KR101008065B1 - Radiaton pressure vacuum pump - Google Patents
Radiaton pressure vacuum pump Download PDFInfo
- Publication number
- KR101008065B1 KR101008065B1 KR1020080088499A KR20080088499A KR101008065B1 KR 101008065 B1 KR101008065 B1 KR 101008065B1 KR 1020080088499 A KR1020080088499 A KR 1020080088499A KR 20080088499 A KR20080088499 A KR 20080088499A KR 101008065 B1 KR101008065 B1 KR 101008065B1
- Authority
- KR
- South Korea
- Prior art keywords
- vacuum pump
- vacuum
- pump
- gas particles
- radiation
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/046—Combinations of two or more different types of pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/16—Centrifugal pumps for displacing without appreciable compression
- F04D17/168—Pumps specially adapted to produce a vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2210/00—Working fluid
- F05B2210/10—Kind or type
- F05B2210/12—Kind or type gaseous, i.e. compressible
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S417/00—Pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/901—Manufacture, treatment, or detection of nanostructure having step or means utilizing electromagnetic property, e.g. optical, x-ray, electron beamm
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Abstract
본 발명은 가시광, 자외선, 엑스선을 포함하는 전자기파의 복사압를 이용하여 진공펌프챔버 내부에 잔류 가스입자이 배기되면서 진공펌프로서의 역할을 수행함에 따라 기계적인 구성이 필요로 하지 않으므로 구조가 단순하고, 또 배출하고자 하는 잔류 가스입자의 성질에 따라 이온화가 힘든 잔류 가스입자들의 배출이 원활하게 수행되어 고청정의 아주 높은 진공상태를 구현할 수 있는 효과가 있다.The present invention does not require a mechanical configuration as the remaining gas particles are discharged into the vacuum pump chamber by using the radiation pressure of electromagnetic waves including visible light, ultraviolet rays, and X-rays, so that the structure is simple, and the discharge is to be performed. According to the nature of the residual gas particles are difficult to ionize the residual gas particles are discharged smoothly, there is an effect that can realize a very high vacuum state of high clean.
진공챔버, 진공펌프챔버, 전자기파발생장치, 가림막Vacuum chamber, vacuum pump chamber, electromagnetic wave generator, screening film
Description
본 발명은 진공펌프에 관한 것으로, 보다 상세하게는 가시광, 자외선, 엑스선을 포함하는 전자기파의 복사압을 이용하여 진공펌프로서의 역할을 수행하는 진공펌프에 관한 것이다.The present invention relates to a vacuum pump, and more particularly to a vacuum pump that serves as a vacuum pump using the radiation pressure of electromagnetic waves including visible light, ultraviolet rays, X-rays.
삭제delete
삭제delete
통상적으로 진공펌프는 대기압 이하의 압력에서 기체를 흡입하여 대기압에서 배출하는 데 사용되는 장치로서, 사용분야에 따라 다양한 형태의 진공펌프가 적용되고 있다.
기존에 개시된 진공펌프 중 확산펌프는 증발한 오일증기 입자가 가스입자에 진공펌프 출구 쪽으로 운동량을 부여하여 배기작업을 하고 드라이스크류 진공펌프는 쌍으로 물려서 회전하는 스크류의 날개가 입자에 진동량을 부여하도록 하고 있다.
또, 터보분자펌프는 다층 금속판 형태의 팬(Fan)이 고속으로 회전하면서 펌프 내의 가스입자에 운동량을 부여하도록 하고 있다.
그러나, 상기 확산펌프, 터보분자펌프와 같이 산업 현장에 널리 사용되는 진공펌프의 원리가 가스입자에 운동량을 직접 부여하는 기계식 구조를 가짐에 따라 부품제작시 정밀한 기계가공기술을 필요로 하고, 또 오일을 사용하는 확산펌프는 오일 증기의 역류로 진공챔버 내부가 오염되는 문제점이 따랐다.
한편, 상기한 기계식 진공펌프의 단점을 보완하기 위해 냉온펌프, 이온펌프 및 게터링 방식의 펌프를 사용하는 바, 여기서 냉온펌프는 고진공 상태를 구현하기 위하여 온도를 극저온으로 유지하여 가스입자의 운동성을 저하시켜 냉각된 표면에 가스입자를 포획하여 진공도를 올리도록 하고 있다.
또, 이온펌프는 챔버 내에 양극과 음극 등 전극을 설치하고 전기장과 자기장을 형성 후 이를 이용하여 기체입자를 이온화시켜 제거하고, 게터링펌프는 티타늄 등 화학적으로 반응성이 좋은 금속을 진공챔버 내에 증착시켜 가스 입자를 증착 막으로 포집하도록 하고 있다.
그러나, 상기한 냉온펌프 및 이온펌프, 게터링펌프는 고가이면서 구조가 복잡한 단점과 기계식 진공펌프에 버금가는 성능을 발휘하지 못하는 폐단이 따랐다.
뿐만 아니라, 기존의 냉온펌프 및 게터링펌프를 포함하는 극고진공펌프는 출구를 막은 상태에서 챔버내의 가스 입자를 포집하는 방법이므로 반도체나 기타 나노공정 등에서 챔버 내 공정중 새로운 가스가 발생하는 경우 사용이 제한되는 문제가 따르며, 이온펌프는 이온화가 힘든 수소등의 입자를 제거시키기가 곤란한 문제점이 따랐다.In general, a vacuum pump is a device used to inhale gas at a pressure below atmospheric pressure and discharge it at atmospheric pressure, and various types of vacuum pumps are applied according to a field of use.
Among the vacuum pumps disclosed in the prior art, the diffusion pump is used to exhaust the vaporized oil vapor particles by giving the gas particles momentum toward the outlet of the vacuum pump, and the dry screw vacuum pump is bitten in pairs to give the vibration amount to the particles. I'm trying to.
In addition, the turbomolecular pump is configured to impart momentum to gas particles in the pump while the fan in the form of a multilayer metal plate rotates at a high speed.
However, since the principle of the vacuum pump widely used in industrial sites such as the diffusion pump and the turbo molecular pump has a mechanical structure that directly imparts momentum to the gas particles, it requires precise machining technology when manufacturing parts, and also oil. Using a diffusion pump was a problem that the inside of the vacuum chamber is contaminated by the backflow of oil vapor.
On the other hand, in order to compensate for the disadvantages of the mechanical vacuum pump described above, a cold or hot pump, an ion pump and a gettering pump are used, where the cold and hot pump maintains the temperature at a very low temperature to realize a high vacuum state and thus the mobility of the gas particles. Gas particles are trapped on the cooled and cooled surface to increase the degree of vacuum.
In addition, the ion pump installs an electrode such as an anode and a cathode in the chamber, forms an electric field and a magnetic field, and then ionizes and removes gas particles, and the gettering pump deposits a chemically reactive metal such as titanium in a vacuum chamber. The gas particles are collected by the deposition film.
However, the above-described cold and hot pumps, ion pumps, gettering pumps are expensive and complicated in structure, and a closed stage incapable of performing performance comparable to that of a mechanical vacuum pump.
In addition, the ultra-high vacuum pump including the existing cold / hot pump and the gettering pump collects the gas particles in the chamber while the outlet is blocked, so it is not suitable for use when new gas is generated in the chamber during semiconductor or other nano processes. There is a problem that is limited, and the ion pump has a problem that it is difficult to remove particles such as hydrogen is difficult to ionize.
이에 따라 본 발명은 상기한 문제점을 해결하기 위해 착안 된 것으로서, 기계적인 구성이 필요로 하지 않는 단순한 구조를 가지면서 배출하고자 하는 잔류 가스입자의 성질에 따라 이온화가 힘든 잔류 가스입자들의 배출이 원활하게 수행되어 고청정의 아주 높은 진공상태를 구현할 수 있는 진공펌프를 제공하는 것을 그 목적으로 한다. Accordingly, the present invention was conceived to solve the above problems, and has a simple structure that does not require a mechanical configuration, and according to the nature of the residual gas particles to be discharged, it is possible to smoothly discharge the residual gas particles that are difficult to ionize. It is an object of the present invention to provide a vacuum pump that can be carried out to realize a very high vacuum state of high cleanness.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
<실시예 1>
도 1은 본 발명의 일실시예에 따른 진공펌프를 나타내는 구성도이다.
본 발명의 일실시예에 따른 진공펌프는 입구(3)를 통하여 진공챔버(7)와 연결되는 복사압진공펌프(2)의 일측에 가시광, 자외선, 엑스선을 포함하는 전자기파를 발생하는 광원(1)이 구비되고, 다른 일측에는 복사압진공펌프(2)내에 잔류 가스입자들이 전자기파의 복사압에 의해 배출되도록 출구가 형성되어 보조진공펌프(5)의 배출구(4)를 통하여 배기된다.
이때, 복사압진공펌프(2)의 일측에 투명창(6)이 설치되고, 투명창(6)의 내측 또는 외측에 광원(1)이 설치된다.
여기서, 복사압진공펌프(2)는 일측에 투명창(6)이 설치된 밀폐된 용기로 형성되고, 투명창(6)의 반대쪽에는 전자기파에 의해 가속된 가스입자들이 배출되도록 출구가 구비되는데, 출구에는 터보분자펌프를 포함하는 보조펌프가 설치되어 배출에 다른 진공도가 일정하게 유지되므로 이온화가 힘든 입자들도 쉽게 배출할 수 있어 고청정의 높은 진공상태를 쉽게 구현할 수 있다.
작동시에는, 투명창(6)의 외부 또는 내부에 설치된 광원(1)에서 전자기파가 출구측으로 방사되면 복사압진공펌프(2) 내의 압력이 떨어지고, 이로 인해 입구(3)를 통하여 연결된 진공챔버(7) 내의 가스가 밀려나와 고진공상태를 유지하게 된다.
이때, 상기 복사압진공펌프(2)와 진공챔버(7)를 연결하는 입구(3)의 복사압진공펌프(2)측 단부는 빛가림막(8)에 의해 출구 측을 향하도록 개방된다. 이는 광원(1)에서 발생되는 전자기파가 입구(3) 측으로 조사되지 않도록 차단함에 따라 가스입자들이 복사압에 의해 진공챔버(7) 내부로 역류하는 현상이 방지된다.
한편, 조사되는 전자기파의 광량 및 파장, 그리고 배기하고자하는 잔류 가스입자 크기에 따라 배기속도 차이가 있으므로, 혼합물 형태로 잔류하는 여러 종류의 가스 입자를 신속하게 배출하기 위해 서로 상이한 파장을 발생하는 광원(1)을 2개소에 구비하는 구성도 가능하다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
<Example 1>
1 is a block diagram showing a vacuum pump according to an embodiment of the present invention.
The vacuum pump according to an embodiment of the present invention is a light source (1) for generating an electromagnetic wave including visible light, ultraviolet light, X-rays on one side of the radiation vacuum pump (2) connected to the vacuum chamber (7) through the inlet (3) Is provided, and on the other side, the outlet is formed so that the residual gas particles in the radiation vacuum pump 2 is discharged by the radiation pressure of the electromagnetic wave is exhausted through the outlet 4 of the auxiliary vacuum pump (5).
In this case, the transparent window 6 is installed at one side of the radiation vacuum pump 2, and the
Here, the radiation vacuum pump (2) is formed as a sealed container provided with a transparent window 6 on one side, the opposite side of the transparent window 6 is provided with an outlet to discharge gas particles accelerated by electromagnetic waves, the outlet Auxiliary pump including a turbomolecular pump is installed to maintain a different vacuum at the discharge, so that it is easy to discharge even hard to ionize particles, it is possible to easily implement a high vacuum high clean.
In operation, when the electromagnetic wave is radiated to the outlet side from the
At this time, the end portion of the radiation pressure vacuum pump 2 side of the inlet 3 connecting the radiation pressure vacuum pump 2 and the vacuum chamber 7 is opened to the outlet side by the light shielding film 8. This blocks the electromagnetic waves generated from the
On the other hand, since there is a difference in the exhaust velocity depending on the amount and wavelength of the electromagnetic wave to be irradiated, and the size of the residual gas particles to be exhausted, a light source that generates different wavelengths in order to quickly discharge the various types of gas particles remaining in the form of a mixture ( The structure which has 1) in two places is also possible.
삭제delete
도 1은 본 발명의 일실시예에 따른 진공펌프를 나타내는 구성도.
*도면의 주요 부분에 사용된 부호의 설명*
1: 광원 2: 복사압진공펌프 3: 입구
4: 배출구 5: 보조진공펌프 6: 투명창
7: 진공챔버 8: 빛가림막 9: 가스입자 1 is a block diagram showing a vacuum pump according to an embodiment of the present invention.
* Description of the symbols used in the main parts of the drawings *
1: light source 2: radiation vacuum pump 3: inlet
4: outlet 5: auxiliary vacuum pump 6: transparent window
7: vacuum chamber 8: screen covering 9: gas particles
삭제delete
삭제delete
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080088499A KR101008065B1 (en) | 2008-09-08 | 2008-09-08 | Radiaton pressure vacuum pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080088499A KR101008065B1 (en) | 2008-09-08 | 2008-09-08 | Radiaton pressure vacuum pump |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100029651A KR20100029651A (en) | 2010-03-17 |
KR101008065B1 true KR101008065B1 (en) | 2011-01-13 |
Family
ID=42179840
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080088499A KR101008065B1 (en) | 2008-09-08 | 2008-09-08 | Radiaton pressure vacuum pump |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101008065B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101320237B1 (en) * | 2011-07-26 | 2013-10-21 | 고병모 | Vacuum pump utilizing electron momentum transference |
WO2015044182A2 (en) * | 2013-09-25 | 2015-04-02 | Asml Netherlands B.V. | Beam delivery apparatus and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56111058A (en) | 1980-01-07 | 1981-09-02 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Vacuum purification device |
JPH07272670A (en) * | 1994-03-29 | 1995-10-20 | Ebara Corp | Vacuum pump and its discharging method |
JPH11336662A (en) | 1997-07-16 | 1999-12-07 | Mitsubishi Heavy Ind Ltd | Vacuum vessel and method for evacuating therefrom |
JP2001126657A (en) | 1999-10-27 | 2001-05-11 | Jeol Ltd | Electron vacuum pump |
-
2008
- 2008-09-08 KR KR1020080088499A patent/KR101008065B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56111058A (en) | 1980-01-07 | 1981-09-02 | Chiyou Lsi Gijutsu Kenkyu Kumiai | Vacuum purification device |
JPH07272670A (en) * | 1994-03-29 | 1995-10-20 | Ebara Corp | Vacuum pump and its discharging method |
JPH11336662A (en) | 1997-07-16 | 1999-12-07 | Mitsubishi Heavy Ind Ltd | Vacuum vessel and method for evacuating therefrom |
JP2001126657A (en) | 1999-10-27 | 2001-05-11 | Jeol Ltd | Electron vacuum pump |
Also Published As
Publication number | Publication date |
---|---|
KR20100029651A (en) | 2010-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10887973B2 (en) | High brightness laser-produced plasma light source | |
KR102298600B1 (en) | Apparatus and methods for optics protection from debris in plasma-based light source | |
Duncan | Invited review article: laser vaporization cluster sources | |
JP2008518480A5 (en) | ||
US8147647B2 (en) | Method and arrangement for cleaning optical surfaces in plasma-based radiation sources | |
US9476841B1 (en) | High-brightness LPP EUV light source | |
JP2010518583A5 (en) | ||
JP2005207419A (en) | Vacuum pumping device | |
KR101123187B1 (en) | Method and device for removing particles generated by means of a radiation source during generation of short-wave radiation | |
TW200421018A (en) | Method and apparatus for recycling gases used in a lithography tool | |
JP2010103507A (en) | Method and apparatus for operating short wavelength radioactive source based on plasma | |
JP5809890B2 (en) | Ion beam equipment | |
KR101008065B1 (en) | Radiaton pressure vacuum pump | |
RU2658314C1 (en) | High-frequency source of euf-radiation and method of generation of radiation from laser plasma | |
US9336990B2 (en) | Semiconductor process pumping arrangements | |
TW201202463A (en) | Full-enclosure, controlled-flow mini-environment for thin film chambers | |
WO2017217882A1 (en) | High-brightness lpp euv light source | |
JP7549313B2 (en) | Short-wavelength radiation source with multi-section collector module | |
De Graaf et al. | Hydrogen atom cleaning of archeological artefacts | |
RU2353017C1 (en) | Low-energy ion beams source for nano electronics technologies | |
Schäfert et al. | Efficient photoresist residue removal with 172nm excimer radiation | |
Dylla | Summary of the IUVSTA workshop on wall conditioning in large UHV devices | |
JP2587522B2 (en) | Generation method of extremely high vacuum environment | |
Teranishi et al. | VUV spectroscopic measurement for dielectric barrier discharge excited by piezoelectric transformer in He–Xe mixture | |
Mathewson | Vacuum system design |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20131229 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20141120 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160105 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20161110 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20171028 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20181024 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20191106 Year of fee payment: 10 |