KR100967407B1 - Sample Holder of X-ray Diffractometer - Google Patents

Sample Holder of X-ray Diffractometer Download PDF

Info

Publication number
KR100967407B1
KR100967407B1 KR1020080053061A KR20080053061A KR100967407B1 KR 100967407 B1 KR100967407 B1 KR 100967407B1 KR 1020080053061 A KR1020080053061 A KR 1020080053061A KR 20080053061 A KR20080053061 A KR 20080053061A KR 100967407 B1 KR100967407 B1 KR 100967407B1
Authority
KR
South Korea
Prior art keywords
sample holder
sample
ray diffraction
seating
analysis apparatus
Prior art date
Application number
KR1020080053061A
Other languages
Korean (ko)
Other versions
KR20090126773A (en
Inventor
김용일
이윤희
윤동진
윤기봉
Original Assignee
한국표준과학연구원
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원, 중앙대학교 산학협력단 filed Critical 한국표준과학연구원
Priority to KR1020080053061A priority Critical patent/KR100967407B1/en
Publication of KR20090126773A publication Critical patent/KR20090126773A/en
Application granted granted Critical
Publication of KR100967407B1 publication Critical patent/KR100967407B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/36Embedding or analogous mounting of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00138Slides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

본 발명은 엑스선 회절분석장치의 시료홀더에 관한 것으로, 서로 다른 부재를 높이조절이 가능하도록 상호 나사결합시켜 분석하려는 시료에 따라 각각 별도의 시료홀더를 사용 가능한 엑스선 회절분석장치의 시료홀더에 관한 것이다.The present invention relates to a sample holder of the X-ray diffraction analysis apparatus, and relates to a sample holder of the X-ray diffraction analysis apparatus that can use a separate sample holder according to the sample to be analyzed by screwing the mutually different members to allow height adjustment. .

본 발명의 엑스선 회절분석장치의 시료홀더는, 외주면에 나사산이 형성되고 상면에 제1안착부가 형성되는 제1부재; 상기 제1부재의 제1안착부에 삽입되는 제1시료홀더; 중앙부가 천공되어 상기 제1부재가 나사결합되도록 내주면에 나사산이 형성되고 상면에 제2안착부가 형성되는 제2부재; 및 상기 제2부재의 제2안착부에 삽입되는 제2시료홀더; 를 포함하여 이루어지는 것을 특징으로 한다.The sample holder of the X-ray diffraction analysis apparatus of the present invention, the first member is formed with a screw thread on the outer peripheral surface and the first seat is formed on the upper surface; A first sample holder inserted into the first seating portion of the first member; A second member having a central portion drilled therein so that a screw thread is formed on an inner circumferential surface thereof and a second seating portion is formed on an upper surface thereof so that the first member is screwed; And a second sample holder inserted into the second seating portion of the second member. Characterized in that comprises a.

상기와 같은 구성으로 인해 상호 나사결합되어 높이조절이 가능한 두 개의 부재를 사용하여 측정하고자 하는 시료에 따라 각각 별도의 시료홀더를 사용할 수 있어 효율성이 증대되는 효과가 있다.Due to the configuration as described above it is possible to use a separate sample holder according to the sample to be measured by using two members that are mutually screwed and adjustable height has the effect of increasing efficiency.

아울러 (911)면의 규소(Si)로 형성된 시료홀더를 사용하므로, 측정하고자 하는 시료가 원자번호가 작은 원소(C, H, N등)로 이루어진 경우(예:유기물, 고분자)에 시료홀더에 의한 엑스선의 회절이 발생하지 않아 시료의 물성 측정이 용이해지는 효과가 있다.In addition, since the sample holder formed of silicon (Si) on the (911) plane is used, the sample holder may be used when the sample to be measured is made of an element having a small atomic number (C, H, N, etc.) There is an effect that the diffraction of X-rays does not occur due to the easy measurement of the physical properties of the sample.

시료홀더, 유리, 규소, 높이조절  Sample holder, glass, silicon, height adjustment

Description

엑스선 회절분석장치의 시료홀더 {Sample Holder of X-ray Diffractometer}Sample Holder of X-ray Diffractometer {Sample Holder of X-ray Diffractometer}

본 발명은 엑스선 회절분석장치의 시료홀더에 관한 것으로, 서로 다른 부재를 높이조절이 가능하도록 상호 나사결합시켜 분석하려는 시료에 따라 각각 별도의 시료홀더를 사용 가능한 엑스선 회절분석장치의 시료홀더에 관한 것이다.The present invention relates to a sample holder of the X-ray diffraction analysis apparatus, and relates to a sample holder of the X-ray diffraction analysis apparatus that can use a separate sample holder according to the sample to be analyzed by screwing the mutually different members to allow height adjustment. .

반도체 소자를 제조하는 데에는 많은 재질의 물질들이 사용되고 있다. 따라서 반도체 소자를 제조하는 데 이러한 물질층의 분석을 위해 여러 분석 장비들이 사용되고 있다. 특히, 엑스선 회절분석장치(X-Ray Diffractometer)는 물질의 상(phase) 분석에 많이 이용되고 있다.Many materials are used to manufacture semiconductor devices. Therefore, various analytical equipments are used to analyze such material layers in manufacturing semiconductor devices. In particular, X-ray diffractometers are widely used for phase analysis of materials.

도 1은 일반적인 엑스선 회절분석장치를 개략적으로 도시한 도면으로 엑스선 회절분석정치의 작동에 대해 설명하면, 엑스선이 발생되는 엑스선 발생부(X-Ray source)(110); 상기 엑스선 발생부(110)에서 발생된 엑스선중 페러렐빔(parallel beam)만을 통과시키는 수광슬릿(soller slit)(121); 상기 수광슬릿(121)에 의해 통과된 페러렐빔을 시료의 면적에 맞게 발산시키는 발산슬릿(divergence slit)(122); 상기 발산슬릿(122)에 의해 통과된 엑스선이 조사되도록 시료가 안착되는 시료홀더(sample holder)(123); 상기 시료홀더(123) 측으로 조사된 엑스선에 의해 회절된 엑스선 중 시료에 의해 회절된 엑스선만 통과시키는 산란슬릿(scattering slit)(124); 상기 산란슬릿(124)을 통해 시료에 의해 회절된 엑스선을 통과시키는 수광슬릿(receiving slit)(125); 상기 수광슬릿(125)을 통해 들어오는 회절된 엑스선 중 페러렐빔만을 통과시키는 수광슬릿(soller slit)(126); 상기 수광슬릿(126)에 의해 통과된 엑스선을 단색화시키는 모노크로메터(monochromator)(130); 및 상기 모노크로메터(130)를 통과한 단색 엑스선을 검출하는 검출부(140); 로 이루어진다.FIG. 1 is a view schematically illustrating a general X-ray diffraction analysis apparatus. Referring to the operation of X-ray diffraction analysis politics, an X-ray generator 110 generating X-rays; A solar light slit 121 for passing only a parallel beam of X-rays generated by the X-ray generator 110; A divergence slit 122 for diverging the parallel beam passed by the light receiving slit 121 to the area of the sample; A sample holder 123 on which a sample is seated such that X-rays passed by the diverging slit 122 are irradiated; A scattering slit 124 for passing only the X-rays diffracted by the sample among the X-rays diffracted by the X-rays irradiated toward the sample holder 123; Receiving slit (125) for passing the X-ray diffracted by the sample through the scattering slit (124); A solar slit 126 for passing only a parallel beam of diffracted X-rays entering through the light slit 125; A monochromator (130) monochromating the X-rays passed by the light receiving slit 126; And a detector 140 for detecting monochromatic X-rays passing through the monochromator 130. .

상기에서 시료가 안착되는 시료홀더(123)는 도 2에 도시한 바와 같이, 금속제의 내부가 빈 원통형으로 엑스선 회절분석장치의 베이스부(150)에 끼움된다. 상기와 같은 시료홀더(123)를 이용하여 시료의 분석을 하기 위해서는 발산슬릿(122)을 통과한 엑스선이 시료에 조사되도록 시료홀더(123)의 내부에 하나 또는 다수개의 유리판(123A)과 같은 평평한 판을 적재하여 시료의 높이를 조절해야 하는 문제점이 있었다.As shown in FIG. 2, the sample holder 123 on which the sample is seated is fitted into the base 150 of the X-ray diffraction analyzer as a hollow cylinder made of metal. In order to analyze the sample using the sample holder 123 as described above, the X-rays passing through the diverging slit 122 are flat, such as one or a plurality of glass plates 123A, inside the sample holder 123 to irradiate the sample. There was a problem in that the height of the sample to be adjusted by loading the plate.

본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서 본 발명의 목적은, 상호 나사결합되어 높이 조절이 가능한 두 개의 부재를 사용하여 높이 변화에 따라 각각 별도의 시료홀더를 사용하여 시료의 물성 측정이 가능한 엑스선 회절분석장치의 시료홀더를 제공함에 있다.The present invention has been made to solve the above problems, an object of the present invention is to measure the physical properties of the sample by using a separate sample holder according to the height change using two members that are mutually screwed and adjustable height It is to provide a sample holder of this possible X-ray diffraction analyzer.

본 발명의 엑스선 회절분석장치의 시료홀더는, 외주면에 나사산이 형성되고 상면에 제1안착부가 형성되는 제1부재; 상기 제1부재의 제1안착부에 삽입되는 제1시료홀더; 중앙부가 천공되어 상기 제1부재가 나사결합되도록 내주면에 나사산이 형성되고 상면에 제2안착부가 형성되는 제2부재; 및 상기 제2부재의 제2안착부에 삽입되는 제2시료홀더; 를 포함하여 이루어지는 것을 특징으로 한다.The sample holder of the X-ray diffraction analysis apparatus of the present invention, the first member is formed with a screw thread on the outer peripheral surface and the first seat is formed on the upper surface; A first sample holder inserted into the first seating portion of the first member; A second member having a central portion drilled therein so that a screw thread is formed on an inner circumferential surface thereof and a second seating portion is formed on an upper surface thereof so that the first member is screwed; And a second sample holder inserted into the second seating portion of the second member. Characterized in that comprises a.

상기 제1 및 2부재는 상면 외측에 회전부재가 끼움되는 나사홀이 형성되는 것을 특징으로 한다.The first and second members are characterized in that a screw hole in which the rotating member is fitted is formed on the outer side of the upper surface.

상기 제1시료홀더는 (911)면의 결정면을 갖는 규소(Si)로 형성되는 것을 특징으로 한다.The first sample holder is formed of silicon (Si) having a crystal plane of the (911) plane.

상기 제1시료홀더는 중앙부에 시료가 안착되는 안착홈이 더 형성되는 것을 특징으로 한다.The first sample holder is characterized in that the seating groove is further formed in the center portion is seated.

상기 제2시료홀더는 평면상의 유리(glass)이며, 중앙부에 시료가 안착되는 안착홈이 더 형성되는 것을 특징으로 한다.The second sample holder is a flat glass (glass), characterized in that the seating groove is further formed in the center seat.

상기와 같은 구성으로 인해 상호 나사결합되어 높이조절이 가능한 두 개의 부재를 사용하여 측정하고자 하는 시료에 따라 각각 별도의 시료홀더를 사용할 수 있어 효율성이 증대되는 효과가 있다.Due to the configuration as described above it is possible to use a separate sample holder according to the sample to be measured by using two members that are mutually screwed and adjustable height has the effect of increasing efficiency.

아울러 (911)면의 규소(Si)로 형성된 시료홀더를 사용하므로, 측정하고자 하는 시료가 원자번호가 작은 원소(C, H, N등)로 이루어진 경우(예:유기물, 고분자)에 시료홀더에 의한 엑스선의 회절이 발생하지 않아 시료의 물성 측정이 용이해지는 효과가 있다.In addition, since the sample holder formed of silicon (Si) on the (911) plane is used, the sample holder may be used when the sample to be measured is made of an element having a small atomic number (C, H, N, etc.) There is an effect that the diffraction of X-rays does not occur due to the easy measurement of the physical properties of the sample.

이하 상기와 같은 본 발명의 엑스선 회절분석장치의 시료홀더를 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, the sample holder of the X-ray diffraction analyzer of the present invention as described above will be described in detail with reference to the accompanying drawings.

도 3은 본 발명의 시료홀더를 나타낸 분해사시도이고, 도 4는 본 발명의 시료홀더를 나타낸 결합사시도이며, 도 5는 도 4의 A-A' 단면도이고, 도 6은 본 발명의 시료홀더의 작동을 나타낸 단면도이며, 도 7은 본 발명의 제1시료홀더의 실험결과값을 나타낸 표이다.Figure 3 is an exploded perspective view showing a sample holder of the present invention, Figure 4 is a combined perspective view showing a sample holder of the present invention, Figure 5 is a sectional view AA 'of Figure 4, Figure 6 is an operation of the sample holder of the present invention 7 is a table showing experimental results of the first sample holder of the present invention.

본 발명의 엑스선 회절분석장치의 시료홀더는 도 3 및 4와 같이, 외주면에 나사산(16)이 형성되고 상면에 제1안착부(12)가 형성되는 제1부재(10); 상기 제1부재(10)의 제1안착부(12)에 삽입되는 제1시료홀더(30); 중앙부가 천공되어 상기 제1부재(10)가 나사결합되도록 내주면에 나사산(26)이 형성되고 상면에 제2안착부(22)가 형성되는 제2부재(20); 및 상기 제2부재(20)의 제2안착부(22)에 삽입되는 제2시료홀더(40); 를 포함하여 이루어진다.The sample holder of the X-ray diffraction analysis apparatus of the present invention, as shown in Figures 3 and 4, the first member 10 is formed with a thread 16 on the outer peripheral surface and the first seating portion 12 is formed on the upper surface; A first sample holder 30 inserted into the first seating part 12 of the first member 10; A second member 20 having a central portion perforated to form a screw thread 26 on an inner circumferential surface thereof so as to screw the first member 10 and a second seating portion 22 formed on an upper surface thereof; And a second sample holder 40 inserted into the second seating part 22 of the second member 20. It is made, including.

상기 제1부재(10)는 원판형으로 소정의 높이를 가지며, 외주면에 나사산(16)이 형성되고, 상면에 제1시료홀더(30)가 삽입되는 제1안착부(12)가 형성된다. 상기 제1안착부(12)는 소정의 깊이로 상기 제1부재(10)의 상면의 면적보가 작게 하측으로 함입 형성된다. 상기 제1안착부(12)의 양측에는 상기 제1안착부(12)에 끼움되는 제1시료홀더(30)의 용이한 탈착을 위해 하나 또는 복수개의 탈착홈(18)이 형성된다. 상기 제1부재(10)의 상면 양측에는 회전부재(미도시)가 삽입되는 나사홀(14)이 형성된다.The first member 10 has a disc shape having a predetermined height, a thread 16 is formed on an outer circumferential surface thereof, and a first seating portion 12 into which the first sample holder 30 is inserted is formed. The first seating portion 12 is formed to be recessed to a lower area beam of the upper surface of the first member 10 to a predetermined depth. One or a plurality of detachable grooves 18 are formed at both sides of the first seating part 12 for easy detachment of the first sample holder 30 fitted to the first seating part 12. On both sides of the upper surface of the first member 10, a screw hole 14 into which a rotating member (not shown) is inserted is formed.

상기 제2부재(20)는 상기 제1부재(10)보다 높은 높이를 갖는 부재로 중앙부가 천공되어 그 내주면에 상기 제1부재(10)의 나사산(16)과 부합되는 나사산(26)이 형성되어 상기 제1부재(10)가 나사결합된다. 상기 제2부재(20)의 상면에는 상기 제2부재(20)의 상면에서 일정깊이로 함입되는 제2안착부(22)가 형성되어 제2시료홀더(40)가 삽입된다. 상기 제2안착부(22)는 상기 제1부재(10)가 나사결합되는 중앙부보다 넓은 면적으로 형성하여 중앙부에 나사결합되는 제1부재(10)가 회전하여 상기 제1부재(10)가 제2안착부(22)의 높이보다 낮아져도 상기 제2시료홀더(40)가 동일한 높이로 유지될 수 있도록 하는 것이 좋다. 상기 제2부재(20)의 상면 양측에는 상면과 수직으로 회전부재가 삽입되는 나사홀(24)이 형성된다. 상기 제2안착부(22)는 제2시료홀더(40)의 용이한 탈착을 위해 제2부재(20)의 상면 일측을 제2안착부(22)와 동일한 높이로 형성하여 제2시료홀더(40)를 제2부재(20)의 상면과 수평방 향으로 밀어서 장착이 가능하도록 하는 것이 좋다. 상기 제2부재(20)는 엑스선 회절분석장치의 베이스부(50)에 일정높이로 안착되도록 하는 걸림턱부(28)가 형성된다.The second member 20 is a member having a height higher than that of the first member 10, and a central portion thereof is drilled to form a thread 26 corresponding to the thread 16 of the first member 10 on the inner circumferential surface thereof. Thus, the first member 10 is screwed. On the upper surface of the second member 20 is formed a second seating portion 22 which is recessed to a predetermined depth from the upper surface of the second member 20 is inserted into the second sample holder 40. The second seating portion 22 is formed in a larger area than the central portion at which the first member 10 is screwed so that the first member 10 screwed to the central portion rotates so that the first member 10 is formed. Even if the height of the second seating portion 22 is lower, the second sample holder 40 may be maintained at the same height. On both sides of the upper surface of the second member 20 is formed a screw hole 24 into which the rotating member is inserted perpendicularly to the upper surface. The second seating part 22 forms one side of the upper surface of the second member 20 at the same height as the second seating part 22 in order to easily detach the second sample holder 40. 40 is preferably pushed in a horizontal direction with the upper surface of the second member 20 to enable the mounting. The second member 20 has a locking step portion 28 to be seated at a predetermined height on the base portion 50 of the X-ray diffraction analysis apparatus.

상기 제1시료홀더(30)는 (911)면의 결정면을 갖는 규소(Si)로 형성되어 그 중앙에 시료가 안착되는 안착홈(32)이 더 형성되며, 상기 제2시료홀더(40)는 평면상의 유리(glass)이며, 중앙부에 시료가 안착되는 안착홈(42)이 더 형성된다.The first sample holder 30 is formed of silicon (Si) having a crystal surface of the (911) plane, and a seating groove 32 in which a sample is placed is further formed in the center thereof, and the second sample holder 40 is It is a flat glass (glass), the mounting groove 42 is further formed in which the sample is seated in the center.

엑스선을 결정질 재료에 조사하면 특정한 방향으로만 회절 현상이 발생된다. 이러한 회절현상으로 발생되는 회절 피크들은 물질마다 고유한 격자상수와 원자 적층구조를 지니고 있으므로 물질마다 특정한 위치에서만 회절 피크를 관찰 할 수 있기 때문에 물질의 상(phase)을 분석할 수 있게 된다. 이러한 엑스선회절 실험을 하고자 할 때 시료의 양이 0.5 cc 정도 되는 경우에는 상기 제2시료홀더(40)를 사용하며, 안착홈(42)에 측정하고자 하는 시료를 충전하여 엑스선 회절 패턴을 얻는다. 안착홈(42)의 크기는 항상 일정한 할 필요는 없으며 사용장비에 따라 달라질 수 있다. 그러나 엑스선의 조사 면적에 비하여 시료가 충전된 안착홈(42)이 크면 엑스선이 안착홈(42) 이외의 제2시료홀더(40) 부분에도 조사되어 측정대상 시료에 대한 엑스선 패턴과 함께 제2시료홀더(40)의 형성재질인 유리에 의하여 회절된 엑스선 회절패턴이 얻어지게 되어 분석하는 어려움이 발생한다. 또한 엑스선의 조사면적이 안착홈(42)보다 작은 면적을 조사하도록 하게 하더라도 측정 대상시료가 원자번호가 작은 원소(C, H, N등)로 이루어진 경우(예:유기물, 고분자)에는 측정 대상 시료 가 엑스선을 잘 투과하게 되므로 안착홈(42)에 충전된 시료를 통과하여 안착홈(42)의 바닥면에서 회절되어 상기에서 언급했듯이 안착홈(42)으로 사용되는 유리에 의한 엑스선 회절 피크가 얻어지게 된다.When the X-rays are irradiated onto the crystalline material, diffraction occurs only in a specific direction. Since the diffraction peaks generated by the diffraction phenomenon have a unique lattice constant and atomic stack structure for each material, the diffraction peaks can be observed only at a specific position for each material, thereby analyzing the phase of the material. When the amount of the sample is about 0.5 cc when the X-ray diffraction experiment is performed, the second sample holder 40 is used, and the sample to be measured is filled in the seating groove 42 to obtain an X-ray diffraction pattern. The size of the seating groove 42 need not always be constant and may vary depending on the equipment used. However, if the mounting groove 42 filled with the sample is larger than the irradiation area of the X-ray, the X-ray is irradiated to the second sample holder 40 other than the mounting groove 42, and the second sample together with the X-ray pattern of the sample to be measured. The X-ray diffraction pattern diffracted by the glass, which is the forming material of the holder 40, is obtained, which causes difficulty in analyzing. In addition, even if the X-ray irradiation area is irradiated with a smaller area than the seating groove 42, the sample to be measured is made when the sample to be measured is made of an element (C, H, N, etc.) having a small atomic number (e.g., an organic material or a polymer). Since X penetrates the X-rays well, the X-ray diffraction peak due to the glass used as the seating grooves 42 is obtained by diffraction at the bottom surface of the seating grooves 42 through the sample filled in the seating grooves 42. You lose.

상기와 같이 유리를 시료홀더로서 사용함에 따라 발생되는 효과를 제거하기 위하여 (911)면의 결정면을 갖는 규소(Si)로 형성된 제1시료홀더(30)를 사용한다. 상기 제1시료홀더(30)는 엑스선의 조사면적이 제1시료홀더(30)의 안착홈(32)이나, 안착홈(32) 이외의 부분에 조사되어도 제1시료홀더(30)에 의하여 발생되는 회절피크가 없으므로 제로 백그라운드 홀더 (Zero Background Holder)로서 사용할 수 있게 한다.As described above, in order to remove the effect generated by using the glass as the sample holder, the first sample holder 30 formed of silicon (Si) having a crystal surface of the (911) plane is used. The first sample holder 30 is generated by the first sample holder 30 even if the X-ray irradiation area is irradiated to a seating groove 32 or a portion other than the seating groove 32 of the first sample holder 30. Since there is no diffraction peak, it can be used as a zero background holder.

상기 제1시료홀더(30)는 규소(Si) 단결정을 표면을 기준으로 (911)결정면으로 자른 것으로, 측정하고자하는 시료의 양이 극히 작은 경우 평면상의 제1시료홀더(30) 상면에 살짝 뿌리거나 알콜이나 물과 혼합한 혼탁액을 뿌린 후 건조되고 남은 자국을 만들어 엑스선 회절실험을 할 수 있으며, 안착홈(32)을 더 형성하여 안착홈(32)에 시료를 충전하여 실험을 할 수도 있게 된다.The first sample holder 30 is a silicon (Si) single crystal is cut into the (911) crystal surface based on the surface, if the amount of the sample to be measured is very small, slightly rooted on the upper surface of the first sample holder 30 on the plane Or sprinkled with a mixture of alcohol or water and dried and left marks can be made X-ray diffraction experiments, and further forming a seating groove (32) to fill the seating groove (32) to the experiment do.

도 7은 상기 제1시료홀더(30)를 이용한 실험결과로서 상기 제1시료홀더(30)가 제로 백그라운드 홀더로서 사용가능함을 나타내고 있다. 도 7에서 알 수 있듯이 (911)면의 결정면을 갖는 규소(Si)로 형성된 제1시료홀더(30)는 상업적으로 판매되고 있는 (0002)면의 석영(quartz)과 동일한 결과를 나타낸다. 이것은 규소(Si)단결정을 표면을 기준으로 평행하게 자른 규소(Si) (911)면으로 제작된 시료홀더가 제로 백그라운드 홀더로 사용가능함을 나타낸다. 상기에서 사용된 엑스선은 Cukα (1.5405929 Å)이고, 고니오미터의 반경은 185 mm, 규소(Si) (911)면으로 제작된 시료홀더의 크기는 22 × 25 × 0.9 mm이다.FIG. 7 shows that the first sample holder 30 can be used as a zero background holder as a result of the experiment using the first sample holder 30. As can be seen in FIG. 7, the first sample holder 30 formed of silicon (Si) having a crystal plane of (911) plane has the same result as quartz of a commercially available (0002) plane. This indicates that a sample holder made of a silicon (Si) (911) plane in which silicon (Si) single crystals are cut in parallel with respect to the surface can be used as a zero background holder. The X-rays used above were Cukα (1.5405929 Å), the radius of the goniometer was 185 mm, and the size of the sample holder made of silicon (Si) (911) plane was 22 × 25 × 0.9 mm.

상기와 같은 시료홀더(1)의 사용에 대해 도 5 및 도 6을 참조하여 설명한다. 일반적인 시료를 측정하고자하는 경우 상기 제1부재(10)와 제2부재(20)의 결합체를 상기 엑스선 회절분석장치의 베이스부(50)에 제2부재(20)의 걸림턱부(28)가 고정되도록 삽입시킨다. 상기 제1부재(10)의 나사홀(14)에 별도의 회전부재(미도시)를 삽입하여 상기 제1부재(10)의 상면 높이가 상기 제2부재(20)의 제2안착부(22)의 높이보다 낮아지도록 회전시킨다. 상기 제2시료홀더(40)의 안착홈(42)에 측정하고자 하는 시료를 충전시킨 후, 제2시료홀더(40)를 제2부재(20)의 제2안착부(22)에 삽입시킨다. 엑스선 발생부(110)를 통해 조사되는 엑스선이 다수의 슬릿(121, 122)을 통과하여 상기 안착홈(42)에 충전된 시료에 의해 회절되어 다시 다수의 슬릿(124, 125, 126)을 통과한 후 모노크로메타(130)를 통해 단색화된 엑스선이 검출부(140)에서 검출되어 시료의 물성을 파악하게 된다. 아울러 측정하고자 하는 시료가 원자번호가 작은 원소(C, H, N등)로 이루어진 경우(예:유기물, 고분자)에는 규소(911)로 이루어진 제1시료홀더(30)를 사용해야 하므로 상기 제1부재(10)의 나사홀(14)에 회전부재를 삽입시켜 상기 제1부재(10)가 적정높이가 되도록 회전시킨다. 상기 제1시료홀더(30)의 안착홈(32)에 측정하고자 하는 시료를 충전하고 상기 제1시료홀더(30)를 제1부재(10)의 제1안착부(12)에 삽입시킨 후 상기 과정과 같은 엑스선 조사가 이루어져 측정하고자 하는 시료의 물성을 측정할 수 있게 된다. 상기에서 제1 부재(10)가 제2부재(20)에 나사결합되어 있으므로 상기 제1부재(10)의 나사홀(14)에 회전부재를 삽입시켜 회전시킬 수 있으므로 상기 제1시료홀더(30)의 높이를 정밀하게 조절하여 시료에 입사되는 엑스선의 입사각을 정밀하게 조절할 수 있는 효과가 있다. 또한 제1부재(10) 및 제2부재(20)에 모두 나사홀(14, 24)이 형성되어 있으므로 상기 나사홀(14, 24)에 회전부재를 삽입시켜 제1부재(10) 또는 제2부재(20)를 회전시켜 입사되는 엑스선이 시료와 접촉하는 방향을 변동시킬 수 있는 효과가 있다.The use of the sample holder 1 as described above will be described with reference to FIGS. 5 and 6. When the general sample is to be measured, the locking projection 28 of the second member 20 is fixed to the base 50 of the X-ray diffraction analyzer by combining the combination of the first member 10 and the second member 20. Insert it as much as possible. A separate rotating member (not shown) is inserted into the screw hole 14 of the first member 10 so that the height of the upper surface of the first member 10 is the second seating portion 22 of the second member 20. Rotate to be lower than the height of). After filling the sample to be measured in the mounting groove 42 of the second sample holder 40, the second sample holder 40 is inserted into the second seating part 22 of the second member 20. X-rays irradiated through the X-ray generator 110 pass through the plurality of slits 121 and 122 and are diffracted by the sample filled in the seating grooves 42, and then pass through the plurality of slits 124, 125, and 126. Afterwards, the monochromator 130 detects the X-rays monochromated by the detector 140 to determine the physical properties of the sample. In addition, when the sample to be measured is made of an element (C, H, N, etc.) having a small atomic number (eg, organic matter, polymer), the first sample holder 30 made of silicon 911 should be used. The rotating member is inserted into the screw hole 14 of the 10 to rotate the first member 10 to an appropriate height. After filling the sample to be measured in the seating groove 32 of the first sample holder 30 and inserting the first sample holder 30 into the first seating portion 12 of the first member 10 and then X-ray irradiation is performed as in the process to measure the physical properties of the sample to be measured. Since the first member 10 is screwed to the second member 20, the first sample holder 30 may be rotated by inserting a rotating member into the screw hole 14 of the first member 10. ) To precisely control the height of the X-rays incident on the sample can be precisely adjusted. In addition, since the screw holes 14 and 24 are formed in both the first member 10 and the second member 20, the rotating member is inserted into the screw holes 14 and 24 so that the first member 10 or the second member 20 is formed. The member 20 may be rotated to change the direction in which incident X-rays come into contact with the sample.

상기에서 상기 제1안착부(12)에는 제1시료홀더(30)가 제2안착부(22)에는 제2시료홀더(40)가 삽입되는 것으로 표현되어 있으나 꼭 이에 국한되는 것을 아니며 서로 바꿔 삽입하여 사용할 수도 있다.Although the first sample holder 30 is inserted into the first seating part 12 and the second sample holder 40 is inserted into the second seating part 22, the present invention is not limited thereto. It can also be used.

이와 같이 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정예 또는 변형예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.As described above, the present invention is not limited to the described embodiments, and various modifications and changes can be made without departing from the spirit and scope of the present invention, which will be apparent to those skilled in the art. Therefore, such modifications or variations will have to be belong to the claims of the present invention.

도 1은 종래의 엑스선 회절분석장치의 작동개략도.1 is a schematic operation of the conventional X-ray diffraction analysis apparatus.

도 2는 종래의 엑스선 회절분석장치의 시료홀더를 나타낸 사시도.Figure 2 is a perspective view showing a sample holder of a conventional X-ray diffraction analyzer.

도 3은 본 발명의 시료홀더를 나타낸 분해사시도.Figure 3 is an exploded perspective view showing a sample holder of the present invention.

도 4는 본 발명의 시료홀더를 나타낸 결합사시도.Figure 4 is a perspective view showing a sample holder of the present invention.

도 5는 도 4의 A-A' 단면도.5 is a cross-sectional view taken along line AA ′ of FIG. 4.

도 6은 본 발명의 시료홀더의 작동을 나타낸 단면도.6 is a cross-sectional view showing the operation of the sample holder of the present invention.

도 7은 본 발명의 제1시료홀더의 실험결과값을 나타낸 표.7 is a table showing the experimental results of the first sample holder of the present invention.

**도면의 주요부분에 대한 부호의 설명**** Description of the symbols for the main parts of the drawings **

10: 제1부재 12: 제1안착부10: first member 12: first seating portion

14: 나사홀 16: 나사산14: screw hole 16: thread

18: 탈착홈18: removable groove

20: 제2부재 22: 제2안착부20: second member 22: second seating portion

24: 나사홀 26: 나사산24: screw hole 26: thread

28: 걸림턱부28: locking jaw

30: 제1시료홀더 32: 안착홈30: first sample holder 32: seating groove

40: 제2시료홀더 42: 안착홈40: second sample holder 42: seating groove

Claims (5)

외주면에 나사산(16)이 형성되고 상면에 제1안착부(12)가 형성되는 제1부재(10);A first member 10 having a thread 16 formed on an outer circumferential surface thereof and a first seating portion 12 formed on an upper surface thereof; 상기 제1부재(10)의 제1안착부(12)에 삽입되는 제1시료홀더(30);A first sample holder 30 inserted into the first seating part 12 of the first member 10; 중앙부가 천공되어 상기 제1부재(10)가 나사결합되도록 내주면에 나사산(26)이 형성되고 상면에 제2안착부(22)가 형성되는 제2부재(20); 및A second member 20 having a central portion perforated to form a screw thread 26 on an inner circumferential surface thereof so as to screw the first member 10 and a second seating portion 22 formed on an upper surface thereof; And 상기 제2부재(20)의 제2안착부(22)에 삽입되는 제2시료홀더(40);A second sample holder 40 inserted into the second seating part 22 of the second member 20; 를 포함하여 이루어지는 것을 특징으로 하는 엑스선 회절분석장치의 시료홀더.Sample holder of the X-ray diffraction analysis apparatus, characterized in that comprises a. 제 1 항에 있어서,The method of claim 1, 상기 제1 및 2부재(10, 20)는 상면 외측에 회전부재가 끼움되는 나사홀(14, 24)이 형성되는 것을 특징으로 하는 엑스선 회절분석장치의 시료홀더.The first and second members (10, 20) is a sample holder of the X-ray diffraction analysis apparatus, characterized in that the screw hole (14, 24) is formed on the outside of the upper surface is fitted. 제 2 항에 있어서,The method of claim 2, 상기 제1시료홀더(30)는 (911)면의 결정면을 갖는 규소(Si)로 형성되는 것을 특징으로 하는 엑스선 회절분석장치의 시료홀더.The sample holder of the X-ray diffraction analyzer, characterized in that the first sample holder 30 is formed of silicon (Si) having a crystal plane of the (911) plane. 제 3 항에 있어서,The method of claim 3, wherein 상기 제1시료홀더(30)는 중앙부에 시료가 안착되는 안착홈(32)이 더 형성되는 것을 특징으로 하는 엑스선 회절분석장치의 시료홀더.The first sample holder (30) is a sample holder of the X-ray diffraction analysis apparatus, characterized in that the seating groove 32 is further formed in the center seat. 제 2 항에 있어서,The method of claim 2, 상기 제2시료홀더(40)는 평면상의 유리(glass)이며, 중앙부에 시료가 안착되는 안착홈(42)이 더 형성되는 것을 특징으로 하는 엑스선 회절분석장치의 시료홀더.The second sample holder (40) is a flat glass (glass), the sample holder of the X-ray diffraction analysis apparatus, characterized in that the seating groove 42 is further formed in the center seat.
KR1020080053061A 2008-06-05 2008-06-05 Sample Holder of X-ray Diffractometer KR100967407B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080053061A KR100967407B1 (en) 2008-06-05 2008-06-05 Sample Holder of X-ray Diffractometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080053061A KR100967407B1 (en) 2008-06-05 2008-06-05 Sample Holder of X-ray Diffractometer

Publications (2)

Publication Number Publication Date
KR20090126773A KR20090126773A (en) 2009-12-09
KR100967407B1 true KR100967407B1 (en) 2010-07-01

Family

ID=41687834

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080053061A KR100967407B1 (en) 2008-06-05 2008-06-05 Sample Holder of X-ray Diffractometer

Country Status (1)

Country Link
KR (1) KR100967407B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200094553A (en) 2019-01-30 2020-08-07 고려대학교 산학협력단 Mesh-based crystal sample holder for serial crystallography
KR102199849B1 (en) * 2019-11-29 2021-01-07 서울시립대학교 산학협력단 Sample holder capable of fine adjustments
WO2022043440A1 (en) * 2020-08-26 2022-03-03 Malvern Panalytical B.V. Sample holder for an x-ray analysis apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105699408B (en) * 2016-04-15 2019-03-29 南京大学 A kind of sample stage for electron backscatter diffraction instrument

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258348A (en) * 1988-04-05 1989-10-16 Mitsubishi Electric Corp Flat sample holder for scanning type electron microscope
KR19980068161A (en) * 1997-02-17 1998-10-15 김광호 Sample holder for sample analysis
JP2008058300A (en) 2006-07-05 2008-03-13 Rigaku Industrial Co Sample holder and oblique-incidence fluorescent x-ray analyzer
JP2008157848A (en) 2006-12-26 2008-07-10 Victor Co Of Japan Ltd Sample holder, fixing method for fixing sample to sample holder, and analysis method of sample fixed to sample holder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01258348A (en) * 1988-04-05 1989-10-16 Mitsubishi Electric Corp Flat sample holder for scanning type electron microscope
KR19980068161A (en) * 1997-02-17 1998-10-15 김광호 Sample holder for sample analysis
JP2008058300A (en) 2006-07-05 2008-03-13 Rigaku Industrial Co Sample holder and oblique-incidence fluorescent x-ray analyzer
JP2008157848A (en) 2006-12-26 2008-07-10 Victor Co Of Japan Ltd Sample holder, fixing method for fixing sample to sample holder, and analysis method of sample fixed to sample holder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200094553A (en) 2019-01-30 2020-08-07 고려대학교 산학협력단 Mesh-based crystal sample holder for serial crystallography
KR102199849B1 (en) * 2019-11-29 2021-01-07 서울시립대학교 산학협력단 Sample holder capable of fine adjustments
WO2022043440A1 (en) * 2020-08-26 2022-03-03 Malvern Panalytical B.V. Sample holder for an x-ray analysis apparatus

Also Published As

Publication number Publication date
KR20090126773A (en) 2009-12-09

Similar Documents

Publication Publication Date Title
KR100967407B1 (en) Sample Holder of X-ray Diffractometer
US7440542B2 (en) Method and measuring arrangement for nondestructive analysis of an examination object by means of x-radiation
Speakman Basics of X-ray powder diffraction
CA2544907C (en) Method and apparatus for x-ray diffraction analysis
Nowak et al. Grazing angle X-ray fluorescence from periodic structures on silicon and silica surfaces
Ermrich et al. XRD for the analyst
WO2015146287A1 (en) Beam generation unit and small-angle x-ray scattering device
JP2006329821A (en) X-ray diffraction apparatus and measuring method of x-ray diffraction pattern
Sardela Jr X-ray diffraction and reflectivity
JPH07190962A (en) X-ray irradiation device
CN106168583B (en) The method for measuring ZSM-23 molecular screen relative crystallinity
EP1495311B1 (en) High-resolution x-ray diffraction apparatus
Speiser et al. Raman spectroscopy on surface phonons of Si (hhk) surfaces modified by Au submonolayers
Vaudin et al. Precise silicon die curvature measurements using the NIST lattice comparator: comparisons with coherent gradient sensing interferometry
Meduňa et al. Reconstruction of crystal shapes by X-ray nanodiffraction from three-dimensional superlattices
KR101349177B1 (en) A height adjustable sample holder
KR101481456B1 (en) A magnetic type sample holder
JP4935533B2 (en) Crystal dislocation evaluation method, crystal growth method evaluation method and crystal growth method
RU2494380C1 (en) Polarisation x-ray spectrometer
JP2012117941A (en) Quantitative method of crystal polymorphism of organic molecule
Lemelle et al. Study of the (010) olivine surface by Rutherford backscattering spectrometry in channeling geometry
Tang et al. An in situ method for the study of strain broadening using synchrotron X-ray diffraction
RU2548601C1 (en) Method for x-ray spectral determination of nanoparticle size in sample
Elyaseery X-ray diffraction from Al powder using energy dispersive technique
Kuczumow et al. Quantification problems in light element determination by grazing emission X-ray fluorescence

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130506

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140512

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150602

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160526

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170517

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180528

Year of fee payment: 9