KR100982163B1 - Radio wave absorbing body - Google Patents

Radio wave absorbing body Download PDF

Info

Publication number
KR100982163B1
KR100982163B1 KR1020080073983A KR20080073983A KR100982163B1 KR 100982163 B1 KR100982163 B1 KR 100982163B1 KR 1020080073983 A KR1020080073983 A KR 1020080073983A KR 20080073983 A KR20080073983 A KR 20080073983A KR 100982163 B1 KR100982163 B1 KR 100982163B1
Authority
KR
South Korea
Prior art keywords
weight
oxide
radio wave
terms
wave absorber
Prior art date
Application number
KR1020080073983A
Other languages
Korean (ko)
Other versions
KR20090040205A (en
Inventor
도모카즈 이시쿠라
요시히토 히라이
다츠야 시마자키
겐타로 모리
다쿠야 아오키
다쿠 무라세
Original Assignee
티디케이가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 티디케이가부시기가이샤 filed Critical 티디케이가부시기가이샤
Publication of KR20090040205A publication Critical patent/KR20090040205A/en
Application granted granted Critical
Publication of KR100982163B1 publication Critical patent/KR100982163B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

본 발명은 MnZn 페라이트 소결체로 이루어지는 전파 흡수체로서, 이 전파 흡수체는 산화철이 Fe2O3 환산으로 45.0∼49.0몰%, 산화아연이 ZnO 환산으로 19.0∼23.0몰%, 및 산화망간이 MnO 환산으로 28.0∼36.0몰%로 이루어지는 주성분을 갖고, 이 주성분 100중량부에 대하여, 부성분으로서 산화코발트, 산화규소, 및 산화칼슘을 각각 소정량을 함유하여 이루어지도록 구성되어 있으므로, 제조 코스트의 현격한 저감을 도모할 수 있고, 퀴리 온도, 정합 두께, 전파흡수 특성의 온도특성 주파수특성에도 우수한 효과를 발휘한다. The present invention relates to a radio wave absorber comprising a sintered MnZn ferrite, which has 45.0 to 49.0 mol% of iron oxide in terms of Fe 2 O 3 , 19.0 to 23.0 mol% of zinc oxide in terms of ZnO, and 28.0 in manganese oxide. It has a main component which consists of -36.0 mol%, and it is comprised so that a predetermined amount may contain cobalt oxide, a silicon oxide, and calcium oxide as a subcomponent with respect to 100 weight part of this main component, and it aims at the remarkable reduction of a manufacturing cost. It also has excellent effects on the temperature characteristic frequency characteristics of the Curie temperature, matching thickness, and radio wave absorption characteristics.

Zn 페라이트 소결체, 전파 흡수체, 산화철, 산화아연, 산화망간, 산화코발, 산화 규소, 산화칼슘, 반사 감쇠량, 주파수 Zn ferrite sintered body, radio wave absorber, iron oxide, zinc oxide, manganese oxide, cobalt oxide, silicon oxide, calcium oxide, reflection attenuation, frequency

Description

전파 흡수체{RADIO WAVE ABSORBING BODY}Electric wave absorber {RADIO WAVE ABSORBING BODY}

본 발명은 Ni를 주성분 중에 포함하지 않는 MnZn계 페라이트 재료로 구성되는 전파 흡수체에 관한 것으로, 전파 암실이나 전파 흡수벽 등에 사용되는 전파 흡수체에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio wave absorber composed of an MnZn-based ferrite material containing no Ni as a main component, and relates to a radio wave absorber used in a radio wave darkroom, a radio wave absorption wall, or the like.

최근, 정보통신 기술의 발달이나 다양한 전기기기의 보급에 따라, 불필요한 전자 노이즈가 정밀기기 관련 장치에 미치는 영향이 문제가 되고 있다. In recent years, with the development of information and communication technology and the spread of various electric devices, the influence of unnecessary electronic noise on precision device-related devices has become a problem.

이러한 전자 노이즈의 측정에는, 전자파의 반사가 없는 전파 암실(전파 무향실)이 필요하게 되어, 전파 암실의 내벽에는 전파 흡수체가 사용되고 있다. The measurement of such electromagnetic noise requires a radio wave dark room (electromagnetic anechoic chamber) without reflection of electromagnetic waves, and a radio wave absorber is used for the inner wall of the radio wave dark room.

또, 텔레비전의 전파가 고층 건축물 등에서 반사되어서 생기는 수신 장해를 방지하기 위하여, 건축물 등의 외벽에 전파 흡수체가 사용되고 있다. Moreover, a radio wave absorber is used for the outer wall of a building, etc. in order to prevent the reception obstacle which a radio wave of a television reflects by a high-rise building etc. is prevented.

이러한 전파 흡수체는 전파 암실의 내부나 외벽 등에 다량으로 사용되기 때문에, 제품 비용이 낮은 것이 요구된다. Since such a radio wave absorber is used in a large amount in the interior, the outer wall of a radio wave darkroom, etc., a low product cost is calculated | required.

종래의 전파 흡수체로서, 예를 들면 40MHz∼450MHz의 주파수대역에서 반사 감쇠량이 20dB 이상의 특성을 갖는 전파 흡수체로서, 마그네슘-아연계 페라이트를 소결시킨 전파 흡수체, 니켈-아연계 페라이트를 소결시킨 전파 흡수체, 망간-니켈- 구리-아연계 페라이트 등이 있다. A conventional radio wave absorber, for example, a radio wave absorber having a reflection attenuation amount of 20 dB or more in a frequency band of 40 MHz to 450 MHz, a radio wave absorber obtained by sintering magnesium-zinc ferrite, a radio wave absorber sintered by nickel-zinc ferrite, Manganese-nickel-copper-zinc ferrite.

이것들 중에서, 마그네슘-아연계 페라이트재는 비교적 원료 비용이 낮지만, 전파 흡수체의 정합 두께는 8mm 정도로 크고, 전파 암실의 내벽이나 건축물 등의 외벽에 사용되는 전파 흡수체의 총 중량을 저감시키기 위해서는 한계가 있다. Among these, the magnesium-zinc ferrite material has a relatively low raw material cost, but the matching thickness of the radio wave absorber is about 8 mm, and there is a limit to reduce the total weight of the radio wave absorber used for the inner wall of the radio dark room or the outer wall of a building. .

한편, 니켈을 주성분으로서 포함하는 페라이트는, 원하는 전파 흡수체 특성을 얻기 위해서는 유리한 소재라고는 할 수 있지만, 비용이 높아져, 비용 저감을 목적으로 하는 본원 발명의 취지에는 합치하지 않는다. 또한, 정밀기기 관련 장치의 전자 노이즈를 측정하는 전파 암실에서는, 전자 노이즈를 평가하는 주파수대역이 규격화되어, 30∼1000MHz의 범위에서의 반사 감쇠량이 20dB 이상이 요구된다. On the other hand, ferrite containing nickel as a main component can be said to be an advantageous material in order to obtain desired radio wave absorber characteristics, but the cost is high, which is inconsistent with the purpose of the present invention for the purpose of cost reduction. In addition, in the radio dark room for measuring the electromagnetic noise of the precision equipment-related apparatus, the frequency band for evaluating the electromagnetic noise is standardized, the amount of reflection attenuation in the range of 30 to 1000 MHz is required 20dB or more.

본원 발명에 관련된다고 생각되는 선행기술로서, 일본 특개 2005-179092호 공보가 있다. 이 선행기술은, 그 용도가 전파 흡수체에 한정되어 있는 것은 아니지만, 본원발명과 조성이 유사한 Mn-Co-Zn계 페라이트에 관한 것이다. 그리고, 이 선행기술에서, 본원발명의 조성범위와 가까운 실시예의 조성으로서, 나중에 기재된 표 1에 기재된 시료번호 1-9가 존재한다. 선행기술에서의 시료번호 1-9의 조성은 Fe2O3=45.5mol%, MnO=31.5mol%, ZnO=21.0mol%, CoO=2.0mol%이다. As a prior art considered to be related to this invention, Unexamined-Japanese-Patent No. 2005-179092 is mentioned. This prior art relates to a Mn-Co-Zn-based ferrite similar in composition to the present invention, although its use is not limited to the radio wave absorber. And in this prior art, as a composition of the Example close to the composition range of this invention, the sample number 1-9 of Table 1 mentioned later exists. The composition of Sample No. 1-9 in the prior art is Fe 2 O 3 = 45.5 mol%, MnO = 31.5 mol%, ZnO = 21.0 mol%, CoO = 2.0 mol%.

이 시료번호 1-9에서의, Fe2O3, MnO, 및 ZnO를 주성분으로 하고, CoO를 부성분으로서 생각하고, 본원발명과 동일한 표시로 환산하면, 시료번호 1-9는, 주성분: Fe2O3=46.43mol%, MnO=32.14mol%, ZnO=21.43mol%이며, 부성분: CoO=13380중량ppm (0.01338중량부)이 된다. 이 선행기술의 조성 범위는 본원 발명이 목적으로 하고 있는 원하는 효과를 가져오는 것은 아니다. 이것은, 후술하는 본원발명의 실시예에서의 실험결과를 살펴봄으로써 밝혀진다. In Sample No. 1-9, when Fe 2 O 3 , MnO, and ZnO are the main components, and CoO is regarded as a minor component, and converted to the same indication as the present invention, Sample No. 1-9 is the main component: Fe 2. O 3 = 46.43 mol%, MnO = 3.314 mol%, ZnO = 21.43 mol%, and the subcomponents: CoO = 13380 weight ppm (0.01338 weight part). The composition range of this prior art does not bring about the desired effect which this invention aims at. This is found by examining the experimental results in the Examples of the present invention described later.

이러한 실상하에, 본 발명은 창안된 것으로, 그 목적은, 요구되는 특성 레벨을 높은 레벨로 유지한 채 제조 비용의 저감이 도모되는 전파 흡수체를 제공하는 것에 있다. 즉, 30MHz의 저주파 영역에서의, 실온(25℃)에서의 반사 감쇠량이 20dB 이상, 마이너스 20℃(-20℃)에서의 반사 감쇠량이 15dB 이상의 특성을 갖고, 게다가, 정합 두께가 6mm 이하가 되는 특성을 갖고, 퀴리 온도가 80℃ 이상의 특성을 가지며, 또한, 제조 비용의 저감이 도모되는 Mn-Zn계의 전파 흡수체를 제공하는 것에 있다. Under these circumstances, the present invention has been devised, and an object thereof is to provide a radio wave absorber in which manufacturing cost can be reduced while maintaining the required characteristic level at a high level. That is, in the low frequency region of 30 MHz, the reflection attenuation at room temperature (25 ° C.) is 20 dB or more, the reflection attenuation at minus 20 ° C. (-20 ° C.) is 15 dB or more, and the matching thickness is 6 mm or less. It is to provide the Mn-Zn type radio wave absorber which has the characteristic, Curie temperature has the characteristic of 80 degreeC or more, and can reduce manufacturing cost.

상기 과제를 해결하기 위하여 본 발명은, MnZn 페라이트 소결체로 이루어지는 전파 흡수체로서, 이 전파 흡수체는, MEANS TO SOLVE THE PROBLEM In order to solve the said subject, this invention is a radio wave absorber which consists of a MnZn ferrite sintered compact,

산화철이 Fe2O3 환산으로 45.0∼49.0몰%, Iron oxide in terms of Fe 2 O 3 45.0-49.0 mol%,

산화아연이 ZnO 환산으로 19.0∼23.0몰%, 및 Zinc oxide is 19.0 to 23.0 mol% in terms of ZnO, and

산화망간이 MnO 환산으로 28.0∼36.0몰%로 이루어지는 주성분을 갖고, Manganese oxide has a main component consisting of 28.0 to 36.0 mol% in terms of MnO,

이 주성분 100중량부에 대하여 부성분으로서, As a subcomponent with respect to 100 parts by weight of this main component,

산화코발트를 CoO 환산으로 1000∼7000중량ppm (0.001~0.007중량부), 산화 규소를 SiO2 환산으로 10∼200중량ppm (0.00001~0.0002중량부), 및 산화칼슘을 CaO 환산으로 200∼2500중량ppm (0.0002~0.0025중량부) 함유하여 이루어지도록 구성된다. 1000 to 7000 ppm by weight (0.001 to 0.007 parts by weight) of cobalt oxide in terms of CoO, 10 to 200 ppm by weight (0.00001 to 0.0002 parts by weight) of silicon oxide in terms of SiO 2, and 200 to 2500 parts by weight of calcium oxide in terms of CaO It is configured to contain ppm (0.0002 ~ 0.0025 parts by weight).

또, 본 발명의 전파 흡수체의 바람직한 태양으로서, 부성분으로서 산화니오븀을 Nb2O5 환산으로 500중량ppm (0.0005중량부) 미만 함유하여 이루어지도록 구성된다. Further, as a preferred embodiment of the radio wave absorbent of the present invention, it is configured to be achieved by the niobium oxide as a sub ingredient containing less than 500 ppm by weight (0.0005 parts by weight) in terms of Nb 2 O 5.

또, 본 발명의 전파 흡수체의 바람직한 태양으로서, 산화코발트는 CoO 환산으로 3500∼6500중량ppm (0.0035~0.0065중량부) 함유되도록 구성된다. Moreover, as a preferable aspect of the electromagnetic wave absorber of this invention, cobalt oxide is comprised so that 3500-6500 weight ppm (0.0035-0.0065 weight part) may be contained in conversion of CoO.

또, 본 발명의 전파 흡수체의 바람직한 태양으로서, 25℃에서의 반사 감쇠량이 20dB 이상인 특성, -20℃에서의 반사 감쇠량이 15dB 이상인 특성, 25℃에서 반사 감쇠량이 20dB을 만족하는 하한의 주파수가 30MHz 이하인 특성, 25℃에서 반사 감쇠량이 20dB을 만족하는 상한의 주파수가 300MHz 이상인 특성, -20℃에서 반사 감쇠량이 15dB을 만족하는 하한의 주파수가 30MHz 이하인 특성, 정합 두께가 6mm 이하가 되는 특성, 및 퀴리 온도가 80℃ 이상의 특성을 갖도록 구성된다. Moreover, as a preferable aspect of the electromagnetic wave absorber of this invention, the characteristic whose reflection attenuation amount at 25 degreeC is 20 dB or more, the characteristic whose reflection attenuation amount is -15 dB or more at -20 degreeC, and the lower limit frequency which satisfy | fills 20 dB of reflection attenuation at 25 degreeC is 30 MHz. The following characteristics, the upper limit frequency at which the reflection attenuation satisfies 20 dB at 25 DEG C or higher is 300 MHz or higher, the lower limit frequency at which the reflection attenuation satisfies the 15 dB at -20 DEG C is 30 MHz or lower, the matching thickness is 6 mm or lower, and It is comprised so that a Curie temperature may have a characteristic of 80 degreeC or more.

또, 본 발명의 전파 흡수체의 바람직한 태양으로서, 소결 밀도가 4.7(g/cm3)을 초과하는 특성, 주파수 30MHz에서의 복소 유전율 실수부인 ε'의 값이 10<ε'<30의 조건을 충족시키는 특성, 주파수 30MHz에서의 복소 투자율 실수부인μ'의 값이 μ'<80의 조건을 충족시키는 특성, 및 주파수 30MHz에서의 복소 투자율 허수부인 μ''의 값이 μ''>260의 조건을 충족시키는 특성을 갖도록 구성된다. Moreover, as a preferable aspect of the electromagnetic wave absorber of this invention, the characteristic whose sintered density exceeds 4.7 (g / cm <3> ) and the value of epsilon 'which is a complex dielectric constant real part in frequency 30MHz satisfy | fill the conditions of 10 <ε'<30. Characteristics of the complex permeability real part μ 'at a frequency of 30 MHz satisfy the condition of μ'<80, and a value of μ '' of the complex permeability imaginary part at a frequency of 30 MHz is μ ''> 260. It is configured to have characteristics to meet.

또, 본 발명의 바람직한 태양으로서, 전파 흡수체는 판 형상의 타일 형상을 하고 있도록 구성된다. Moreover, as a preferable aspect of this invention, a radio wave absorber is comprised so that it may have a plate-like tile shape.

본 발명의 MnZn 페라이트 소결체로 이루어지는 전파 흡수체는 산화철이 Fe2O3 환산으로 45.0∼49.0몰%, 산화아연이 ZnO 환산으로 19.0∼23.0몰%, 및 산화망간이 MnO 환산으로 28.0∼36.0몰%로 이루어지는 주성분을 갖고, 이 주성분 100중량부에 대하여, 부성분으로서 산화코발트, 산화 규소, 및 산화칼슘을 각각 소정량을 함유하여 이루어지도록 구성되어 있으므로, 제조 비용의 현격한 저감을 도모할 수 있고, 퀴리 온도, 정합 두께, 전파흡수 특성의 온도특성 주파수 특성에도 우수한 효과를 발휘한다. The electromagnetic wave absorber of the sintered MnZn ferrite of the present invention has iron oxide as 45.0 to 49.0 mol% in terms of Fe 2 O 3 , zinc oxide as 19.0 to 23.0 mol% in terms of ZnO, and manganese oxide as 28.0 to 36.0 mol%. It has a main component which consists of, and it is comprised so that a predetermined amount may contain cobalt oxide, a silicon oxide, and calcium oxide as a subcomponent with respect to 100 weight part of this main component, respectively, and it can aim at the remarkable reduction of a manufacturing cost, and Curie It also has an excellent effect on the temperature characteristic frequency characteristics of temperature, matching thickness, and radio wave absorption characteristics.

본 발명은, MnZn 페라이트 소결체로 이루어지는 전파 흡수체로서, 이 전파 흡수체는 산화철이 Fe2O3 환산으로 45.0∼49.0몰%, 산화아연이 ZnO 환산으로 19.0∼23.0몰%, 및 산화망간이 MnO 환산으로 28.0∼36.0몰%로 이루어지는 주성분을 갖고, 이 주성분 100중량부에 대하여, 부성분으로서 산화코발트, 산화규소, 및 산화칼슘을 각각 소정량을 함유하여 이루어지도록 구성되어 있으므로, 제조 비용의 현격한 저감을 도모할 수 있고, 퀴리 온도, 정합 두께, 전파흡수 특성의 온도 특성 주파수 특성에도 우수한 효과를 발휘한다. The present invention provides a radio wave absorber comprising a sintered MnZn ferrite, which is 45.0 to 49.0 mol% of iron oxide in terms of Fe 2 O 3 , 19.0 to 23.0 mol% of zinc oxide in terms of ZnO, and manganese oxide in terms of MnO. Since it has a main component which consists of 28.0-36.0 mol%, and it is comprised so that a predetermined amount of cobalt oxide, a silicon oxide, and a calcium oxide may be contained as a subcomponent with respect to 100 weight part of this main component, the reduction of a manufacturing cost is remarkably reduced. It is also possible to achieve an excellent effect on the temperature characteristic frequency characteristics of the Curie temperature, matching thickness, and radio wave absorption characteristics.

이하, 본 발명의 실시형태에 대하여 설명한다. EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described.

(본 발명의 전파 흡수체를 구성하는 주성분의 설명)(Explanation of main components constituting the radio wave absorber of the present invention)

본 발명의 전파 흡수체는 산화철, 산화아연, 및 산화망간으로 이루어지는 주성분을 포함하여 구성된다. 산화철은 Fe2O3 환산으로 45.0∼49.0몰%(바람직하게는, 46.0∼48.0몰%), 산화아연은 ZnO 환산으로 19.0∼23.0몰%(바람직하게는 20.5∼22.5 몰%), 및 산화망간은 MnO 환산으로 28.0∼34.5몰% 함유된다. The radio wave absorber of the present invention comprises a main component composed of iron oxide, zinc oxide, and manganese oxide. Iron oxide is 45.0 to 49.0 mol% in terms of Fe 2 O 3 (preferably 46.0 to 48.0 mol%), zinc oxide is 19.0 to 23.0 mol% in terms of ZnO (preferably 20.5 to 22.5 mol%), and manganese oxide 28.0-34.5 mol% is contained in MnO conversion.

상기의 범위를 벗어난 조성 영역에서는, 전파흡수 특성에 필요하게 되는 복소 비투자율의 주파수특성, 복소 비유전율의 주파수특성이 만족되지 않거나, 전파 흡수체의 정합 두께가 6.0mm를 초과하거나, 전파 흡수체로서 적당한 퀴리점이 얻어지지 않거나 한다. In the composition region outside the above range, the frequency characteristic of the complex relative permeability and the frequency characteristic of the complex dielectric constant required for the radio wave absorption characteristics are not satisfied, or the matching thickness of the radio wave absorber exceeds 6.0 mm, or is suitable as a radio wave absorber. Curie point is not obtained.

여기에서 전파흡수 특성과는 하기의 수학식 1로 표시되고, 복소 투자율의 실수부(μ')의 저하를 생기게 하는 주파수가 높아지면, 저주파수 대역으로부터의 양호한 전파흡수 특성이 얻어지지 않게 되어버린다. 또, 복소 투자율의 허수부(μ'')가 낮은 경우, 정합 두께의 증대를 초래하게 된다. Here, the radio wave absorption characteristic is expressed by the following equation (1), and when the frequency causing a decrease in the real part (μ ') of the complex permeability becomes high, good radio wave absorption characteristics from the low frequency band cannot be obtained. In addition, when the imaginary part (μ '') of a complex permeability is low, an increase in matching thickness will be caused.

또, 복소 유전율의 실수부 ε'이 적절한 값이 아니면, 반사 감쇠량의 저하를 초래해버린다. If the real part ε 'of the complex dielectric constant is not an appropriate value, the reflection attenuation amount is lowered.

Figure 112008054629390-pat00001
Figure 112008054629390-pat00001

또, 퀴리점이 현저하게 낮은 경우, 변환된 열에 의해 전파 흡수체 그 자체의 온도가 쉽게 퀴리점을 초과해버려, 자성을 잃고 전파 흡수체로서 기능하지 못하게 되어버린다고 하는 문제가 생긴다. In addition, when the Curie point is remarkably low, a problem arises in that the temperature of the radio wave absorber itself easily exceeds the Curie point by the converted heat, resulting in loss of magnetism and inability to function as a radio wave absorber.

상기 산화철의 함유량이 45.0몰% 미만으로 되면, 복소 비투자율의 허수부(μ'')의 저하에 의해, 정합 두께가 6mm 이상으로 되고, 게다가, 퀴리 온도가 80℃이하로 된다고 하는 문제가 생긴다. 또, 상기 산화철의 함유량이 49.0몰%를 초과하면, 복소 비투자율의 실수부(μ')의 저하를 생기게 하는 주파수가 높아져, 30MHz의 저주파 영역에서의, 실온(25℃)에서의 반사 감쇠량이 20dB 이하로 되어버린다고 하는 문제가 생긴다. When the content of the iron oxide is less than 45.0 mol%, the matching thickness becomes 6 mm or more due to the decrease in the imaginary part (μ &quot;) of complex specific permeability, and furthermore, there arises a problem that the Curie temperature becomes 80 ° C. or less. . In addition, when the content of the iron oxide exceeds 49.0 mol%, the frequency causing a decrease in the real part (μ ') of the complex specific permeability is increased, and the amount of reflection attenuation at room temperature (25 ° C) in a low frequency region of 30 MHz is increased. The problem that it becomes less than 20dB arises.

또, 상기 산화아연의 함유량이 19.0몰% 미만으로 되면, 복소 비투자율의 실수부(μ')의 저하를 생기게 하는 주파수가 높아져, 30MHz의 저주파 영역에서의, 실온(25℃)에서의 반사 감쇠량이 20dB 이하로 되어버린다고 하는 문제가 발생한다. 또, 상기 산화아연의 함유량이 23.0몰%를 초과하면, 정합 두께가 6mm 이상이 되고, 게다가 퀴리 온도가 80℃ 이하로 된다고 하는 문제가 발생해버린다. When the content of zinc oxide is less than 19.0 mol%, the frequency causing a decrease in the real part (μ ') of complex specific permeability is increased, and the amount of reflection attenuation at room temperature (25 ° C.) in the low frequency region of 30 MHz is increased. The problem that this becomes 20 dB or less arises. Moreover, when content of the said zinc oxide exceeds 23.0 mol%, the matching thickness will be 6 mm or more, and the problem that a Curie temperature will be 80 degrees C or less arises.

(주성분에 첨가되는 부성분의 설명)(Description of Subcomponents Added to the Main Ingredient)

(1) 부성분으로서 산화코발트의 첨가(1) Addition of cobalt oxide as a minor component

상기의 MnZn 페라이트 주성분 100중량부에 대하여, 부성분으로서 산화코발트가 CoO 환산으로 1000∼7000중량ppm (0.001~0.007중량부), 바람직하게는 3500∼6500중량ppm (0.0035~0.0065중량부) 함유된다. Cobalt oxide is contained in an amount of 1000 to 7000 ppm by weight (0.001 to 0.007 parts by weight), preferably 3500 to 6500 parts by weight (0.0035 to 0.0065 parts by weight), in terms of CoO, based on 100 parts by weight of the above-mentioned MnZn ferrite main component.

적당한 코발트의 첨가는 복소 비투자율의 실수부(μ')의 감쇠를 저주파측으로 이동시키는 효과를 초래하고, 상기 산화코발트의 함유량이 1000중량ppm (0.001중량부) 미만으로 되면, 복소 비투자율의 실수부(μ')의 저하를 생기게 하는 주파수가 높게 되어버린다. 그 결과, 30MHz의 저주파 영역에서의, 실온(25℃)에서의 반사 감쇠량이 20dB 이하로 되고, 또한 마이너스 20℃(-20℃)에서의 반사 감쇠량이 15dB 이하로 되어버린다고 하는 문제가 생긴다. The addition of a suitable cobalt causes the effect of shifting the attenuation of the real part (μ ') of the complex specific permeability to the low frequency side, and when the content of the cobalt oxide is less than 1000 parts by weight (0.001 parts by weight), the real number of complex permeability The frequency causing negative (μ ') degradation becomes high. As a result, there arises a problem that the reflection attenuation at room temperature (25 ° C.) is 20 dB or less in the low frequency region of 30 MHz, and the reflection attenuation at minus 20 ° C. (-20 ° C.) is 15 dB or less.

또, 산화코발트의 함유량이 7000중량ppm (0.007중량부)을 초과하면, 반대로 복소 비투자율의 실수부(μ')의 저하를 생기게 하는 주파수가 높아지고, 30MHz의 저주파 영역에서의, 실온(25℃)에서의 반사 감쇠량이 20dB 이하가 되고, 또한 마이너스 20℃(-2O℃)에서의 반사 감쇠량이 15dB 이하가 되어버린다고 하는 문제가 생긴다. On the other hand, when the content of cobalt oxide exceeds 7000 ppm by weight (0.007 parts by weight), on the contrary, the frequency causing a decrease in the real part (μ ') of complex specific permeability is increased, and at room temperature (25 ° C) in a low frequency region of 30 MHz ), The reflection attenuation amount becomes 20 dB or less, and the reflection attenuation amount at minus 20 ° C (-2O ° C) becomes 15 dB or less.

(2) 부성분으로서 산화 규소(SiO2)의 첨가(2) Addition of Silicon Oxide (SiO 2 ) as Subcomponent

상기의 MnZn 페라이트 주성분 100중량부에 대하여, 부성분으로서 산화 규소가 SiO2 환산으로 10∼200중량ppm (0.00001~0.0002중량부), 바람직하게는 30∼150중량ppm (0.00003~0.00015중량부) 함유된다. 산화 규소의 함유량이 10중량ppm (0.00001중량부) 미만이면, 소결 밀도가 현저하게 저하되어 버린다고 하는 문제가 생긴다. 또, 산화 규소의 함유량이 200중량ppm (0.0002중량부)을 초과하면, 이상 입성장이 나타나버린다고 하는 문제가 생긴다. Silicon oxide is contained in an amount of 10 to 200 ppm by weight (0.00001 to 0.0002 parts by weight) in terms of SiO 2 , preferably 30 to 150 ppm by weight (0.00003 to 0.00015 parts by weight), based on 100 parts by weight of the MnZn ferrite main component. . If content of silicon oxide is less than 10 weight ppm (0.00001 weight part), the problem that a sintering density will fall remarkably will arise. Moreover, when content of a silicon oxide exceeds 200 weight ppm (0.0002 weight part), the problem that abnormal grain growth arises arises.

(3) 부성분으로서 산화칼슘(CaO)의 첨가 (3) Addition of calcium oxide (CaO) as a minor component

상기의 MnZn 페라이트 주성분 100중량부에 대하여, 부성분으로서 산화칼슘이 CaO 환산으로 200∼3000중량ppm (0.0002~0.003중량부), 바람직하게는 500∼1500중량ppm (0.0005~0.0015중량부) 함유된다. 산화칼슘의 함유량이 200중량ppm (0.0002중량부) 미만이면, 주파수 30MHz에서의 복소 비투자율의 실수부(μ')가 커져 버려(복소 비투자율의 실수부(μ')의 감쇠가 고주파측으로 이동해 버림), 20dB 이상의 반사 감쇠량이 얻어지지 않는다고 하는 문제가 생겨버린다. Calcium oxide is contained in an amount of 200 to 3000 ppm by weight (0.0002 to 0.003 parts by weight), preferably 500 to 1500 ppm by weight (0.0005 to 0.0015 parts by weight), in terms of CaO, as a sub ingredient with respect to 100 parts by weight of the above-mentioned MnZn ferrite main component. If the content of calcium oxide is less than 200 ppm by weight (0.0002 parts by weight), the real part (μ ') of the complex specific permeability at the frequency 30 MHz becomes large (the attenuation of the real part (μ') of the complex specific permeability moves toward the high frequency side. A problem arises that the reflection attenuation amount of 20 dB or more cannot be obtained.

또, 산화칼슘의 함유량이 3000중량ppm (0.003중량부)을 초과하면, 주파수 30MHz에서의 복소 비투자율의 허수부(μ'')가 작아져버려, 정합 두께가 두터워져 버린다고 하는 문제가 생긴다. Moreover, when content of calcium oxide exceeds 3000 weight ppm (0.003 weight part), the imaginary part (micro ") of the complex specific permeability in frequency 30MHz will become small, and the problem that a matching thickness will become thick will arise.

(4) 부성분으로서 산화니오븀(Nb2O5)의 첨가(4) Addition of niobium oxide (Nb 2 O 5 ) as a minor component

본 발명에서, 산화니오븀(Nb2O5)은 필수적인 부성분은 아니다. In the present invention, niobium oxide (Nb 2 O 5 ) is not an essential accessory.

산화니오븀(Nb2O5)의 첨가에 의해, 소결성의 향상이 나타나고, 또한 복소 비투자율의 실수부(μ')의 감쇠가 저주파측으로 이동하고, 30MHz에서의 반사 감쇠량이 향상된다고 하는 특성의 개선이 나타나는 경향이 있다. The addition of niobium oxide (Nb 2 O 5 ) improves the sintering properties and further improves the characteristics that the attenuation of the real part (μ ') of the complex specific permeability shifts to the low frequency side and the amount of reflection attenuation at 30 MHz is improved. This tends to appear.

단, 산화니오븀의 함유량이 500중량ppm (0.0005중량부)을 초과하면, 주파수 30MHz에서의 복소 비투자율의 실수부(μ')가 커져버려(복소 비투자율의 실수부(μ')의 감쇠가 고주파측으로 이동함), 20dB 이상의 반사 감쇠량이 얻어지지 않는다고 하는 문제가 생기는 경향이 있다. However, when the content of niobium oxide exceeds 500 ppm by weight (0.0005 parts by weight), the real part (μ ') of complex specific permeability at frequency 30MHz becomes large (the real part (μ') of complex specific permeability is attenuated. There is a tendency that a problem arises that the reflection attenuation amount of 20 dB or more cannot be obtained.

(5) 그 밖의 부성분(5) Other minor ingredients

그 밖의 부성분으로서 SnO2, TiO2, NiO, Ta2O5, ZrO2, HfO2, GeO2, MoO3, WO3, Bi2O3, V2O5, In2O3, Cr2O3, Al2O3 등의 여러 부성분을 본원 발명의 작용효과를 일탈하지 않는 범위에서 함유시켜도 된다. As other minor components, SnO 2 , TiO 2 , NiO, Ta 2 O 5 , ZrO 2 , HfO 2 , GeO 2 , MoO 3 , WO 3 , Bi 2 O 3 , V 2 O 5 , In 2 O 3 , Cr 2 O 3, the various subcomponents, such as Al 2 O 3 may be contained in a range that does not depart from the effects of the present invention.

상기해 온 바와 같은 본 발명의 전파 흡수체는 소결 후의 조성이 상기의 범위내가 되도록 배합된 MnZn 페라이트 재료를, 예를 들면 판 형상의 타일 형상으로 성형한 후, 1100℃∼1350℃ 정도의 온도로 소결시킴으로써 제조된다. 보다 구체적인 제조방법은 후술의 실시예에서의 실험예를 참고하기 바란다. 또한, 타일 형상 의 크기로서는, 세로치수가 50∼200mm 정도, 가로치수가 50∼200mm 정도, 두께 치수가 3∼10mm 정도의 판 형상체를 예시할 수 있다. The radio wave absorber of the present invention as described above is sintered at a temperature of about 1100 ° C to 1350 ° C after molding a MnZn ferrite material blended so that the composition after sintering is in the above range, for example, in a plate-like tile shape. It is prepared by making. For a more specific manufacturing method, please refer to the experimental example in the Examples below. As the size of the tile shape, a plate-shaped body having a vertical dimension of about 50 to 200 mm, a horizontal dimension of about 50 to 200 mm and a thickness dimension of about 3 to 10 mm can be exemplified.

(실시예)(Example)

이하, 구체적인 실시예를 들어, 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail with reference to specific examples.

소성 후의 조성이 하기 표 1에 표시되는 조성으로 되도록 각 원료 성분을 칭량하고, 강철제 볼 밀로 16시간 습식 혼합했다. Each raw material component was weighed and wet-mixed for 16 hours by the steel ball mill so that the composition after baking might become a composition shown in following Table 1.

다음에, 이 혼합분을 대기 중 900℃에서 2시간, 가소성했다. 얻어진 가소성물에 부성분을, 소성 후의 조성이 하기 표 1에 표시되는 조성으로 되도록 첨가하고, 강철제 볼 밀로 16시간 습식 분쇄했다. Next, this mixed powder was plasticized at 900 degreeC in air for 2 hours. The subcomponent was added to the obtained plastic so that the composition after baking might be set to the composition shown in following Table 1, and it wet-pulverized for 16 hours with the steel ball mill.

이렇게 하여 얻어진 MnZn 페라이트분에 폴리비닐알코올 수용액을 10중량% 첨가하여 조립하고, 1ton/cm2의 압력으로 하기의 전파 흡수체의 특성 테스트가 가능한 것과 같은 소정의 형상으로 성형했다. A 10% by weight polyvinyl alcohol aqueous solution was added to the obtained MnZn ferrite powder, granulated, and molded into a predetermined shape such that a characteristic test of the following radio wave absorber was possible at a pressure of 1 ton / cm 2 .

이렇게 하여 형성한 성형물을 소성했다. 소성조건으로서, 소성 온도 1300℃(1300℃까지 공기 중)로 하고, 그 후의 냉각 대역에서 1000℃까지 산소분압을 제어하고, 1000℃ 이하에서는 질소(N2)분위기에서의 소성을 행했다. The molded article thus formed was fired. As the firing conditions, the firing temperature was set at 1300 ° C. (in air to 1300 ° C.), the oxygen partial pressure was controlled to 1000 ° C. in the subsequent cooling zone, and firing was carried out in a nitrogen (N 2 ) atmosphere at 1000 ° C. or lower.

이렇게 하여 얻어진 전파 흡수체의 샘플에 대하여, 하기의 요령으로, (1) 퀴리점, (2) 전파 흡수체의 정합 두께, (3) 전파흡수 특성의 주파수 특성 및 온도 특성, (4) 복소 비투자율의 실수부(μ'), 복소 비투자율의 허수부(μ''), 복소 유전율의 실수부(ε')의 값, (5) 소결 밀도(ρ(g/cm3))를 각각 측정했다. Thus, with respect to the sample of the radio wave absorber thus obtained, (1) the Curie point, (2) the matching thickness of the radio wave absorber, (3) the frequency characteristics and temperature characteristics of the radio wave absorption characteristics, and (4) the complex specific permeability The real part (μ '), the imaginary part (μ'') of the complex specific permeability, the value of the real part (ε') of the complex dielectric constant, and (5) the sintered density (ρ (g / cm 3 )) were measured, respectively.

(1) 퀴리점(Tc)의 측정방법(1) Measurement method of Curie point (Tc)

시료를 고온층 중에 넣고, 각 온도에서 충분히 안정될 때까지 유지한 후, LCR 미터를 사용하여 초투자율(μi)의 온도 특성을 측정했다. 초투자율의 최대값을 초과한 하강부에서 최대값의 80%의 점과 20%의 점을 연결하는 연장선이 μi=1의 선과 교차하는 점을 구하고, 퀴리 온도(Tc)로 했다. 또한, 측정주파수는 1kHz로 했다. The sample was placed in a high temperature layer and held until sufficiently stable at each temperature, and then the temperature characteristic of the superpermeability (μi) was measured using an LCR meter. The point where the extension line connecting 80% of the maximum value and 20% of the point at the lower portion exceeding the maximum value of the initial permeability intersects the line of μi = 1 was obtained, and was defined as the Curie temperature (Tc). In addition, the measurement frequency was 1 kHz.

또한, 퀴리 온도(Tc)의 목표값은 80℃ 이상이다. In addition, the target value of Curie temperature Tc is 80 degreeC or more.

(2) 전파 흡수체의 정합 두께(d)(2) Matching thickness of the radio wave absorber (d)

전파 흡수체의 전파흡수 특성은 외경 19.8mm, 내경 8.6mm로 가공된 링 형상의 샘플을 사용하고, 동축관 내에 삽입한 상태에서 네트워크·어낼라이저로 반사계수를 측정했다. 얻어진 측정결과로부터, 반사 감쇠량 및 전파 흡수체 전면의 규격화 임피던스를 산출했다. As a radio wave absorption characteristic of the radio wave absorber, the reflection coefficient was measured by the network analyzer using the ring-shaped sample processed by the outer diameter of 19.8 mm and the inner diameter of 8.6 mm, and inserted in the coaxial tube. From the obtained measurement results, the amount of reflection attenuation and the normalized impedance of the entire surface of the electromagnetic wave absorber were calculated.

규격화 임피던스(Z)와 반사계수(S)의 관계는 이하와 같다. The relationship between the normalized impedance Z and the reflection coefficient S is as follows.

Z=(1+S)/(1-S)Z = (1 + S) / (1-S)

S=(Z-1)/(Z+1)S = (Z-1) / (Z + 1)

S=(Ssample/Smetal)S = (S sample / S metal )

-20log|S|=dB -20log | S | = dB

각각의 두께의 규격화 임피던스를 스미스 차트에 플롯하고, 스미스 차트의 중심을 통과하는 두께를 계산에 의해 구하고, 그 두께를 정합 두께(d)로 했다. The standardized impedance of each thickness was plotted on the Smith chart, the thickness passing through the center of the Smith chart was calculated | required, and the thickness was made into matching thickness d.

또한, 정합 두께(d)의 목표값은 6mm 이하이다. In addition, the target value of the matching thickness d is 6 mm or less.

(3) 전파흡수 특성의 주파수 특성 및 온도 특성(3) Frequency characteristics and temperature characteristics of radio wave absorption characteristics

상기 계산한 정합 두께의 링을 실제로 제작하고, 상기의 동축관법에 의해 하기의 항목을 측정했다. The ring of the matched thickness calculated above was actually produced, and the following items were measured by the coaxial tube method described above.

·25℃에서 반사 감쇠량이 20dB 이상을 만족하는 하한의 주파수: LF25(MHz)Lower limit frequency where reflection attenuation satisfies 20 dB or more at 25 ° C: LF 25 (MHz)

·25℃에서 반사 감쇠량이 20dB 이상을 만족하는 상한의 주파수: UF25(MHz)Upper limit frequency where reflection attenuation satisfies 20dB or more at 25 ° C: UF 25 (MHz)

·-20℃에서 반사 감쇠량이 15dB 이상을 만족하는 하한의 주파수: LF-20(MHz)Lower limit frequency where reflection attenuation satisfies 15 dB or more at -20 ° C: LF -20 (MHz)

·주파수 30MHz에서의 25℃에서의 반사 감쇠량: RD25(dB)Reflective attenuation at 25 ° C at frequency 30 MHz: RD 25 (dB)

·주파수 30MHz에서의 -20℃에서의 반사 감쇠량: RD-20(dB) Reflection attenuation at -20 ° C at frequency 30MHz: RD -20 (dB)

또한, LF25의 목표값은 30MHz 이하이다. In addition, the target value of LF 25 is 30 MHz or less.

또, UF25의 목표값은 300MHz 이상이다. Further, the target value of the UF 25 is more than 300MHz.

또, LF-20의 목표값은 30MHz 이하이다. In addition, the target value of LF- 20 is 30 MHz or less.

또, RD25의 목표값은, 20dB 이상이다. Further, the target value of the RD 25, is more than 20dB.

또, RD-20의 목표값은 15dB 이상이다. In addition, the target value of RD- 20 is 15 dB or more.

(4) 복소 비투자율의 실수부(μ'), 복소 비투자율의 허수부(μ''), 복소 유전율의 실수부(ε')의 값(4) Real part (μ ') of complex specific permeability, imaginary part (μ' ') of complex specific permeability, and real part (ε') of complex permittivity

상기 (2)의 수법에 준하여, 외경 19.8mm, 내경 8.6mm로 가공된 링 형상의 샘 플을 사용하고, 동축관 내에 삽입한 상태에서 네트워크·어낼라이저로 반사계수를 측정하고, 얻어진 측정결과로부터 μ', μ'', 및 ε'을 도출했다. According to the method of (2) above, using a ring-shaped sample processed at an outer diameter of 19.8 mm and an inner diameter of 8.6 mm, the reflection coefficient was measured by a network analyzer in a state of being inserted into a coaxial tube, μ ′, μ ″, and ε ′ were derived.

또, ε'의 목표값은 10<ε'<30의 범위 내이다. In addition, the target value of ε 'is in the range of 10 <ε' <30.

또, μ'의 목표값은 μ'<80이다. In addition, the target value of µ 'is µ' <80.

또, μ''의 목표값은 μ''>260이다. The target value of μ '' is μ ''> 260.

(5) 소결 밀도 ρ(g/cm3)(5) Sintered Density ρ (g / cm 3 )

아르키메데스법에 의해 측정했다. It measured by the Archimedes method.

또한, 소결 밀도(ρ)의 목표값은 4.7(g/cm3)을 초과하는 것이다. In addition, the target value of sintered density (rho) exceeds 4.7 (g / cm <3> ).

이것들의 각 항째의 측정결과를 하기 표 1에 표시했다. The measurement results of each of these terms are shown in Table 1 below.

Figure 112008054629390-pat00002
Figure 112008054629390-pat00002

Figure 112008054629390-pat00003
Figure 112008054629390-pat00003

이상의 실험결과로부터 본 발명의 효과는 명확하다. 즉, 본 발명은, MnZn 페라이트 소결체로 이루어지는 전파 흡수체로서, 이 전파 흡수체는 산화철이 Fe2O3 환산으로 45.0∼49.0몰%, 산화아연이 ZnO 환산으로 19.0∼23.0몰%, 및 산화망간이 MnO 환산으로 28.0∼36.0몰%로 이루어지는 주성분을 갖고, 이 주성분 100중량부에 대하여, 부성분으로서 산화코발트, 산화규소, 및 산화칼슘을 각각 소정량을 함유하여 이루어지도록 구성되어 있으므로, 제조 비용의 현격한 저감을 도모할 수 있고, 퀴리 온도, 정합 두께, 전파흡수 특성의 온도 특성 주파수 특성에도 우수한 효과를 발휘한다. The effect of this invention is clear from the above experiment result. That is, the present invention is a radio wave absorber composed of a sintered MnZn ferrite, which is 45.0 to 49.0 mol% of iron oxide in terms of Fe 2 O 3 , 19.0 to 23.0 mol% of zinc oxide in terms of ZnO, and MnO for manganese oxide. Since it has a main component which consists of 28.0-36.0 mol% in conversion, and it is comprised so that a predetermined amount may contain cobalt oxide, a silicon oxide, and calcium oxide as a subcomponent with respect to 100 weight part of this main component, Reduction can be aimed at, and it is excellent also in the temperature characteristic frequency characteristic of a Curie temperature, matching thickness, and a radio wave absorption characteristic.

본 발명의 MnZn계 페라이트의 제조방법은 폭넓게 각종의 전기부품산업에 이용할 수 있다. The manufacturing method of MnZn type ferrite of this invention can be used for various electric parts industry widely.

Claims (6)

MnZn 페라이트 소결체로 이루어지는 전파 흡수체로서, As a radio wave absorber composed of MnZn ferrite sintered body, 이 전파 흡수체는 This radio absorber 산화철이 Fe2O3 환산으로 45.0∼49.0몰%, Iron oxide in terms of Fe 2 O 3 45.0-49.0 mol%, 산화아연이 ZnO 환산으로 19.0∼23.0몰%, 및 Zinc oxide is 19.0 to 23.0 mol% in terms of ZnO, and 산화망간이 MnO 환산으로 28.0∼36.0몰%로 이루어지는 주성분을 갖고, Manganese oxide has a main component consisting of 28.0 to 36.0 mol% in terms of MnO, 이 주성분 100중량부에 대하여 부성분으로서, As a subcomponent with respect to 100 parts by weight of this main component, 산화코발트를 CoO 환산으로 1000∼7000중량ppm (0.001~0.007중량부), 산화 규소를 SiO2 환산으로 10∼200중량ppm (0.00001~0.0002중량부), 및 산화칼슘을 CaO 환산으로 200∼2500중량ppm (0.0002~0.0025중량부) 함유하여 이루어지는 것을 특징으로 하는 전파 흡수체.1000 to 7000 ppm by weight (0.001 to 0.007 parts by weight) of cobalt oxide in terms of CoO, 10 to 200 ppm by weight (0.00001 to 0.0002 parts by weight) of silicon oxide in terms of SiO 2, and 200 to 2500 parts by weight of calcium oxide in terms of CaO A radio wave absorber comprising ppm (0.0002 to 0.0025 parts by weight). 제 1 항에 있어서, 부성분으로서 산화니오븀을 Nb2O5 환산으로 500중량ppm (0.0005중량부) 미만 더 함유하는 것을 특징으로 하는 전파 흡수체.The radio wave absorber according to claim 1, further comprising less than 500 ppm by weight (0.0005 parts by weight) of niobium oxide in terms of Nb 2 O 5 as a minor component. 제 1 항에 있어서, 상기 산화코발트는 CoO 환산으로 3500∼6500중량ppm (0.0035~0.0065중량부)인 것을 특징으로 하는 전파 흡수체.The radio wave absorber according to claim 1, wherein the cobalt oxide is 3500 to 6500 ppm by weight (0.0035 to 0.0065 parts by weight) in terms of CoO. 제 1 항에 있어서, 25℃에서의 반사 감쇠량이 20dB 이상인 특성, A characteristic according to claim 1, wherein the reflection attenuation at 25 ° C. is 20 dB or more. -20℃에서의 반사 감쇠량이 15dB 이상인 특성, Characteristic of reflection attenuation at -20 ℃ over 15dB, 25℃에서 반사 감쇠량이 20dB을 만족하는 하한의 주파수가 30MHz 이하인 특성, The characteristic that the lower limit frequency of the reflection attenuation satisfies 20dB at 25 ° C is 30MHz or less, 25℃에서 반사 감쇠량이 20dB을 만족하는 상한의 주파수가 300MHz 이상인 특성, The upper limit frequency where the reflection attenuation satisfies 20dB at 25 ° C is 300MHz or more, -20℃에서 반사 감쇠량이 15dB을 만족하는 하한의 주파수가 30MHz 이하인 특성,The frequency of the lower limit at which the reflection attenuation satisfies 15 dB at -20 ° C is 30 MHz or less, 정합 두께가 6mm 이하로 되는 특성, 및  The matching thickness is 6 mm or less, and 퀴리 온도가 80℃ 이상의 특성을 갖는 것을 특징으로 하는 전파 흡수체.The electromagnetic wave absorber characterized by the Curie temperature having a characteristic of 80 ℃ or more. 제 4 항에 있어서, 소결 밀도가 4.7(g/cm3)을 초과하는 특성, 5. The property of claim 4 wherein the sintered density is greater than 4.7 (g / cm 3 ), 주파수 30MHz에서의 복소 유전율 실수부인 ε'의 값이 10<ε'<30의 조건을 충족시키는 특성, The characteristic of ε 'which is a complex dielectric constant part at frequency 30 MHz satisfies the condition of 10 <ε' <30, 주파수 30MHz에서의 복소 투자율 실수부인 μ'의 값이 μ'<80의 조건을 충족시키는 특성, 및 The property that the value of the complex permeability real part μ 'at the frequency 30 MHz satisfies the condition of μ' <80, and 주파수 30MHz에서의 복소 투자율 허수부인 μ''의 값이 μ''>260의 조건을 충족시키는 특성을 갖는 것을 특징으로 하는 전파 흡수체.A radio wave absorber characterized in that the value of the complex permeability imaginary part μ '' at a frequency of 30 MHz satisfies the condition of μ ''> 260. 제 1 항에 있어서, 판 형상의 타일 형상을 하고 있는 것을 특징으로 하는 전 파 흡수체.The wave absorber according to claim 1, which has a plate-like tile shape.
KR1020080073983A 2007-10-19 2008-07-29 Radio wave absorbing body KR100982163B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2007-00272587 2007-10-19
JP2007272587A JP4488051B2 (en) 2007-10-19 2007-10-19 Radio wave absorber

Publications (2)

Publication Number Publication Date
KR20090040205A KR20090040205A (en) 2009-04-23
KR100982163B1 true KR100982163B1 (en) 2010-09-14

Family

ID=40593394

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080073983A KR100982163B1 (en) 2007-10-19 2008-07-29 Radio wave absorbing body

Country Status (3)

Country Link
JP (1) JP4488051B2 (en)
KR (1) KR100982163B1 (en)
CN (1) CN101412624B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5240312B2 (en) * 2011-03-25 2013-07-17 Tdk株式会社 Ferrite composition for radio wave absorber and ferrite core for radio wave absorber
CN102659418B (en) * 2012-04-17 2013-09-25 常熟市信立磁业有限公司 Method for sintering Mn-Zn ferrite with high density and high saturation induction density
CN102690112B (en) * 2012-05-25 2013-09-18 南通华兴磁性材料有限公司 MnZn ferrite material for broadband anti -electromagnetic-interference and preparation method thereof
CN104261812A (en) * 2014-09-11 2015-01-07 麦格磁电科技(珠海)有限公司 Anti-EMI (electromagnetic interference) ferrite material and preparation method thereof
JP6488602B2 (en) * 2014-09-17 2019-03-27 Tdk株式会社 Ferrite composition for radio wave absorber and radio wave absorber
JP2016060656A (en) * 2014-09-17 2016-04-25 Tdk株式会社 Ferrite composition for electromagnetic wave absorber and electromagnetic wave absorber
JP6142950B1 (en) * 2016-09-30 2017-06-07 Tdk株式会社 Ferrite composition and electronic component
JP6439086B1 (en) * 2017-08-29 2018-12-19 Jfeケミカル株式会社 MnCoZn-based ferrite and method for producing the same
CN110325489B (en) * 2017-08-29 2021-11-12 杰富意化学株式会社 MnCoZn-based ferrite and method for producing same
CN109095919B (en) * 2018-08-01 2020-07-03 浙江大学 Barium titanate/cobaltosic oxide complex phase millimeter wave absorbing powder with multistage microstructure distribution and preparation method thereof
WO2020189036A1 (en) * 2019-03-18 2020-09-24 Jfeケミカル株式会社 MnZn-BASED FERRITE AND METHOD FOR MANUFACTURING SAME
CN114773047B (en) * 2022-04-25 2023-12-12 江门安磁电子有限公司 Broadband high-impedance manganese zinc ferrite material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198409A (en) * 1991-08-13 1993-08-06 Korea Advanced Inst Of Sci Technol Wave absorber and manufacture of wave absorber
JPH1059766A (en) 1996-08-09 1998-03-03 Fuji Elelctrochem Co Ltd Production of ferrite granule for compound
JP2000069217A (en) * 1998-08-25 2000-03-03 Ricoh Co Ltd Image forming device
JP2005179092A (en) * 2003-12-17 2005-07-07 Jfe Steel Kk Mn-Co-Zn BASED FERRITE

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05198409A (en) * 1991-08-13 1993-08-06 Korea Advanced Inst Of Sci Technol Wave absorber and manufacture of wave absorber
JPH1059766A (en) 1996-08-09 1998-03-03 Fuji Elelctrochem Co Ltd Production of ferrite granule for compound
JP2000069217A (en) * 1998-08-25 2000-03-03 Ricoh Co Ltd Image forming device
JP2005179092A (en) * 2003-12-17 2005-07-07 Jfe Steel Kk Mn-Co-Zn BASED FERRITE

Also Published As

Publication number Publication date
JP4488051B2 (en) 2010-06-23
JP2009096702A (en) 2009-05-07
KR20090040205A (en) 2009-04-23
CN101412624A (en) 2009-04-22
CN101412624B (en) 2012-06-20

Similar Documents

Publication Publication Date Title
KR100982163B1 (en) Radio wave absorbing body
KR101014227B1 (en) Radio wave absorbent
KR101121554B1 (en) Radio wave absorption material and radio wave absorber
KR100480214B1 (en) Radio wave absorbent
JP4752934B2 (en) Radio wave absorber and manufacturing method thereof
KR20160033037A (en) Ferrite composition for radio wave absorber and radio wave absorber
EP0951024B1 (en) Radio wave absorbent
KR101714895B1 (en) Ferrite composition for radio wave absorber and radio wave absorber
CN110845228A (en) Lean-iron soft magnetic ferrite, electromagnetic wave absorption material and preparation method thereof
JP4107667B2 (en) Ferrite material and inductor element
JP4317276B2 (en) Radio wave absorber
JPH09129433A (en) Soft magnetic hexagonal ferrite
JP7262372B2 (en) Granulated powder for NiCuZn ferrite and NiCuZn ferrite
JP6079951B2 (en) Ferrite-based magnetic body, method for producing the same, and electronic component using the ferrite-based magnetic body
JPH05243023A (en) Radio wave absorbent
JP2000086339A (en) Dielectric porcelain composition and dielectric resonator and dielectric filter using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130822

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140825

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160818

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170822

Year of fee payment: 8