DNA는 -20℃에 보관하였다. 시료에서 추출한 DNA는 eubacteria를 대상으로 PCR(Polymerase Chain Reaction)을 수행하였는데, 멸균수 10X 반응 buffer, dNTP, primer(1/㎛ each) eub341F(5'-CCTACGGGAGGCAGCAG-3')와 eub518R(5'-ATTACCGCGGCTGCTGG-3'), Taq polymerase를 넣은 PCR solution 25ul당 DNA template 2ul씩 주입하여 PCR을 수행하였다(iCycler iQ thermocycler, Bio-Rad Laboratories, United States).The microorganisms were removed from the carrier and the solution was centrifuged to separate the microorganisms, and the DNA of the microorganism was extracted using a DNA Extraction kit (PowerSoil DNA isolation kit, MO BIO Laboratories, USA). The extracted DNA was stored at -20 ° C. It was. DNA extracted from the sample was subjected to PCR (Polymerase Chain Reaction) for eubacteria, sterile water 10X reaction buffer, dNTP, primer (1 / ㎛ each) eub341F (5'-CCTACGGGAGGCAGCAG-3 ') and eub518R (5'- ATTACCGCGGCTGCTGG-3 '), PCR was performed by injecting 2ul of DNA template per 25ul of PCR solution containing Taq polymerase (iCycler iQ thermocycler, Bio-Rad Laboratories, United States).
PCR 반응을 끝낸 template를 1X TAE buffer 용액으로 제조한 Agarose gel에서 나타난 band를 관찰하여 모든 band가 확인되면 DGGE 실험을 위해 GC clamp(5'-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGG-3')가 부착된 GC 341F와 eub518R을 사용하여 동일 조건의 PCR을 다시 수행하였다. PCR 조건은 표 5와 같다. PCR산물은 PCR purification kit(Solgent Co Ltd., Korea)를 이용하여 정제하였다.When all the bands were identified, the GC 341F and eub518R with GC clamp (5'-CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGG-3 ') were used for the DGGE experiment. PCR was performed again under the same conditions. PCR conditions are shown in Table 5. PCR products were purified using a PCR purification kit (Solgent Co Ltd., Korea).
DGGE는 D-codeTM system(Bio-Rad Laboratories, United States)을 사용하여 수행하였다. 35~60%의 gradient의 urea gel을 제조하여 60℃의 조건에서 20V 15min, 200V 360min동안 전기영동 하였다. 양쪽의 Marker는 1kbp DNA ladder를 사용하였다. 반응이 끝난 후 SYBR GOLD를 이용하여 gel을 30min간 염색시킨 후 UV촬영하여 band를 확인하였다. 확인된 band를 소독한 칼로 각각의 band를 잘라 1.5ml tube에 넣었다. 각 band를 멸균수로 세척한 뒤 TE buffer를 주입하였다. 시료를 교반시키고, 원심분리한 뒤 -80℃ 냉장고에 15min, 60℃ 수욕조에 15min과정을 총 3회 반복한 후 eub 341, 518R을 이용하여 PCR을 수행하였다. PCR산물을 확인하고, sequencer(ABI 3730 XL DNA sequencer, Applied Biosystems, USA)를 이용하여 염기서열을 결정하였으며, 분석된 염기서열은 NCBI의 BLAST 프로그램을 이용하여 비교하였다.DGGE was performed using the D-code ™ system (Bio-Rad Laboratories, United States). A urea gel with 35-60% gradient was prepared and electrophoresed at 20 ° C. for 20
도 7a는 각각 반응조 별 염색폐수 단독처리 공정 호기조 시료와 염색폐수 및 음식물폐수 병합처리 공정 호기조 시료를 사용하여 PCR-DGGE 분석 후 나타난 band profile이다. 도 7a에서 A,B lane은 염색폐수 단독처리공정 호기 1단과 2단, E,F lane은 염색폐수 및 음식물폐수와의 병합처리공정 호기 1단과 2단의 시료를 나타낸다. A,B lane은 DGGE band profile에서 육안상의 큰 차이는 없었으나 A lane에서 희미한 band가 관찰되어 호기 2단에서 존재하지 않는 미생물이 호기 1단에 존재할 것으로 추측되며, E,F lane에서는 band 위치로 보아 군집 다양성에 차이가 없는 것으로 확인된다. 도 7a의 DGGE band profile에 대한 고찰을 통해 염색폐수 단독처리와 병합처리 각각의 공정에서 호기 1단과 호기 2단 내 미생물의 군집 다양성에는 큰 차이를 보이지 않으나, 단독처리와 병합처리를 상호 비교할 때에는 호기조 내 미생물 군집이 확연하게 차이 나는 것을 알 수 있었다.Figure 7a is a band profile after PCR-DGGE analysis using the dyeing wastewater single treatment aerobic sample and each dyeing wastewater and food wastewater aerobic sample for each reaction tank. In FIG. 7A, lanes A and B represent the first and second stages of the united treatment of the dyeing wastewater treatment process, and E and F lanes represent the samples of the first and second stages of the combined treatment process of the dyeing wastewater and food wastewater. In A and B lanes, there was no significant difference in the DGGE band profile, but a faint band was observed in A lane. It is confirmed that there is no difference in cluster diversity. In consideration of the DGGE band profile of FIG. 7A, the group diversity of the microorganisms in the first stage and the second stage of the aerobic treatment did not show a significant difference, but when comparing the single treatment and the merge treatment with each other, I noticed a significant difference in my microbial community.
도 7b는 DGGE 분석결과 band profile을 토대로 Fingerprinting analysis software(FingerprintingII InformatixTM Software, Bio-Rad Laboratories, Inc)를 사용하여 도출한 계통도이다. 계통도를 작성할 때 이용된 상관계수의 계산은 Dice correlation 방법을 이용하여 산출하였다. 각 band의 intensity를 고려하여 작성된 계통도에서 염색폐수 병합처리 시 호기 1, 2단은 100%의 유사도를 나타내었으며, 단독처리 시와 병합처리 시의 반응조 미생물 군집의 유사도는 약 40%로 나타났다.Figure 7b shows the fingerprinting analysis software (Fingerprinting II Informatix TM based on the band profile of the DGGE analysis result Software, Bio-Rad Laboratories, Inc.). The correlation coefficient used in the schematic was calculated using the Dice correlation method. In the flow chart prepared in consideration of the intensity of each band, the 1st and 2nd stages of dyeing wastewater combined treatment showed 100% similarity, and the similarity of the reactor microbial community in the single treatment and the combined treatment was about 40%.
이상 본 발명에 대하여 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예들에 한정되지 않고, 본 발명은 이하의 특허청구범위 내의 모든 실시예들을 포함한다고 할 것이다. Although the present invention has been described above with reference to the embodiments, it will be understood by those of ordinary skill in the art that the present invention may be variously modified and changed without departing from the spirit and scope of the present invention. I can understand. Therefore, the present invention is not limited to the above-described embodiments, and the present invention will include all embodiments within the following claims.
본 발명은 염색폐수를 포함한 난분해성 산업폐수처리뿐 아니라, 산업폐수와 고유기성 폐수의 병합처리 등 폐수처리분야에 광범위하게 적용될 수 있다.
The present invention can be widely applied to the field of wastewater treatment, such as the treatment of industrial wastewater and high-efficiency wastewater, as well as non-degradable industrial wastewater treatment including dyeing wastewater.
100: 병합처리장치
110: 중화조
120: 혼합장치
121: 배플(baffle)
122: 저장조
130: 반응조
131: 제 1호기성 반응조
132: 제 2호기성 반응조
140: 응집조
150: 침전조100: merge processing device
110: Chinese tank
120: mixer
121: baffle
122: reservoir
130: reactor
131: first aerobic reactor
132: second aerobic reactor
140: flocculation tank
150: sedimentation tank
Claims (8)
상기 중화조에서 이송된 염색폐수와 음식물폐수가 서로 공중에서 교차되면서 혼합되는 혼합부와, 상기 혼합부의 상단 외주면을 둘러싸되 상기 중화조에서 이송된 염색폐수가 고여 있는 상태에서 상기 중화조에서 이송된 염색폐수가 추가로 공급되며 외측벽이 상기 혼합부의 상단인 내측벽보다 높게 구비되는 염색폐수 공급부와, 상기 혼합부 전체와 상기 염색폐수 공급부의 일부를 커버하되 하단이 상기 내측벽보다 낮은 덮개와, 상기 염색폐수 공급부의 염색폐수가 상기 혼합부 내부로 비스듬히 분사되도록 상기 내측벽에 대하여 경사면을 이루면서 상기 혼합부 내부로 향하는 배플(baffle)과, 혼합된 폐수를 균일한 성상이 되도록 저장하는 저장조를 포함하는 혼합장치;
상기 혼합장치에서 이송된 혼합폐수를 생물막이 부착된 유동상 생물막 담체를 이용하여 처리하되, 호기성 미생물을 이용하여 1차로 처리하는 제 1호기성 반응조 및 상기 제 1호기성 반응조에서 이송된 처리수를 호기성 미생물을 이용하여 2차로 처리하는 제 2호기성 반응조를 포함하는 반응조;
상기 반응조에서 이송된 처리수의 고형물을 응집시키는 응집조; 및
상기 응집조에서 응집된 고형물을 침전시키는 침전조를 포함하되,
상기 반응조는 부유성 담체가 충전된 유동상 생물막 반응기(Moving Bed Biofilm Reactor:MBBR)인 것을 특징으로 하는 염색폐수와 음식물폐수의 병합처리장치.A neutralization tank having an inlet for dyeing wastewater and neutralizing the pH of the dyeing wastewater;
The dyeing waste water transported from the neutralization tank and the food waste water are mixed with each other while being mixed in the air, and the dyeing waste water transported from the neutralization tank is surrounded by the upper outer peripheral surface of the mixing unit. The dyeing wastewater supply unit is additionally supplied and the outer wall is provided higher than the inner wall, which is the upper end of the mixing portion, and covers the entire mixing portion and a portion of the dyeing wastewater supply portion, the lower end of which is lower than the inner wall; A baffle toward the mixing portion while forming a sloped surface with respect to the inner wall so that the dyeing waste water supply portion of the dyeing waste water is injected obliquely into the mixing portion, and a storage tank for storing the mixed waste water so as to have a uniform property. Mixing device;
Treating the mixed wastewater transported from the mixing apparatus using a fluidized bed biofilm carrier having a biofilm attached thereto, the first aerobic reactor and the treated water transferred from the first aerobic reactor to aerobic microorganisms. Reactor comprising a second aerobic reactor for the second treatment using;
An agglomeration tank for agglomerating solids of the treated water transferred from the reaction tank; And
Including a precipitation tank for precipitating the solidified in the flocculation tank,
The reactor is a fluidized bed biofilm reactor (MBBR) filled with a floating carrier, the dyeing wastewater and food wastewater combined treatment apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20100098837A KR101030787B1 (en) | 2010-10-11 | 2010-10-11 | Merging application apparatus and the method for dyeing waste-water and food waste-water using moving bed biofilm reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20100098837A KR101030787B1 (en) | 2010-10-11 | 2010-10-11 | Merging application apparatus and the method for dyeing waste-water and food waste-water using moving bed biofilm reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101030787B1 true KR101030787B1 (en) | 2011-04-27 |
Family
ID=44050496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20100098837A KR101030787B1 (en) | 2010-10-11 | 2010-10-11 | Merging application apparatus and the method for dyeing waste-water and food waste-water using moving bed biofilm reactor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101030787B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102936079A (en) * | 2011-12-30 | 2013-02-20 | 滨州学院 | Method for removing aniline from industrial high salt-containing aniline wastewater |
CN103183451A (en) * | 2012-11-09 | 2013-07-03 | 绍兴县江滨水处理有限公司 | Method for treating printing and dyeing wastewater by composite biological enzyme |
DE102016105071A1 (en) | 2016-03-18 | 2017-09-21 | Hochwald Foods Gmbh | Modular process and wastewater treatment system for the efficient purification of wastewater, in particular of differently polluted industrial wastewater |
CN108218106A (en) * | 2017-12-15 | 2018-06-29 | 华南理工大学 | A kind of high nitrogenous, low ratio of carbon to ammonium dyeing waste water biological denitrification system and method |
CN112573765A (en) * | 2020-11-26 | 2021-03-30 | 湖南鑫远环境科技股份有限公司 | Continuous alternating MBBR sewage treatment device |
US11530151B2 (en) | 2020-07-20 | 2022-12-20 | Dt Engenharia De Empreendimentos Ltda | Continuous-, linear-, flexible-channel sewage treatment process, through a modified aerobic biological reactor system, or transformation of an existing anaerobic biological reactor into a modified aerobic biological reactor, coupled with a modified flexible flotation/decanting system |
KR102577808B1 (en) * | 2023-02-14 | 2023-09-13 | 시화패션칼라사업협동조합 | Wastewater treatment method using mixed treatment of dyeing wastewater and heterogeneous wastewater |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040019135A (en) * | 2002-08-21 | 2004-03-05 | 부진영 | Technology of wastewater treatment in polyester weight loss process |
KR100614561B1 (en) * | 2005-04-06 | 2006-08-25 | 신원식 | Biological treatment of dye waste-water using moveing-bed bioreactor |
-
2010
- 2010-10-11 KR KR20100098837A patent/KR101030787B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040019135A (en) * | 2002-08-21 | 2004-03-05 | 부진영 | Technology of wastewater treatment in polyester weight loss process |
KR100614561B1 (en) * | 2005-04-06 | 2006-08-25 | 신원식 | Biological treatment of dye waste-water using moveing-bed bioreactor |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102936079A (en) * | 2011-12-30 | 2013-02-20 | 滨州学院 | Method for removing aniline from industrial high salt-containing aniline wastewater |
CN102936079B (en) * | 2011-12-30 | 2014-05-14 | 滨州学院 | Method for removing aniline from industrial high salt-containing aniline wastewater |
CN103183451A (en) * | 2012-11-09 | 2013-07-03 | 绍兴县江滨水处理有限公司 | Method for treating printing and dyeing wastewater by composite biological enzyme |
DE102016105071A1 (en) | 2016-03-18 | 2017-09-21 | Hochwald Foods Gmbh | Modular process and wastewater treatment system for the efficient purification of wastewater, in particular of differently polluted industrial wastewater |
WO2017157388A1 (en) | 2016-03-18 | 2017-09-21 | Hochwald Foods Gmbh | Modular method and waste water treatment arrangement for the efficient cleaning of waste water |
CN108218106A (en) * | 2017-12-15 | 2018-06-29 | 华南理工大学 | A kind of high nitrogenous, low ratio of carbon to ammonium dyeing waste water biological denitrification system and method |
US11530151B2 (en) | 2020-07-20 | 2022-12-20 | Dt Engenharia De Empreendimentos Ltda | Continuous-, linear-, flexible-channel sewage treatment process, through a modified aerobic biological reactor system, or transformation of an existing anaerobic biological reactor into a modified aerobic biological reactor, coupled with a modified flexible flotation/decanting system |
CN112573765A (en) * | 2020-11-26 | 2021-03-30 | 湖南鑫远环境科技股份有限公司 | Continuous alternating MBBR sewage treatment device |
CN112573765B (en) * | 2020-11-26 | 2022-08-16 | 湖南鑫远环境科技股份有限公司 | Continuous alternating MBBR sewage treatment device |
KR102577808B1 (en) * | 2023-02-14 | 2023-09-13 | 시화패션칼라사업협동조합 | Wastewater treatment method using mixed treatment of dyeing wastewater and heterogeneous wastewater |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101030787B1 (en) | Merging application apparatus and the method for dyeing waste-water and food waste-water using moving bed biofilm reactor | |
KR100784933B1 (en) | Apparatus for treating organic matter and nitrogen of high density organic wastewater | |
AU2007238520A1 (en) | Method and system for nitrifying and denitrifying wastewater | |
KR100422211B1 (en) | Management Unit and Method of Foul and Waste Water | |
CN1539762A (en) | Sewage treatment appts. using self-granulating active sludge and sewage treatment process | |
KR20140144859A (en) | Advanced sewage treatment system using divided inflow of influent and divided inflow of endogeneous denitrified return sludge | |
KR100419827B1 (en) | Biological, pysical and chemical treatment method of waste water from livestock | |
KR20070018192A (en) | Processing method of high thickness organic sewage by sequencing and Batch type AB SAcksang-Busick-System | |
CN101891338B (en) | Waste water treatment method in starch and glucose production | |
KR100769997B1 (en) | Processing method of high thickness organic sewage by sequencing and Batch type AB S(Acksang-Busick-System) | |
KR100755487B1 (en) | Dye wastewater treatment process using aerobic bio-adsorption, pressured ozone treatment and alternating aeration | |
JP2008086848A (en) | Apparatus and method for treating organic liquid waste | |
EP2576452B1 (en) | Improvement of activated sludge process in wastewater treatment | |
KR100839035B1 (en) | Biological wastewater treatment apparatus using diffuser-mediated sludge flotation and treatment method using the same | |
US6733672B2 (en) | System and method for the treatment of soot-laden water | |
CN1188743A (en) | Comprehensive effluent disposal technology for wet spinning acrylic fibers industry | |
CN108623096A (en) | A kind for the treatment of process of high-concentration hardly-degradable sewage | |
KR100439212B1 (en) | Method and system for removal of organic matters and nitrogen in industrial wastewater | |
CN111470722A (en) | Treatment method of rubber processing wastewater difficult to biodegrade | |
KR100709456B1 (en) | Waste water disposal plant and waste water disposal method | |
KR20010027643A (en) | Method for removing nitrogen in waste water | |
CN106396242A (en) | Difficultly-degradable wastewater treatment method | |
CN213924402U (en) | Pesticide chemical industry garden sewage degree of depth processing system | |
KR100614098B1 (en) | A method for phosphorous and nitrogen removal with sludge disintegration in advanced wastewater treatment process | |
CN112624523B (en) | Treatment method of textile printing and dyeing wastewater |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20140403 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20170329 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20180220 Year of fee payment: 8 |