KR101015925B1 - A quake-proof frame structure for length variable - Google Patents
A quake-proof frame structure for length variable Download PDFInfo
- Publication number
- KR101015925B1 KR101015925B1 KR1020100052115A KR20100052115A KR101015925B1 KR 101015925 B1 KR101015925 B1 KR 101015925B1 KR 1020100052115 A KR1020100052115 A KR 1020100052115A KR 20100052115 A KR20100052115 A KR 20100052115A KR 101015925 B1 KR101015925 B1 KR 101015925B1
- Authority
- KR
- South Korea
- Prior art keywords
- frame
- gap plate
- bolt
- fastening bolt
- corner
- Prior art date
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
- E04H9/0237—Structural braces with damping devices
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/021—Bearing, supporting or connecting constructions specially adapted for such buildings
- E04H9/0235—Anti-seismic devices with hydraulic or pneumatic damping
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/027—Preventive constructional measures against earthquake damage in existing buildings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F15/00—Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
- F16F15/02—Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/10—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Environmental & Geological Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Aviation & Aerospace Engineering (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
Description
본 발명은 내진보강 프레임에 관한 것으로서, 더욱 상세하게는 건물의 내진 보강을 위해 시공 설치되는 프레임의 전체적인 길이가 현장 상황에 따라 가변 조절이 가능하도록 하여 현장 시공성을 개선하기 위한 것이다.The present invention relates to an earthquake-proof reinforcing frame, and more particularly, to improve the field construction by allowing the overall length of the frame installed for the seismic reinforcement of a building to be variablely adjusted according to the site situation.
일반적으로 주거 및 생활공간으로 활용되는 건축 구조물은 지하에서 지상으로 세워지며, 이러한 건축 구조물은 자체의 하중과 내부에 놓여지는 각종 용품의 하중을 견딜 수 있도록 설계되어 시공될 뿐만 아니라, 외부로부터의 충격이나 어느 정도의 지진발생시에도 붕괴되지 않도록 설계 및 시공되고 있다.In general, the building structures used as living and living spaces are built from the ground to the ground, and these building structures are designed and constructed to withstand their own loads and loads of various items placed therein, and they are also constructed from impacts from the outside. However, it is designed and constructed so that it does not collapse in the event of an earthquake.
그러나, 종래의 건축 구조물은 그 설계시 설정된 내진정도보다 강한 지진이 발생되면 건축 구조물이 붕괴되는 문제점이 있었다.However, the conventional building structure had a problem that the building structure collapses when an earthquake stronger than the seismic degree set in the design.
특히, 지진은 지각 일부의 급격한 변화로 지반이 상하좌우로 진동하면서 그 진동이 사방으로 퍼지는 현상이므로 지표면에 수직으로 세워지는 건축 구조물들은 그 지진의 파장이 지표면에 도달하면 비틀림 모멘트를 받게 될 뿐만 아니라, 이로 인하여 내진설계의 한도를 벗어난 지진이 발생되면 건축 구조물들은 붕괴되는 것이다.In particular, earthquakes are a phenomenon in which the ground vibrates up, down, left, and right as a sudden change in part of the earth's crust, and the vibration spreads in all directions. As a result, if the earthquake occurs outside the limits of the seismic design, the building structures will collapse.
현재 지구상에는 많은 지진대가 있으며, 이들 지진대와 근접된 지역에서는 상기와 같은 지진에 의한 건축 구조물들의 붕괴가 발생되면 많은 재산상의 피해뿐만 아니라, 인명피해도 발생되는 등의 문제점이 있었다.At present, there are many earthquake zones on the earth, and in areas close to these earthquake zones, when the collapse of building structures due to the earthquake occurs, there is a problem such as not only a lot of damage to property, but also a loss of life.
특히, 한반도는 그동안 지진 안전지대처럼 여겨져 왔다. 지진이 발생하는 조산대와 떨어져 있기 때문에 안심해 온 것이다. 하지만 지난 몇해를 살펴보면 지진이 다시 급증하고 있음을 알 수 있다.In particular, the Korean peninsula has been considered as an earthquake safe zone. I have been relieved because I am away from the midwives where earthquakes occur. But looking back over the last few years, the earthquake is rising again.
이에 따라, 근래에 신축되는 건축물들은 내진설계가 이루어지고 있으나, 이미 지어진지 수년에서 수십년이 경과한 콘크리트 건물은 지진에 무방비 상태로 노출되어져 있어 항상 위험에 노출되어져 있는 실정이다.Accordingly, in recent years, new buildings have been earthquake-resistant design, but concrete buildings that have been built for years or decades have been exposed to earthquake and are always exposed to danger.
한편, 최근에는 이에 대한 개선책으로 노후된 학교건물의 내벽 또는 외벽면에 오일댐퍼를 이용한 4각 프레임 형태의 내진보강 구조물이 시공되어지고 있다.On the other hand, in recent years, the seismic reinforcement structure in the form of a quadrilateral frame using an oil damper has been constructed on the inner wall or outer wall of the aged school building as an improvement.
그러나, 내진보강 구조물이 설치될 건물의 벽체는 크기가 다양화 되어져 있기 때문에 내진보강 프레임의 크기를 설치 벽체의 크기에 맞추어 개별적인 제작이 이루어져야 하기 때문에 현장 시공성이 취약한 문제점이 있었다.
However, since the walls of the building where the seismic reinforcement structures are to be installed are diversified in size, there is a problem in that site construction is weak because the size of the seismic reinforcement frame must be made individually according to the size of the installation wall.
본 발명은 상기한 종래 내진보강 프레임 시공에 있어서의 문제점을 개선하기 위해 제안된 것으로서, 내진보강 프레임의 현장 시공시 갭플레이트를 이용하여 크기의 가변 조절이 가능하도록 함으로서 시설물의 현장 시공성이 개선되어질 수 있도록 하는데 목적이 있다.The present invention has been proposed to improve the problems in the conventional seismic reinforcement frame construction, it is possible to improve the field construction of the facility by allowing the variable control of the size by using a gap plate during the site construction of the seismic reinforcement frame. The purpose is to make it work.
상기 목적을 이루기 위한 본 발명은, 4각 형태를 이루도록 제작되어 건물의 벽체에 설치되고, 모서리 부위에는 지진에너지의 흡수를 위한 오일댐퍼가 연결 설치되는 통상의 내진보강 프레임에 있어서, 상기 내진보강 프레임은 4개의 모서리프레임과, 상기 각 모서리프레임을 연결하는 연결프레임이 체결볼트에 의해 상호간에 조립 체결이 이루어지는 분리형 구조를 이루며; 상기 체결부위에는 일정 두께를 이루는 갭플레이트가 삽입 결합되어지는 것을 특징으로 한다.In order to achieve the above object, the present invention is made to form a quadrilateral shape is installed on the wall of the building, the seismic reinforcement frame in the conventional seismic reinforcement frame is installed in the corner portion is connected to the oil damper for absorption of seismic energy, The four corner frame and the connection frame for connecting the respective corner frame to form a separate structure that is assembled to each other by a fastening bolt; The fastening portion is characterized in that the gap plate having a predetermined thickness is inserted and coupled.
이러한 본 발명은, 건물 벽체의 내진보강 프레임 시공작업시 조립 결합이 이루어지는 프레임간 틈새부위에 갭플레이트가 삽입 결합되어질 수 있게 됨으로 벽체의 크기에 관계없이 용이한 작업이 이루어질 수 있게 되어 작업효율을 극대화할 수 있게 된다.In the present invention, the gap plate can be inserted into the gap between the frames where the assembly coupling is made during the construction of the seismic reinforcement frame construction of the building wall can be easily combined regardless of the size of the wall to maximize the work efficiency You can do it.
특히, 갭플레이트의 삽입시 체결볼트와의 간섭이 발생되어지지 않게 됨과 함께 체결볼트의 안내가 이루어짐으로서 정확한 체결위치의 결합이 이루어질 수 있게 된다.In particular, when the gap plate is inserted, the interference with the fastening bolt is not generated, and the guide of the fastening bolt is made so that the exact fastening position can be combined.
도 1은 본 발명 내진보강 프레임의 전체적인 결합 구조도.
도 2는 도 1의 A부 확대도.
도 3은 본 발명의 일 실시예에 따른 갭플레이트를 나타낸 것으로서,
3a는 사시도.
3b는 정면도.
도 4는 본 발명 갭플레이트의 단면 구조도.
도 5는 본 발명의 다른 실시예에 따른 갭플레이트를 나타낸 것으로서,
5a는 사시도.
5b는 정면도.
도 6은 본 발명의 또 다른 실시예에 따른 갭플레이트를 나타낸 것으로서,
6a는 정면도.
6b는 5a의 B부 단면 상세도.1 is an overall coupling structure of the seismic reinforcement frame of the present invention.
2 is an enlarged view of a portion A of FIG. 1;
Figure 3 shows a gap plate according to an embodiment of the present invention,
3a is a perspective view.
3b is a front view.
Figure 4 is a cross-sectional structural view of the gap plate of the present invention.
5 shows a gap plate according to another embodiment of the present invention,
5a is a perspective view.
5b is a front view.
Figure 6 shows a gap plate according to another embodiment of the present invention,
6a is a front view.
6b is a cross-sectional detail of section B of 5a.
이하, 본 발명의 구체적인 실시 예를 첨부 도면을 참조하여 상세히 살펴보기로 한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.
먼저, 본 발명의 일 실시 예에 따른 내진보강 프레임의 특징적인 구조를 살펴보면, 4개의 모서리프레임(10)과 4개의 연결프레임(20)이 상호 체결볼트(11)에 의해 조립 체결되어 전체적으로 4각형상의 프레임 구조를 이루게 된다.First, looking at the characteristic structure of the seismic reinforcement frame according to an embodiment of the present invention, four
특히, 모서리프레임(10)과 연결프레임(20) 상호 연결부위에는 일정 두께를 이루는 갭플레이트(30)가 1개 또는 2개 이상 삽입 설치되어지게 되는데, 갭플레이트(30)에는 삽입 설치시 체결볼트(11)와의 간섭을 방지하기 위한 볼트안내공(31)이 도 3에서와 같이 다수개 형성되어지게 된다.Particularly, one or two or
또한, 갭플레이트(30)는 도 4에 도시된 바와 같이 3층의 단면구조를 이루되, 외측에는 강도 보강을 위한 금속층(33)을 이루고, 중앙에는 외부충격 완화를 위해 일정 탄력성을 갖는 완충층(34)이 구비되도록 함이 바람직하다.In addition, the
그리고, 이러한 4각 프레임의 변형 방지를 위한 오일댐퍼(1)가 다수의 지지로드(2)에 의해 모서리측에 힌지핀(3)으로 연결 구성되어져 있는데, 이러한 오일댐퍼(1) 설치구조는 종래 공지된 기술이므로 이에 관련한 구체적인 구성설명은 새략키로 한다.And, the oil damper (1) for preventing the deformation of the quadrilateral frame is configured by a hinge pin (3) at the corner side by a plurality of support rods (2), such an oil damper (1) installation structure is conventional Since it is a known technique, a detailed configuration description thereof will be given as a summary key.
도면 중 미설명 부호 4는 모서리프레임(10) 및 연결프레임(20)을 고정시키기 위해 벽체에 미리 고정 설치되는 스터드볼트를 나타낸다.In the drawings,
이와 같은 구조를 이루는 본 발명 내진보강 프레임의 시공 설치에 따른 작용효과를 살펴보기로 한다.The effect of the installation of the seismic reinforcement frame of the present invention constituting such a structure will be described.
본 발명의 내진 보강프레임은 분해상태로 현장으로 이동되어진 후 현장에서 조립 시공이 이루어지게 된다.After the seismic reinforcement frame of the present invention is moved to the site in the disassembled state, the construction is made in the field.
즉, 시공이 이루어질 벽체의 해당 부위에 먼저 스터드볼트(4)를 고정 설치한 후 각 모서리부위에 4개의 모서리프레임(10)을 스터드볼트(4)에 걸은 후 너트를 조여서 위치를 고정시키게 된다.That is, the stud bolt (4) is first fixed to the corresponding part of the wall to be constructed, and then four corner frames (10) are fastened to the stud bolts (4) at each corner, and then the nut is fixed to fix the position.
이후, 힌지핀(3)을 이용하여 지지로드(2)를 모서리프레임(10)에 연결함으로서 오일댐퍼(1)의 설치가 이루어지면, 각 모서리프레임(10)을 연결프레임(20)으로 연결시킴으로서 4각형상의 프레임 구조를 이루게 된다.Then, by installing the
이러한 연결프레임(20)의 설치는 체결볼트(11)에 의해 이루어지게 되는데, 연결프레임(20)과 모서리프레임(10)의 각 플렌지부 상호간 이격이 발생된 틈새부위에 본 발명의 갭플레이트(30)를 삽입 설치하게 된다.The installation of the
이때, 갭플레이트(30)는 틈새부위의 사이즈에 따라 하나 또는 다수개를 순차적으로 삽입할 수 있게 되는데, 삽입과정에서 볼트안내공(31)이 체결볼트(11)를 따라 안내되어짐으로서 정확한 결합위치가 지지되어질 수 있게 된다.At this time, the
따라서, 본 발명의 갭플레이트(30)를 이용하게 되면 설치장소의 벽체 크기에 상관없이 일정 규격의 분리형 모서리프레임(10) 및 연결프레임(20)을 이용하여 신속하고 용이한 보강 프레임의 시공이 이루어질 수 있게 됨을 알 수 있다.
Therefore, when the
한편, 도 5는 본 발명의 다른 실시 예에 따른 갭플레이트 구조를 나타낸 것이다.On the other hand, Figure 5 shows a gap plate structure according to another embodiment of the present invention.
즉, 도시된 바와 같이 볼트안내공(31)을 직선형태로 형성시키지 않고 일단부를 직각형상으로 연장시킨 볼트걸림공(32)을 형성시킨 것이다.That is, as shown, the
따라서, 갭플레이트(30)의 삽입작업시 체결볼트(11)가 볼트걸림공(32) 부위에 걸려지도록 함으로서 갭플레이트(30)의 이탈 또는 뒤틀림 등의 현상을 방지할 수 있게 된다.
Therefore, the fastening
또한, 도 6은 본 발명의 또 다른 실시 예에 따른 이탈방지핀(35)을 구성시킨 갭플레이트 구조를 나타낸 것이다.In addition, Figure 6 shows a gap plate structure consisting of the
즉, 도시된 바와 같이 볼트걸림공(32)에는 체결볼트(11)의 이탈 방지를 위한 이탈방지핀(35)을 구비하되, 상기 이탈방지핀(35)은 갭플레이트(30)를 관통하여 일측의 손잡이부(36)가 외측으로 노출 구비되고, 이탈방지핀(35) 중단에는 갭플레이트(30) 내의 안내홈(30')을 따라 안내되는 걸림턱(37)이 구성되며, 상기 걸림턱(37)의 탄성 지지를 위한 탄성스프링(38)이 상기 안내홈(30') 내에 구성되도록 한 것이다.That is, as shown in the
이러한 구성을 이룸으로서 갭플레이트(30)의 삽입 또는 분리시에만 선택적으로 작업자가 손잡이부(36)를 당겨서 볼트 걸림상태를 해제시킬 수 있게 되며, 평상시에는 체결볼트(11)가 이탈방지핀(35)에 걸려서 이탈이 방지되어지게 됨으로 갭플레이트(30)의 이탈방지효과를 더욱 극대화 할 수 있게 됨을 알 수 있다.
By this configuration, only when the
그리고, 상기에서 본 발명의 특정한 실시 예가 설명 및 도시되었지만 본 발명의 내진보강 프레임 시공구조가 당업자에 의해 다양하게 변형되어 실시될 수 있음은 자명한 일이다.In addition, although specific embodiments of the present invention have been described and illustrated above, it will be apparent that the seismic reinforcing frame construction structure of the present invention can be variously modified and implemented by those skilled in the art.
그러나, 이와 같은 변형된 실시예들은 본 발명의 기술적 사상이나 범위로부터 개별적으로 이해되어져서는 안되며, 이와 같은 변형된 실시 예들은 본 발명의 첨부된 특허청구범위 내에 포함된다 해야 할 것이다.
However, such modified embodiments should not be understood individually from the spirit or scope of the present invention, such modified embodiments will be included within the appended claims of the present invention.
1 : 오일댐퍼 2 : 지지로드
3 : 힌지핀 4 : 스터드볼트
10 : 모서리프레임 11 : 체결볼트
20 : 연결프레임 30 : 갭플레이트
31 : 볼트안내공 32 : 볼트걸림공
33 : 금속층 34 : 완충층
35 : 이탈방지핀 36 : 손잡이부
37 : 걸림턱 38 : 탄성스프링1
3: hinge pin 4: stud bolt
10: corner frame 11: fastening bolt
20: connection frame 30: gap plate
31: bolt guide 32: bolt catching ball
33: metal layer 34: buffer layer
35: release prevention pin 36: handle portion
37: engaging jaw 38: elastic spring
Claims (5)
상기 내진보강 프레임은 4개의 모서리프레임(10)과, 상기 각 모서리프레임(10)을 연결하는 연결프레임(20)이 체결볼트(11)에 의해 상호간에 조립 체결이 이루어지는 분리형 구조를 이루며;
상기 체결부위에는 일정 두께를 이루는 갭플레이트(30)가 삽입 결합되어지되, 상기 갭플레이트(30)에는 체결볼트(11)와의 간섭을 방지하기 위한 볼트 안내공(31)이 형성되고;
상기 볼트 안내공(31)의 단부에는 체결볼트(11)가 걸려질 수 있도록 볼트 걸림공(32)이 연장 형성되며;
상기 걸림공(32)에는 체결볼트(11)의 이탈 방지를 위한 이탈방지핀(35)이 구비되어져 있으며, 상기 이탈방지핀(35)은 갭플레이트(30)를 관통하여 일측의 손잡이부(36)가 외측으로 노출 구비되고, 이탈방지핀(35) 중단에는 갭플레이트(30) 내의 안내홈(30')을 따라 안내되는 걸림턱(37)이 구성되며, 상기 걸림턱(37)의 탄성 지지를 위한 탄성스프링(38)이 상기 안내홈(30') 내에 구성된 것을 특징으로 하는 길이 가변이 가능한 내진보강 프레임.In the conventional seismic reinforcement frame is made to form a quadrangular shape is installed on the wall of the building, the oil damper (1) for the absorption of seismic energy is connected to the corner portion by the support rod (2),
The seismic reinforcement frame is a four-frame frame 10, and the connecting frame 20 for connecting each of the corner frame 10 forms a separate structure that is assembled to each other by a fastening bolt (11);
A gap plate 30 having a predetermined thickness is inserted into and coupled to the fastening part, and a bolt guide hole 31 is formed in the gap plate 30 to prevent interference with the fastening bolt 11;
An end portion of the bolt guide hole 31 is formed with a bolt locking hole 32 so that the fastening bolt 11 can be caught;
The locking hole 32 is provided with a release prevention pin 35 for preventing the separation of the fastening bolt 11, the release prevention pin 35 is penetrated through the gap plate 30, the handle portion 36 ) Is exposed to the outside, the stopping prevention pin 35 is stopped at the stopping jaw 37 is guided along the guide groove 30 'in the gap plate 30 is configured, the elastic support of the locking jaw 37 Elastomeric reinforcement frame is variable in length, characterized in that the elastic spring for 38 is configured in the guide groove (30 ').
상기 갭플레이트(30)는 3층의 단면구조를 이루되, 외측에는 강도 보강을 위한 금속층(33)을 이루고, 중앙에는 외부충격 완화를 위해 일정 탄력성을 갖는 완충층(34)이 구비된 것을 특징으로 하는 길이 가변이 가능한 내진보강 프레임.The method according to claim 1,
The gap plate 30 has a cross-sectional structure of three layers, but a metal layer 33 for reinforcing strength is formed on the outer side, and a buffer layer 34 having a predetermined elasticity is provided at the center for mitigating external impact. A seismic reinforcement frame that can be changed in length.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100052115A KR101015925B1 (en) | 2010-06-03 | 2010-06-03 | A quake-proof frame structure for length variable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020100052115A KR101015925B1 (en) | 2010-06-03 | 2010-06-03 | A quake-proof frame structure for length variable |
Publications (1)
Publication Number | Publication Date |
---|---|
KR101015925B1 true KR101015925B1 (en) | 2011-02-23 |
Family
ID=43777631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020100052115A KR101015925B1 (en) | 2010-06-03 | 2010-06-03 | A quake-proof frame structure for length variable |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101015925B1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101114908B1 (en) | 2011-06-07 | 2012-03-06 | 유문식 | A building intensity reinforce mathod using smart frame |
KR101328702B1 (en) | 2012-12-24 | 2013-11-14 | 재단법인 포항산업과학연구원 | Structure for reinforcing structure using bracing member |
KR101357054B1 (en) * | 2013-08-26 | 2014-02-03 | (주)에스알텍 | Dual frame type aseismatic structure and method |
KR102022598B1 (en) | 2019-04-10 | 2019-09-18 | (주)더원이앤씨 | Seismic Reinforcement Method for Vulnerable Building |
KR102111632B1 (en) | 2019-11-04 | 2020-05-15 | 주식회사 브리텍 | A smart frame structure and integrated construction method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005207179A (en) * | 2004-01-26 | 2005-08-04 | Tatsuji Ishimaru | Half tension toggle mechanism and building structure |
KR100887160B1 (en) * | 2008-07-29 | 2009-03-10 | 김정숙 | The structure aseismic reinforcement method of construction for which multi connection elastic device was used |
-
2010
- 2010-06-03 KR KR1020100052115A patent/KR101015925B1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005207179A (en) * | 2004-01-26 | 2005-08-04 | Tatsuji Ishimaru | Half tension toggle mechanism and building structure |
KR100887160B1 (en) * | 2008-07-29 | 2009-03-10 | 김정숙 | The structure aseismic reinforcement method of construction for which multi connection elastic device was used |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101114908B1 (en) | 2011-06-07 | 2012-03-06 | 유문식 | A building intensity reinforce mathod using smart frame |
KR101328702B1 (en) | 2012-12-24 | 2013-11-14 | 재단법인 포항산업과학연구원 | Structure for reinforcing structure using bracing member |
KR101357054B1 (en) * | 2013-08-26 | 2014-02-03 | (주)에스알텍 | Dual frame type aseismatic structure and method |
KR102022598B1 (en) | 2019-04-10 | 2019-09-18 | (주)더원이앤씨 | Seismic Reinforcement Method for Vulnerable Building |
KR102111632B1 (en) | 2019-11-04 | 2020-05-15 | 주식회사 브리텍 | A smart frame structure and integrated construction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11326364B2 (en) | Function-recovering energy-dissipating reinforced concrete shear wall and construction method thereof | |
KR101015925B1 (en) | A quake-proof frame structure for length variable | |
KR101185974B1 (en) | Reinforcing apparatus for panel-zone of beam and column member using bracing member and structure reinforcing method therewith | |
KR101657481B1 (en) | Seismic reinforcement structure and retrofitting method of infilled masonry wall with hollow steel plate | |
KR20180010833A (en) | Seismic retrofit RC beam-column joints using hunch | |
US20180347221A1 (en) | A method of constructing earthquake resistant structure with reinforced foundation and wall structure | |
KR100995937B1 (en) | A seismic retrofit system for reinforced concrete structures | |
KR101478654B1 (en) | Seismic Retrofit Technology using Diagrid Frames | |
KR101623848B1 (en) | Seismic retrofitting technique of framed building by external steel brace frame | |
JP6122740B2 (en) | Seismic reinforcement structure | |
JP4945428B2 (en) | Reinforced structure | |
JP5873194B2 (en) | Seismic strengthening method and seismic strengthening frame for existing buildings | |
KR101404572B1 (en) | Seismic reinforcing method using wing wall of building | |
JP5290786B2 (en) | Damping structure | |
JP5946165B2 (en) | Seismic reinforcement structure | |
JP6538551B2 (en) | Disaster prevention shelter and construction method of the disaster prevention shelter | |
KR101798007B1 (en) | Frame used in building | |
JP6422802B2 (en) | Building frame structure | |
KR20200068270A (en) | Seismic reinforcement method of In-wall, out-of-wall and joint of Masonry building using steel bars | |
KR101631993B1 (en) | Retrofit of buildings structure | |
JP2014118801A (en) | Aseismatic reinforcement structure of wooden house | |
JP2019108776A (en) | Reinforcement structure and reinforcement method of wooden building | |
JP2017096041A (en) | Complete collapse preventive member of existing wooden framework structure in earthquake time | |
JP7323999B2 (en) | bearing wall | |
KR100970942B1 (en) | steel structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20140512 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20150106 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |