KR100999069B1 - Preparation of the Streptomyces strains producing alpha-glucosidase inhibitors transformed by the recombinant vectors harboring the salbostatin biosynthesis gene cluster, and mass-production method of these inhibitors - Google Patents

Preparation of the Streptomyces strains producing alpha-glucosidase inhibitors transformed by the recombinant vectors harboring the salbostatin biosynthesis gene cluster, and mass-production method of these inhibitors Download PDF

Info

Publication number
KR100999069B1
KR100999069B1 KR1020080083367A KR20080083367A KR100999069B1 KR 100999069 B1 KR100999069 B1 KR 100999069B1 KR 1020080083367 A KR1020080083367 A KR 1020080083367A KR 20080083367 A KR20080083367 A KR 20080083367A KR 100999069 B1 KR100999069 B1 KR 100999069B1
Authority
KR
South Korea
Prior art keywords
alpha
seq
glucosidase
transformed
gene
Prior art date
Application number
KR1020080083367A
Other languages
Korean (ko)
Other versions
KR20100024687A (en
Inventor
홍순광
용 훈 정
정 훈 김
은 아 오
원 재 지
장용근
Original Assignee
홍순광
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 홍순광, 명지대학교 산학협력단 filed Critical 홍순광
Priority to KR1020080083367A priority Critical patent/KR100999069B1/en
Priority to PCT/KR2008/005645 priority patent/WO2010024493A1/en
Publication of KR20100024687A publication Critical patent/KR20100024687A/en
Application granted granted Critical
Publication of KR100999069B1 publication Critical patent/KR100999069B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/36Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Actinomyces; from Streptomyces (G)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 살보스타틴 생합성 유전자군을 이용한 알파-글루코시다아제 억제물질 생산균주의 제조 및 알파-글루코시다아제 억제물질의 대량생산방법에 관한 것으로, 살보스타틴 생산균주인 스트렙토마이세스 알버스(Streptomyces albus) KCTC 9015에서 유래하고, salH에서 salU까지 14개의 효소 코딩 유전자 지역을 포함하여 구성되는 약 17kb의 살보스타틴 생합성 유전자군의 일부의 염기서열을 도입하여 알파-글루코시다아제 억제활성을 갖는 스트렙토마이세스 속 균주 유래의 형질전환체를 제조하는 방법에 관한 것이다. The present invention relates to the production of alpha-glucosidase inhibitors using a salvostatin biosynthetic gene group and to a method for mass production of alpha-glucosidase inhibitors, Streptomyces albus (Steptomyces albus) Streptomyces genus with alpha-glucosidase inhibitory activity derived from KCTC 9015 and introduced with a base sequence of a portion of the salvostatin biosynthetic gene group of about 17 kb, comprising 14 enzyme coding gene regions from salH to salU The present invention relates to a method for producing a transformant derived from a strain.

본 발명에 따르면, 상기 제조된 형질전환체로부터 알파-글루코시다아제를 억제하는 발리엔아민 또는 발리올아민을 대량생산할 수 있어, 기존의 당뇨병 치료제의 원료물질을 대체하고, 당뇨병 치료제를 저렴하게 생산할 수 있는 뛰어난 효과가 있다.According to the present invention, it is possible to mass-produce a valenamine or a valenamine that inhibits alpha-glucosidase from the prepared transformant, thereby replacing the raw material of the existing diabetes therapeutic agent, and inexpensively producing a diabetes therapeutic agent. It has an excellent effect.

스트렙토마이세스 알버스, 살보스타틴, 발리엔아민, 발리올아민 Streptomyces albus, salvostatin, baliamine, baliolamine

Description

살보스타틴 생합성 유전자군을 이용한 알파-글루코시다아제 억제물질 생산 균주의 제조 및 알파-글루코시다아제 억제물질의 대량생산방법{Preparation of the Streptomyces strains producing alpha-glucosidase inhibitors transformed by the recombinant vectors harboring the salbostatin biosynthesis gene cluster, and mass-production method of these inhibitors}Preparation of the Streptomyces strains producing alpha-glucosidase inhibitors transformed by the recombinant vectors harboring the salbostatin biosynthesis gene cluster, and mass-production method of these inhibitors}

본 발명은 살보스타틴(살보스타틴) 생합성 유전자군을 이용한 알파-글루코시다아제 억제물질을 생산하는 형질전환 균주의 제조 및 알파-글루코시다아제 억제물질의 대량생산방법에 관한 것이다. 보다 상세하게는, 본 발명은 스트렙토마이세스 알버스(Streptomyces albus) KCTC 9015로부터 살보스타틴의 생합성을 지정하는 유전자군의 전체 또는 일부를 포함하는 재조합 벡터를 알파-글루코시다아제 활성이 없는 스트렙토마이세스 속 균주에 도입하여 알파-글루코시다아제 억제물질을 생산하는 형질전환체를 제조하고, 상기 균주로부터 알파-글루코시다아제 억제물질을 대량생산하는 방법에 관한 것이다.The present invention relates to the production of a transformed strain producing an alpha-glucosidase inhibitor using a salvostatin (salvostatin) biosynthetic gene group and to a mass production method of an alpha-glucosidase inhibitor. More specifically, the present invention relates to a recombinant vector comprising all or a portion of a gene group designating the biosynthesis of salvostatin from Streptomyces albus KCTC 9015, which is a genus of Streptomyces without alpha-glucosidase activity. The present invention relates to a method for producing a transformant that is introduced into a strain to produce an alpha-glucosidase inhibitor, and a mass production of an alpha-glucosidase inhibitor from the strain.

살보스타틴은 살리노마이신과 함께 스트렙토마이세스 알버스 KCTC 9015에서 생산된다(도 1). 그 자체로 이당류인 트레할로스 분해효소인 트레할레이즈 (trehalase) 저해제로 작용하는 무독성의 항진균제이며, 최근에는 당뇨병 치료제로도 용도가 개발되고 있다. 또한 살보스타틴의 구조의 일부분인 발리엔아민(valienamine)과 이로부터 유래한 발리올아민(valiolamine) 화합물은 알파-글루코시다아제 억제활성을 가지며, 이와 관련하여 당뇨병치료제인 보글리보스(voglibose)의 화학적 합성을 위한 시발물질로 활용될 수 있다(도 2).Salvostatin is produced in Streptomyces albus KCTC 9015 together with salinomycin (FIG. 1). It is a nontoxic antifungal agent that acts as an inhibitor of trehalase, a disaccharide trehalose degrading enzyme, and has recently been developed as a therapeutic agent for diabetes. In addition, valienamine, which is part of the structure of salvostatin, and the valolamine compound derived therefrom, have alpha-glucosidase inhibitory activity, and in this regard, the chemicals of vogliose (voglibose) It can be used as a starting material for synthesis (FIG. 2).

발리엔아민 구조를 갖고 있는 화합물은 현재까지 수종이 보고 되었으며, 보글리보스와 비슷한 약리 작용을 하는 당뇨병 치료제인 아카보스, 농업용 항생제인 발리다마이신이 대표적인 화합물이다(도 1). 이들의 생합성 유전자를 클로닝하여 연구한 결과 이들 화합물의 발리엔아민 구조는 세도-헵툴로오즈 7-포스페이트(sedo-heptulose 7-phosphate)가 싸이클레이즈 효소에 의해 2-에피-5-에피-발리올론(2-epi-5-epi-valiolone)으로 전환되고, 다시 몇 단계를 거쳐 반응이 진행되어 최종적으로 당 결합과정을 통해 최종산물이 생산되는 것으로 알려져 있다(Taifo Mahmud. Nat. Prod. Rep. 2003, 20, 137). 살보스타틴의 생합성 유전자군의 구성이 아카보스나 발리다마이신의 그것과는 상이할 것으로 예측이 되었지만, 최초 중간산물인 2-에피-5-에피-발리올론으로 전환까지는 필수적인 것으로 예상되었기 때문에, 본 발명자들은 2-에피-5-에피-발리올론 생성을 지정하는 세도-헵툴로즈 7-포스페이트 싸이클레이즈의 유전자를 탐침으로 하여 살보스타틴의 생합성에 관여하는 유전 자군의 분리를 시도하여 이를 성공적으로 완수하여 보고한 바 있다. 이 중 2-에피-5-에피-발리올론 합성효소 및 이를 코딩하는 salQ 유전자에 대한 특허를 등록하였다(Soon-Kwang Hong etc, Appl. Microbiol. Biotechnol. DOI 10.1007/s00253-008-1591-2, 2008, 특허등록 10-0752683). Several compounds have been reported so far, and the compound has a valienamine structure, and acarbose, a diabetic drug having a pharmacological action similar to that of bolibos, and a agricultural antibiotic, Validamycin, are representative compounds (FIG. 1). Cloning of these biosynthetic genes has led to studies of the valenamine structure of these compounds with sedo-heptulose 7-phosphate as a 2-epi-5-epi-valiolone by cyclase enzyme. It is known to convert to (2-epi-5-epi-valiolone), and then go through several steps to finally produce the final product through the sugar binding process (Taifo Mahmud. Nat. Prod. Rep. 2003). , 20, 137). Although the composition of the biosynthetic gene family of salvostatin was expected to be different from that of acarbose or validamycin, the inventors were expected to be essential until the conversion to the first intermediate, 2-epi-5-epi-valiolone, Using the gene of the sedo-heptulose 7-phosphate cycle designating 2-epi-5-epi-valiolon production as a probe, we attempted to isolate the gene group involved in the biosynthesis of salvostatin and successfully completed and reported it. There is a bar. Among them, a patent for 2-epi-5-epi-valiolon synthetase and salQ gene encoding the same is registered (Soon-Kwang Hong etc, Appl. Microbiol. Biotechnol. DOI 10.1007 / s00253-008-1591-2, 2008, Patent Registration 10-0752683.

당뇨병치료제 보글리보스는 반합성적으로 생산되는데, 우선 스트렙토마이세스 하이그로스코피크스 KCTC 1717로부터 발효공정을 통해 농업용 항생제인 발리다마이신 A를 확보한 후 이를 가수분해하여 발리엔아민 구조를 정제하고, 수화 반응시켜 발리올아민을 제조한 후, 추가적인 몇 단계의 유기합성 과정을 거쳐 생산한다. 따라서 발리엔아민과 발리올아민이라는 두 가지 사이크리톨(cyclitol)은 보글리보스의 유기합성을 위한 결정적인 원료물질로서 사용될 수 있으므로 현재 고가에 판매되고 있으며, 이들 원료물질의 저가 생산을 유도할 수 있는 발명을 통해 높은 부가가치를 창출할 수 있다(도 2).Boglybose, a diabetic drug, is produced semi-synthetically. First, fermentation process is obtained from Streptomyces hygroscopics KCTC 1717 to obtain the agricultural antibiotic, Validamycin A, and then hydrolyze it to purify the Baliienamine structure. The reaction is carried out to produce a valolinamine, which is then produced through several additional steps of organic synthesis. Therefore, two cyclitols, valienamine and valitolamine, can be used as decisive raw materials for the organic synthesis of Boglybose, and are currently sold at high prices, and the invention can induce low-cost production of these raw materials. Through this, high added value can be created (FIG. 2).

이에, 본 발명자들은 상기 종래기술들의 문제점들을 극복하기 위하여 예의 연구 노력한 결과, 스트렙토마이세스 알버스 KCTC 9015로부터 살보스타틴의 생합성에 관여하는 유전자군 중에서 서열번호 1 내지 서열번호 14의 염기서열, 또는 서열번호 2 내지 서열번호 14의 염기서열을 갖는 유전자 군들을 포함하는 재조합벡터를 알파-글루코시다아제 억제활성이 없는 스트렙토마이세스 균주에 도입하는 경우, 알파-글루코시다아제 억제물질인 발리엔아민과 발리올아민을 대량생산 할 수 있음을 확인하고, 본 발명을 완성하게 되었다.Therefore, the present inventors have made intensive research efforts to overcome the problems of the prior art, the base sequence of SEQ ID NO: 1 to SEQ ID NO: 14, or SEQ ID NO: 1 among the gene group involved in the biosynthesis of salvostatin from Streptomyces albus KCTC 9015 When introducing a recombinant vector comprising a group of genes having a nucleotide sequence of 2 to SEQ ID NO: 14 to the Streptomyces strain that does not have alpha-glucosidase inhibitory activity, the valenceamine and the valenamine which is an alpha-glucosidase inhibitor After confirming that the amine can be mass-produced, the present invention was completed.

따라서, 본 발명의 주된 목적은 스트렙토마이세스 알버스 KCTC 9015로부터 클로닝한 살보스타틴의 생합성에 관여하는 유전자군 중에서 일부 유전자들의 염기서열을 포함하는 재조합벡터를 제작하고, 이를 알파-글루코시다아제 억제활성이 없는 스트렙토마이세스 균주에 도입하여 발현시키고 궁극적으로 알파-글루코시다아제 억제활성을 갖는 형질전환체를 제공하고자 한다. Therefore, the main object of the present invention is to produce a recombinant vector containing the nucleotide sequence of some genes from the gene group involved in the biosynthesis of salvostatin cloned from Streptomyces albus KCTC 9015, and this activity The present invention seeks to provide a transformant that is introduced into and expressed in the absence of a streptomyces strain and ultimately has alpha-glucosidase inhibitory activity.

본 발명의 다른 목적은 상기 형질전환체를 이용하여 알파-글루코시다아제 억제물질을 대량생산하는 방법을 제공하고자 한다.Another object of the present invention to provide a method for mass production of alpha-glucosidase inhibitor using the transformant.

본 발명의 한 양태에 따르면, 본 발명은 살보스타틴 생합성 유전자 군에서 분리된 서열번호 2 내지 서열번호 14의 염기서열을 갖는 유전자를 포함하는 알파-글루코시다제 억제제 생산용 DNA 단편을 제공한다. 본 발명의 상기 DNA 단편은 살보스타틴 생산균주인 스트렙토마이세스 알버스(Streptomyces albus KCTC 9015)의 게놈에서 분리된 DNA 단편으로서 서열번호 2의 SalI 유전자 내지 서열번호 14의 SalU 유전자가 포함된 DNA 단편이다. 상기의 서열번호 2의 SalI 유전자 내지 서열번호 14의 SalU 유전자들은 기존에 살보스타틴 생합성에 관련된 SalA 내지 SalQ의 유전자 클러스터의 일부분인 SalI 유전자 내지 SalQ 유전자와 본 발명자들이 새롭게 밝혀낸 서열번호 11의 SalR, 서열번호 12의 SalS, 서열번호 13의 SalT, 및 서열 번호 14의 SalU 유전자가 새롭게 포함된 DNA 단편이다. 상기 서열번호 2의 SalI 유전자 내지 서열번호 14의 SalU 유전자를 모두 포함한 본 발명의 상기 DNA 단편은 알파-글루코시다제 억제제인 발리엔아민 또는 발리올아민의 생합성에 관여하는 효소들을 암호화한 유전자를 모두 포함함으로써, 상기 DNA 단편이 형질도입된 숙주세포 내에서 알파-글루코시다제 억제제를 대량생산할 수 있다. 본 발명자들은 본 발명의 실시예에서는 서열번호 2 내지 서열번호 14의 유전자 군을 포함하는 DNA 단편이 재조합된 재조합벡터로 방선균을 형질전환시켜 알파-글루코시다제 억제제인 발리올아민을 대량생산하였다(도 11 내지 도 13). According to one aspect of the invention, the present invention provides a DNA fragment for producing an alpha-glucosidase inhibitor comprising a gene having a nucleotide sequence of SEQ ID NO: 2 to SEQ ID NO: 14 isolated from the salvostatin biosynthetic gene group. The DNA fragment of the present invention is a DNA fragment isolated from the genome of Streptomyces albus KCTC 9015, a salvostatin producing strain, is a DNA fragment containing SalI gene of SEQ ID NO: 2 to SalU gene of SEQ ID NO: 14. The SalI genes of SEQ ID NO: 2 to SalU genes of SEQ ID NO: 14 are SalI genes to SalQ genes, which are part of a gene cluster of SalA to SalQ related to salvostatin biosynthesis, and SalR, sequence of SEQ ID NO: 11 newly discovered by the present inventors. A DNA fragment newly containing SalS of No. 12, SalT of SEQ ID NO: 13, and SalU gene of SEQ ID NO: 14. The DNA fragment of the present invention including all of the SalI genes of SEQ ID NO: 2 to the SalU gene of SEQ ID NO: 14 is a gene encoding all of the enzymes involved in biosynthesis of an alpha-glucosidase inhibitor, Balienamine or Baliolamine. By containing, the alpha-glucosidase inhibitor can be mass-produced in the host cell transfected with the DNA fragment. In the embodiment of the present invention, the present inventors transformed actinomycetes with a recombinant vector in which a DNA fragment comprising the gene group of SEQ ID NO: 2 to SEQ ID NO: 14 was mass-produced an alpha-glucosidase inhibitor baliolamine ( 11 to 13).

본 발명의 알파-글루코시다제 억제제 생산용 DNA 단편에서, 상기 DNA 단편은 서열번호 1의 염기서열을 갖는 유전자를 더 포함하는 것이 바람직하다. 상기 서열번호 1의 SalH 유전자 내지 서열번호 14의 SalU 유전자를 모두 포함한 본 발명의 상기 DNA 단편은 알파-글루코시다제 억제제인 발리엔아민의 합성에 관여하는 효소들을 암호화한 유전자를 모두 포함함으로써, 상기 DNA 단편이 형질도입된 숙주세포 내에서 알파-글루코시다제 억제제를 대량생산할 수 있다. 본 발명자들은 본 발명의 실시예에서는 서열번호 1 내지 서열번호 14의 유전자 군을 포함하는 DNA 단편이 재조합된 재조합벡터로 방선균을 형질전환시켜 알파-글루코시다제 억제제인 발리엔아민을 대량생산하였다(도 9, 도 10).In the DNA fragment for producing an alpha-glucosidase inhibitor of the present invention, the DNA fragment preferably further includes a gene having a nucleotide sequence of SEQ ID NO: 1. The DNA fragment of the present invention including all the SalH gene of SEQ ID NO: 1 to SalU gene of SEQ ID NO: 14 includes all of the genes encoding enzymes involved in the synthesis of the valenamine, an alpha-glucosidase inhibitor, Alpha-glucosidase inhibitors can be mass produced in host cells transfected with DNA fragments. In the embodiment of the present invention, the present invention transformed actinomycetes into a recombinant vector in which a DNA fragment comprising the gene group of SEQ ID NO: 1 to SEQ ID NO: 14 was mass-produced an alipha-glucosidase inhibitor, valenamine ( 9, 10).

본 발명의 알파-글루코시다제 억제제 생산용 DNA 단편에서, 상기 알파-글루코시다제 억제제는 발리올아민(valiolamine) 또는 발리엔아민(Valienamine)인 것이 바람직하다. 본 발명의 바람직한 실시예에서는 본 발명의 서열번호 2(SalI) 내지 서열번호 14(SalU)의 염기서열을 갖는 유전자를 모두 포함하는 알파-글루코시다제 억제제 생산용 DNA 단편이 도입된 재조합 벡터로 형질전환된 세포가 알파-글루코시다제 억제제인 발리엔아민을 생산하고, 서열번호 1(SalH) 내지 서열번호 14(SalU)의 염기서열을 갖는 유전자를 모두 포함하는 알파-글루코시다제 억제제 생산용 DNA 단편이 도입된 재조합 벡터로 형질전환된 세포가 알파-글루코시다제 억제제인 발리올아민을 생산함을 확인할 수 있었다.In the DNA fragment for the production of the alpha-glucosidase inhibitor of the present invention, the alpha-glucosidase inhibitor is preferably valololamine or valienamine. In a preferred embodiment of the present invention, the recombinant vector into which the DNA fragment for alpha-glucosidase inhibitor production containing all the genes having the nucleotide sequence of SEQ ID NO: 2 (SalI) to SEQ ID NO: 14 (SalU) of the present invention is introduced DNA for producing alpha-glucosidase inhibitor, wherein the converted cells produce a valenamine, an alpha-glucosidase inhibitor, and include all genes having a nucleotide sequence of SEQ ID NO: 1 (SalH) to SEQ ID NO: 14 (SalU) It was confirmed that the cells transformed with the recombinant vector into which the fragment was introduced produce a valolamine, an alpha-glucosidase inhibitor.

본 발명의 다른 양태에 따르면, 본 발명은 서열번호 1 내지 서열번호 14의 염기서열을 갖는 유전자를 포함하는 알파-글루코시다제 억제제 생산용 DNA 단편 또는 서열번호 2 내지 서열번호 14의 염기서열을 갖는 유전자를 포함하는 알파-글루코시다제 억제제 생산용 DNA 단편이 삽입된 재조합 발현벡터를 제공한다(도 4 및 도 5). 본 발명의 발현벡터는 알파-글루코시다제 억제제 생산용 DNA 단편이 삽입 또는 도입될 수 있는 플라스미드, 바이러스 또는 기타 매개체를 의미한다. According to another aspect of the invention, the invention has a DNA fragment for producing an alpha-glucosidase inhibitor comprising a gene having a nucleotide sequence of SEQ ID NO: 1 to SEQ ID NO: 14 or a base sequence of SEQ ID NO: 2 to SEQ ID NO: 14 It provides a recombinant expression vector inserted with a DNA fragment for producing an alpha-glucosidase inhibitor containing a gene (Figs. 4 and 5). The expression vector of the present invention refers to a plasmid, virus or other medium into which a DNA fragment for producing an alpha-glucosidase inhibitor can be inserted or introduced.

본 발명에 따른 DNA 단편은 각각 서열번호 2 내지 서열번호 14의 유전자 군, 또는 각각 서열번호 1 내지 서열번호 14의 유전자 군을 포함하고 있으므로, 이들 각각의 유전자가 모두 발현될 수 있도록 상기 서열번호 1 내지 서열번호 14의 유전자들이 발현 조절 서열에 작동 가능하게 연결될 수 있으며, 상기 작동 가능하게 연결된 유전자 서열과 발현조절 서열은 선택마커 및 복제개시점 (replication origin)을 같이 포함하는 하나의 발현벡터 내에 포함될 수 있다. “작동 가능하게 연결(operably linked)”된다는 것은 적절한 분자가 발현 조절 서열에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 발현 조절 서열일 수 있 다. 상기 “발현 조절 서열(expression control sequence)”이란 특정한 숙주 세포에서 작동 가능하게 연결된 폴리뉴클레오티드 서열의 발현을 조절하는 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리보좀 결합 부위를 코딩하는 서열 및 전사 및 해독의 종결을 조절하는 서열을 포함한다. 상기 플라스미드의 예로는 대장균 유래 플라스미드(pBR322, pBR325, pUC118 및 pUC119, pET-22b+), 바실러스 서브틸러스 유래 플라스미드(pUB110 및 pTP5), 방선균 유래 플라스미드 (pIJ101, pIJ702, pUWL201pw 및 pWHM3) 및 효모 유래 플라스미드(YEp13, YEp24 및 YCp50) 등이 사용될 수 있다. 본 발명에 따른 폴리뉴클레오티드를 숙주세포에 도입시키는데 적합한 벡터를 사용할 수 있으며, 바람직하게는 단백질 발현 유도 및 발현된 단백질의 분리가 용이하도록 디자인된 벡터를 사용할 수 있다. 본 발명의 구체적인 실시에서는, 발현벡터 pWHM3 벡터(JESUS VARA 등, Journal of Bacteriology, 1989, 171, 5872-5881)에 삽입하여 알파-글루코시다제 억제제 생산용 재조합 플라스미드(pWIU 및 pWHU)를 제작하였다(도 4, 도 5). 본 발명에서 상기 pWHM3 벡터를 사용하여 본 발명의 알파-글루코시다제 억제제 생산용 DNA 단편을 벡터에 도입하는 경우 pWHM3 벡터는 대장균-방선균 셔틀벡터이므로 유전자 조작이 까다로운 방선균에서의 유전자 조작 대신 대장균에서 용이하게 수행 할 수 있으며, 이를 방선균에 도입하였을 때 높은 유전자 카피 수(100-200 copies/염색체 DNA)를 유지할 수 있는 장점이 있다.DNA fragments according to the present invention each comprises a gene group of SEQ ID NO: 2 to SEQ ID NO: 14, or a gene group of SEQ ID NO: 1 to SEQ ID NO: 14, respectively, so that all of these respective genes can be expressed in SEQ ID NO: 1 To genes of SEQ ID NO: 14 may be operably linked to an expression control sequence, wherein the operably linked gene sequence and expression control sequence are to be included in an expression vector including a selection marker and a replication origin. Can be. “Operably linked” can be genes and expression control sequences linked in such a way as to enable gene expression when the appropriate molecule is bound to the expression control sequences. The "expression control sequence" refers to a DNA sequence that controls the expression of a polynucleotide sequence operably linked in a particular host cell. Such regulatory sequences include promoters for conducting transcription, any operator sequence for regulating transcription, sequences encoding suitable mRNA ribosomal binding sites, and sequences that control the termination of transcription and translation. Examples of such plasmids include E. coli-derived plasmids (pBR322, pBR325, pUC118 and pUC119, pET-22b +), Bacillus subtilis-derived plasmids (pUB110 and pTP5), actinomycetes-derived plasmids (pIJ101, pIJ702, pUWL201pw and pWHM3) and yeast-derived plasmids (YEp13, YEp24 and YCp50) and the like can be used. A vector suitable for introducing a polynucleotide according to the present invention into a host cell can be used, and preferably a vector designed to facilitate protein expression induction and isolation of the expressed protein. In a specific embodiment of the present invention, recombinant plasmids (pWIU and pWHU) for the production of alpha-glucosidase inhibitors were prepared by inserting into expression vector pWHM3 vectors (JESUS VARA et al., Journal of Bacteriology, 1989, 171, 5872-5881). 4, 5). In the present invention, when the pWHM3 vector is used to introduce the DNA fragment for producing alpha-glucosidase inhibitor of the present invention into the vector, the pWHM3 vector is E. coli-actinomycete shuttle vector, so it is easy in E. coli instead of genetic manipulation in difficult actinomycetes. When introduced into actinomycetes, it has the advantage of maintaining a high gene copy number (100-200 copies / chromosome DNA).

본 발명의 재조합 발현벡터에서, 상기 재조합 발현벡터는 발현벡터 pWHM3에 서열번호 1 내지 서열번호 14의 유전자 군을 포함하는 DNA 단편이 도입된 도 4의 개열지도를 갖는 재조합벡터(pWHU), 또는 서열번호 2 내지 서열번호 14의 유전자 군을 포함하는 DNA 단편이 도입된 도 5의 개열지도를 갖는 재조합벡터(pWIU)인 것인 것이 바람직하다. In the recombinant expression vector of the present invention, the recombinant expression vector is a recombinant vector (pWHU) having a cleavage map of FIG. 4 or a sequence in which a DNA fragment comprising a gene group of SEQ ID NO: 1 to SEQ ID NO: 14 is introduced into an expression vector pWHM3. It is preferable that the recombinant vector (pWIU) having the cleavage map of FIG. 5 into which the DNA fragment including the gene group of SEQ ID NO: 2 to SEQ ID NO: 14 is introduced.

본 발명의 다른 양태에 따르면, 본 발명은 알파-글루코시다제 억제제 생산용 DNA 단편이 삽입된 재조합 발현벡터로 형질전환된 세포를 제공한다. 본 발명의 상기 세포는 알파-글루코시다제 억제제 생산용 DNA 단편이 삽입된 재조합 발현벡터로 형질도입되어 알파-글루코시다제 억제제를 생산할 수 있는 어떤 세포도 사용가능하나, 대장균, 바실러스(bacillus), 유산균, 효모, 및 방선균으로 이루어진 군으로부터 선택되는 어느 하나의 세포를 사용하는 것이 바람직하며, 방선균 세포를 사용하는 것이 자체 프로모터를 이용한 유전자 발현이 용이하고 안정적인 장점이 있어 더욱 바람직하다. 상기 세포에 재조합 벡터를 형질전환하는 방법은 외래 유전자를 포함하는 벡터를 형질전환하는 통상의 방법을 모두 포함한다.According to another aspect of the present invention, the present invention provides a cell transformed with a recombinant expression vector inserted with a DNA fragment for producing alpha-glucosidase inhibitor. The cells of the present invention can be used in any cell capable of producing an alpha-glucosidase inhibitor by being transduced with a recombinant expression vector into which a DNA fragment for alpha-glucosidase inhibitor production is inserted, E. coli, Bacillus, It is preferable to use any one cell selected from the group consisting of lactic acid bacteria, yeast, and actinomycetes, and it is more preferable to use actinomycetes cells because the gene expression is easy and stable using its own promoter. The method of transforming a recombinant vector into the cell includes all conventional methods of transforming a vector including a foreign gene.

본 발명의 다른 양태에 따르면, 본 발명은 살보스타틴 생합성 유전자 군에서 분리된 서열번호 2 내지 서열번호 14의 염기서열을 갖는 유전자를 포함하는 알파-글루코시다제 억제제 생산용 DNA 단편을 발현벡터에 삽입하여 재조합 발현벡터를 제조하는 단계; 상기 재조합 발현벡터로 방선균을 형질전환시키는 단계; 및 상기 형질전환된 방선균을 CST 배지에서 배양하여 발리올아민을 대량생산하는 단계를 포함하는 알파-글루코시다제 억제제인 발리올아민의 생산방법을 제공한다.According to another aspect of the present invention, the present invention inserts a DNA fragment for producing an alpha-glucosidase inhibitor comprising a gene having a nucleotide sequence of SEQ ID NO: 2 to SEQ ID NO: 14 isolated from the salvostatin biosynthetic gene group into an expression vector Preparing a recombinant expression vector; Transforming actinomycetes with the recombinant expression vector; And culturing the transformed actinomycetes in CST medium to mass-produce a valolinamine, thereby providing a method for producing a valolinamine, which is an alpha-glucosidase inhibitor.

본 발명의 다른 양태에 따르면, 본 발명은 살보스타틴 생합성 유전자 군에서 분리된 서열번호 1 내지 서열번호 14의 염기서열을 갖는 유전자를 포함하는 알파-글루코시다제 억제제 생산용 DNA 단편을 벡터에 삽입하여 재조합 발현벡터를 제조하는 단계; 상기 재조합 발현벡터로 방선균을 형질전환시키는 단계; 및 상기 형질전환된 방선균을 GYM 배지에서 배양하여 발리엔아민을 대량생산하는 단계를 포함하는 알파-글루코시다제 억제제인 발리엔아민의 대량생산방법을 제공한다.According to another aspect of the invention, the present invention is inserted into a vector DNA fragment for the production of alpha-glucosidase inhibitor comprising a gene having a nucleotide sequence of SEQ ID NO: 1 to SEQ ID NO: 14 isolated from the salvostatin biosynthetic gene group Preparing a recombinant expression vector; Transforming actinomycetes with the recombinant expression vector; And culturing the transformed actinomycetes in a GYM medium, thereby providing a mass production method of a valenamine, an alpha-glucosidase inhibitor, comprising mass production of a valenamine.

이하, 본 발명의 알파-글루코시다제 억제제 생산용 DNA 단편, 상기 DNA 단편이 도입된 재조합 벡터, 상기 재조합 벡터로 형질전환된 균주의 제조 및 알파-글루코시다제 억제제의 생산을 단계별로 보다 구체적으로 설명한다.Hereinafter, the DNA fragment for producing the alpha-glucosidase inhibitor of the present invention, the recombinant vector into which the DNA fragment is introduced, the preparation of the transformed strain with the recombinant vector and the production of the alpha-glucosidase inhibitor are more specifically step by step. Explain.

본 발명은, 살보스타틴 생산균주인 스트렙토마이세스 알버스 KCTC 9015 게놈으로부터 클로닝한 37-kb의 살보스타틴 생합성 유전자군 중에서 알파-글루코시다제 저해물질인 발리엔아민 또는 발리올아민 생합성을 지시할 것으로 예상되는 유전자 단편을 대장균-방선균 셔틀벡터에 서브클로닝하는 단계, 상기 서브클로닝하여 제조된 재조합 벡터 pWHU 및 pWIU를 방선균주에 도입하는 단계, 상기 재조합 벡터가 도입된 방선균 형질전환체 스트렙토마이세스 리비단스(Streptomyces lividans TK24) 및 스트렙토마이세스 알부스(Streptomyces albus G153) 형질전환 균주에서 발리엔아민 및 발리올아민의 생산을 확인하는 단계로 구성된다. 본 발명은 스트렙토마이세스 알버스 KCTC 9015에서 유래하고, 살보스타틴 생합성 유전자 군으로 GenBank에 등록된 salA부터 salU 까지의 염기서열 및 아미노산 서열을 지시하는 유전자 중에서 salH에서 salU까지 14개의 유전자 또는 salI에서 salU까지 13개의 유전자를 포 함하는 재조합벡터를 제공한다.The present invention is expected to direct alpha-glucosidase inhibitors valienamine or baliolamine biosynthesis in a group of 37-kb salvostatin biosynthetic gene cloned from the Streptomyces albus KCTC 9015 genome, a salvostatin producing strain. Subcloning the gene fragment to the Escherichia coli-actinomycete shuttle vector, introducing the recombinant vectors pWHU and pWIU prepared by subcloning into the actinomycete, and the actinomycetes transformant Streptomyces lividans into which the recombinant vector is introduced ( Streptomyces lividans TK24) and Streptomyces albus G153 transgenic strains. The present invention is derived from Streptomyces albus KCTC 9015, 14 genes from salH to salU or from salI to salU among genes indicating the sequencing and amino acid sequences from salA to salU registered in GenBank as a salvostatin biosynthetic gene group Recombinant vectors containing 13 genes are provided.

상기 salA에서 salU까지 14개의 유전자들이 지정하는 효소들의 추론 기능은 당전이효소(서열번호 1: SalH, sucrose-phosphate synthase; 서열번호 2: SalI, N-acetyl glucosaminyl transferase/Trehalose phosphorylase), 에피머레이즈(서열번호 3: salJ, NDP-epimerase), 트랜스포터(서열번호 4: SalK, MFS Transporter), 2-에피-5에피-발리오론 7-키네이즈(서열번호 5: SalL, 2-epi-5-epi-valiolone 7-kinase), 탈수소효소(서열번호 6: SalM, Cyclitol dehydrogenase), 산화환원효소(서열번호 7: SalN, Cyclitol oxidoreductase), 발리오론-7-포스페이트 에피머레이즈(서열번호 8: SalO, Valiolone-7-phosphate 2-epimerase), 헥소스뮤테이즈(서열번호 9: SalP, phosphohexomutase/phosphatase), 2-에피-5-에피 발리오론합성효소(서열번호 10: SalQ, 2-epi-5-epi-valiolone synthase), 엔티피-이인산 분해효소(서열번호 11: SalR, NTP pyrophosphohydrolases), 탈수소효소(서열번호 12: SalS, galacitol-1-phosphate dehydrogenase), 조절단백질(서열번호 13: SalT, TetR-family repressor), CoA-리가제(서열번호 14: SalU, long-chain-fatty-acid-CoA ligase) 유전자를 포함한다.The reasoning function of the enzymes designated by 14 genes from salA to salU is glycotransferase (SEQ ID NO: 1: SalH, sucrose-phosphate synthase; SEQ ID NO: 2: SalI, N-acetyl glucosaminyl transferase / Trehalose phosphorylase), epimerase (SEQ ID NO: 3: salJ, NDP-epimerase), Transporter (SEQ ID NO: 4: SalK, MFS Transporter), 2-Epi-5Epi-Valonone 7-Kinase (SEQ ID NO: 5: SalL, 2-epi-5 -epi-valiolone 7-kinase), dehydrogenase (SEQ ID NO: 6: SalM, Cyclitol dehydrogenase), oxidoreductase (SEQ ID NO: 7: SalN, Cyclitol oxidoreductase), ballyon-7-phosphate epimerase (SEQ ID NO: 8: SalO, Valiolone-7-phosphate 2-epimerase, Hexose Mutase (SEQ ID NO: 9: SalP, phosphohexomutase / phosphatase), 2-Epi-5-Epivaliolone Synthetase (SEQ ID NO: 10: SalQ, 2-epi- 5-epi-valiolone synthase), enti-diphosphatase (SEQ ID NO: 11: SalR, NTP pyrophosphohydrolases), dehydrogenase (SEQ ID NO: 12: SalS, galaci tol-1-phosphate dehydrogenase), regulatory proteins (SEQ ID NO: 13: TetR-family repressor), CoA-ligase (SEQ ID NO: 14: SalU, long-chain-fatty-acid-CoA ligase) genes.

본 발명은 도 3에 기재된, 살보스타틴 생합성 유전자군의 일부 염기서열을 포함하는 재조합벡터 pWHU(SalH 내지 SalU 포함, 도 4) 및 pWIU(SalI 내지 SalU 포함, 도 5)를 스트렙토마이세스 속 방선균주에 도입하고, 이로부터 얻은 형질전환체를 배양하여 발리엔아민 또는 발리올아민을 대량생산함을 확인하였다.According to the present invention, the recombinant vectors pWHU (including SalH to SalU, FIG. 4) and pWIU (including SalI to SalU, FIG. 5) comprising some nucleotide sequences of the salvostatin biosynthetic gene group described in FIG. It was confirmed that mass-producing Balinamine or Baliolamine by introducing into and culturing the transformant obtained therefrom.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only intended to illustrate the invention, and therefore the scope of the invention is not to be construed as limited by these examples.

실시예Example 1.  One. 살보스타틴Salvostatin 생합성 유전자 집단 확보 및 해석 Acquisition and interpretation of biosynthetic gene population

살보스타틴 생산균주인 스트렙토마이세스 알버스(Streptomyces albus KCTC 9015)를 R2YE 배지(Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000; John Innes Foundation, Norwich, United Kingdom)에서 배양하고, 역시 키저 등의 방법(Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000)에 따라 염색체 DNA를 순수하게 분리한 다음, 분리된 염색체 DNA를 제한효소 Sau3A로 부분 절단했다. 부분 절단한 약 37Kb의 염색체 DNA를 BamHI와 HpaI로 이중절단하고, 방선균에서 복제가 가능한 유전자 도서관 제작용 코스미드 벡터에 T4 DNA 연결효소로 연결한 후 스프라타진(STRATAGENE)회사의 람다 패키징 키트(packaging kit)를 이용하여 스트렙토마이세스 알버스(S. albus KCTC9015) 유전자 도서관을 작성하였다.Salvostatin producing strain Streptomyces albus KCTC 9015 was cultured in R2YE medium (Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000; John Innes Foundation, Norwich, United Kingdom) The chromosomal DNA was isolated purely according to the method (Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000), and then the cleaved chromosomal DNA was partially digested with restriction enzyme Sau3A. The partially cut chromosome DNA of about 37Kb was double-cut into BamHI and HpaI, and the T4 DNA ligase was connected to a cosmid vector for gene library production that can be replicated in actinomycetes, followed by Lambda Packaging Kit (Stratagene). A S. albus KCTC9015 gene library was prepared using a packaging kit.

상기에서 작성한 스트렙토마이세스 알버스 유전자 라이브러리 중 1,000개의 콜로니를 각각 0.5ml의 LBA 액체 배지가 들어있는 1.5 ml 에펜도르프 튜브에 엘로우 팁(yellow tip)을 이용하여 접종한 후 하루 동안 배양기에서 배양한 다음 이 배양액을 30ul씩 새로운 에펜도르프 튜브에 옮겨 플라스미드를 추출하고, 각각 PCR 반응을 수행하였다. 이때 사용한 PCR 프라이머는 살보스타틴 화합물 구조에 발리엔 아민 구조를 가지고 있는 아카보스(acarbose) 생합성 유전자 중 acbC(2-epi-5-epi-valiolone synthase), 그리고 acbC 유전자와 생화학적 기작이 유사할 것으로 여겨지는 3-디하이드로퀴네이트 생합성 효소(3-dehydroquinate synthase) 유전자와 비교분석(comparative analysis)을 하기 위해 개발한 Val-F (5'-GGSGGCGTCCTCATGGACGTCGCCGG-3')와 Val-R (5'-GCCATGTCCACGCACACCGCCTCCCCGTG-3') 프라이머를 이용하였다. PCR 반응결과 최종 4개의 재조합 코스미드 클론을 선별하였다(pSH2101, pSH2102, pSH2103 및 pSH2104). 1,000 colonies of the Streptomyces albus gene library prepared above were inoculated in a 1.5 ml Eppendorf tube containing 0.5 ml of LBA liquid medium using a yellow tip, and then cultured in an incubator for one day. The culture solution was transferred to a new Eppendorf tube by 30ul, and the plasmids were extracted, respectively, and PCR reactions were performed. The PCR primers used in this study are expected to have similar biochemical mechanisms to acbC (2-epi-5-epi-valiolone synthase) and acbC gene among acarbose biosynthesis genes having a valenamine structure in salvostatin compound structure. Are Val-F (5'-GGSGGCGTCCTCATGGACGTCGCCGG-3 ') and Val-R (5'-GCCATGTCCACGCACACCGCCTCCCCGTG-) developed for comparative analysis with the 3-dehydroquinate synthase gene. 3 ') primers were used. As a result of the PCR reaction, the final four recombinant cosmid clones were selected (pSH2101, pSH2102, pSH2103 and pSH2104).

본 실시예에서는 생리활성물질의 생합성에 관여하는 효소들이 일반적으로 게놈의 일정지역에 모여서 존재하므로 살보스타틴 생합성 유전자 집단이 존재하는 네 개의 코스미드 클론 30-40 kb의 삽입단편에도 살보스타틴 생합성에 관여하는 대부분의 효소 유전자가 존재할 것으로 보고, 4개의 cosmid 중에서 pSH2104 클론을 대상으로 1 ~ 2kb정도로 부분절단 후 플라스미드 pBluescript KS(+)에 서브 클로닝하여 샷건 라이브러리(shotgun library)를 제작한 후 400개의 library를 T7과 T3 프라이머를 이용하여 염기서열 결정을 하여 약 20 kb의 염기서열을 결정할 수 있었다. SalA에서 SalQ까지 17개 효소 유전자의 염기서열 및 이 유전자 염기서열부터 번역되는 아미노산 서열을 밝힌 후에, 이를 기초로 다시 PCR-gapping을 통해 salR 내지 salU를 연결하여 SalA에서 SalU까지 21개 효소 유전자의 염기서열 및 아미노산 서열을 밝혔다. FramePlot 2.3.2 프로그램(ishikawa, J. and Hotta, K. FEMS Microbiol. Lett. 174:251-253, 1999)을 이용하여 일차적인 DNA염기서열 결과를 기초로 단백질을 코드하는 부분을 검색하였다. 실험결과 이 지역에 단백질을 코드하 는 오픈 리딩 프레임(open reading frame)이 존재함을 확인하였다.In this embodiment, since enzymes involved in biosynthesis of bioactive substances are generally present in a certain region of the genome, four cosmid clone 30-40 kb fragments containing salvostatin biosynthesis gene groups are involved in salvostatin biosynthesis. It is expected that most of the enzymatic genes will be present. Among the 4 cosmids, the pSH2104 clone was partially cut into 1 ~ 2 kb and subcloned into plasmid pBluescript KS (+) to make a shotgun library and then 400 libraries were obtained. The base sequence was determined using T7 and T3 primers to determine the base sequence of about 20 kb. After identifying the nucleotide sequence of 17 enzyme genes from SalA to SalQ and the amino acid sequence translated from this nucleotide sequence, the bases of the 21 enzyme genes from SalA to SalU are linked again by connecting salR to salU through PCR-gapping. Sequence and amino acid sequence were revealed. Using the FramePlot 2.3.2 program (ishikawa, J. and Hotta, K. FEMS Microbiol. Lett. 174: 251-253, 1999), the portion encoding the protein was searched based on the primary DNA sequence results. Experimental results show that there is an open reading frame encoding proteins in this region.

이 유전자군은 39개의 ORF(open reading frame)로 구성되어 있으며 이중 21개가 살보스타틴 생산에 직접 관여 할 것으로 예상되어 유전자 집단의 5 프라임에 위치하는 ORF부터 알파벳 순서대로 SalA 내지 SalU라 명명했다(도 3). 여기서 각 데이터 베이스 상에서 조사된 각 유전자의 기능은 도 3에 나타냈으며 각 유전자의 GenBank 등록번호는 다음과 같다[SalA; EU822205, SalB; EF394361, SalC; EF394362, SalD; EF394363, SalE; EF394364, SalF; EF394365, SalG; EU822206, SalH; EU822207, SalI; EU822208, SalJ; EU822209, SalK; EU822210, SalL; EU822214, SalM; EU822215, SalN; EU822216, SalO; EU822217, SalP; EU822211, SalQ; EU141958, SalR; EU822212, SalS; EU822213, SalT; EU822218, SalU; EU822219/ SalR 내지 SalU 서열은 본 발명의 출원시까지 미공개임]. 이중에서 새로 밝혀낸 SalR 유전자는 생성된 화합물의 탈인산화를 통해 세포밖으로 운반하는데에 필요하거나, 활성화된 당에서 인산기를 떼어내는 작용을 하고, SalS 유전자는 알파-글루코시데이즈 억제물질의 생합성 중의 환원과정에 작용을 하며, SalT 유전자는 SalS 유전자의 발현 조절 유전자로 작용하는 것으로 예상된다.The gene family consists of 39 open reading frames (ORFs), of which 21 are expected to be directly involved in salvostatin production and are named SalA to SalU in alphabetical order, starting with the ORF located at 5 prime of the gene population (Fig. 3). Here, the function of each gene investigated on each database is shown in FIG. 3 and the GenBank registration number of each gene is as follows [SalA; EU822205, SalB; EF394361, SalC; EF394362, SalD; EF394363, SalE; EF394364, SalF; EF394365, SalG; EU822206, SalH; EU822207, SalI; EU822208, SalJ; EU822209, SalK; EU822210, SalL; EU822214, SalM; EU822215, SalN; EU822216, SalO; EU822217, SalP; EU822211, SalQ; EU141958, SalR; EU822212, SalS; EU822213, SalT; EU822218, Sal U; EU822219 / SalR to SalU sequences are unpublished until application of the present invention. The newly discovered SalR gene is required for extracellular transport through dephosphorylation of the produced compound, or to remove phosphate groups from activated sugars, and the SalS gene is a reduction process during biosynthesis of alpha-glucosidase inhibitors. The SalT gene is expected to act as an expression regulator gene of the SalS gene.

실시예Example 2. 알파  2. Alpha 글루코시다아제Glucosidase 저해제 생합성 유전자 카세트 제작 Inhibitor Biosynthesis Gene Cassette Construction

이종 균주에서 알파 글루코시다아제 저해제 생합성을 지시 할 수 있는 유전자 카세트를 제작하기 위하여 클로닝한 살보스타틴 생합성 유전자군 중 salH(서열번호 1) 내지 salU(서열번호 14)를 포함하는 약 17-kb 단편과 salI(서열번호 2) 내 지 salU(서열번호 14) 유전자를 포함하는 약 15-kb 단편을 제한효소로 잘라내어 방선균-대장균 셔틀벡터 pWHM3(JESUS VARA et al., Journal of Bacteriology, 1989, 171, 5872-5881p)에 도입시킨 후 얻어진 재조합 벡터 pWHU 및 pWIU를 방선균 스트렙토마이세스 리비단스 및 스트렙토마이세스 알버스 G153(Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000, John Innes Foundation, Norwich, United Kingdom)에 넣은 형질전환체를 확보하였다(도 4, 도 5). About 17-kb fragment containing salH (SEQ ID NO: 1) to salU (SEQ ID NO: 14) of the salvostatin biosynthetic gene group cloned to produce a gene cassette capable of directing alpha glucosidase inhibitor biosynthesis in a heterologous strain; About 15-kb fragments containing the salI (SEQ ID NO: 2) to salU (SEQ ID NO: 14) genes were cut with restriction enzymes and the actinomycete-E. coli shuttle vector pWHM3 (JESUS VARA et al., Journal of Bacteriology, 1989, 171, 5872). Recombinant vectors pWHU and pWIU obtained after introduction into -5881p) were added to Actinomycetes Streptomyces lividans and Streptomyces albus G153 (Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000, John Innes Foundation, Norwich, United Kingdom). ) Transformants were obtained (Fig. 4, Fig. 5).

pWHU 재조합 벡터는 살보스타틴 생합성 유전자 군이 삽입되어 있는 실시예 1에서 제조한 코스미드(pSH2104)로부터 제한효소 NdeI과 EcoRI으로 잘라 얻어진 16,564-bp 단편을 pUWL201PW 벡터(M. Doumith 등, Molecular and General Genetics, 2000, 264, 477-485)에 삽입한 후, 이를 다시 제한효소 XbaI과 EcoRI을 사용하여 pWHM3(JESUS VARA 등, Journal of Bacteriology, 1989, 171, 5872-5881) 에 클로닝하여 제작하였다. pWIU 재조합 벡터는 실시예 1에서 제조한 코스미드(pSH2104 cosmid) DNA를 제한효소 SphI과 EcoRI으로 자른 후 얻어진 14,862-bp 단편을 동일효소로 처리하여 pWHM3에 클로닝하여 제작하였다.The pWHU recombinant vector is a 16,564-bp fragment obtained by cutting the restriction enzymes NdeI and EcoRI from cosmid (pSH2104) prepared in Example 1 into which a salvostatin biosynthetic gene group is inserted. , 2000, 264, 477-485), and then cloned into pWHM3 (JESUS VARA et al., Journal of Bacteriology, 1989, 171, 5872-5881) using restriction enzymes XbaI and EcoRI. The pWIU recombinant vector was prepared by cloning the cosmid (pSH2104 cosmid) DNA prepared in Example 1 with restriction enzymes SphI and EcoRI, and then cloned into pWHM3 by treating the 14,862-bp fragment with the same enzyme.

실시예Example 3. 재조합 벡터를 도입한 방선균 형질전환체 제작 3. Preparation of Actinomycetes Transformant with Recombinant Vector

재조합 플라스미드 DNA를 방선균에 형질전환하기 위해서 방선균 스트렙토마이세스 알버스 G153(Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000, John Innes Foundation, Norwich, United Kingdom) 균주 를 YEME 배지(Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000, John Innes Foundation, Norwich, United Kingdom) 및 R2YE 배지(Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000, John Innes Foundation, Norwich, United Kingdom) 100㎖에서 2 ~ 3일간 배양하였다. 배양 후 2,800알피엠(rpm)에서 5분간 세포를 침지시켜 인산 완충액(Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000, John Innes Foundation, Norwich, United Kingdom)으로 씻어 준 다음, 다시 2,800 알피엠에서 5분간 원심분리 하여 균체를 얻었다. 인산 완충액 10㎖에 라이소자임(lysozyme, 시그마-알드리치사) 20㎎을 녹인 용액을 0.22㎛ 필터로 여과 한 후에 균체를 현탁하여 30℃에서 20분간 반응시켰다. 10분경과 후에 튜브를 3 ~ 4회 흔들어서 라이소자임 처리가 잘 되도록 하였다. 이 용액을 솜 필터를 통과시켜 모은 다음 2,800 알피엠에서 원심분리 하였고, 라이소자임을 제거해주기 위해 인산 완충액으로 한 번 더 씻고, 2,800 알피엠에서 다시 원심 분리하여 얻은 세포를 10ml의 인산 완충액에 녹였다. 멸균된 튜브에 방선균 균주를 50 ~ 100㎕씩 분주하여 -70℃에 보관하여 사용하였다. -70℃에 보관된 원형질체를 녹인 후, 폴리에틸렌글리콜(Polyethylene glycol, 분자량 1000) 용액 200㎕와 상기 실시예 2에서 제조된 pWHU 재조합 벡터와 pWIU 재조합 벡터를 각각 넣어 5분간 방치한 후, 미리 준비된 R2YE 평판배지 5 ~ 6개에 분주하여 살짝 도말한 다음 30℃에서 배양하였다. 12 ~ 15시간 후에 항생제와 증류수 1㎖을 섞어서 오버레이하고, 완전히 마른 후에, 30℃에서 3 ~ 4일간 더 배양하였다. 얻어진 형질전환체는 항생제가 포함된 R2YE 평판배지에 옮겨 확인하였 다. 항생제 티오스트렙톤(thiostrepton, 시그마-알드리치사)은 50㎍/㎕의 농도로 사용하였다. 방선균의 형질전환에 사용되는 용액 및 배지 조성은 키저 등의 방법을 따랐다[Kieser 등 (2000) Practical Streptomyces genetics. A laboratory manual. John Innes Foundation, Norwich, United Kingdom].To transform the recombinant plasmid DNA into actinomycetes, strains of actinomycetes Streptomyces albus G153 (Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000, John Innes Foundation, Norwich, United Kingdom) were transferred to YEME medium (Kieser et al. , Practical Streptomyces genetics, A laboratory manual, 2000, John Innes Foundation, Norwich, United Kingdom) and R2YE medium (Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000, John Innes Foundation, Norwich, United Kingdom) 100 ml Incubated for 2-3 days. After incubation, the cells were immersed in 2,800 rpm for 5 minutes, washed with phosphate buffer (Kieser et al., Practical Streptomyces genetics, A laboratory manual, 2000, John Innes Foundation, Norwich, United Kingdom), and then again at 2,800 ppm. Cells were obtained by centrifugation for 5 minutes. A solution of 20 mg of lysozyme (Sigma-Aldrich) dissolved in 10 ml of phosphate buffer was filtered through a 0.22 μm filter, and the cells were suspended and reacted at 30 ° C. for 20 minutes. After 10 minutes, the tube was shaken three to four times to ensure good lysozyme treatment. The solution was collected through a cotton filter and centrifuged at 2,800 alpha, washed once more with phosphate buffer to remove lysozyme, and centrifuged again at 2,800 alpha to dissolve the cells obtained in 10 ml of phosphate buffer. Actinomycetes strains were sterilized by dispensing 50 ~ 100μl in a sterile tube and used at -70 ℃. After dissolving the protoplasts stored at -70 ° C, 200 µl of a polyethylene glycol (molecular weight 1000) solution and the pWHU recombinant vector and pWIU recombinant vector prepared in Example 2 were allowed to stand for 5 minutes, and then R2YE prepared in advance. Dispense 5 ~ 6 plate medium and slightly smeared and incubated at 30 ℃. After 12 to 15 hours, antibiotics and 1 ml of distilled water were mixed and overlayed. After drying, the mixture was further incubated for 3 to 4 days at 30 ° C. The transformants obtained were transferred to R2YE plate medium containing antibiotics and identified. The antibiotic thiostrepton (Sigma-Aldrich) was used at a concentration of 50 μg / μl. The solution and medium composition used for the transformation of actinomycetes were followed by Keiser et al. [Kieser et al. (2000) Practical Streptomyces genetics. A laboratory manual. John Innes Foundation, Norwich, United Kingdom].

실시예Example 4.  4. 스트렙토마이세스Streptomyces 리비단스Lividans 형질전환체의 분석 Transformant Analysis

스트렙토마이세스 리비단스(Streptomyces lividans) TK24에 상기 실시예 2에서 제조한 재조합 벡터인 pWHU 및 pWIU를 실시예 3과 동일한 방법으로 형질전환시키고 얻어진 형질전환체의 대사산물을 확인하기 위하여 형질전환체를 R2YE 배지에 접종하고, 12일간 배양하면서 배양액을 이용하여 박층 크로마토그래피(TLC) 분석 및 알파-글루코시다아제 저해 활성을 측정하였다. The transformants were transformed into Streptomyces lividans TK24 by transforming the recombinant vectors pWHU and pWIU prepared in Example 2 in the same manner as in Example 3 to identify metabolites of the transformants. Inoculated in R2YE medium and cultured for 12 days, thin layer chromatography (TLC) analysis and alpha-glucosidase inhibitory activity were measured using the culture medium.

박층 크로마토그래피 분석은 실리카60(Merck 사)을 사용하였으며, 전개액은 1-프로판올, 초산, 및 물(4:1:1)을 배합하여 사용하였다. 전개 후 발색은 포스포몰리브딕 산(phosphomolybdic acidㆍH2O, 25g), 서 설페이트(cer(IV)-sulfateㆍ4H2O, 10g), 진한 황산(60ml), 및 증류수(940ml)와 0.2% 닌히드린 용액(ninhydrin reagent)을 함께 사용하였다.For thin layer chromatography analysis, silica 60 (Merck) was used, and the developing solution was used in combination with 1-propanol, acetic acid, and water (4: 1: 1). The color development after development was phosphomolybdic acid (H 2 O, 25g), sulfate (cer (IV) -sulfate.4H 2 O, 10g), concentrated sulfuric acid (60ml), and distilled water (940ml) and 0.2g. % Ninhydrin reagent was used together.

또한 알파-글루코시다아제 저해 활성은 67mM(pH 6.8) 칼륨 인산(potassium phosphate)완충액과 알파-글루코시다아제(α-glucosidase) 효소용액(0.15 ~ 0.3unit/ml), 그리고 저해제(발리엔아민, 발리올아민 또는 배양액)를 혼합하여 37 ℃에서 20분간 반응시킨 후, 기질로 10 mM 파라니트로페닐 알파 디 글루코사이드(p-nitrophenyl α-D-glucoside, PNP-Gluc) 용액을 넣고 다시 37℃에서 20분간 반응시킨 후, 100 mM 소듐 카보네이트 용액(sodium carbonate, NaCarb)을 넣어 반응을 중지시켰다. 반응정도는 분광광도계를 이용하여 400nm에서 흡광도를 측정하였다.In addition, alpha-glucosidase inhibitory activity was shown to be 67 mM (pH 6.8) potassium phosphate buffer and alpha-glucosidase enzyme solution (0.15 to 0.3 unit / ml), and inhibitors (valienamine, Baliolamine or culture medium) was mixed and reacted at 37 ° C. for 20 minutes, and then a 10 mM paranitrophenyl alpha diglucoside (PNP-Gluc) solution was added to the substrate, followed by 20 at 37 ° C. After the reaction, the reaction was stopped by adding 100 mM sodium carbonate solution (NaCarb). The degree of reaction was measured for absorbance at 400nm using a spectrophotometer.

그 결과 상기 실시예 2에서 제조된 두개의 재조합 발현백터인 pWHU 또는 pWIU가 형질전환된 균주에 대한 두개의 실험에서 모두 벡터만이 도입된 대조군과 유의한 차이는 발견되지 않아 스트렙토마이세스 리비단스 형질전환체에서는 특별한 물질이 만들어지지 않는 것으로 판단되었다. As a result, in both experiments for the two recombinant expression vectors pWHU or pWIU transformed strain prepared in Example 2, no significant difference was found between the control group and the vector-introduced Streptomyces Lividans trait. It was judged that no special substance was made in the converter.

실시예Example 5.  5. 스트렙토마이세스Streptomyces 알버스Albus 형질전환체( Transformants ( pWHUpWHU )의 분석) Analysis

재조합 벡터 pWHU 및 pWIU를 각각 살보스타틴을 생산하지 않는 스트렙토마이세스 알버스(Streptomyces albus G153)에 형질전환시켜 얻은 형질전환체를 CST 배지 [1% glucose, 5% starch, 3% tryptone, 3% corn glutenmeal, 0.5% NaCl, 1% CaCO3]에서 14일 동안 배양한 후, 세포 배양액을 이용하여 실시예 4와 같은 방법으로 TLC 분석 및 알파-글루코시다아제 저해 활성을 측정하였다. 특히 배양액을 사용하여 알파-글루코시다아제 저해 활성을 측정 시, 벡터만이 도입된 대조군의 알파-글루코시다아제 저해 활성(65.38%)에 비해 pWHU 형질전환체는 77.2%, pWIU 형질전환체는 80.15%에 해당하는 알파-글루코시다아제 저해 활성을 나타내어 형질전환체 가 알파-글루코시다아제 저해 활성을 갖는 물질을 생산하고 있음을 알 수 있었다.The transformants obtained by transforming the recombinant vectors pWHU and pWIU into Streptomyces albus G153, which do not produce salvostatin, respectively, were prepared using CST medium [1% glucose, 5% starch, 3% tryptone, 3% corn glutenmeal]. , 0.5% NaCl, 1% CaCO 3 ], and then cultured for 14 days, TLC analysis and alpha-glucosidase inhibitory activity was measured in the same manner as in Example 4 using the cell culture. In particular, when measuring alpha-glucosidase inhibitory activity using a culture medium, 77.2% of the pWHU transformants and 80.15 of the pWIU transformants were compared to the alpha-glucosidase inhibitory activity (65.38%) of the control group into which the vector only was introduced. Alpha-glucosidase inhibitory activity corresponding to% was found, indicating that the transformant produced a substance having alpha-glucosidase inhibitory activity.

또한 상기 pWHU의 형질전환체 배양액의 TLC 분석 결과, 세포배양액으로부터 표준품으로 사용된 발리엔아민(R.f = 0.41)과 일치하는 R.f 값을 갖는 물질이 존재함을 확인 할 수 있었다. 상기 두 가지 분석 결과, pWHU의 형질전환체에서 발리엔아민이 생산된다는 결론을 얻게 되었으며, 하기 실시예에서 크로마토그래피(chromatography) 방법을 이용하여 정제하여 분석하였다.In addition, TLC analysis of the transformant culture of the pWHU, it was confirmed that a substance having an R.f value consistent with the ballienamine (R.f = 0.41) used as a standard from the cell culture. As a result of the two analyzes, it was concluded that the valenamine is produced in the transformant of pWHU, and was analyzed by purification using a chromatography method in the following examples.

실시예Example 6.  6. 스트렙토마이세스Streptomyces 형질전환체의 재조합 벡터 안정성 분석 Recombinant vector stability analysis of transformants

형질전환에 사용된 두 균주의 결과가 상이함에 따라 그 원인을 분석하기 위해 배양기간에 따른 각 형질전환체의 재조합 벡터의 안정성을 조사하였다. 이를 위해 각 형질전환체로부터 DNA를 추출하고 salQ와 salI 유전자를 검출할 수 있는 프라이머(salQ-F; 5-CAG CAT ATG ACC GGT ACG AGC CTG AC-3, salQ-R; 5-CGG GGA TCC GCG AGG GTG ATT CTC-3, salI-F; 5-GGC AGC CCC ATA TGG CCT GCC GCC GG-3, salI-R; 5-GTG ACG AAT TCG ACG CTC ATG CGA GGG-3)를 사용하여 폴리머레이즈 체인 리액션 (PCR)을 실시하였다. 확인 결과 스트렙토마이세스 리비단스 형질전환체의 경우, salQ 유전자의 PCR 산물은 관찰되었으나, salI 유전자의 PCR 산물은 확인할 수 없었다. 이러한 결과는 스트렙토마이세스 리비단스 TK24에서 큰 삽입단편을 갖는 하이 카피 넘버 플라스미드(high copy number plasmid)가 불안정한 것으로 판단되었다. 반면 스트렙토마이세스 알버스 형질전환체에서는 유전자가 안정적으로 복제되고 있음을 확인하였다(도 6).As the results of the two strains used for transformation were different, the stability of the recombinant vector of each transformant over the culture period was investigated to analyze the cause. For this purpose, primers (salQ-F; 5-CAG CAT ATG ACC GGT ACG AGC CTG AC-3, salQ-R; 5-CGG GGA TCC GCG) can be used to extract DNA from each transformant and to detect salQ and salI genes. Polymerase chain reaction using AGG GTG ATT CTC-3, salI-F; 5-GGC AGC CCC ATA TGG CCT GCC GCC GG-3, salI-R; 5-GTG ACG AAT TCG ACG CTC ATG CGA GGG-3) (PCR) was performed. As a result, PCR products of the salQ gene were observed in the Streptomyces lividans transformant, but PCR products of the salI gene could not be confirmed. These results indicated that the high copy number plasmids with large insertion fragments were unstable in Streptomyces lividans TK24. On the other hand, it was confirmed that genes were stably replicated in the Streptomyces albus transformant (FIG. 6).

실시예Example 7.  7. 스트렙토마이세스Streptomyces 알버스Albus 형질전환체( Transformants ( pWHUpWHU )의 생성물 분석Product analysis

상기 실시예 5에서 제조된 스트렙토마이세스 알버스 형질전환체(pWHU)의 세포배양액(GYM 배지, 30도, 10일 배양)을 250 ml를 전 처리 한 후, 강양이온 교환수지[Dowex 50W resin (NH4+-form)]를 사용하여 1차 정제를 하였다. 이 때 정제에 사용한 용매는 0.5-1N NH4OH 이다. 정제한 시료는 농축 후 TLC 분석을 하였다. 분석 결과 표준품 발리엔아민과 같은 Rf 값을 갖는 스팟(spot)을 확인 할 수 있었고, 이를 감압 농축하여 암모니아수를 제거 하고, 증류수에 녹여서 알파 글루코시다아제 저해효과를 조사하였다. 그 결과 표준품 발리엔아민과 유사한 정도의 현저한 알파 글루코시다아제 저해효과가 있음을 확인하였다(도 7). 이에 준비한 시료 내에 발리엔아민이 존재함을 확인하기위해 질량(ESI-Mass) 분석을 실시하였다. 분석 결과 발리엔아민(valenamine)의 예상 분자량 175.18과 유사한 174.9의 피크(peak)를 확인 하였다(도 8). 따라서, 스트렙토마이세스 알버스 형질전환체(pWHU)에서 발리엔아민이 합성되고 있음을 확인하였다.After pretreatment of 250 ml of the cell culture medium (GYM medium, 30 degrees, 10 days culture) of the Streptomyces albus transformant (pWHU) prepared in Example 5, the strong cation exchange resin [Dowex 50W resin (NH4 + -form)] was used for the first purification. The solvent used for purification at this time is 0.5-1N NH 4 OH. The purified sample was concentrated and subjected to TLC analysis. As a result, the spot having the same Rf value as the standard valenamine was identified, and concentrated under reduced pressure to remove ammonia water and dissolved in distilled water to investigate the effect of alpha glucosidase. As a result, it was confirmed that there is a significant alpha glucosidase inhibitory effect similar to the standard ballienamine (Fig. 7). In order to confirm the presence of valenamine in the prepared sample, mass (ESI-Mass) analysis was performed. The analysis confirmed a peak of 174.9, similar to the expected molecular weight of 175.18 of valenamine (FIG. 8). Therefore, it was confirmed that the valenamine was synthesized in the Streptomyces albus transformant (pWHU).

실시예Example 8.  8. 발리엔아민Balienamine 대량 생산을 위한 재조합 균주의 배지 최적화 Medium Optimization of Recombinant Strains for Mass Production

재조합 균주의 발리엔아민 생산을 위해 5가지 배지를 선정해 형질전환체를 배양하고 배양액의 발리엔아민 생산성을 비교해 보았다. 각 배지의 조성은 다음과 같다[배지 1(M1; Starch 4g, Yeast extract 4g, Malt extract 10g, CaCO3 5g), 배지 2(M2; Maltose 4g, Yeast extract 4g, Malt extract 10g, pH 7.2), 배지 3(M3; Starch 25g, Corn steep liquor 10g, (NH4)2SO4 5g, NaCl 5g, CaCO3 5g), 배지 4(M4; Soymeal 30g, NH4Cl 4g, CaCO3 5g, Glycerol 40ml, pH 7.5), 배지 5(M5; Glucose 10g, Starch 50g, Tryptone 15g, Corn gluten meal 30g, NaCl 5g, CaCO3 10g)]. Five mediums were selected for the production of the Baliienamine of the recombinant strain, and the transformants were cultured and the Baliienamine productivity of the culture was compared. The composition of each medium was as follows (Medium 1 (M1; Starch 4g, Yeast extract 4g, Malt extract 10g, CaCO 3 5g), Medium 2 (M2; Maltose 4g, Yeast extract 4g, Malt extract 10g, pH 7.2), Medium 3 (M3; Starch 25 g, Corn steep liquor 10 g, (NH 4 ) 2 SO 4 5 g, NaCl 5 g, CaCO 3 5 g), Medium 4 (M4; Soymeal 30 g, NH 4 Cl 4 g, CaCO 3 5 g, Glycerol 40 ml, pH 7.5), Medium 5 (M5; 10 g Glucose, 50 g Starch, 15 g Tryptone, 30 g Corn gluten meal, 5 g NaCl, 10 g CaCO 3 )].

재조합 벡터 pWHU 및 pWIU로 각각 형질전환된 실시예 3에서 제조된 형질전환 방선균 균주를 상기의 5가지 배지에서 9일간 배양 후, 이온교환크로마토그래피를 수행하고, 크로마토그래피(TLC와 HPLC)를 이용해 발리엔아민을 분석하였으나, 발리엔아민을 검출할 수 없었다. 이러한 결과로 발리엔아민의 생산에 배지의 종류가 영향을 미침을 알 수 있었다. The transforming actinomycetes strain prepared in Example 3 transformed with the recombinant vectors pWHU and pWIU, respectively, were cultured in the above five media for 9 days, and then subjected to ion exchange chromatography, followed by chromatography (TLC and HPLC). Enamines were analyzed, but no valenamines could be detected. These results indicate that the type of medium affects the production of valenamine.

본 발명자들은 형질전환 방선균 균주에서 알파-글루코시다아제를 생산하기 위한 최적화된 배지 조성을 찾아내기 위하여 CST 배지(1% Glucose, 5% Soluble starch, 3% Tryptone, 3% Corn gluten meal, 0.5% NaCl, 1% CaCO3), GYM 배지(glucose 0.4%, Yeast extract 0.4%, Malt extract 1%, CaCO3 0.2%), FM II 배지(Soluble starch 60g/L, Sucrose 30g/L, Beef extract 35g/L, NaCl 0.75g/L, MgSO4 2g/L, CaCO3 8g/L)의 3종 배지를 재선정하여 실험을 실시하였다. In order to find an optimized medium composition for producing alpha-glucosidase in transgenic actinomycetes strains, we found CST medium (1% Glucose, 5% Soluble starch, 3% Tryptone, 3% Corn gluten meal, 0.5% NaCl, 1% CaCO 3 ), GYM medium (glucose 0.4%, Yeast extract 0.4%, Malt extract 1%, CaCO 3 0.2%), FM II medium (Soluble starch 60g / L, Sucrose 30g / L, Beef extract 35g / L, Experiments were carried out by reselecting three media of NaCl 0.75 g / L, MgSO 4 2 g / L, and CaCO 3 8 g / L).

실시한 결과, pWHU 재조합 벡터로 형질전환된 방선균 균주를 GYM 배지에서 배양한 배양액(7일 배양)에서 HPLC 분석으로 5ppm의 발리엔아민이 생산됨을 확인 하였다. 이때 사용한 발리엔아민 분석법은 파라-니트로플루오르벤젠(p- nitrofluorebenzene)을 이용해 배양액을 유도체화 시킨 후 HPLC로 분석 하였다(Jorunal of chromatography B, 8. 24. 2005, p341-347). 이를 위해 먼저 배양액을 동결건조 시켜 5배로 농축한 후, 775 ㎕의 DMF(N,N-dimethylformamide), 150 ㎕의 트리에틸아민(triethylamine), 그리고 75 ㎕의 파라-니트로플루오르벤젠(p-nitrofluorobenzene)을 넣어 섞어준 후, 90도에서 60분 동안 반응시켰다. 이렇게 유도체화 된 시료 20㎕를 HPLC를 이용해 분석하였으며, 칼럼은 루나(Luna C18 RP) 칼럼, 용매는 아세토니트릴과 증류수를 12:88의 비율로 용출 속도는 1 ml/min, 칼럼 온도는 40도에서 실시하였으며, 396 nm에서 검출하였다. HPLC 분석 결과 재조합 백터 pWHU의 형질전환체의 배양액에서만 발리엔아민 표준품과 일치하는 피크가 관찰되었으며(도 9), 동일 조건에서 LC-MS 분석을 실시한 결과 예상 했던 피크가 엔-파라-니트로페닐 발리엔아민(N-p-nitrophenyl valienamine)의 예상 분자량 295(M-1 negative mode의 경우 예상 분자량은 296.28-1=295.28 )와 일치하였다(도 10). HPLC 피크로부터 계산된 발리엔아민 생산성은 5 ug/ml 였다. As a result, it was confirmed that 5 ppm of valenamine was produced by HPLC analysis of the actinomycetes strain transformed with the pWHU recombinant vector in a culture medium (7-day culture) in GYM medium. The Balinenamine analysis was used to derivatize the culture with para-nitrofluorebenzene (p-nitrofluorebenzene) and analyzed by HPLC (Jorunal of chromatography B, 8. 24. 2005, p341-347). To this end, the culture medium is lyophilized, concentrated five times, and then 775 μl of D, N, dimethylformamide, 150 μl of triethylamine, and 75 μl of para-nitrofluorobenzene. After mixing, the reaction was carried out at 90 degrees for 60 minutes. 20 µl of the derivatized sample was analyzed using HPLC. The column was a Luna C18 RP column, the solvent was acetonitrile and distilled water at a ratio of 12:88, and the elution rate was 1 ml / min and the column temperature was 40 degrees. And detection at 396 nm. As a result of HPLC analysis, peaks consistent with the Balienamine standard were observed only in the culture medium of the transformant vector of the recombinant vector pWHU (FIG. 9). As a result of performing LC-MS analysis under the same conditions, the peak expected was en-para-nitrophenyl volley. The expected molecular weight 295 (the expected molecular weight in the case of M-1 negative mode 296.28-1 = 295.28) of the enamine (Np-nitrophenyl valienamine) was consistent with FIG. 10. The valenamine productivity calculated from the HPLC peaks was 5 ug / ml.

실시예Example 9.  9. 스트렙토마이세스Streptomyces 알버스Albus 형질전환체( Transformants ( pWIUpWIU )의 생산물 분석Product analysis

스트렙토마이세스 알버스 형질전환체(pWIU)를 상기 실시예 8의 CST 배지에서 12일 동안 배양한 후, 세포 배양액을 이용하여 TLC 분석과 알파-글루코시다아제 저해 활성을 측정하였다. 측정 결과, 대조군(모벡터인 pWHM3 만이 형질전환된 형질전환체, 65.38% 저해)보다 재조합 벡터인 pWIU 벡터가 형질전환된 형질전환체에서 알파-글루코시다아제 저해 활성이 강하게 측정(80.15% 저해) 되었다. 자세한 분석을 위해 대사산물을 TLC를 통해 분리하고, 형질전환체에서만 보이는 스폿(spot)에 해당하는 부분을 긁어내어 메탄올로 추출한 후에 0.2㎛ 폴리테트라플루오로에틸렌(PTFE, PolyTetraFluoroEthylene, Whatman사) 필터로 여과 하였다. 여과한 시료의 일부는 감압농축하여 증류수에 녹인 후 알파-글루코시다아제 저해활성을 측정하였는데, 표준품 발리엔아민보다 강력한 저해활성이 확인되어, 형질전환체에서 특별한 알파-글루코시다아제 저해물질이 생성됨을 추측하였다(도11). 이러한 결과를 검증하기 위하여 메탄올로 추출하여 여과한 시료를 그대로 질량분석(ESI-MS)한 결과, [M+] 194.8에 해당하는 물질이 존재함을 확인하였는데, 이는 발리올아민(valiolamine, 분자량 193.20)에 일치하고 있음을 확인 하였다(도 12). 이를 검증하기위해 메탄올로 추출하여 여과한 시료로 가스 크로마토그래피 및 질량분석(GC/MS 분석)을 실시하였다. 이를 위해 측정할 시료의 메탄올을 건조한 후에 증류수 없이 SIGMA-SIL-A(Sigma)를 몇 방울 떨어뜨려 화합물의 하이드록실 그룹(-OH)에 메틸레이션 시키고 헥산(n-Hexane)으로 추출하여 분석하였다. 그 결과 가스 크로마토그래피의 체류시간 8.8분 피크에서 펜타메틸발리올아민(pentamethylvaliolamine)에 해당하는 분자량 263에 해당하는 물질이 검출되었다 (도 13). 따라서 스트렙토마이세스 알버스 형질전환체(pWIU)가 생성하는 강력한 알파-글루코시다아제 저해물질은 발리올아민임을 확인하였다.Streptomyces albus transformant (pWIU) was incubated for 12 days in the CST medium of Example 8, and then TLC analysis and alpha-glucosidase inhibitory activity were measured using cell culture. As a result, the alpha-glucosidase inhibitory activity was strongly detected in the transformants transformed with the recombinant vector pWIU vector (80.15% inhibition) than the control group (transformants transformed with only the parent vector pWHM3, 65.38% inhibition). It became. The metabolite was separated by TLC for detailed analysis, scraped off the portion corresponding to the spot visible only at the transformant, extracted with methanol, and then filtered using a 0.2 μm polytetrafluoroethylene (PTFE, PolyTetraFluoroEthylene, Whatman) filter. Filtered. Some of the filtered samples were concentrated under reduced pressure and dissolved in distilled water to measure alpha-glucosidase inhibitory activity. The inhibitory activity was confirmed to be stronger than that of the standard ballienamine, resulting in a special alpha-glucosidase inhibitor in the transformant. Was estimated (Fig. 11). To verify these results, mass spectrometry (ESI-MS) of the sample extracted with methanol and filtered was carried out, and it was confirmed that a substance corresponding to [M +] 194.8 was present, which was a valeolinol (molecular weight 193.20). It was confirmed that the match (Fig. 12). To verify this, gas chromatography and mass spectrometry (GC / MS analysis) were performed on the sample extracted with methanol and filtered. To this end, after drying the methanol of the sample to be measured, a few drops of SIGMA-SIL-A (Sigma) without distilled water were methylated to the hydroxyl group (-OH) of the compound and extracted with hexane (n-Hexane) and analyzed. As a result, a substance having a molecular weight of 263 corresponding to pentamethylvaliolamine was detected at a peak of 8.8 minutes in gas chromatography (FIG. 13). Therefore, it was confirmed that the potent alpha-glucosidase inhibitor produced by the Streptomyces albus transformant (pWIU) is valenamine.

상기 실시예의 결과를 통해 본 발명의 서열번호 2(SalI) 내지 서열번호 14(SalU)의 염기서열을 갖는 유전자를 모두 포함하는 알파-글루코시다제 억제제 생산용 DNA 단편이 도입된 재조합 벡터로 형질전환된 세포는 알파-글루코시다제 억제 제인 발리엔아민을 생산하고, 서열번호 1(SalH) 내지 서열번호 14(SalU)의 염기서열을 갖는 유전자를 모두 포함하는 알파-글루코시다제 억제제 생산용 DNA 단편이 도입된 재조합 벡터로 형질전환된 세포는 알파-글루코시다제 억제제인 발리올아민을 생산함을 확인할 수 있었다.Through the results of the above example, transformed with a recombinant vector into which a DNA fragment for alpha-glucosidase inhibitor production containing all genes having a nucleotide sequence of SEQ ID NO: 2 (SalI) to SEQ ID NO: 14 (SalU) of the present invention was introduced. Cells produce an alpha-glucosidase inhibitor, and a fragment of DNA for producing an alpha-glucosidase inhibitor comprising all genes having a nucleotide sequence of SEQ ID NO: 1 (SalH) to SEQ ID NO: 14 (SalU). It was confirmed that the cells transformed with the introduced recombinant vector produced a valolamine, an alpha-glucosidase inhibitor.

이상 설명한 바와 같이, 본 발명에 따르면 트레할레이즈 저해 활성을 갖는 살보스타틴 생산균주인 스트렙토마이세스 알버스 (Streptomyces albus) KCTC 9015에서 유래하고, 서열번호 1의 salH에서 서열번호 14의 salU까지 14개의 효소를 코딩하는 유전자군 또는 서열번호 2의 salI에서 서열번호 14의 salU까지 13개의 효소를 코딩하는 유전자군을 포함하는 알파-글루코시다아제 억제용 DNA 단편이 도입된 재조합 벡터를 이종 방선균에서 안정하게 유지 발현할 수 있다.As described above, according to the present invention, 14 enzymes are derived from Streptomyces albus KCTC 9015, a salvostatin producing strain having trehalase inhibitory activity, and are salH of SEQ ID NO: 1 to salU of SEQ ID NO: 14 Or a recombinant vector containing an alpha-glucosidase inhibitory DNA fragment containing a gene group encoding 13 enzymes from salI of SEQ ID NO: 2 or salU of SEQ ID NO: 14 to salU of SEQ ID NO: 14 is stably maintained in heterologous actinomycetes Can be expressed.

또한, 본 발명은 상기 알파-글루코시다아제 억제용 DNA 단편이 도입된 재조합 벡터로 형질전환된 이종 균주에서 알파-글루코시다아제 억제물질을 생산하도록 하고, 상기 형질전환체로부터 발리엔아민 또는 발리올아민을 대량생산할 수 있다.In addition, the present invention is to produce an alpha-glucosidase inhibitor in a heterologous strain transformed with a recombinant vector into which the alpha-glucosidase inhibitory DNA fragment is introduced, and from the transformant, a valenamine or a valenol. The amines can be mass produced.

따라서, 본 발명 살보스타틴 생합성 유전자군은 신규의 무독성 트레할레이즈 저해활성을 갖는 살보스타틴 유도체 개발을 위한 유전자원으로 활용될 뿐만 아니라, 보글리보스와 같은 반합성 당뇨병치료제의 합성 시발물질인 발리엔아민과 발리올아민을 생물학적으로 대량생산할 수 있어 다양한 당뇨병치료제 개발에도 매우 유용하게 응용될 수 있으므로 생물 및 의약에 관련된 산업에 매우 유용한 발명인 것이다.Therefore, the salvostatin biosynthetic gene group of the present invention is not only utilized as a gene source for the development of a salvostatin derivative having a novel nontoxic trehalase inhibitory activity, but also with a Balienamine which is a synthetic starting material of a semisynthetic diabetic agent such as Boglybose. It is a very useful invention for the biological and pharmaceutical industries because it can be bioavailable in mass production of valolinamine and thus can be very usefully applied to the development of various diabetes treatments.

도 1은 발리엔아민 함유 화합물 살보스타틴, 발리다마이신, 아카보스의 화학 구조를 나타낸다. BRIEF DESCRIPTION OF THE DRAWINGS The chemical structures of the valenamine containing compound salvostatin, validamycin, acarbose are shown.

도 2는 보글리보스를 포함한 알파-글루코시다아제 생산 공정을 나타낸 그림으로 발리엔아민이나 발리올아민을 발효에서 직접 생산하는 경우의 공정상 이점을 비교하였다.FIG. 2 is a graph showing the production process of alpha-glucosidase, including voglibose, comparing the process advantages of direct production of valienamine or valiolamine from fermentation.

도 3은 스트렙토마이세스 알버스에서 클로닝한 살보스타틴 생합성 유전자군의 지도이며 본 발명에서 사용된 SalH(sucrose-phosphatesynthase, glycosyltransferase), SalI(N-acetyl glucosaminyl transferase/Trehalose phosphorylase), SalJ(dehydrogenase/NDP-epimerase), SalK(MFS Transporter), SalL(2-epi-5-epi-valiolone7-kinase), SalM(Cyclitol dehydrogenase), SalN(Cyclitol oxidoreductase), SalO(Valiolone-7-phosphate2-epimerase), SalP(phosphohexomutase/phosphatase(glycosidichydrolase), SalQ(2-epi-5-epi-valiolone synthase), SalR(NTP pyrophosphohydrolases), SalS(galacitol-1-phosphate dehadrogenase), SalT(TetR-family repressor), SalU(long-chain-fatty-acid--CoA ligase) 유전자를 포함하고 있다.3 is a map of the salvostatin biosynthetic gene group cloned from Streptomyces albus, SalH (sucrose-phosphatesynthase, glycosyltransferase), SalI (N-acetyl glucosaminyl transferase / Trehalose phosphorylase), SalJ (dehydrogenase / NDP-) used in the present invention. epimerase), SalK (MFS Transporter), SalL (2-epi-5-epi-valiolone7-kinase), SalM (Cyclitol dehydrogenase), SalN (Cyclitol oxidoreductase), SalO (Valiolone-7-phosphate2-epimerase), SalP (phosphohexomutase) / phosphatase (glycosidichydrolase), SalQ (2-epi-5-epi-valiolone synthase), SalR (NTP pyrophosphohydrolases), SalS (galacitol-1-phosphate dehadrogenase), SalT (TetR-family repressor), SalU (long-chain-) fatty-acid--CoA ligase) gene.

도 4는 재조합 벡터 pWHU의 개열지도를 도시한 그림이다.4 shows a cleavage map of the recombinant vector pWHU.

도 5는 재조합벡터 pWIU의 개열지도를 도시한 그림이다.5 shows a cleavage map of the recombinant vector pWIU.

도 6은 스트렙토마이세스 알버스(S. albus) 호스트 내에서 장기간 배양 시 재조합 플라스미드 DNA의 안정성을 나타낸 결과이다.Figure 6 shows the stability of the recombinant plasmid DNA in long-term culture in S. albus host (S. albus).

도 7은 도웩스(Dowex) 50W에서 회수한 pWHU 형질전환체 배양액의 박층크로마토그래피(TLC) 분석(좌) 및 박층크로마토그래피로부터 회수한 물질의 알파-글루코시다아제(alpha-glucosidase) 저해 활성(우)을 나타내고 있다.7 shows the activity of thin-layer chromatography (TLC) analysis (left) of the pWHU transformant culture recovered from Dowex 50W and alpha-glucosidase inhibitory activity of the material recovered from thin-layer chromatography ( Right).

도8은 도웩스(Dowex) 50W에서 회수한 pWHU 형질전환체 배양액에서 이에스아이-매스(ESI-Mass) 분석으로 발리엔아민을 생산하고 있음을 확인한 결과이다.FIG. 8 shows that pWHU transformant cultures recovered from Dowex 50W are producing valenamine by ESI-Mass analysis.

도 9는 재조합 발현벡터 pWHU로 형질전환된 스트렙토마이세스 알버스(S. albus)의 발효 배양액을 크로마토그래피(HPLC)로 분석한 결과로 유도체화된 발리엔아민 피크가 배양액내에 존재함을 확인한 결과이다.9 is a result of chromatographic analysis (HPLC) of the fermentation broth of S. albus transformed with the recombinant expression vector pWHU to confirm that the derivatized valenamine peak is present in the culture. .

도 10은 재조합 발현벡터 pWHU로 형질전환된 스트렙토마이세스 알버스(S. albus)의 발효 배양액을 질량분석기(LC-MS)로 분석한 결과로 크로마토그래피(HPLC) 상에서 확인된 발리엔아민 피크가 메스 분석 결과에서도 유도체화된 발리엔아민 질량(mass)과 일치하고 있음을 나타낸다.FIG. 10 shows a fermentation broth of S. albus transformed with the recombinant expression vector pWHU by mass spectrometry (LC-MS). The analysis results also show agreement with the derivatized valenamine mass.

도 11은 재조합 발현벡터 pWIU로 형질전환된 스트렙토마이세스 알버스(S. albus)의 발효 배양액의 크로마토그래피(TLC) 분석(좌) 및 크로마토그래피로부터 회수한 물질의 알파-글루코시데이즈 저해 효과(우)를 나타내고 있다.FIG. 11 shows chromatographic (TLC) analysis (left) of fermentation broth of S. albus transformed with recombinant expression vector pWIU (left) and alpha-glucosidase inhibitory effect of the material recovered from chromatography (right). ).

도 12는 재조합 발현벡터 pWIU로 형질전환된 스트렙토마이세스 알버스(S. albus)의 발효 배양액의 질량 분석[Total ESI Mass(M+ mode)] 분석 결과로 배양액 내에 발리올아민에 해당하는 물질이 존재함을 나타내고 있다.12 is a mass analysis of the fermentation broth of S. albus transformed with the recombinant expression vector pWIU [Total ESI Mass (M + mode)] analysis, there is a substance corresponding to the valerian amine in the culture Indicates.

도 13은 재조합 발현벡터 pWIU로 형질전환된 스트렙토마이세스 알버스(S. albus)의 발효 배양액의 질량 분석(GC-MS) 결과로 발리올아민이 존재함을 확인한 결과이다.Figure 13 is a result of confirming the presence of the valerian amine as a result of mass spectrometry (GC-MS) of the fermentation broth of S. albus transformed with the recombinant expression vector pWIU (S. albus).

<110> Myongji University Industry and Academia Cooperation <120> Preparation of the Streptomyces strains producing alpha-glucosidase inhibitors transformed by the recombinant vectors harboring the salbostatin biosynthesis gene cluster, and mass-production method of these inhibitors <160> 14 <170> KopatentIn 1.71 <210> 1 <211> 1269 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 1 gtgaatgggg aacttcttcc cggtgtcctg gttgtcaaca gcaattattt tccgagatcg 60 cgcggggcgg ccgcccgagt gggtgccacc tccttcgcgc tcgaggcggc cgcctgcctc 120 gaggaagccg gggtcttctc cggcgtcatc ctgtacaaaa ggcaggaggg tcagcggaca 180 ccgacgctgc acccggtcac caggaacggc atgccctgcg tggaaatgcg cttcaacttc 240 tccatgccca ccggggagtt gtgccgcgct ctccgcagag cggccgaaga gctgacccac 300 cgggcggcgg ccaccgccac gggcccgccc atgctctact accagaccga tacgctgctg 360 aggtatcacc cccgcgactt acccgcctgc gtcacccatc acggcccctt cttcgacgac 420 ttcgcggacc ggttctccac tcaggacacc ttccaggcat tcggcagcgc ggagaaggcc 480 ctgcacctca tgcgccagca ggaacgggga ctcctcgaac tcgtcgccgc acgccatatc 540 ttcgtgatgc agcactccag gatgcagcgc gactacctgg tcggacaggg aatggacccg 600 gcgcgcatgc gcgaggtcag cccgcccatc cgcccggaga aggtcccgag cgtccgcccg 660 ccgaccggca tcctgcgttt catcgaatcg gcgccgcttc tcctgtgcac cgcggtggcc 720 cgactcgact acttcaagaa cctcgacctg ctgatcagcg cggccacgga actgatggag 780 cggggacttc ccgtgaaggt cctgctgatc ggcggcgacg aatgcgacga cgtgctgcgc 840 aaatcgctcg tcagagaagt cccggcacac cacgccgaca gattcctgct gaccccgaga 900 ctcacgaagg gcgaactcta cgcggtgttc cggacggccc ggcggacctc ggtattcgtc 960 tgcacctcgc ggtacgagac cctgggcatc accccgctcg aagcagcgct gagcggcctc 1020 tccaccgtcg tccccgactc ccgccccgtc gaggccgcca gattctttcc cgccgacgcc 1080 cgatacgagc ccaccgcgaa cggcctggtg aaactgatcg aacggatcgc ctccgtggac 1140 ctgttccggc gcggcgcgga actgtgcagg ctgctagaag ggcagatctc cgtcgcatgg 1200 ttccgcagag atctgatgcg ggcctggcgc agtttttccg agatgggcag gagcgccctc 1260 cagcaatga 1269 <210> 2 <211> 1329 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 2 atggcctgcc gccggcaatc gacgcagagc gaaggagagc acatgccgac accggcatgg 60 gaggtcgaac ccaccggcga gcgccggagg ctcgtacacg tcaacgcgac ggcccgcggc 120 ggcggagtcg cggagctgct gcacggcctg gtgccctgcc agcaggccgc cgggctgaac 180 gccggctggg ccgtgatcgg cggcgacgag gacttctacg cggtgaccaa gctcttgcat 240 cacctgctgc acggcacggc cgatccggac cggctgcgag ccgagtcgct gcggacctac 300 cgcgagcggc tggccgcgca ggcctcctgg ttcaccgagc ggctcacccg cgacgacgtg 360 gtggtcctgc acgatccgca gaccctcgga ctcgcaccgc tgctgagcgc caccggcgcc 420 cgtgtcgtct ggcactgcca tgtcggggcg gacgtccccc cggaccgggg accgggtgcc 480 gtctggcgcg ccttcgcggc cgaactgtcc gcggtcgacg cggtgatcac caccctgccg 540 gagttcgcgc ccccctccgt acccctggcc aggaggttcg tcgccgcccc ggcgatcgac 600 ccctcggccc cgaagaaccg gcacctggag ccgagggaag tcgccgcgct gctggacagg 660 gccggactca ccgcggaccg cacggccccg gacgtcaggc tcgtccagca gacgacgctg 720 ccggccgacg cccgtgtcgt cctgcaggtc tcccgctggg atccgctgaa ggacatgccc 780 ggcgtggtgc gctgcctcgc gggcctcgcc ccggatgtgc acctggtgct cgcgggcacc 840 gaccccaccg agataccgga cgacccggaa ggcctggccg tcctcgccga cgtacagcag 900 acgctcgccg gactggcccc ggcggaccgg gcgcgagtcc atctggtcaa tgtctccatg 960 cgcgacccgc tgggcaacgc gctgctcgtg aacgcgctgc agcgccgcgc ggacgtggtg 1020 ctgcagaaga gcctggagga gggcttcggc ctgaccgtga ccgaggcgat ggtcaagggc 1080 cgggcggtgg tggcctcttc ggtgggcgga ctgcggcagc aggtgatcca cgagcgcaac 1140 gggctcctgg tcgagccgac cgacctcgcc ggggtgcggg ccgcgctcac ccggcttctc 1200 gacgaccccg ccctgcgccg ccgactcggc gagcaggccc gcaacgacac cctggagcgc 1260 tacacgatga cacggctcgt cacggactac ggagccatcg ccggctcggc agagggggcc 1320 ctcgcatga 1329 <210> 3 <211> 759 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 3 atgagcgtcg ccgtcgtcac cgccgccagc ggcggaatcg gtcgtgccgt ggtgcacacc 60 ctgctcgcgg agaaggtcgt ctcccgggtg atcgccgtcg acgtggcgga cccgccggcc 120 tccctgcccg acggcgcgga agcgctgcgc tgcgacctgc gcaccgagga ggggcttgcc 180 gccctcgccg aggccgtgcc cgaggagatc accgtcctcg tcaatgtcct cggcggggag 240 cggcagccgc cgctggagcc catcgaggac gtggcctggc cgccgccgga ggtgtgggac 300 gacatcgtcg acctcaacct ctccggcgtc taccgggtca cccggctgct cgccggacgc 360 ctcctgccgg gcggcgcgat ctgccaggtc agctccatcg ccgccaccat gccctgggtc 420 gtctcgcccg cgtacggggc cgccaaggcc gccctggagc actggaacga ctcgcttgcc 480 gtgctcctgg ccgaccgcgg gatcagggcc aacctcgtcc gtcccgggtt cgtctggagc 540 cgccagtggc agctggtcga ccgggccgag ttcgaggagg tggtacggga ccgggtgccg 600 ctccggcagg tcaccggcac gacgccgacc gaccgggagc agaccgcgga cgacgtcgcc 660 caggccgtgt cgttcctctg ctcccccgcg gcggcgcacc tcaccggtca ggccatcaac 720 gtggacggcg gcgcggccct cgtccgcgcg gcccgctga 759 <210> 4 <211> 1182 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 4 atggaaagca ccgctctgcc cccggcggcc aagctgcgcg gcagcaccgt cttcctgggc 60 ttcggcgcct tcggactgct gtggggcctg tacgccgcgg cgctgccgga gatcaaggac 120 aacaccggtg tctcggacgg tgaactcggc accgcgctcg cctgcgtggc cctcgcggcg 180 gcgcccgcga tgttcctgac cggccgcctc ctcgaccgct acggaaggcc ggtggccatc 240 ggctcgctgg tcctgttcgc cgcggtcgcc tccctgccga ccctcgccac gtccacgagc 300 acactggtcg tgacgcttct gctcttcgga ttcggctcgg gctgctgcga tgtggtgatc 360 aacagcctgg cggcgacggt cgaggccgag acgggcggac gggtgctcaa ccgggcccac 420 gccctgttca gcgtgggact gctcgtcggc gccgtcggca ccagcatcac ccacgccctc 480 ggggcgagcg tcacctggcc gctcgccgta ctggcggcct gcaccgtcgt gggcgcgtgg 540 gcgctccgca ccagggtgcc gccgcgcctg ggccgcgccc cccagccgga ccggccgacc 600 gggcgccgca aggtcgacaa ggtcgtgctc ggcttcggcc tgctcgccgc gctcgccatg 660 ctggtggaga gcggcgtcca gcagtggagc gccgtcttcc tggcggacgg ggtcggcgcc 720 gcggacggtc tgtccggcct cgcaccgggg gtgttcgccg gttcgatggc gctgggcagg 780 ctcgccggac actggctgtc cacccggtgg tccgaccgtg tcgtactgct gctctcgggg 840 ctggtgtccg ccttcggtgt gctggtcgtc gcctggtcgc agcggccgct gctcgcgctg 900 gccggattcg ccgtcaccgg tctggccatc tcggcggcgg cgccgaccgt gtacagcgtg 960 gccggacgca acgccccggc ggagcgccgc ggggccgtca tcggctccac cgccgccatc 1020 ggctacgtgg gactcctgct cggccccgtg gtcgtcggcc aggtcgcgga cttcacccaa 1080 ctccgcaccg ccatcggctc cttggtcgtg gtgtccctgg cactgagcgc cgcggccctc 1140 ctgctgccga cgcccggggc agaagaccgt acggcccagt ag 1182 <210> 5 <211> 942 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 5 gtgcggcgca gaccgtcgcc gagccggacc agcctgccgg acgccgctgt cgacgaactg 60 cagtcggcgc tggtgcgggc catggccggg ccggttccgc ccgggggtgt cgccggggtc 120 tccttcggcg cggcactcga ccaccgcacc gggaccgtgt acgcctccgc tccgctgtgg 180 ggcgcgcaca cccggccctt cgacctgctc ggggccctgc gctcggcccg gcccgacgtg 240 cggtggcatg tcgtcaacga cgtcaccgcg gccctgctgc acgtggcgga ctcaccgacc 300 gcgcacgacc ggggcaagat cctgctcgcc accatcagca ccggcatcgc ctgccgcacc 360 atggaccggc gtaccggtgg gatcccggtc gacggctgcg gtctgcaagg cgagatcggt 420 catctgcccg ccttcgtcgc cctcgacggc cttccggtcg aactgcgctg cgactgcggc 480 gagccgggcc atctggcggc gttctcctcc ggtccgggca tccggcggct cggcgaggtg 540 gtgcgggacc gcgcacccga ccggtgggag gcctcccggc tcggcgccgg gctcgcggcc 600 ggagcgacct tcgagacggc gctcgcgaaa gcgctcgccg aaggcgatcc ggtggcgaac 660 cggctgctcg acgcggcgac cggcccggtg gccgatgtcg tacgcaccgc gctgtgcctc 720 gacccgggga tcgacctggt cgccttcacc ggtggggtcg cgaccggtct cggcgaccac 780 taccgcgagg cgctcctgag gcacctggac cgggccggtc tctatctgac cagcgagcgg 840 gagcccggct gggtgcgcga gcgcatcctc gtctgcggac cgggcgaggc ggacggcctc 900 gtcggcgccg gactcgccgc gctggccggg gaggcggcat ga 942 <210> 6 <211> 1098 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 6 atgaccgagc accgcgcgat catccgcacg agcaccaccg tgtccgtcgg cccgcggccc 60 accacggcgc ccgggcccgg ggagttgagc atcgcgacgc tgtacgcggg cctgtgcggc 120 accgacatcc agatgctgcg cggcctgcgc gacgacccct cgccggtgat cggccacgag 180 gggatcgccc gggtggtgac cgccggtgcg ggcgcgcccg aatggtgcgc cccgggcacc 240 ctggtggcgg tcaacccgac gcatccgacg gacccgggct tcctgctggg ccacaacgtc 300 gacggactgc tgcaggaacg cacgctgctg cccgcctccg cgctcaccgg cggcatggtc 360 ctgccgctcc ccgcgaccac ggacgtcggc ctggcccccc tcctggagcc gctcgcggtg 420 gtccgctacg cgctgagcga gctgcgcgcc ttcgcccccc gcaccctgct cgtcatcgga 480 gacggcacga tcgggcacct cgccctccgt gccgcccccc gctggctcgg cgaggacgta 540 cgggtcgcgc tggtgcacca cacccccgag ggccgcgcct tcagccaggc gcggccgcac 600 cgggccgaac tgctgctcgg gatcgaggag ttggccgccc ggcggtggga cgccccggtc 660 gcggccctgc tggccacgcc ccggaacgcg accctcgccg ccctggaggc cgtgctcgcc 720 gccgcggggc cggacctcgc cgtggacatc gtgggcgggc tgcccccggg cgcgaccacc 780 ccctcgctgc ccggtctcga cctcggtgcc gtccgcgcgg ccaactgcgg gggcatcccc 840 gacccggcgc tcgtcaccac caccgcaccg ggcgtgcgcc tgctcgggca ccggggcgtg 900 ggcaaccggc acctgctcga cgccgccgcg gaactcgccc gcgcccccga gcagtaccgg 960 gacctcatca cccacgagtc ggacctcgcc ggtgcggccc gcctcatgcg gagcctggcg 1020 ggctcagggc accgcctctt cgacggccga cgcctcgtca agctcgccgt gcgcgtcaac 1080 gacagggagc agacatga 1098 <210> 7 <211> 762 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 7 atgacgacag acaccccgct cgccgaccac cgcgccctcg tcgtcggcgg ctccacgggc 60 atcggccgcg gcatcgccga cgcctgggcc gccgcgggcg ccgaggtggt cgtctgcagc 120 cgcagccgcc ccaccggccc cggcgccgaa gcgctgcgct gggaggcact ggacctcacc 180 cggcccgagc aggcacaccc gcggctgtac gagctcgcct ccgggcccct caaggccgtg 240 tgcttcgcct ccgtccacta cggcgccggg cgcgccccct tcagcgaggt cgccgaacag 300 gagtggctgg accaactggc cgtcaacacc acgggcctgt ggcacaccct ggcggcgagc 360 ctgccgtcgc tgcgtaccgc cgcgcccggg ctcttcctgg gtgtctcctc cgaggtcgcc 420 ttcaacgccg gtccgggcag gtccggttac gccgcgacga aggcggcgtc caagaccctc 480 ctcgactcgg tggcccagga ggaggacagc gcggccgtac gcatcgtgca ggtgctgccc 540 gccgggatgg tggacagccc gggcatccgc aaccggcgac ccgaggactt cgacttcagc 600 tcgtacatga agccctccga cttcggcgcg ctggcccggg agttggccgt gacctccggg 660 gagaagtacc acggcgactc cctcgtggtc ggcggcgacg gccagtggtg gtcggcctac 720 ggctcggcgc cggtctccca gacccggtcg gtgcgctcat ga 762 <210> 8 <211> 804 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 8 atgagctgcc gattggccct cgccgaatgg cggctgcccg cctcggggcc cgaggcgctg 60 cggctggccc ggacggtcgg agccgacggt ctgcaactgg acctcggcgg gcccggccgc 120 ggcgagtggc tcgacgggcc cggccggatc gacgcggtgc gcgccgaggc ggagtcgacc 180 ggagtgcggc tgctcgcggt cgccgggaac cacctcaacg atgtcggcct gatgtcaccg 240 gccgcgcgcc cggtcctgga acgcctcctg gacaccgccg ccgcgctcgc tgtgccgctg 300 gccttcgtgc ccagcttccg ccgcagcgcg atcgaggcac cggccgacct ggaacgcacc 360 gccgaggtgc tggcctgggc cgccggagag gccggggccc gcggtctcct cctggcgagc 420 gagaacgtgc tgaccggcga gcaggctcgc gcgctggtcc ggcgggtcgg ctcccccgcc 480 ttccgcgtgg tgctcgacac gttcaacccg gtcgcggccg ggctgtcccc cgaggtgctg 540 gtcgccgaac tgcacgacgt cctggccgac caggtccacc tcaaggacgg cccgccgacc 600 accggcgcga ccccgcccct gggcagcggc accggacggc tcgacgacac cctccgtgcg 660 ctgcgcgcgc accaggtgcc ggtgcgggcc gcggtcctgg agaacgacta ccgcgacggc 720 gatcgggccc ggctgctcgc cgatctgcgc tgggcgcggc agcgcaccgc ctcactcgcc 780 acgacctcgg ggaaggaaga atga 804 <210> 9 <211> 675 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 9 atgagcactc cgtcactgcc agtcgccgtc gtcacctcgg ccctgctctt cgacatggac 60 ggcacgctgg tcgactccac agcggtggtc gagcggacct ggcgccgctt cgcccgcaga 120 cacggcgtgc gcgccgaaga gatcctcgcc gtctcgcacg gccgccgtac ggaggagacc 180 gtcgcgcggt tcgcccccgc ggacgtcgac gccgcagcgg aagcacggcg tgtgatcgcc 240 gaggaggtcg aggacacccg ggggatcacc gccatccccg gtgccgccga actcctcgcc 300 tcgctgccgg aggccggctg ggccctggtg acctccgcgg gccgccggct ggccgaggcg 360 aggatgcgcg ccgccgggct tcccctgccg cccgtactcg tcagcgcgga cgacgtcgcc 420 cagggcaagc cgagcccgga ggggtatctg caggcggccc gtcggctggg gcgctccccc 480 gagtcgctcg tcgtcttcga ggacgccgag gcggggatcc tcgcggcccg ggcctccggc 540 gccagaaccg tcgtggtcgg cccgtcccgc tgcgaggccg ccgaggggct cgaccaggtg 600 accgacctgc gggacgtccg ggtcgacatc gacacctcga ccggccggct gcgggtgtcc 660 ctgcgagccg actga 675 <210> 10 <211> 1233 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 10 atgaccggta cgagcctgac cgacacctcc tccggcctct acttcaggga ccactcccag 60 gggtggctgc tgcgcgccca gaagcagatc agctacgagg tccggctacg ggacggaatc 120 ttccgccccg agtgcaccga ccttctggag cagggggcgg gaactcccgg gcgatcacgc 180 cgcttcgtcg tggtggacag caatgtcgac ttaatgtacg gaaatcgcat ccggtcctat 240 ttcgactacc acggtgtcga ctgctcgatc atggtggtcg aggcgaacga gacgctcaag 300 aacctggaga cggcgacccg catcgtcgac gagatcgacg ccttcggcat agcccgccgc 360 aaggagccgc tgatcgtgat cggcggcggc gtactgatgg acatcgtcgg cctggtcgcc 420 agcctgtacc gccggggtgc gccgttcgta cgggttccca ccaccctcat cggcctggtg 480 gacgccgggg tcggcgtcaa gaccggcgtg aacttcaacg gccacaagaa ccggctcggc 540 acctacacgc ccgcggacct cacgctcctg gaccgccagt tcctggccac cctggaccgg 600 cggcacatcg gcaacggcct cgccgagatc ctgaagatcg ccctgatcaa ggacctcagc 660 ctgttcgcgg cactggagga gcacggcccc accctgctcg acgagaagtt ccagggcagt 720 acggcggcgg gcgaccgggc cgcgcggtcg gtgctgcact ccgcgatcca cggaatgctc 780 gacgaactgc agcccaacct ctgggaggcc gagctcgaac gttgcgtcga ctacgggcac 840 accttcagcc ccaccgtgga gatgcgcgcc ctgcccgagc tgctgcacgg cgaggccgtc 900 tgcgtggaca tggcgctcac caccgtcatc gcctggcgcc gcggcctgct caccgaggcc 960 caacgcgacc ggatcttcgc ggtgatggcc gcactggagc taccgagctg gcaccccatc 1020 ctcgacccgg acgtcctggt gaacgccctc caggacaccg tgcgccaccg ggacggactg 1080 cagcggctgc cgctgccggt cggaatcggc ggcgtcacct tcgtcaacga cgtcacaccc 1140 cgggaactgg aggccgcggt caccctgcag caggaactgg gggacgcgcg gacaccgaag 1200 acgagcgggg accgcggcgg caggaacctt tag 1233 <210> 11 <211> 546 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 11 gtgatcgaac cgctgcgctc ccgcgaggtc taccgcaacg cgtggatgac cgtacgggag 60 gacgacgtcc ggcacagcaa cggccaccag ggcatctacg gagtggtaga caagccggac 120 tacgccctgg tcatcccccg ccagggcgac cggctccacc tggtgcagca gtaccgctac 180 ccggccggcg gccggttctg ggagttcccc cagggctcct ggccgggcgg gcgctccccc 240 acggacccga gcgaactggc ccgcaccgaa ctgcgcgagg agaccgggct gcgggcaggc 300 cggatgaccg gcctcgggcg gctccatgtc gcgtacggat acgccagcca gggctgccat 360 gtgttcctgg ccgaggacct ggaagcaggc gagcccgagc gtgaggcgac cgagtccgac 420 atgcggcagc gctgggtcga cccggacgag tggtgggccc tgatccgggc gggcgagatc 480 accgacgcgg ccaccatcgc cgcgttcgcc ctgctcagcc gaccggaatc ggccccgggc 540 acctga 546 <210> 12 <211> 960 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 12 atgaaggcag tgtcgatcaa ggaacccggc ggtcccgagg tcctggagtg gaccgaggtc 60 cccgacccct cgcccgccgc cggtgaagtg gtggtcgacg tggtggccgg cgcgctgaac 120 cgggccgatg tcatgcagcg gatgggcctc tacccggtgc ccgcgggcgc ttcgccgtac 180 ccgggtcttg aggtctccgg gcggatcagc gccgtcggca ccggagtgac cggctggaag 240 gtcggcgacg aggtctgcgc gctgctcacc gggggcggct atgcgcagaa ggtcgcggtc 300 cccgcggggc agttgctcac cgtgccccag ggcatcggcc tggtggaggc ggcgggcctg 360 ccggaggcgg tcgccacggt gtggtccaac atcgtcatga ccgcgggcct gaaggagggc 420 gagaccttcc tcgtgcacgg ggggaccggt ggcgtcggca ccgcggcgat ccagatcgcc 480 aaggcgatcg gcgcccgcgt cgtcaccacc gtcggcagcc ccgaaaaggc cgagcgcgcc 540 cgcgagttgg gcgccgacct ggccatcgac caccgcaccc aggacttcac cgagcacggc 600 ccctacgacg tgatcctcga cgtggtcggc ggctcgtacc tggcaggcaa tgtccggtcc 660 ctggccgcgg acggccgcct ggtcgtcatc ggcctccagg acgggctgga gggccgactc 720 aacctcgccg acatggtgtt caagcgcctc tccgtgcacg gcaccaccct gcgcacccgg 780 tccgcggcgc agaaggccgc catcgtggcc gaggtgcagg agaaggtctg gccgctgatc 840 gagaacggca ccgtgaagct ggtcgtcgac cggaccgtgc ccatggccga ggccgccgag 900 gcccaccggc tcatggacac cggtcggcat atcggcaaga tcctgctggt caacgactga 960 960 <210> 13 <211> 612 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 13 gtgaccaagg ccgacgctgg gacgacctgg aggacgtacg cgggcagtgg gctgccgccg 60 atcctggaga ccgccctggc ctgcttcatg gagcacggct accacgggac gaccatccgg 120 acggtggcct cccgcgccgg gctctccgtg ccggggctgt actaccacta cccctcgaag 180 caggccctgc tggtcgccgt cgtctcctac gccatggacg acctccggga gcgcagcgaa 240 gccgccctgg aggaggccgg gtcggatgtg cagcggcgcc tcgacctgct cgtggagtgc 300 ctcgtgctct tccacgcgta ccggcgggac ctcgccttca tcgcgtacag cgagatccgc 360 agcctcgtcg gggacgcccg cgccacctac atcggcgccc gcgaccgcca acagcgtctg 420 atggacggcg tgttggcgga cggggtcgcg cggaaggtct tcaccacccc ctacccgcgc 480 gaggtcagcc gggcgatcgt caccatgtgc accggtgtcg cccagtggta ccgcgcggag 540 ggcgcgctca cgccgcacga gctggcggag cggtaccgcg ccatgacgcg gatgacggtc 600 ggcgcgccgt ga 612 <210> 14 <211> 1680 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 14 atgaccgtgc ccgtggagcc gccgtggggc gcgccgctcc cgaccggaac cggggtgagg 60 atcggccagg gctccctggt ggacgcctgg cgggcgcggg tggcgaggaa tccgggcggt 120 atcgcgctgc gctacttcga cggcgccatg tcggcgcggg aggcggacgc cgcatccgac 180 gccctcgcgg cggcgttcca ggcccggggc accggacgcg gcgaccgcgt cggcgtctgt 240 ctgcagaaca tcccccagta cgcgctggtg ctgctcgccc tgtggaagct gggcgcgacc 300 gccctgggga tcaacccgat gtaccggcgg caggagctgc gccgcctcgt cgacgactcc 360 ggcgcgaccg gcctggtctg cgcggacacc gaggccgagc agacccgcga caccctcgcc 420 gggagcacgg tccgctggct gctcagcacc tcggcgctgg accaccagga gcgcgacgac 480 ccgcgggtct tcccgacgag gcagcgcccc gcgcccgcgc cggacggcga tctccgggcg 540 ctgatcgagg agttcgcggg cgcccgtccg gagccggtgc ggccgaccac cgacgaggtc 600 gcgctcctga cctacacctc cggcaccacc gggccgccga agggtgccat gaacacccac 660 ggcaacatcc tgcacgtggt gcggacctac gcggcctgga ccggtctcgc cgagggggac 720 gtggtgctcg ccctcgcccc gctgttccac atcaccggcg cggtggtcaa cgcgagcctc 780 tcgctgctca ccgacaccac cctcgtcctc gcgggccggt tccgtcccga ggtcgccctc 840 gacgccatcg ccgagcacgg ggtcacctcc accatcggct ccatcacggc gtaccacgcg 900 ctctacgagg tgccgggcgc ggggccggag cacttcgcct cggtgaaggc cctctactcc 960 gggggcgccc cgatcccgcc cgcgaccgtg gagaggttcc aggagcggtt cggggtctac 1020 ctgcacaacg gctacgggat gaccgagacg agttccgcgg tgatcgcggt gcccccgggg 1080 cggcgggccc cggtgcaccg gccgagcggc accctctcca tcggcctgcc cctgccggga 1140 ctcaccgcgc gggtcgtgga tcccagcggc gatccggtgc ccggcgggca gcagggcgaa 1200 ctcgaactga gcggcccgca ggtggtgccc ggctactggc agcagcccgc ggccacccag 1260 gaggccatgc cccagggccg gttgcgtacc ggcgacggcg cgatcgtcga cgaggagggc 1320 tgggtctacc tggtggaccg gctcaaggac cagatcaatg tctccggtta caaggtctgg 1380 ccgcgcgagg tcgaggacgc cctgtacgag cacccggcgg tgcacgaggc cgccgtggtg 1440 ggagtgccgg acgactaccg cggcgagacg gtcgtcgccc atgtctcgct gaaggcgggc 1500 caccgggcca ccgccgagga gctgatcgcc ttctcgcgcg cacgcctcgc ggcctacaag 1560 tgcccgcgcg aggtccacct ccgcaccgag ctgcccaaga cccagaccgg caagatccgc 1620 cgcgccgaac tccgcgaggc cggtggcggc ggacccgcct cccccgccgc ggagggctga 1680 1680 <110> Myongji University Industry and Academia Cooperation <120> Preparation of the Streptomyces strains producing          alpha-glucosidase inhibitors transformed by the recombinant          vectors harboring the salbostatin biosynthesis gene cluster, and          mass-production method of these inhibitors <160> 14 <170> KopatentIn 1.71 <210> 1 <211> 1269 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 1 gtgaatgggg aacttcttcc cggtgtcctg gttgtcaaca gcaattattt tccgagatcg 60 cgcggggcgg ccgcccgagt gggtgccacc tccttcgcgc tcgaggcggc cgcctgcctc 120 gaggaagccg gggtcttctc cggcgtcatc ctgtacaaaa ggcaggaggg tcagcggaca 180 ccgacgctgc acccggtcac caggaacggc atgccctgcg tggaaatgcg cttcaacttc 240 tccatgccca ccggggagtt gtgccgcgct ctccgcagag cggccgaaga gctgacccac 300 cgggcggcgg ccaccgccac gggcccgccc atgctctact accagaccga tacgctgctg 360 aggtatcacc cccgcgactt acccgcctgc gtcacccatc acggcccctt cttcgacgac 420 ttcgcggacc ggttctccac tcaggacacc ttccaggcat tcggcagcgc ggagaaggcc 480 ctgcacctca tgcgccagca ggaacgggga ctcctcgaac tcgtcgccgc acgccatatc 540 ttcgtgatgc agcactccag gatgcagcgc gactacctgg tcggacaggg aatggacccg 600 gcgcgcatgc gcgaggtcag cccgcccatc cgcccggaga aggtcccgag cgtccgcccg 660 ccgaccggca tcctgcgttt catcgaatcg gcgccgcttc tcctgtgcac cgcggtggcc 720 cgactcgact acttcaagaa cctcgacctg ctgatcagcg cggccacgga actgatggag 780 cggggacttc ccgtgaaggt cctgctgatc ggcggcgacg aatgcgacga cgtgctgcgc 840 aaatcgctcg tcagagaagt cccggcacac cacgccgaca gattcctgct gaccccgaga 900 ctcacgaagg gcgaactcta cgcggtgttc cggacggccc ggcggacctc ggtattcgtc 960 tgcacctcgc ggtacgagac cctgggcatc accccgctcg aagcagcgct gagcggcctc 1020 tccaccgtcg tccccgactc ccgccccgtc gaggccgcca gattctttcc cgccgacgcc 1080 cgatacgagc ccaccgcgaa cggcctggtg aaactgatcg aacggatcgc ctccgtggac 1140 ctgttccggc gcggcgcgga actgtgcagg ctgctagaag ggcagatctc cgtcgcatgg 1200 ttccgcagag atctgatgcg ggcctggcgc agtttttccg agatgggcag gagcgccctc 1260 cagcaatga 1269 <210> 2 <211> 1329 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 2 atggcctgcc gccggcaatc gacgcagagc gaaggagagc acatgccgac accggcatgg 60 gaggtcgaac ccaccggcga gcgccggagg ctcgtacacg tcaacgcgac ggcccgcggc 120 ggcggagtcg cggagctgct gcacggcctg gtgccctgcc agcaggccgc cgggctgaac 180 gccggctggg ccgtgatcgg cggcgacgag gacttctacg cggtgaccaa gctcttgcat 240 cacctgctgc acggcacggc cgatccggac cggctgcgag ccgagtcgct gcggacctac 300 cgcgagcggc tggccgcgca ggcctcctgg ttcaccgagc ggctcacccg cgacgacgtg 360 gtggtcctgc acgatccgca gaccctcgga ctcgcaccgc tgctgagcgc caccggcgcc 420 cgtgtcgtct ggcactgcca tgtcggggcg gacgtccccc cggaccgggg accgggtgcc 480 gtctggcgcg ccttcgcggc cgaactgtcc gcggtcgacg cggtgatcac caccctgccg 540 gagttcgcgc ccccctccgt acccctggcc aggaggttcg tcgccgcccc ggcgatcgac 600 ccctcggccc cgaagaaccg gcacctggag ccgagggaag tcgccgcgct gctggacagg 660 gccggactca ccgcggaccg cacggccccg gacgtcaggc tcgtccagca gacgacgctg 720 ccggccgacg cccgtgtcgt cctgcaggtc tcccgctggg atccgctgaa ggacatgccc 780 ggcgtggtgc gctgcctcgc gggcctcgcc ccggatgtgc acctggtgct cgcgggcacc 840 gaccccaccg agataccgga cgacccggaa ggcctggccg tcctcgccga cgtacagcag 900 acgctcgccg gactggcccc ggcggaccgg gcgcgagtcc atctggtcaa tgtctccatg 960 cgcgacccgc tgggcaacgc gctgctcgtg aacgcgctgc agcgccgcgc ggacgtggtg 1020 ctgcagaaga gcctggagga gggcttcggc ctgaccgtga ccgaggcgat ggtcaagggc 1080 cgggcggtgg tggcctcttc ggtgggcgga ctgcggcagc aggtgatcca cgagcgcaac 1140 gggctcctgg tcgagccgac cgacctcgcc ggggtgcggg ccgcgctcac ccggcttctc 1200 gacgaccccg ccctgcgccg ccgactcggc gagcaggccc gcaacgacac cctggagcgc 1260 tacacgatga cacggctcgt cacggactac ggagccatcg ccggctcggc agagggggcc 1320 ctcgcatga 1329 <210> 3 <211> 759 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 3 atgagcgtcg ccgtcgtcac cgccgccagc ggcggaatcg gtcgtgccgt ggtgcacacc 60 ctgctcgcgg agaaggtcgt ctcccgggtg atcgccgtcg acgtggcgga cccgccggcc 120 tccctgcccg acggcgcgga agcgctgcgc tgcgacctgc gcaccgagga ggggcttgcc 180 gccctcgccg aggccgtgcc cgaggagatc accgtcctcg tcaatgtcct cggcggggag 240 cggcagccgc cgctggagcc catcgaggac gtggcctggc cgccgccgga ggtgtgggac 300 gacatcgtcg acctcaacct ctccggcgtc taccgggtca cccggctgct cgccggacgc 360 ctcctgccgg gcggcgcgat ctgccaggtc agctccatcg ccgccaccat gccctgggtc 420 gtctcgcccg cgtacggggc cgccaaggcc gccctggagc actggaacga ctcgcttgcc 480 gtgctcctgg ccgaccgcgg gatcagggcc aacctcgtcc gtcccgggtt cgtctggagc 540 cgccagtggc agctggtcga ccgggccgag ttcgaggagg tggtacggga ccgggtgccg 600 ctccggcagg tcaccggcac gacgccgacc gaccgggagc agaccgcgga cgacgtcgcc 660 caggccgtgt cgttcctctg ctcccccgcg gcggcgcacc tcaccggtca ggccatcaac 720 gtggacggcg gcgcggccct cgtccgcgcg gcccgctga 759 <210> 4 <211> 1182 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 4 atggaaagca ccgctctgcc cccggcggcc aagctgcgcg gcagcaccgt cttcctgggc 60 ttcggcgcct tcggactgct gtggggcctg tacgccgcgg cgctgccgga gatcaaggac 120 aacaccggtg tctcggacgg tgaactcggc accgcgctcg cctgcgtggc cctcgcggcg 180 gcgcccgcga tgttcctgac cggccgcctc ctcgaccgct acggaaggcc ggtggccatc 240 ggctcgctgg tcctgttcgc cgcggtcgcc tccctgccga ccctcgccac gtccacgagc 300 acactggtcg tgacgcttct gctcttcgga ttcggctcgg gctgctgcga tgtggtgatc 360 aacagcctgg cggcgacggt cgaggccgag acgggcggac gggtgctcaa ccgggcccac 420 gccctgttca gcgtgggact gctcgtcggc gccgtcggca ccagcatcac ccacgccctc 480 ggggcgagcg tcacctggcc gctcgccgta ctggcggcct gcaccgtcgt gggcgcgtgg 540 gcgctccgca ccagggtgcc gccgcgcctg ggccgcgccc cccagccgga ccggccgacc 600 gggcgccgca aggtcgacaa ggtcgtgctc ggcttcggcc tgctcgccgc gctcgccatg 660 ctggtggaga gcggcgtcca gcagtggagc gccgtcttcc tggcggacgg ggtcggcgcc 720 gcggacggtc tgtccggcct cgcaccgggg gtgttcgccg gttcgatggc gctgggcagg 780 ctcgccggac actggctgtc cacccggtgg tccgaccgtg tcgtactgct gctctcgggg 840 ctggtgtccg ccttcggtgt gctggtcgtc gcctggtcgc agcggccgct gctcgcgctg 900 gccggattcg ccgtcaccgg tctggccatc tcggcggcgg cgccgaccgt gtacagcgtg 960 gccggacgca acgccccggc ggagcgccgc ggggccgtca tcggctccac cgccgccatc 1020 ggctacgtgg gactcctgct cggccccgtg gtcgtcggcc aggtcgcgga cttcacccaa 1080 ctccgcaccg ccatcggctc cttggtcgtg gtgtccctgg cactgagcgc cgcggccctc 1140 ctgctgccga cgcccggggc agaagaccgt acggcccagt ag 1182 <210> 5 <211> 942 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 5 gtgcggcgca gaccgtcgcc gagccggacc agcctgccgg acgccgctgt cgacgaactg 60 cagtcggcgc tggtgcgggc catggccggg ccggttccgc ccgggggtgt cgccggggtc 120 tccttcggcg cggcactcga ccaccgcacc gggaccgtgt acgcctccgc tccgctgtgg 180 ggcgcgcaca cccggccctt cgacctgctc ggggccctgc gctcggcccg gcccgacgtg 240 cggtggcatg tcgtcaacga cgtcaccgcg gccctgctgc acgtggcgga ctcaccgacc 300 gcgcacgacc ggggcaagat cctgctcgcc accatcagca ccggcatcgc ctgccgcacc 360 atggaccggc gtaccggtgg gatcccggtc gacggctgcg gtctgcaagg cgagatcggt 420 catctgcccg ccttcgtcgc cctcgacggc cttccggtcg aactgcgctg cgactgcggc 480 gagccgggcc atctggcggc gttctcctcc ggtccgggca tccggcggct cggcgaggtg 540 gtgcgggacc gcgcacccga ccggtgggag gcctcccggc tcggcgccgg gctcgcggcc 600 ggagcgacct tcgagacggc gctcgcgaaa gcgctcgccg aaggcgatcc ggtggcgaac 660 cggctgctcg acgcggcgac cggcccggtg gccgatgtcg tacgcaccgc gctgtgcctc 720 gacccgggga tcgacctggt cgccttcacc ggtggggtcg cgaccggtct cggcgaccac 780 taccgcgagg cgctcctgag gcacctggac cgggccggtc tctatctgac cagcgagcgg 840 gagcccggct gggtgcgcga gcgcatcctc gtctgcggac cgggcgaggc ggacggcctc 900 gtcggcgccg gactcgccgc gctggccggg gaggcggcat ga 942 <210> 6 <211> 1098 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 6 atgaccgagc accgcgcgat catccgcacg agcaccaccg tgtccgtcgg cccgcggccc 60 accacggcgc ccgggcccgg ggagttgagc atcgcgacgc tgtacgcggg cctgtgcggc 120 accgacatcc agatgctgcg cggcctgcgc gacgacccct cgccggtgat cggccacgag 180 gggatcgccc gggtggtgac cgccggtgcg ggcgcgcccg aatggtgcgc cccgggcacc 240 ctggtggcgg tcaacccgac gcatccgacg gacccgggct tcctgctggg ccacaacgtc 300 gacggactgc tgcaggaacg cacgctgctg cccgcctccg cgctcaccgg cggcatggtc 360 ctgccgctcc ccgcgaccac ggacgtcggc ctggcccccc tcctggagcc gctcgcggtg 420 gtccgctacg cgctgagcga gctgcgcgcc ttcgcccccc gcaccctgct cgtcatcgga 480 gacggcacga tcgggcacct cgccctccgt gccgcccccc gctggctcgg cgaggacgta 540 cgggtcgcgc tggtgcacca cacccccgag ggccgcgcct tcagccaggc gcggccgcac 600 cgggccgaac tgctgctcgg gatcgaggag ttggccgccc ggcggtggga cgccccggtc 660 gcggccctgc tggccacgcc ccggaacgcg accctcgccg ccctggaggc cgtgctcgcc 720 gccgcggggc cggacctcgc cgtggacatc gtgggcgggc tgcccccggg cgcgaccacc 780 ccctcgctgc ccggtctcga cctcggtgcc gtccgcgcgg ccaactgcgg gggcatcccc 840 gacccggcgc tcgtcaccac caccgcaccg ggcgtgcgcc tgctcgggca ccggggcgtg 900 ggcaaccggc acctgctcga cgccgccgcg gaactcgccc gcgcccccga gcagtaccgg 960 gacctcatca cccacgagtc ggacctcgcc ggtgcggccc gcctcatgcg gagcctggcg 1020 ggctcagggc accgcctctt cgacggccga cgcctcgtca agctcgccgt gcgcgtcaac 1080 gacagggagc agacatga 1098 <210> 7 <211> 762 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 7 atgacgacag acaccccgct cgccgaccac cgcgccctcg tcgtcggcgg ctccacgggc 60 atcggccgcg gcatcgccga cgcctgggcc gccgcgggcg ccgaggtggt cgtctgcagc 120 cgcagccgcc ccaccggccc cggcgccgaa gcgctgcgct gggaggcact ggacctcacc 180 cggcccgagc aggcacaccc gcggctgtac gagctcgcct ccgggcccct caaggccgtg 240 tgcttcgcct ccgtccacta cggcgccggg cgcgccccct tcagcgaggt cgccgaacag 300 gagtggctgg accaactggc cgtcaacacc acgggcctgt ggcacaccct ggcggcgagc 360 ctgccgtcgc tgcgtaccgc cgcgcccggg ctcttcctgg gtgtctcctc cgaggtcgcc 420 ttcaacgccg gtccgggcag gtccggttac gccgcgacga aggcggcgtc caagaccctc 480 ctcgactcgg tggcccagga ggaggacagc gcggccgtac gcatcgtgca ggtgctgccc 540 gccgggatgg tggacagccc gggcatccgc aaccggcgac ccgaggactt cgacttcagc 600 tcgtacatga agccctccga cttcggcgcg ctggcccggg agttggccgt gacctccggg 660 gagaagtacc acggcgactc cctcgtggtc ggcggcgacg gccagtggtg gtcggcctac 720 ggctcggcgc cggtctccca gacccggtcg gtgcgctcat ga 762 <210> 8 <211> 804 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 8 atgagctgcc gattggccct cgccgaatgg cggctgcccg cctcggggcc cgaggcgctg 60 cggctggccc ggacggtcgg agccgacggt ctgcaactgg acctcggcgg gcccggccgc 120 ggcgagtggc tcgacgggcc cggccggatc gacgcggtgc gcgccgaggc ggagtcgacc 180 ggagtgcggc tgctcgcggt cgccgggaac cacctcaacg atgtcggcct gatgtcaccg 240 gccgcgcgcc cggtcctgga acgcctcctg gacaccgccg ccgcgctcgc tgtgccgctg 300 gccttcgtgc ccagcttccg ccgcagcgcg atcgaggcac cggccgacct ggaacgcacc 360 gccgaggtgc tggcctgggc cgccggagag gccggggccc gcggtctcct cctggcgagc 420 gagaacgtgc tgaccggcga gcaggctcgc gcgctggtcc ggcgggtcgg ctcccccgcc 480 ttccgcgtgg tgctcgacac gttcaacccg gtcgcggccg ggctgtcccc cgaggtgctg 540 gtcgccgaac tgcacgacgt cctggccgac caggtccacc tcaaggacgg cccgccgacc 600 accggcgcga ccccgcccct gggcagcggc accggacggc tcgacgacac cctccgtgcg 660 ctgcgcgcgc accaggtgcc ggtgcgggcc gcggtcctgg agaacgacta ccgcgacggc 720 gatcgggccc ggctgctcgc cgatctgcgc tgggcgcggc agcgcaccgc ctcactcgcc 780 acgacctcgg ggaaggaaga atga 804 <210> 9 <211> 675 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 9 atgagcactc cgtcactgcc agtcgccgtc gtcacctcgg ccctgctctt cgacatggac 60 ggcacgctgg tcgactccac agcggtggtc gagcggacct ggcgccgctt cgcccgcaga 120 cacggcgtgc gcgccgaaga gatcctcgcc gtctcgcacg gccgccgtac ggaggagacc 180 gtcgcgcggt tcgcccccgc ggacgtcgac gccgcagcgg aagcacggcg tgtgatcgcc 240 gaggaggtcg aggacacccg ggggatcacc gccatccccg gtgccgccga actcctcgcc 300 tcgctgccgg aggccggctg ggccctggtg acctccgcgg gccgccggct ggccgaggcg 360 aggatgcgcg ccgccgggct tcccctgccg cccgtactcg tcagcgcgga cgacgtcgcc 420 cagggcaagc cgagcccgga ggggtatctg caggcggccc gtcggctggg gcgctccccc 480 gagtcgctcg tcgtcttcga ggacgccgag gcggggatcc tcgcggcccg ggcctccggc 540 gccagaaccg tcgtggtcgg cccgtcccgc tgcgaggccg ccgaggggct cgaccaggtg 600 accgacctgc gggacgtccg ggtcgacatc gacacctcga ccggccggct gcgggtgtcc 660 ctgcgagccg actga 675 <210> 10 <211> 1233 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 10 atgaccggta cgagcctgac cgacacctcc tccggcctct acttcaggga ccactcccag 60 gggtggctgc tgcgcgccca gaagcagatc agctacgagg tccggctacg ggacggaatc 120 ttccgccccg agtgcaccga ccttctggag cagggggcgg gaactcccgg gcgatcacgc 180 cgcttcgtcg tggtggacag caatgtcgac ttaatgtacg gaaatcgcat ccggtcctat 240 ttcgactacc acggtgtcga ctgctcgatc atggtggtcg aggcgaacga gacgctcaag 300 aacctggaga cggcgacccg catcgtcgac gagatcgacg ccttcggcat agcccgccgc 360 aaggagccgc tgatcgtgat cggcggcggc gtactgatgg acatcgtcgg cctggtcgcc 420 agcctgtacc gccggggtgc gccgttcgta cgggttccca ccaccctcat cggcctggtg 480 gacgccgggg tcggcgtcaa gaccggcgtg aacttcaacg gccacaagaa ccggctcggc 540 acctacacgc ccgcggacct cacgctcctg gaccgccagt tcctggccac cctggaccgg 600 cggcacatcg gcaacggcct cgccgagatc ctgaagatcg ccctgatcaa ggacctcagc 660 ctgttcgcgg cactggagga gcacggcccc accctgctcg acgagaagtt ccagggcagt 720 acggcggcgg gcgaccgggc cgcgcggtcg gtgctgcact ccgcgatcca cggaatgctc 780 gacgaactgc agcccaacct ctgggaggcc gagctcgaac gttgcgtcga ctacgggcac 840 accttcagcc ccaccgtgga gatgcgcgcc ctgcccgagc tgctgcacgg cgaggccgtc 900 tgcgtggaca tggcgctcac caccgtcatc gcctggcgcc gcggcctgct caccgaggcc 960 caacgcgacc ggatcttcgc ggtgatggcc gcactggagc taccgagctg gcaccccatc 1020 ctcgacccgg acgtcctggt gaacgccctc caggacaccg tgcgccaccg ggacggactg 1080 cagcggctgc cgctgccggt cggaatcggc ggcgtcacct tcgtcaacga cgtcacaccc 1140 cgggaactgg aggccgcggt caccctgcag caggaactgg gggacgcgcg gacaccgaag 1200 acgagcgggg accgcggcgg caggaacctt tag 1233 <210> 11 <211> 546 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 11 gtgatcgaac cgctgcgctc ccgcgaggtc taccgcaacg cgtggatgac cgtacgggag 60 gacgacgtcc ggcacagcaa cggccaccag ggcatctacg gagtggtaga caagccggac 120 tacgccctgg tcatcccccg ccagggcgac cggctccacc tggtgcagca gtaccgctac 180 ccggccggcg gccggttctg ggagttcccc cagggctcct ggccgggcgg gcgctccccc 240 acggacccga gcgaactggc ccgcaccgaa ctgcgcgagg agaccgggct gcgggcaggc 300 cggatgaccg gcctcgggcg gctccatgtc gcgtacggat acgccagcca gggctgccat 360 gtgttcctgg ccgaggacct ggaagcaggc gagcccgagc gtgaggcgac cgagtccgac 420 atgcggcagc gctgggtcga cccggacgag tggtgggccc tgatccgggc gggcgagatc 480 accgacgcgg ccaccatcgc cgcgttcgcc ctgctcagcc gaccggaatc ggccccgggc 540 acctga 546 <210> 12 <211> 960 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 12 atgaaggcag tgtcgatcaa ggaacccggc ggtcccgagg tcctggagtg gaccgaggtc 60 cccgacccct cgcccgccgc cggtgaagtg gtggtcgacg tggtggccgg cgcgctgaac 120 cgggccgatg tcatgcagcg gatgggcctc tacccggtgc ccgcgggcgc ttcgccgtac 180 ccgggtcttg aggtctccgg gcggatcagc gccgtcggca ccggagtgac cggctggaag 240 gtcggcgacg aggtctgcgc gctgctcacc gggggcggct atgcgcagaa ggtcgcggtc 300 cccgcggggc agttgctcac cgtgccccag ggcatcggcc tggtggaggc ggcgggcctg 360 ccggaggcgg tcgccacggt gtggtccaac atcgtcatga ccgcgggcct gaaggagggc 420 gagaccttcc tcgtgcacgg ggggaccggt ggcgtcggca ccgcggcgat ccagatcgcc 480 aaggcgatcg gcgcccgcgt cgtcaccacc gtcggcagcc ccgaaaaggc cgagcgcgcc 540 cgcgagttgg gcgccgacct ggccatcgac caccgcaccc aggacttcac cgagcacggc 600 ccctacgacg tgatcctcga cgtggtcggc ggctcgtacc tggcaggcaa tgtccggtcc 660 ctggccgcgg acggccgcct ggtcgtcatc ggcctccagg acgggctgga gggccgactc 720 aacctcgccg acatggtgtt caagcgcctc tccgtgcacg gcaccaccct gcgcacccgg 780 tccgcggcgc agaaggccgc catcgtggcc gaggtgcagg agaaggtctg gccgctgatc 840 gagaacggca ccgtgaagct ggtcgtcgac cggaccgtgc ccatggccga ggccgccgag 900 gcccaccggc tcatggacac cggtcggcat atcggcaaga tcctgctggt caacgactga 960                                                                          960 <210> 13 <211> 612 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 13 gtgaccaagg ccgacgctgg gacgacctgg aggacgtacg cgggcagtgg gctgccgccg 60 atcctggaga ccgccctggc ctgcttcatg gagcacggct accacgggac gaccatccgg 120 acggtggcct cccgcgccgg gctctccgtg ccggggctgt actaccacta cccctcgaag 180 caggccctgc tggtcgccgt cgtctcctac gccatggacg acctccggga gcgcagcgaa 240 gccgccctgg aggaggccgg gtcggatgtg cagcggcgcc tcgacctgct cgtggagtgc 300 ctcgtgctct tccacgcgta ccggcgggac ctcgccttca tcgcgtacag cgagatccgc 360 agcctcgtcg gggacgcccg cgccacctac atcggcgccc gcgaccgcca acagcgtctg 420 atggacggcg tgttggcgga cggggtcgcg cggaaggtct tcaccacccc ctacccgcgc 480 gaggtcagcc gggcgatcgt caccatgtgc accggtgtcg cccagtggta ccgcgcggag 540 ggcgcgctca cgccgcacga gctggcggag cggtaccgcg ccatgacgcg gatgacggtc 600 ggcgcgccgt ga 612 <210> 14 <211> 1680 <212> DNA <213> Streptomyces albus KCTC 9015 <400> 14 atgaccgtgc ccgtggagcc gccgtggggc gcgccgctcc cgaccggaac cggggtgagg 60 atcggccagg gctccctggt ggacgcctgg cgggcgcggg tggcgaggaa tccgggcggt 120 atcgcgctgc gctacttcga cggcgccatg tcggcgcggg aggcggacgc cgcatccgac 180 gccctcgcgg cggcgttcca ggcccggggc accggacgcg gcgaccgcgt cggcgtctgt 240 ctgcagaaca tcccccagta cgcgctggtg ctgctcgccc tgtggaagct gggcgcgacc 300 gccctgggga tcaacccgat gtaccggcgg caggagctgc gccgcctcgt cgacgactcc 360 ggcgcgaccg gcctggtctg cgcggacacc gaggccgagc agacccgcga caccctcgcc 420 gggagcacgg tccgctggct gctcagcacc tcggcgctgg accaccagga gcgcgacgac 480 ccgcgggtct tcccgacgag gcagcgcccc gcgcccgcgc cggacggcga tctccgggcg 540 ctgatcgagg agttcgcggg cgcccgtccg gagccggtgc ggccgaccac cgacgaggtc 600 gcgctcctga cctacacctc cggcaccacc gggccgccga agggtgccat gaacacccac 660 ggcaacatcc tgcacgtggt gcggacctac gcggcctgga ccggtctcgc cgagggggac 720 gtggtgctcg ccctcgcccc gctgttccac atcaccggcg cggtggtcaa cgcgagcctc 780 tcgctgctca ccgacaccac cctcgtcctc gcgggccggt tccgtcccga ggtcgccctc 840 gacgccatcg ccgagcacgg ggtcacctcc accatcggct ccatcacggc gtaccacgcg 900 ctctacgagg tgccgggcgc ggggccggag cacttcgcct cggtgaaggc cctctactcc 960 gggggcgccc cgatcccgcc cgcgaccgtg gagaggttcc aggagcggtt cggggtctac 1020 ctgcacaacg gctacgggat gaccgagacg agttccgcgg tgatcgcggt gcccccgggg 1080 cggcgggccc cggtgcaccg gccgagcggc accctctcca tcggcctgcc cctgccggga 1140 ctcaccgcgc gggtcgtgga tcccagcggc gatccggtgc ccggcgggca gcagggcgaa 1200 ctcgaactga gcggcccgca ggtggtgccc ggctactggc agcagcccgc ggccacccag 1260 gaggccatgc cccagggccg gttgcgtacc ggcgacggcg cgatcgtcga cgaggagggc 1320 tgggtctacc tggtggaccg gctcaaggac cagatcaatg tctccggtta caaggtctgg 1380 ccgcgcgagg tcgaggacgc cctgtacgag cacccggcgg tgcacgaggc cgccgtggtg 1440 ggagtgccgg acgactaccg cggcgagacg gtcgtcgccc atgtctcgct gaaggcgggc 1500 caccgggcca ccgccgagga gctgatcgcc ttctcgcgcg cacgcctcgc ggcctacaag 1560 tgcccgcgcg aggtccacct ccgcaccgag ctgcccaaga cccagaccgg caagatccgc 1620 cgcgccgaac tccgcgaggc cggtggcggc ggacccgcct cccccgccgc ggagggctga 1680                                                                         1680  

Claims (11)

살보스타틴 생합성 유전자 군에서 분리된 서열번호 2 내지 서열번호 14의 염기서열을 갖는 유전자를 포함하는 알파-글루코시다제 억제제 생산용 DNA 단편.DNA fragment for producing an alpha-glucosidase inhibitor comprising a gene having a nucleotide sequence of SEQ ID NO: 2 to SEQ ID NO: 14 isolated from the salvostatin biosynthetic gene group. 제1항에 있어서, 상기 DNA 단편은 서열번호 1의 염기서열을 갖는 유전자를 더 포함하는 것을 특징으로 하는 알파-글루코시다제 억제제 생산용 DNA 단편.The DNA fragment of claim 1, wherein the DNA fragment further comprises a gene having a nucleotide sequence of SEQ ID NO: 1. 제1항에 있어서, 상기 알파-글루코시다제 억제제는 발리올아민(valiolamine)인 것을 특징으로 하는 알파-글루코시다제 억제제 생산용 DNA 단편.According to claim 1, wherein the alpha-glucosidase inhibitor is a DNA fragment for the production of alpha-glucosidase inhibitors, characterized in that the valolol (valiolamine). 제2항에 있어서, 상기 알파-글루코시다제 억제제는 발리엔아민(Valienamine)인 것을 특징으로 하는 알파-글루코시다제 억제제 생산용 DNA 단편.According to claim 2, wherein the alpha-glucosidase inhibitor is a DNA fragment for producing an alpha-glucosidase inhibitor, characterized in that the Balienamine (Valienamine). 제1항 또는 제2항의 알파-글루코시다제 억제제 생산용 DNA 단편이 삽입된 재조합 발현벡터.A recombinant expression vector into which a DNA fragment for producing an alpha-glucosidase inhibitor of claim 1 or 2 is inserted. 제5항에 있어서, 상기 재조합 발현벡터는 도 4의 개열지도를 갖는 재조합벡터(pWHU) 또는 도 5의 개열지도를 갖는 재조합벡터(pWIU)인 것을 특징으로 하는 재조합 발현벡터.The recombinant expression vector according to claim 5, wherein the recombinant expression vector is a recombinant vector having a cleavage map of FIG. 4 (pWHU) or a recombinant vector having a cleavage map of FIG. 5 (pWIU). 제5항에 따른 재조합 발현벡터로 형질전환된 세포.A cell transformed with the recombinant expression vector according to claim 5. 제7항에 있어서, 상기 세포는 방선균 세포인 것을 특징으로 하는 형질전환된 세포. 8. The transformed cell of claim 7, wherein said cell is an actinomycete cell. 제7항에 있어서, 상기 세포는 스트렙토마이세스 알버스(Streptomyces albus G153)인 것을 특징으로 하는 형질전환된 세포. 8. The transformed cell of claim 7, wherein said cell is Streptomyces albus G153. 제1항에 따른 DNA 단편을 발현벡터에 삽입하여 재조합 발현벡터를 제조하는 단계;Preparing a recombinant expression vector by inserting the DNA fragment according to claim 1 into an expression vector; 상기 재조합 발현벡터로 방선균을 형질전환시키는 단계; 및Transforming actinomycetes with the recombinant expression vector; And 상기 형질전환된 방선균을 CST 배지에서 배양하여 발리올아민을 대량생산하는 단계를 포함하는 알파-글루코시다제 억제제인 발리올아민의 생산방법. Method for producing a valolamine alpha-glucosidase inhibitor comprising culturing the transformed actinomycetes in CST medium mass production. 제2항에 따른 DNA 단편을 벡터에 삽입하여 재조합 발현벡터를 제조하는 단계;Preparing a recombinant expression vector by inserting the DNA fragment according to claim 2 into a vector; 상기 재조합 발현벡터로 방선균을 형질전환시키는 단계; 및Transforming actinomycetes with the recombinant expression vector; And 상기 형질전환된 방선균을 GYM 배지에서 배양하여 발리엔아민을 대량생산하는 단계를 포함하는 알파-글루코시다제 억제제인 발리엔아민의 대량생산방법.A method for mass production of a valenamine, an alpha-glucosidase inhibitor, comprising culturing the transformed actinomycetes in a GYM medium to mass-produce a Balienamine.
KR1020080083367A 2008-08-26 2008-08-26 Preparation of the Streptomyces strains producing alpha-glucosidase inhibitors transformed by the recombinant vectors harboring the salbostatin biosynthesis gene cluster, and mass-production method of these inhibitors KR100999069B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080083367A KR100999069B1 (en) 2008-08-26 2008-08-26 Preparation of the Streptomyces strains producing alpha-glucosidase inhibitors transformed by the recombinant vectors harboring the salbostatin biosynthesis gene cluster, and mass-production method of these inhibitors
PCT/KR2008/005645 WO2010024493A1 (en) 2008-08-26 2008-09-23 Preparation of the streptomyces strains producing alpha-glucosidase inhibitors transformed by the recombinant vectors harboring the salbostatin biosynthesis gene cluster, and mass-production method of these inhibitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080083367A KR100999069B1 (en) 2008-08-26 2008-08-26 Preparation of the Streptomyces strains producing alpha-glucosidase inhibitors transformed by the recombinant vectors harboring the salbostatin biosynthesis gene cluster, and mass-production method of these inhibitors

Publications (2)

Publication Number Publication Date
KR20100024687A KR20100024687A (en) 2010-03-08
KR100999069B1 true KR100999069B1 (en) 2010-12-07

Family

ID=41721642

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080083367A KR100999069B1 (en) 2008-08-26 2008-08-26 Preparation of the Streptomyces strains producing alpha-glucosidase inhibitors transformed by the recombinant vectors harboring the salbostatin biosynthesis gene cluster, and mass-production method of these inhibitors

Country Status (2)

Country Link
KR (1) KR100999069B1 (en)
WO (1) WO2010024493A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113846041B (en) * 2021-11-03 2023-06-06 上海交通大学 Method for enhancing expression of transporter genes to increase salinomycin fermentation levels

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752683B1 (en) 2006-09-14 2007-08-29 명지대학교 산학협력단 A valiolone synthase its gene and primer for valienamine biosynthesis and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040047041A (en) * 2002-11-29 2004-06-05 주식회사 아트만 바이오 사이언스 Industrial Applications and Genetic Information of Salbostatin and Trehalose biosynthesis related enzyme SalA, SalB, SalC, SalD, SalE, SalF, SalG, SalH, SalI, SalJ, SalK, SalL, SalM, SalN, SalO, SalP, SalQ
KR100861771B1 (en) * 2005-03-07 2008-10-08 다인바이오 주식회사 2-epi-5-epi-valiolone synthase for validamycin biosynthesis and method for preparing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100752683B1 (en) 2006-09-14 2007-08-29 명지대학교 산학협력단 A valiolone synthase its gene and primer for valienamine biosynthesis and method for producing the same

Also Published As

Publication number Publication date
WO2010024493A1 (en) 2010-03-04
KR20100024687A (en) 2010-03-08

Similar Documents

Publication Publication Date Title
DK2271666T3 (en) NRPS-PKS GROUP AND ITS MANIPULATION AND APPLICABILITY
JP2000515390A (en) Novel polyketide derivative and recombinant method for producing the same
US6265202B1 (en) DNA encoding methymycin and pikromycin
KR20100039443A (en) Compositions and methods relating to the daptomycin biosynthetic gene cluster
KR20180093083A (en) Kelimycin biosynthesis gene cluster
EA029209B1 (en) Gene cluster for biosynthesis of griselimycin and methylgriselimycin
CN101275141A (en) Biological synthesis gene cluster for Azintamide
KR102359972B1 (en) Compositions and methods for the preparation of compounds
CN111607603B (en) Hangtaimycin biosynthesis gene cluster and application thereof
KR100999069B1 (en) Preparation of the Streptomyces strains producing alpha-glucosidase inhibitors transformed by the recombinant vectors harboring the salbostatin biosynthesis gene cluster, and mass-production method of these inhibitors
KR101833984B1 (en) Recombinant microorganism producing milbemycin and method for producing milbemycin using the same
CN106676115B (en) 2 &#39;-chloro Pentostatins and 2 &#39;-amino -2&#39;-deoxyadenosine biological synthesis gene cluster and its application
KR100882692B1 (en) Biosynthetic Genes for Butenyl-Spinosyn Insecticide Production
CN107164394B (en) Biosynthetic gene cluster of atypical keratinocyte compound nenestatin A and application thereof
CN115247179B (en) Polyketide skeleton and biosynthetic gene cluster of post-modifier thereof and application thereof
KR102017788B1 (en) Recombinant Microorganisms Producing Milbemycin D and Method of Preparing Milbemycin D Using the Same
CA2354030A1 (en) Micromonospora echinospora genes encoding for biosynthesis of calicheamicin and self-resistance thereto
US20040086962A1 (en) Methods and materials relating to gene expression
KR101610970B1 (en) Gene involved in the biosynthesis of galbonolide
CN107541523B (en) Varicose streptothricin biosynthesis gene cluster and application thereof
CA2397186A1 (en) Gene cluster for everninomicin biosynthesis
US20030073824A1 (en) DNA encoding methymycin and pikromycin
KR101721750B1 (en) Novel macrolactam glycoside derivatives, chemoenzymatic method for preparation thereof and antibacterial composition comprising the same
US20030194784A1 (en) DNA encoding methymycin and pikromycin
US20040241799A1 (en) Methods of directing C-O bond formation utilizing a type II polyketide synthase system

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131114

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141202

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee