KR100995937B1 - A seismic retrofit system for reinforced concrete structures - Google Patents

A seismic retrofit system for reinforced concrete structures Download PDF

Info

Publication number
KR100995937B1
KR100995937B1 KR1020100045579A KR20100045579A KR100995937B1 KR 100995937 B1 KR100995937 B1 KR 100995937B1 KR 1020100045579 A KR1020100045579 A KR 1020100045579A KR 20100045579 A KR20100045579 A KR 20100045579A KR 100995937 B1 KR100995937 B1 KR 100995937B1
Authority
KR
South Korea
Prior art keywords
channel
reinforced concrete
channels
welded
damper
Prior art date
Application number
KR1020100045579A
Other languages
Korean (ko)
Inventor
장민석
이성민
이기학
Original Assignee
장민석
이기학
이성민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 장민석, 이기학, 이성민 filed Critical 장민석
Priority to KR1020100045579A priority Critical patent/KR100995937B1/en
Application granted granted Critical
Publication of KR100995937B1 publication Critical patent/KR100995937B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/027Preventive constructional measures against earthquake damage in existing buildings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Emergency Management (AREA)
  • Business, Economics & Management (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE: An earthquake-proof reinforcement structure of a reinforced concrete building is provided to ensure earthquake-resistant performance of the reinforced concrete building and to facilitate construction and maintenance. CONSTITUTION: An earthquake-proof reinforcement structure of a reinforced concrete building comprises a first channel(10), a second channel(20), a hysteretic damper(30), a vertical stiffener(40), and a horizontal stiffener(50). The first channel is formed in a U shape and is horizontally attached to a reinforced concrete beam(1). The second channel is formed in a U shape and is vertically attached to a reinforced concrete column(2). The hysteretic damper is comprised of four dampers(31) which are installed between the first and second channels for reinforcing the first and second channels. The vertical and the horizontal stiffener are coupled to the interior of the first and the second channel to reinforce the first and the second channel, respectively.

Description

철근콘크리트건축물의 내진 보강구조{A seismic retrofit system for reinforced concrete structures}Seismic retrofit system for reinforced concrete structures

본 발명은 철근콘크리트건축물의 내진 보강구조에 관한 것으로, 보다 상세하게는, 지진 발생에 따라 건축구조물에 발생하는 관성에너지를 철근콘크리트 보와 기둥을 보강하는 제1, 2채널을 통하여 흡수한 후, 상기 제1, 2채널에 용접결합된 댐퍼의 비탄성 영구변형를 통하여 소산 시킬 수 있어 철근콘크리트건축물의 내진 보강을 용이하게 할 수 있을 뿐만 아니라, 관성에너지의 소산 시 채널에 발생하는 집중응력이 스티프너에 의해 상쇄되면서 댐퍼로 분산되는 것으로 인해 모든 비탄성 변형을 댐퍼로 유도하기 때문에 채널의 국부적 좌굴이 방지되어 지며, 이로써 지진 발생 후 건축물의 유지보수를 댐퍼의 교체만으로 쉽고 빠르게 완료할 수 있는 철근콘크리트건축물의 내진 보강구조에 관한 것이다.
The present invention relates to a seismic reinforcement structure of a reinforced concrete building, and more particularly, after absorbing inertial energy generated in a building structure due to an earthquake through the first and second channels reinforcing the reinforced concrete beams and columns, It can be dissipated through the inelastic permanent deformation of the damper welded to the first and second channels to facilitate seismic reinforcement of reinforced concrete buildings, and the concentrated stress generated in the channel when dissipating inertia energy is caused by the stiffener. The local buckling of the channel is prevented by inducing all the inelastic deformation into the damper by offsetting and dispersing it into the damper.This enables seismic reinforcement of reinforced concrete buildings that can be easily and quickly completed after the earthquake by only replacing the damper. It relates to a reinforcement structure.

일반적으로 다주택, 빌딩, 건물, 아파트 등과 같은 기존 건축 구조물은 지진으로부터 건축 구조물을 안전하게 보호하기 위한 내진 설계(耐震設計)가 미흡하여 지진 발생시에 건축 구조물의 붕괴로 인한 막대한 인명 피해 및 재산 피해가 예상되므로 지진 하중에 저항하기 위해 건축 구조물을 보강할 필요성이 제기되고 있다.In general, existing building structures such as multi-unit houses, buildings, buildings, apartments, etc. are not expected to have earthquake-resistant design to safely protect the building structures from earthquakes. Therefore, there is a need to reinforce building structures to resist seismic loads.

이와 같은 보강 대책의 필요성으로, 일반적인 철골구조 건물에서는 기둥과 보의 접합부를 용접을 이용하여 결합함으로써, 어느 정도의 내진 성능을 발휘할 수 있었으나, 현장 용접이 많은 경우, 용접결함이 발생하기 쉽고, 공기가 늘어나는 단점이 있으며, 강한 지진 발생시에는 용접에 의한 내진 성능의 한계로 인하여 기둥가 보가 손상되기 때문에 건물의 복구가 어려운 문제점이 있었다.Due to the necessity of such reinforcement measures, in the case of general steel structure buildings, the seismic performance can be exhibited to some extent by joining the joints of the pillars and beams by welding. There is a drawback to increase, and when a strong earthquake occurs due to the limitation of seismic performance by welding, the beam of the column is damaged, there was a problem that is difficult to recover the building.

그리하여, 건축물을 보다 효과적으로 보강할 수 있는 방법이 논의되고 있는 실정이며, 이하에서는 "등록특허 10-0627233"을 참조하여 종래의 철골구조물용 접합부재에 대해 설명하기로 한다.Thus, a situation in which a method of reinforcing a building more effectively is being discussed. Hereinafter, a conventional joining member for steel structure will be described with reference to "Registration Patent 10-0627233".

종래의 철골구조물용 접합부재는, 2개 이상의 부재 즉, 철골구조물로 되어 있는 기둥(101)과 보(102)를 결합하는 것으로, 복수개의 체결공(112)이 일정간격으로 형성되고 일방향으로 구부러진 형태를 갖는 앵글(110)과, 상기 앵글(110)의 서로 다른 두 면에 일 단과 타 단이 각각 접합되고 1개 이상의 홈(122)이 형성된 복수개의 스티프너(120)로 구성된다.Conventional joining members for steel structures, by combining two or more members, that is, the pillar 101 and the beam 102 made of steel structures, a plurality of fastening holes 112 are formed at regular intervals and bent in one direction An angle 110 having a and a plurality of stiffeners 120 are formed in which one end and the other end are respectively joined to two different surfaces of the angle 110 and one or more grooves 122 are formed.

그리고, 이러한 종래의 철골구조물용 접합부재를 이용하면, 수평방향의 압축력 작용시, 스티프너(120)의 위쪽에 형성된 홈(122)과 아래쪽에 형성된 홈(122)의 서로 반대로 좁아지거나 넓어지는 휨 변형의 발생과 동시에, 상시 스티프너(120)가 수평방향으로 작용하는 충격에너지를 흡수하는 것으로 인해 기둥(101)과 보(102)의 직접적인 변형을 줄일 수 있었다.
And, using the conventional joining members for steel structures, when the compressive force in the horizontal direction, the bending deformation that is narrowed or widened opposite to each other of the groove 122 formed on the top of the stiffener 120 and the groove 122 formed on the bottom Simultaneously with the occurrence of the stiffener 120 was able to reduce the direct deformation of the column 101 and the beam 102 due to absorbing the impact energy acting in the horizontal direction.

그러나, 상기와 같은 구성으로 이루어진 종래의 철골구조물용 접합부재를 철골구조물로 되어 있는 기둥(101)과 보(102)에 견고하게 고정하기 위해서는 앵글(110)에 구성된 복수개의 체결공(112)에 다수개의 볼트(130)와 너트(미도시)를 결합하여 기둥(101)과 보(102)에 각각 결합시켜야 하기 때문에 시공시간이 지연되는 문제점이 있었다.However, in order to firmly fix the conventional joining member for steel structure having the structure as described above to the pillar 101 and the beam 102 made of steel structure in a plurality of fastening holes 112 formed in the angle 110 Since a plurality of bolts 130 and nuts (not shown) are coupled to each of the pillars 101 and the beams 102, there is a problem in that the construction time is delayed.

또한, 지진 발생에 따른 충격에너지로 인해 앵커(110)와 스티프너(120)가 동시에 변형되기 때문에, 지진 발생 후에는 상기 기둥(101)과 보(102)에 결합된 앵글 (110)및 상기 앵글(110)에 결합된 복수개의 스티프너(120)를 모두 교체해야 하였으며, 이에 따라 유지보수비용 증대는 물론, 작업시간이 오래 걸리는 문제점이 있었으며, 유지보수작업의 지연에 따른 불편함이 있었다.In addition, since the anchor 110 and the stiffener 120 are deformed at the same time due to the impact energy due to the earthquake, the angle 110 and the angle (coupled to the pillar 101 and the beam 102) after the earthquake. All of the plurality of stiffeners 120 coupled to 110 had to be replaced. Accordingly, there was a problem that the maintenance cost was increased, as well as a long time, and the inconvenience caused by the delay of the maintenance work.

아울러, 상기와 같은 구성을 지닌 철골구조물용 접합부재는, 철골구조로 이루어진 기둥(101)과 보(102)만 사용할 수 있기 때문에, 병원이나 학교건축물 등과 같이 국내에 널리 사용되는 철근콘크리트건축물에는 사용이 불가능한 문제점이 있었다.In addition, since the joining member for steel structure having the configuration described above, only the pillar 101 and the beam 102 made of steel structure can be used, it is used in reinforced concrete buildings widely used in the country, such as hospital or school building There was an impossible problem.

그리하여, 철근콘크리트건축물에서도 내진에 대한 보강을 통해 내진성능을 확보할 수 있으면서도 시공과 유지보수를 편리하게 할 수 있는 철근콘크리트건축물의 내진 보강구조가 요구되고 있는 실정이다.
Therefore, the seismic reinforcement structure of reinforced concrete buildings, which can secure construction and maintenance while ensuring seismic performance through reinforcement for seismic reinforcement, is required in reinforced concrete buildings.

상기와 같은 목적을 달성하기 위한 본 발명의 철근콘크리트건축물의 내진 보강구조는 철근콘크리트 보에 수평하게 부착되는 ㄷ자 형상의 제1채널; 철근콘크리트 기둥에 수직으로 부착되며, 일 측면이 상기 제1채널에 용접결합되는 ㄷ자 형상의 제2채널; 상기 제1, 2 채널 사이에 45°의 경사각으로 각각 설치되어 제1, 2채널을 보강하는 4개의 댐퍼를 구성하되, 상기 댐퍼의 일측으로는 제1채널에 용접결합되는 제1접합부를 구성하고, 타측으로는 제2채널에 용접결합되는 제2접합부를 구성하며, 외측으로는 개구된 완충홀을 형성한 이력댐퍼부; 상기 제1채널의 내부에 용접결합되어 제1채널을 보강하는 수직스티프너; 상기 제2채널의 내부에 용접결합되어 제2채널을 보강하는 수평스티프너;로 이루어져 지진 발생시 건축물에 전해지는 관성에너지를 흡수하도록 된 것에 특징이 있다.
Seismic reinforcement structure of the reinforced concrete building of the present invention for achieving the above object is the first channel of the U-shape attached horizontally to the reinforced concrete beam; A second channel having a U-shape that is vertically attached to the reinforced concrete column and whose one side is welded to the first channel; Four dampers are installed between the first and second channels at an inclination angle of 45 ° to respectively reinforce the first and second channels, and one side of the damper forms a first joint part welded to the first channel. A hysteresis damper part configured to form a second joint part welded to the second channel on the other side, and having a buffer hole opened outward; A vertical stiffener welded to the inside of the first channel to reinforce the first channel; And a horizontal stiffener welded to the inside of the second channel to reinforce the second channel, so as to absorb inertial energy transmitted to the building during an earthquake.

본 발명의 철근콘크리트건축물의 내진 보강구조를 이용하면, 지진 발생에 따른 관성에너지가 철근콘크리트 보와 기둥에 부착되어 상기 철근콘크리트 보와 기둥을 보강하는 제1, 2채널로 흡수된 후, 상기 제1, 2채널에 용접결합된 댐퍼로 집중되기 때문에 댐퍼의 비탄성 영구변형과 함께 관성에너지가 소산 되게 되며, 이로써, 기존 철근콘크리트 보와 기둥의 변형이 발생하지 않는 장점이 있다.When the seismic reinforcement structure of the reinforced concrete building of the present invention is used, the inertial energy caused by the earthquake is attached to the reinforced concrete beams and the pillars and absorbed into the first and second channels to reinforce the reinforced concrete beams and the pillars, and then Because the damper is concentrated in the 1st and 2nd channel, the inertia energy is dissipated along with the inelastic permanent deformation of the damper. Thus, the deformation of the existing reinforced concrete beams and columns does not occur.

또한, 댐퍼가 비탄성변형을 일으키면서 관성에너지를 소산 시킬 때 제1, 2채널에 국부적으로 발생하는 응력집중현상이 상기 제1, 2채널의 내부에 용접설치된 수직, 수평스티프너에 의해 상쇄되면서 댐퍼로 분산되는 것으로 인해 모든 비탄성 변형을 댐퍼로 유도하기 때문에 제1, 2채널의 국부적인 좌굴이 방지되게 되며, 이로써 지진 발생 후 건축물의 유지보수를 비탄성 영구변형이 발생한 댐퍼의 교체만으로 쉽고 빠르게 완료할 수 있는 유용한 발명이다.
In addition, when the damper dissipates the inertial energy while inelastic deformation, the stress concentration phenomenon occurring locally in the first and second channels is canceled by the vertical and horizontal stiffeners welded inside the first and second channels. By dispersing, all the inelastic deformations are induced into the dampers, which prevents local buckling of the first and second channels.This enables the maintenance of buildings after earthquakes to be completed easily and quickly by simply replacing the dampers with inelastic permanent deformations. It is a useful invention.

도 1은 종래의 철골구조물용 접합부재를 도시한 사시도.
도 2는 종래의 철골구조물용 접합부재를 철골구조물에 설치한 상태도.
도 3은 본 발명의 철근콘크리트건축물의 내진 보강구조를 도시한 사시도.
도 4는 본 발명의 철근콘크리트건축물의 내진 보강구조를 도시한 분리사시도.
도 5은 본 발명의 설치 상태도.
1 is a perspective view showing a joining member for a conventional steel structure.
2 is a state in which a conventional joining member for steel structures in the steel structure.
Figure 3 is a perspective view showing the seismic reinforcement structure of the reinforced concrete building of the present invention.
Figure 4 is an exploded perspective view showing the seismic reinforcement structure of the reinforced concrete building of the present invention.
5 is an installation state diagram of the present invention.

상기와 같은 문제점을 해결하기 위한 본 발명의 구성을 살펴보면 다음과 같다.Hereinafter, the structure of the present invention will be described.

본 발명의 철근콘크리트건축물의 내진 보강구조는 병원이나 학교와 같이 철근콘크리트 구조물로 되어 있는 건축물을 지진과 같은 충격으로부터 보호하기 위한 것으로, 도 3 내지 도 5에 도시된 바와 같이 제1채널(10)과, 제2채널(20)과, 이력댐퍼부(30)와, 수직스티프너(40)와, 수평스티프너(50)로 구성되어 지진 등에 의해 수평하중 발생시 건축물에 전해지는 관성에너지를 흡수하도록 되어 있다.The seismic reinforcement structure of the reinforced concrete building of the present invention is to protect a building made of reinforced concrete structures, such as a hospital or school, from an impact such as an earthquake, and the first channel 10 as shown in FIGS. And the second channel 20, the hysteresis damper 30, the vertical stiffener 40, and the horizontal stiffener 50, so as to absorb the inertial energy transmitted to the building when a horizontal load is generated by an earthquake or the like. .

먼저, 제1채널(10)은 ㄷ자 형상으로 형성되어 건축물의 철근콘크리트 보(1)에 수평하게 부착되는 것으로, 통상의 앵커와 같은 결합수단(미도시)을 이용하여 철근콘크리트 보(1)에 부착되어 진다.First, the first channel 10 is formed in a U-shape to be horizontally attached to the reinforced concrete beam (1) of the building, using a coupling means (not shown), such as a conventional anchor to the reinforced concrete beam (1) Attached.

또한, 제2채널(20)은 ㄷ자 형상으로 형성되어 건축물의 철근콘크리트 기둥(2)에 수직으로 부착되는 것으로, 통상의 앵커와 같은 결합수단(미도시)을 이용하여 철근콘크리트 기둥(2)에 부착되어 지며, 상기 제1채널(10)과 마주하는 일 측면이 제1채널(10)에 용접결합된 것에 특징이 있다. 즉, 상기 제2채널(20)이 제1채널(10)의 상, 하측면에 각각 용접결합되어 건축물의 접합부에 제1, 2채널(10, 20)이 십자형상으로 부착되게 된다.In addition, the second channel 20 is formed in a U-shape and is vertically attached to the reinforced concrete pillar 2 of the building, and is attached to the reinforced concrete pillar 2 using a coupling means (not shown) such as a conventional anchor. It is attached, one side facing the first channel 10 is characterized in that the welded to the first channel (10). That is, the second channel 20 is welded to the upper and lower surfaces of the first channel 10, respectively, so that the first and second channels 10 and 20 are crosswise attached to the joint of the building.

또한, 이력댐퍼부(30)는 건축물의 접합부에 십자형상으로 부착된 상기 제1, 2채널(10, 20)의 사이에 각각 설치되는 4개의 댐퍼(31)를 구성하여 제1, 2채널(10, 20)을 보강하는 것으로, 각각의 댐퍼(31)가 견고한 설치로 인해 큰 힘을 지탱할 수 있도록 45°의 경사각으로 설치된 것에 특징이 있다.In addition, the hysteresis damper part 30 constitutes four dampers 31 which are respectively provided between the first and second channels 10 and 20 that are crosswise attached to the junction of a building to form the first and second channels ( 10, 20), each damper (31) is characterized by being installed at an inclination angle of 45 ° to support a large force due to the solid installation.

아울러, 각각의 댐퍼(31)의 일측과 타측에는 제1채널(10)에 용접결합되는 제1접합부(32)와, 제2채널(20)에 용접결합되는 제2접합부(33)가 구성되어 있으며, 외측으로는 지진에 따라 발생하는 관성에너지에 의해 상기 댐퍼(31)의 변형발생시, 제1, 2채널(10, 20)에 생기는 응력집중현상이 방지되도록 하는 개구된 완충홀(34)이 형성되어 있는 것에 특징이 있다.In addition, one side and the other side of each damper 31 is composed of a first joint 32 welded to the first channel 10, and a second joint 33 welded to the second channel 20, In the outer side, when the damper 31 is deformed due to inertia energy generated by the earthquake, an opening buffer hole 34 is provided to prevent stress concentration occurring in the first and second channels 10 and 20. It is characterized by being formed.

그리고, 상기 제1, 2접합부(32, 33)는 45°로 설치되는 댐퍼(31)가 제1, 2채널(10, 20)에 견고하게 용접결합될 수 있도록 45°의 경사면으로 형성됨으로써 댐퍼(31)의 제1, 2접합부(32, 33)와 제1, 2채널(10, 20)의 용접부위가 넓어지도록 하는 것이 바람직하다.In addition, the first and second joint parts 32 and 33 are dampers 31 formed at an inclined surface of 45 ° so that the dampers 31 installed at 45 ° may be firmly welded to the first and second channels 10 and 20. It is preferable that the welded portions of the first and second joint portions 32 and 33 and the first and second channels 10 and 20 in (31) be widened.

또한, 수직스티프너(40)는 ㄷ자 형상으로 형성된 상기 제1채널(10)의 내부에 용접결합되어 제1채널(10)을 보강하는 것으로, 댐퍼(31)의 제1접합부(32)가 맞닿아 용접결합되는 부분에 대응되도록 위치시켜 설치함으로써, 관성에너지를 소산 시킬 시에 발생하는 댐퍼(31)의 가압에 의해 제1채널(10)이 좌굴되는 것을 방지하는 것이 바람직하다.In addition, the vertical stiffener 40 is welded to the inside of the first channel 10 formed in the U-shape to reinforce the first channel 10, the first joint portion 32 of the damper 31 abuts It is preferable to prevent the first channel 10 from buckling by pressurizing the damper 31 generated when dissipating the inertial energy by disposing it so as to correspond to the welded portion.

또한, 수평스티프너(50)는 ㄷ자 형상으로 형성된 상기 제2채널(20)의 내부에 용접결합되어 제2채널(20)을 보강하는 것으로, 댐퍼(31)의 제2접합부(33)가 맞닿아 용접되는 부분에 대응되도록 위치시켜 설치함으로써, 관성에너지를 소산 시킬 시에 발생하는 댐퍼(31)의 가압에 의해 제2채널(20)이 좌굴되는 것을 방지하는 것이 바람직하다.In addition, the horizontal stiffener 50 is welded to the inside of the second channel 20 formed in the U-shape to reinforce the second channel 20, the second joint portion 33 of the damper 31 abuts It is preferable to prevent the second channel 20 from being buckled by the pressurization of the damper 31 generated when dissipating the inertial energy by installing it so as to correspond to the welded portion.

상기와 같은 본 발명의 구성에 따른 작용을 살펴보면 다음과 같다.Looking at the operation according to the configuration of the present invention as described above are as follows.

일반적인 하중 즉, 수직하중이 작용할 때에는 철근콘크리트 보(1)와 기둥(2)이 충분이 견딜 수 있기 때문에 제1, 2채널(10, 20)과 이력댐퍼부(30) 및 수직, 수평스티프너(40, 50)는 거의 영향을 받지 않으며, 본 발명의 내진 보강 작용은 지진 등과 같은 수평하중의 발생시 일어나게 된다.Since the reinforced concrete beams 1 and the pillars 2 can withstand a general load, that is, a vertical load, the first and second channels 10 and 20 and the hysteresis damper 30 and the vertical and horizontal stiffeners ( 40, 50) are hardly affected, and the seismic reinforcing action of the present invention occurs when a horizontal load such as an earthquake occurs.

이를 보다 상세히 설명하면, 먼저, 지진과 같은 수평하중이 발생하게 되면, 관성에너지에 의해 건축물의 철근콘크리트 보(1)와 기둥(2)에 변위가 수평력 형태로 발생하게 된다.In more detail, first, when a horizontal load such as an earthquake occurs, displacement occurs in the form of horizontal force in the reinforced concrete beam 1 and the pillar 2 of the building by inertial energy.

다시 말해, 지진 등에 의해 발생하는 관성에너지가 직각으로 형성된 철근콘크리트 보(1)와 기둥(2) 사이의 각도를 변화시켜 건축물의 고정접합부를 휨 변형시키려는 현상이 발생하게 되며, 이와 동시에 상기 철근콘크리트 보(1)와 기둥(2)에 각각 강접되어 있는 제1, 2채널(10, 20)도 함께 영향을 받게 된다.In other words, a phenomenon of bending deformation of the fixed joint of the building occurs by changing the angle between the reinforced concrete beams 1 and the pillars 2 in which the inertial energy generated by the earthquake is formed at right angles, and at the same time, the reinforced concrete The first and second channels 10 and 20 rigidly joined to the beam 1 and the pillar 2 are also affected.

그리고, 상기와 같은 과정을 통해 철근콘크리트 보(1)와 기둥(2)에 강접되어 있는 제1, 2채널(10, 20)의 각도 변화가 일어날 때에는, 상기 제1, 2채널(10, 20)의 사이에 45°의 경사각으로 각각 설치된 4개의 댐퍼(31)가 그 각도 변화를 저항하는 역할을 하게 되고, 그 때문에 제1, 2채널(10, 20) 및 상기 제1, 2채널(10, 20)이 강접되어 있는 철근콘크리트 보(1)와 기둥(2)의 변위 없이 관성에너지를 통한 힘의 전달이 댐퍼(31)로 집중되어 모이게 된다.When the angle change of the first and second channels 10 and 20 rigidly connected to the reinforced concrete beams 1 and the pillars 2 occurs as described above, the first and second channels 10 and 20 are formed. Four dampers 31 respectively installed at an inclination angle of 45 ° between them serve to resist the angle change, and thus the first and second channels 10 and 20 and the first and second channels 10 , 20) is concentrated and transmitted to the damper 31 through the transfer of force through the inertial energy without displacement of the reinforced concrete beam (1) and the column (2).

아울러, 상기와 같이 관성에너지가 집중되어 모인 댐퍼(31)는 외측에 구성된 개구된 완충홀(34)에 의해 제1, 2채널(10, 20)보다 강도가 작게 형성되어 있기 때문에 상기 제1, 2채널(10, 20)보다 먼저 항복을 일으키게 되며, 이에 따라 비탄성 변형을 겪게 되어 지진에 의해 발생하는 모든 관성에너지를 상기 댐퍼(31)를 통해 소산 시킬 수 있게 된다.In addition, since the damper 31 in which the inertial energy is concentrated as described above is formed to have a smaller strength than the first and second channels 10 and 20 by the opened buffer hole 34 formed at the outside, the first and second dampers 31 are formed. Yield is caused earlier than the two channels 10 and 20, and thus, inelastic deformation is caused, so that all the inertial energy generated by the earthquake can be dissipated through the damper 31.

또한, 상기 댐퍼(31)에 의해 제1, 2채널(10, 20)의 각도변화가 저항 될 때에는, 상기 댐퍼(31)가 가하는 압력에 의해 댐퍼(31)가 용접된 제1, 2채널(10, 20)의 국부적인 부분에 응력집중현상이 일어나게 되지만, 이와 같은 응력집중현상은 제1, 2채널(10, 20)의 내부에 각각 용접결합된 수직, 수평스티프너(40, 50)에 의해 방지되게 됨으로써, 제1, 2채널(10, 20)의 국부적 좌굴 현상 없이 관성에너지를 효과적으로 댐퍼(31)로 분산시킬 수 있으며, 이로 인해 철근콘크리트 보(1)와 기둥(2) 및 상기 철근콘크리트 보(1)와 기둥(2)에 강접된 제1, 2채널(10, 20)의 변형이 최소화 되게 된다.In addition, when the angle change of the first and second channels 10 and 20 is resisted by the damper 31, the first and second channels in which the damper 31 is welded by the pressure applied by the damper 31 ( Although stress concentration occurs at the local portions of 10 and 20, such stress concentration is caused by vertical and horizontal stiffeners 40 and 50 welded to the inside of the first and second channels 10 and 20, respectively. By being prevented, the inertial energy can be effectively distributed to the damper 31 without the local buckling of the first and second channels 10 and 20, which causes the reinforced concrete beam 1 and the pillar 2 and the reinforced concrete. Deformation of the first and second channels 10 and 20 rigidly joined to the beam 1 and the pillar 2 is minimized.

그리고, 상기 제1, 2채널(10, 20)은 댐퍼보다 강하게 설계 및 시공되기 때문에 대부분의 변형은 댐퍼에서 발생되어 제1, 2채널의 변형은 탄성한도 내에서 최소로 발생하게 되고, 이와 같은 현상으로 인해, 지진발생 후에도 제1, 2채널의 큰 변형이 발생하지 않는다. In addition, since the first and second channels 10 and 20 are designed and constructed more strongly than the dampers, most of the deformations are generated in the dampers so that the deformation of the first and second channels is minimal within the elastic limit. Due to the phenomenon, large deformation of the first and second channels does not occur even after the earthquake occurs.

여기서, 제1, 2채널(10, 20)의 좌굴 방지는 댐퍼(31)와, 수직, 수평스티프너(40, 50)가 상기 제1, 2채널(10, 20)에 각각 대응되는 위치에 용접설치되어 제1, 2채널(10, 20)의 국부적 응력집중현상을 막기 때문에 그러한 것이다.Here, the buckling prevention of the first and second channels 10 and 20 is performed by welding the dampers 31 and the vertical and horizontal stiffeners 40 and 50 to the positions corresponding to the first and second channels 10 and 20, respectively. This is because it is installed to prevent local stress concentration of the first and second channels 10 and 20.

따라서, 대부분의 비탄성 영구변형은 댐퍼(31)로 집중되게 되며, 이에 따라 지진 발생 후에는, 건축물의 유지보수를 비탄성변형이 발생한 댐퍼(31)를 절단하여 제거한 후, 새로운 댐퍼를 용접하여 교체하는 것만으로 쉽고 빠르게 완료할 수 있게 된다.
Therefore, most of the inelastic permanent deformation is concentrated in the damper 31. Therefore, after the earthquake occurs, the maintenance of the building is removed by cutting and removing the damper 31 having the inelastic deformation, and then welding and replacing a new damper. You can complete quickly and easily.

1: 보 2 : 기둥
10, 20 : 제1, 2채널 30 : 이력댐퍼부
31 : 댐퍼 32 : 제1접합부
33 : 제2접합부 34 : 완충홀
40 : 수직스티프너 50 : 수평스티프너
1: beam 2: pillar
10, 20: first and second channel 30: hysteresis damper
31: damper 32: first joint
33: second bonding portion 34: buffer hole
40: vertical stiffener 50: horizontal stiffener

Claims (2)

철근콘크리트 보(1)에 수평하게 부착되는 ㄷ자 형상의 제1채널(10);
철근콘크리트 기둥(2)에 수직으로 부착되며, 일 측면이 상기 제1채널(10)에 용접결합되는 ㄷ자 형상의 제2채널(20);
상기 제1, 2 채널(10, 20) 사이에 45°의 경사각으로 각각 설치되어 제1, 2채널(10, 20)을 보강하는 4개의 댐퍼(31)를 구성하되, 상기 댐퍼(31)의 일측으로는 제1채널(10)에 용접결합되는 제1접합부(32)를 구성하고, 타측으로는 제2채널(20)에 용접결합되는 제2접합부(33)를 구성하며, 외측으로는 개구된 완충홀(34)을 형성한 이력댐퍼부(30);
상기 제1채널(10)의 내부에 용접결합되어 제1채널(10)을 보강하는 수직스티프너(40);
상기 제2채널(20)의 내부에 용접결합되어 제2채널(20)을 보강하는 수평스티프너(50);로 이루어져 지진 발생시 건축물에 전해지는 관성에너지를 흡수하도록 된 것에 특징이 있는 철근콘크리트건축물의 내진 보강구조.
A c-shaped first channel 10 horizontally attached to the reinforced concrete beam 1;
A second channel 20 having a U-shape attached to the reinforced concrete column 2 and having one side welded to the first channel 10;
Four dampers 31 are formed between the first and second channels 10 and 20 at an inclination angle of 45 ° to reinforce the first and second channels 10 and 20, respectively. One side constitutes a first joint portion 32 welded to the first channel 10, and the other side constitutes a second joint portion 33 welded to the second channel 20, and the outside opens. A hysteresis damper 30 having a buffered hole 34 formed therein;
A vertical stiffener 40 welded to the inside of the first channel 10 to reinforce the first channel 10;
A horizontal stiffener (50) welded to the inside of the second channel (20) to reinforce the second channel (20); consists of reinforced concrete buildings, characterized in that to absorb inertial energy transmitted to the building during an earthquake. Seismic reinforcement structure.
제 1항에 있어서, 상기 수직스티프너(40)와 수평스티프너(50)는 제1, 2채널(10, 20)이 좌굴되는 것이 방지되도록 상기 제1, 2채널(10, 20)에 용접결합된 댐퍼(31)의 1, 2접합부(32, 33)에 대응되는 위치에 각각 설치된 것에 특징이 있는 철근콘크리트건축물의 내진 보강구조.The vertical stiffener 40 and the horizontal stiffener 50 are welded to the first and second channels 10 and 20 to prevent the first and second channels 10 and 20 from buckling. A seismic reinforcement structure of reinforced concrete building, which is characterized by being installed at positions corresponding to the first and second joint portions 32 and 33 of the damper 31, respectively.
KR1020100045579A 2010-05-14 2010-05-14 A seismic retrofit system for reinforced concrete structures KR100995937B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100045579A KR100995937B1 (en) 2010-05-14 2010-05-14 A seismic retrofit system for reinforced concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100045579A KR100995937B1 (en) 2010-05-14 2010-05-14 A seismic retrofit system for reinforced concrete structures

Publications (1)

Publication Number Publication Date
KR100995937B1 true KR100995937B1 (en) 2010-11-22

Family

ID=43409998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100045579A KR100995937B1 (en) 2010-05-14 2010-05-14 A seismic retrofit system for reinforced concrete structures

Country Status (1)

Country Link
KR (1) KR100995937B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107653986A (en) * 2017-10-21 2018-02-02 山东建筑大学 The spacing energy-dissipating device and its installation method of a kind of assembled Special-Shaped Column
CN107700655A (en) * 2017-10-21 2018-02-16 山东建筑大学 The fabricated construction and its installation method of a kind of Special-Shaped Column
KR101862038B1 (en) * 2017-10-27 2018-07-04 주식회사 케이지엔지니어링종합건축사사무소 Strengthening Steel Structure of Reinforced Concrete Buildings
CN109208757A (en) * 2018-10-25 2019-01-15 安徽建筑大学 Novel steel beam column connecting node
KR101986610B1 (en) * 2018-04-24 2019-06-07 정윤성 A seismic retrofit ystem for reinforced concrete structures with improved durability
KR102001801B1 (en) * 2019-01-09 2019-10-21 김남주 A strengthened structure for seismic performance in a building
CN112411745A (en) * 2020-11-28 2021-02-26 安徽一品小院建筑科技有限公司 Assembled prestressed concrete frame structure antidetonation node
CN115354768A (en) * 2022-08-29 2022-11-18 江西省第十建筑工程有限公司 Construction method of energy dissipation and shock absorption structure of public building

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107653986A (en) * 2017-10-21 2018-02-02 山东建筑大学 The spacing energy-dissipating device and its installation method of a kind of assembled Special-Shaped Column
CN107700655A (en) * 2017-10-21 2018-02-16 山东建筑大学 The fabricated construction and its installation method of a kind of Special-Shaped Column
CN107653986B (en) * 2017-10-21 2019-05-17 山东建筑大学 A kind of the limit energy-consuming device and its installation method of assembled Special-Shaped Column
KR101862038B1 (en) * 2017-10-27 2018-07-04 주식회사 케이지엔지니어링종합건축사사무소 Strengthening Steel Structure of Reinforced Concrete Buildings
KR101986610B1 (en) * 2018-04-24 2019-06-07 정윤성 A seismic retrofit ystem for reinforced concrete structures with improved durability
CN109208757A (en) * 2018-10-25 2019-01-15 安徽建筑大学 Novel steel beam column connecting node
CN109208757B (en) * 2018-10-25 2024-07-26 安徽建筑大学 Steel beam and column connecting node
KR102001801B1 (en) * 2019-01-09 2019-10-21 김남주 A strengthened structure for seismic performance in a building
CN112411745A (en) * 2020-11-28 2021-02-26 安徽一品小院建筑科技有限公司 Assembled prestressed concrete frame structure antidetonation node
CN112411745B (en) * 2020-11-28 2021-10-12 安徽一品小院建筑科技有限公司 Assembled prestressed concrete frame structure antidetonation node
CN115354768A (en) * 2022-08-29 2022-11-18 江西省第十建筑工程有限公司 Construction method of energy dissipation and shock absorption structure of public building
CN115354768B (en) * 2022-08-29 2024-02-13 江西省第十建筑工程有限公司 Construction method of public building energy dissipation and shock absorption structure

Similar Documents

Publication Publication Date Title
KR100995937B1 (en) A seismic retrofit system for reinforced concrete structures
JP4861067B2 (en) Steel frame
JP5885950B2 (en) Seismic control wall frame structure
KR101705318B1 (en) Window and door open type vibration control system between columns for building
KR101185974B1 (en) Reinforcing apparatus for panel-zone of beam and column member using bracing member and structure reinforcing method therewith
KR101548608B1 (en) Steel frame girder having connection plate and, connection structure for the steel frame girder and column
KR101894917B1 (en) Structure for earthquake proofing and reinforcing RC structure using steel frame attached by steel plate
KR101348577B1 (en) Seismic retrofit method using lateral beam-type damper installed in opening space of building structure
KR101920417B1 (en) Seismic retrofit structure
KR101534431B1 (en) Segment type reinforcing structure for earthquake-proof
KR101565543B1 (en) A Joint Structures Between Steel Frame and Iron Concrete and A Joint Method
KR101372087B1 (en) Strengthen method for steel frame structure using seismic control device
KR20180010833A (en) Seismic retrofit RC beam-column joints using hunch
KR101489848B1 (en) Structure for seismic-proofing opening parts by pretensioning to steel frame using wire rope, and construction method for the same
KR101992186B1 (en) A earthquake proof reinforcement construction method installed on the outside and interior face of pillars and beams using a steel flame
KR101867074B1 (en) Seismic strengthening structure of pilotty structure building
KR102001801B1 (en) A strengthened structure for seismic performance in a building
KR101344813B1 (en) Coupling structure and method for beam to column connection
JP5483525B2 (en) Seismic wall
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP2007277911A (en) Structure of seismic response control column
JP2012207389A (en) Seismic strengthening construction method for existing building
KR20200025362A (en) Seismic reinforcement concrete structure using steel braces with dampers
KR101259247B1 (en) Damping type structure
KR101299574B1 (en) Moment connection structure using panel zone of rectangular shape

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131114

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141002

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee