KR100957456B1 - Thin film layer deposition apparatus using atomic layer deposition method - Google Patents

Thin film layer deposition apparatus using atomic layer deposition method Download PDF

Info

Publication number
KR100957456B1
KR100957456B1 KR1020030035385A KR20030035385A KR100957456B1 KR 100957456 B1 KR100957456 B1 KR 100957456B1 KR 1020030035385 A KR1020030035385 A KR 1020030035385A KR 20030035385 A KR20030035385 A KR 20030035385A KR 100957456 B1 KR100957456 B1 KR 100957456B1
Authority
KR
South Korea
Prior art keywords
process chamber
gas
wafer holder
thin film
deposition apparatus
Prior art date
Application number
KR1020030035385A
Other languages
Korean (ko)
Other versions
KR20040104022A (en
Inventor
이형재
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to KR1020030035385A priority Critical patent/KR100957456B1/en
Publication of KR20040104022A publication Critical patent/KR20040104022A/en
Application granted granted Critical
Publication of KR100957456B1 publication Critical patent/KR100957456B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 원자층증착장치에 관한 것으로서, 일정한 반응공간을 형성하는 공정챔버와; 상면에 웨이퍼 안치대가 다수 형성되며, 외주면이 상기 공정챔버의 내측벽과 접하고, 중심부에는 관통홀이 형성되어 있는 웨이퍼홀더와; 상기 웨이퍼홀더의 상부에 위치하는 가스분사장치와; 상기 공정챔버의 일부를 관통하여 상기 가스분사장치와 연결되는 가스유입관과; 상기 웨이퍼홀더를 지지하는 다수의 서셉터어셈블리와; 공정챔버 바닥의 일부에 형성된 배기구를 포함하는 원자층증착장치를 제공한다.The present invention relates to an atomic layer deposition apparatus, comprising: a process chamber forming a constant reaction space; A wafer holder having a plurality of wafer rests formed on an upper surface thereof, an outer circumferential surface thereof contacting an inner wall of the process chamber, and a through hole formed in a central portion thereof; A gas injector positioned above the wafer holder; A gas inlet pipe passing through a part of the process chamber and connected to the gas injection device; A plurality of susceptor assemblies supporting the wafer holder; Provided is an atomic layer deposition apparatus comprising an exhaust port formed in a portion of a process chamber bottom.

본 발명에 따르면 공정챔버내의 가스압력분포를 균일하게 함으로써, 박막균일도를 향상시킬 수 있을 뿐만아니라, 가스공급 및 퍼지에 소요되는 공정시간을 단축하여 생산성향상과 생산장비에 대한 원가절감에 기여할 수 있게 된다.
According to the present invention, by uniformizing the gas pressure distribution in the process chamber, not only can the thin film uniformity be improved, but also the process time required for gas supply and purge can be shortened, thereby contributing to productivity improvement and cost reduction for production equipment. do.

원자층증착장치, ALD, 샤워링, 웨이퍼홀더Atomic Layer Deposition Equipment, ALD, Shower Ring, Wafer Holder

Description

원자층증착방법을 이용한 박막증착장치{Thin film layer deposition apparatus using atomic layer deposition method}Thin film layer deposition apparatus using atomic layer deposition method

도 1은 종래 다수 웨이퍼용 원자층증착장치의 단면도1 is a cross-sectional view of a conventional atomic layer deposition apparatus for a plurality of wafers

도 2는 종래 다수 웨이퍼용 원자층증착장치의 평면도2 is a plan view of an atomic layer deposition apparatus for a conventional multiple wafer

도 3은 종래 다수 웨이퍼용 원자층증착장치의 압력분포도3 is a pressure distribution diagram of a conventional atomic layer deposition apparatus for many wafers

도 4는 본 발명의 실시예에 의한 원자층증착장치의 단면도4 is a cross-sectional view of an atomic layer deposition apparatus according to an embodiment of the present invention.

도 5는 본 발명의 실시예에 의한 원자층증착장치의 평면도5 is a plan view of an atomic layer deposition apparatus according to an embodiment of the present invention

도 6은 본 발명의 실시예에 의한 원자층증착장치의 압력분포도
6 is a pressure distribution diagram of an atomic layer deposition apparatus according to an embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

20 : 공정챔버 30 : 서셉터어셈블리20: process chamber 30: susceptor assembly

31 : 히터 40 : 웨이퍼홀드31: heater 40: wafer hold

50 : 웨이퍼 60 : 제1 퍼지 가스유입관50: wafer 60: first purge gas inlet pipe

70 : 소스가스 유입관 80 : 반응가스 유입관70: source gas inlet tube 80: reaction gas inlet tube

90 : 제2 퍼지가스 유입관 100 : 샤워링90: second purge gas inlet pipe 100: shower ring

110 : 관통홀 120 : 배기구 110: through hole 120: exhaust port                 

130 : 웨이퍼 안치대 140 : 샤워링 분사구
130: wafer support base 140: shower ring nozzle

본 발명은 다수의 웨이퍼를 처리할 수 있는 원자층증착(Atomic layer deposition : ALD) 방법을 이용한 박막증착장치에 관한 것이다.The present invention relates to a thin film deposition apparatus using an atomic layer deposition (ALD) method capable of processing a plurality of wafers.

반도체칩이나 박막트랜지스터 액정표시장치(Thin Film Transistor Liquid Crystal Display : TFT-LCD)를 제작하기 위해서는 반도체웨이퍼나 LCD패널(이하 모두 기판이라 칭함)에 대한 박막증착, 식각, 세정등의 공정을 거쳐야 한다.In order to manufacture a semiconductor chip or thin film transistor liquid crystal display (TFT-LCD), thin film deposition, etching, and cleaning on a semiconductor wafer or LCD panel (hereinafter, referred to as a substrate) must be performed. .

이와 같은 표면처리를 하는 방법은 스퍼터링(Sputtering)법과 같이 물리적인 충돌을 이용하는 PVD(Physical Vapor Deposition)법과 화학반응을 이용하는 CVD(Chemical Vapor Deposition)법으로 구분할 수 있으며, CVD법이 PVD법에 비하여 박막균일도 및 계단도포성(step coverage)이 우수하기 때문에 일반적으로 많이 사용된다.Such surface treatment can be divided into PVD (Physical Vapor Deposition) method using physical collision and CVD (Chemical Vapor Deposition) method using chemical reaction, such as sputtering method, CVD method is thin film compared to PVD method It is generally used because of its excellent uniformity and step coverage.

CVD법에는 APCVD(Atmospheric pressure CVD), LPCVD(Low pressure CVD), PECVD(Plasma Enhanced CVD) 법 등이 있으며, 그중에서도 저온증착이 가능하고 박막형성속도가 빠른 장점 때문에 PECVD법이 많이 사용되고 있다. The CVD method includes APCVD (Atmospheric pressure CVD), LPCVD (Low pressure CVD), PECVD (Plasma Enhanced CVD), etc. Among them, PECVD is widely used because of the advantages of low temperature deposition and fast film formation speed.

그런데 최근에는 종래방식에 비하여 박막균일도나 계단도포성(step coverage)이 매우 우수한 ALD방식이 미세패턴이 요구되는 게이트산화막(Gate-oxide layer), 커패시터유전막(Capacitor dielectric layer), 확산방지막(Diffusion barrier layer)등의 증착공정을 중심으로 많이 사용되고 있다. Recently, however, the ALD method, which has a higher film uniformity or step coverage than the conventional method, requires a gate pattern, a gate oxide layer, a capacitor dielectric layer, and a diffusion barrier. It is mainly used for deposition processes such as layers).

ALD방식에 의하면 반응가스들이 기판의 표면에서만 반응하기 때문에 하나의 원료공급 주기에서 증착되는 막의 두께가 일정하다. 따라서 원료공급주기의 횟수를 조절함으로써, 박막두께를 정밀하게 조절할 수 있는 장점이 있다.According to the ALD method, since the reaction gases react only on the surface of the substrate, the thickness of the film deposited in one raw material supply cycle is constant. Therefore, by controlling the number of cycles of the raw material supply, there is an advantage that the thickness of the thin film can be precisely controlled.

그런데 ALD 방식은 박막증착을 위해 수 회 내지 많게는 수백 회의 증착공정을 거쳐야 하므로, 공정시간이 많이 소요되는 단점이 있다. 따라서 반도체웨이퍼용 증착장치의 경우에는 생산성향상을 위해 2매 내지 4매의 웨이퍼를 한꺼번에 처리하는 장치가 많이 사용된다. By the way, the ALD method has to go through several to many hundreds of deposition process for thin film deposition, there is a disadvantage that takes a lot of processing time. Therefore, in the case of the deposition apparatus for semiconductor wafers, many apparatuses for processing two to four wafers at once are used in order to improve productivity.

이러한 다수 웨이퍼용 원자층증착장치의 구성을 도면을 통해 간략히 살펴보면 다음과 같다. Looking at the configuration of the atomic layer deposition apparatus for a plurality of wafers through the drawings as follows.

도 1은 다수의 반도체웨이퍼를 처리하기 위한 종래방식의 원자층증착장치의 단면도이며, 도 2는 원자층증착장치 내부의 평면도이다. 도 1 및 도 2에 의하면 원자층증착장치는 일정한 반응공간을 형성하는 공정챔버(1)와, 상면에 웨이퍼 안치대(12)가 다수 형성되는 웨이퍼홀더(3)와, 공정챔버(1)의 상면 중앙에 위치하며, 공정가스를 공정챔버 내부로 분사하는 분사구(9)와, 웨이퍼홀더(3)를 지지하는 다수의 서셉터어셈블리(2)와, 상기 분사구(9)로 소스가스, 반응가스, 퍼지가스를 각 공급하는 소스가스유입관(6), 반응가스유입관(7), 퍼지가스유입관(5,8)과, 반응잔류가스 또는 퍼지가스를 외부로 배출하는 배기구(10)를 포함한다. 상기 배기구(10)는 진공펌핑을 하는 진공펌퍼(미도시)와 연결된다. 1 is a cross-sectional view of a conventional atomic layer deposition apparatus for processing a plurality of semiconductor wafers, Figure 2 is a plan view inside the atomic layer deposition apparatus. 1 and 2, the atomic layer deposition apparatus includes a process chamber 1 that forms a constant reaction space, a wafer holder 3 on which a plurality of wafer supports 12 are formed on an upper surface thereof, and a process chamber 1 of the process chamber 1. Located in the center of the upper surface, the injection hole (9) for injecting the process gas into the process chamber, a plurality of susceptor assembly (2) for supporting the wafer holder (3), the source gas and the reaction gas through the injection hole (9) Source gas inlet pipe 6 for supplying purge gas, reaction gas inlet pipe 7, purge gas inlet pipes 5, 8, and exhaust port 10 for discharging the reaction residual gas or purge gas to the outside. Include. The exhaust port 10 is connected to a vacuum pump (not shown) for vacuum pumping.                         

한편 서셉터어셈블리(2)의 내부에는 증착과정을 촉진하기 위해 웨이퍼(4)를 예열하는 히터(11)가 내장되어 있다.On the other hand, a heater 11 for preheating the wafer 4 is built in the susceptor assembly 2 to facilitate the deposition process.

위와 같은 원자층증착장치에서 박막이 증착되는 과정을 설명하면, 먼저 공정챔버(1) 내에 웨이퍼(4)를 안착시킨 후 밀폐하고, 웨이퍼(4) 반입과정에서 내부로 유입된 불순물을 제거하기 위해 공정챔버(1)를 배기한다. 이후 소스가스유입관(6)으로 부터 유입된 소스가스를 공정챔버(1) 내로 분사하여 웨이퍼(4) 표면에 흡착시키고, 흡착공정이 끝나면 퍼지가스유입관(5)으로 부터 Ar, N2 등의 퍼지가스를 유입하여 잔류가스를 제거하는 퍼지과정을 거친다.When the thin film is deposited in the atomic layer deposition apparatus as described above, first, the wafer 4 is seated in the process chamber 1 and then sealed, and in order to remove impurities introduced into the wafer 4 during the loading process. The process chamber 1 is exhausted. Thereafter, the source gas introduced from the source gas inlet pipe 6 is sprayed into the process chamber 1 and adsorbed onto the surface of the wafer 4, and when the adsorption process is completed, Ar, N 2, etc. from the purge gas inlet pipe 5 The purge process removes residual gas by introducing purge gas.

퍼지과정이 완료된 후 다시 반응가스유입관(7)으로 부터 유입된 반응가스를 공정챔버(1) 내로 분사하면, 웨이퍼(4)상에 이미 증착되어 있는 소스가스와 새로이 유입된 반응가스가 반응하여 새로운 화합물박막이 형성되게 된다. 그리고 전술한 바와 같이 퍼지가스유입관(8)으로 부터 퍼지가스를 유입하여 잔류가스를 제거하는 퍼지과정을 거치게 되면, 하나의 박막증착주기가 완성된다. 이와 같은 과정을 반복함으로써 원하는 두께의 원자층박막을 형성할 수 있다.After the purge process is completed, when the reaction gas introduced from the reaction gas inlet pipe 7 is injected into the process chamber 1 again, the source gas already deposited on the wafer 4 and the newly introduced reaction gas react. A new compound thin film will be formed. As described above, when the purge gas is introduced from the purge gas inlet pipe 8 to remove the residual gas, one thin film deposition cycle is completed. By repeating this process, an atomic layer thin film of a desired thickness can be formed.

도 1 및 도 2에서 공정챔버(1)내에 표시된 화살표는 분사된 가스가 유동하는 방향을 나타낸 것으로서, 가스가 챔버의 중앙으로부터 측면방향으로 유동함을 알 수 있다1 and 2 indicate the direction in which the injected gas flows, and it can be seen that the gas flows laterally from the center of the chamber.

그런데 이러한 방식에 의하게 되면, 공정챔버(1)의 상면 중앙에 위치한 분사구(9)로 부터 가까운 영역에는 박막이 두껍게 증착되어 박막균일도가 저하되므로, 이를 피하기 위해서는 퍼지시간을 충분히 길게 하여야 하는 문제점이 있다.However, according to this method, since the thin film is deposited thickly in the region close to the injection hole 9 located in the center of the upper surface of the process chamber 1, the uniformity of the thin film is lowered. .

또한 분사된 가스는 공정챔버(1)의 가장자리로 유동하게 되므로, 공정챔버(1)의 가장자리로 갈수록 가스의 부분압이 낮아지는 결과를 초래한다.In addition, since the injected gas flows to the edge of the process chamber 1, the partial pressure of the gas decreases toward the edge of the process chamber 1.

이것은 공정챔버(1) 내부의 형상이 원통형이라고 가정할 때, 중심으로부터의 거리 r에서 가스가 지나는 단면적 A는

Figure 112003019793297-pat00001
(h는 가스가 유동하는 챔버의 높이)로 표시할 수 있으므로, 중심으로부터 멀어질수록 즉 r이 커질수록 가스가 지나는 단면적 A도 커지게 되기 때문이다.Assuming that the shape inside the process chamber 1 is cylindrical, the cross-sectional area A through which the gas passes at a distance r from the center is
Figure 112003019793297-pat00001
(h is the height of the chamber through which the gas flows), so that the further away from the center, that is, the larger r, the larger the cross-sectional area A through which the gas passes.

도 3은 중심으로부터 거리가 멀어질수록 가스압력이 낮아지는 현상을 도시하고 있다.3 illustrates a phenomenon in which the gas pressure decreases as the distance from the center increases.

이러한 현상때문에 웨이퍼홀더(3)의 가장자리로 갈수록 반응가스의 계단도포성 또는 덮힘률(step coverage)이 나빠지는 결과를 초래하게 되며, 이를 개선하기 위해서는 반응가스를 오랫동안 공급하여야 한다.This phenomenon results in worse step coverage or step coverage of the reaction gas toward the edge of the wafer holder 3, and to improve this, the reaction gas must be supplied for a long time.

그러나 원자층증착장치와 같이 고가의 장비에서 이와 같이 퍼지시간과 가스 공급시간이 길어지면 단위시간당 생산량(throughput)이 크게 저하되는 문제가 있다.
However, if the purge time and the gas supply time are long in expensive equipment such as an atomic layer deposition apparatus, there is a problem in that the throughput per unit time is greatly reduced.

본 발명은 이러한 문제점을 해결하기 위한 것으로서, 박막균일도를 향상시킬 뿐만아니라, 공정시간을 단축하여 생산성향상과 생산장비에 대한 원가절감에 기여할 수 있는 다수웨이퍼용 원자층증착방법을 이용한 박막증착장치를 제공하는 것을 그 목적으로 한다.The present invention is to solve this problem, as well as to improve the thin film uniformity, and to reduce the process time to increase the productivity and cost reduction for the production equipment using a thin film deposition apparatus using a multi-wafer atomic layer deposition method Its purpose is to provide.

본 발명은 상기와 같은 목적을 달성하기 위하여, 반응공간을 형성하는 공정챔버와; 상기 공정챔버의 내부에 설치되고, 상면에 웨이퍼 안치대가 다수 형성되며, 중심부에는 관통홀이 형성되어 있는 웨이퍼홀더와; 상기 웨이퍼홀더의 상부에 위치하며, 상기 공정챔버의 내측면에 설치되는 가스분사장치와; 상기 가스분사장치와 연결되는 가스유입관과; 상기 웨이퍼홀더의 상기 관통홀과 연결되며, 상기 공정챔버의 하부에 형성된 배기구를 포함하는 박막증착장치를 제공한다.The present invention to achieve the above object, the process chamber for forming a reaction space; A wafer holder installed inside the process chamber and having a plurality of wafer rests formed on an upper surface thereof, and having through holes formed in a central portion thereof; A gas injection device disposed above the wafer holder and installed on an inner surface of the process chamber; A gas inlet pipe connected to the gas injection device; A thin film deposition apparatus is connected to the through hole of the wafer holder and includes an exhaust port formed in the lower portion of the process chamber.

또한 본 발명은 공정챔버의 측벽내부에 위치하며, 공정챔버 내부를 향해 관통된 다수의 분사구를 가진 샤워링 구조의 가스분사장치를 포함하는 박막증착장치를 제공한다.In another aspect, the present invention provides a thin film deposition apparatus which is located inside the side wall of the process chamber, and includes a gas injection device of a shower structure having a plurality of injection holes penetrated toward the inside of the process chamber.

이하에서는 도면을 참고하여 본 발명의 바람직한 실시예를 상세히 설명하기로 하며, 도 4 및 도 5는 본 발명에 따른 원자층증착장치의 단면도 및 평면도를 나타낸다.Hereinafter, with reference to the drawings will be described a preferred embodiment of the present invention in detail, Figures 4 and 5 shows a cross-sectional view and a plan view of the atomic layer deposition apparatus according to the present invention.

먼저 공정챔버(20)의 내부에는 다수의 서셉터어셈블리(30)가 설치되며, 서셉터어셈블리(30)의 상면에는 웨이퍼홀더(40)가 위치한다. 웨이퍼홀더(40)의 상면에는 다수의 웨이퍼 안치대(130)가 형성되어 웨이퍼(50)를 안치할 수 있으며, 웨이퍼홀더(40)의 외주면은 공정챔버(20)의 내측벽에 접하도록 하고 그 중심부에는 관통홀(110)을 설치함으로써, 공급가스가 중심부의 관통홀(110)을 통하여 하부의 배기 구(120)를 통해 배기되도록 한다.First, a plurality of susceptor assemblies 30 are installed in the process chamber 20, and a wafer holder 40 is positioned on an upper surface of the susceptor assembly 30. A plurality of wafer holders 130 may be formed on the upper surface of the wafer holder 40 to accommodate the wafer 50. The outer circumferential surface of the wafer holder 40 may be in contact with the inner wall of the process chamber 20. By installing the through hole 110 in the center, the supply gas is exhausted through the exhaust port 120 in the lower portion through the through hole 110 of the center.

한편 상기 서셉터어셈블리(30)의 수는 웨이퍼 안치대(130)의 수와 일치할 수도 있으나, 하나의 서셉터어셈블리(30)가 다수의 웨이퍼 안치대(130)와 연결되는 경우에는 그 수가 일치하지 않을 수 있다.On the other hand, the number of the susceptor assembly 30 may correspond to the number of the wafer set up 130, but if one susceptor assembly 30 is connected to the plurality of wafer set up 130, the number of the susceptor assembly 30 is the same. You can't.

웨이퍼 안치대(130)에는 웨이퍼(50)를 반입하거나 반출하는 때에 상하로 구동하는 리프트핀(미도시)이 지날수 있도록 다수의 홀이 형성되기도 하며, 상기 리프트핀의 구동을 위한 구동부는 통상 공정챔버의 외부에 위치하면서 서셉터어셈블리(30)와 연결된다.A plurality of holes may be formed in the wafer support 130 so that a lift pin (not shown) for driving up and down may pass when the wafer 50 is loaded or unloaded, and the driving unit for driving the lift pin is a general process. Located outside the chamber and connected to the susceptor assembly 30.

웨이퍼 안치대(130)의 개수는 챔버의 부피등을 감안할 때, 통상 2개 내지 4개 정도가 바람직하나, 이에 한정되는 것은 아니며, 서셉터어셈블리(30)에는 통상 증착과정을 촉진하기 위해 히터블록(31)이 내장된다.In view of the volume of the chamber, the number of wafer supports 130 is generally preferably about 2 to 4, but is not limited thereto. In the susceptor assembly 30, a heater block is usually used to promote a deposition process. 31 is built in.

그리고 가스분사장치를 도 1과 같이 단일의 분사구로 형성하지 않고, 공정챔버(20)의 측벽 내부에 샤워링(100)형태로 설치하여, 외부의 가스공급관으로부터 상기 샤워링(100)으로 가스가 공급되면, 공급된 가스가 튜브형상의 샤워링(100) 내부로 분산된 후, 샤워링(100)에 형성된 다수의 샤워링 분사구(140)를 통해 공정챔버(20)내로 분사되도록 하였다.In addition, the gas injection unit is not formed as a single injection port as shown in FIG. When supplied, the supplied gas was dispersed into the tubular shower ring 100, and then injected into the process chamber 20 through a plurality of shower ring injection holes 140 formed in the shower ring 100.

도 5에는 샤워링(100)에 형성된 샤워링 분사구(140)의 수를 8개 도시하였으나, 분사구가 많을수록 균일한 가스분사가 가능할 것이므로 그 수에 제한이 있는 것은 아니다. 다만 분사구의 위치가 일부에 편중되는 경우에는 분사가스의 균일도가 저하되므로 분사구의 배치를 균일하게 하여야 한다. Although FIG. 5 illustrates the number of eight shower ring nozzles 140 formed in the shower ring 100, the number of the nozzle holes may be uniform, so that the number of the nozzle holes may be uniform, it is not limited thereto. However, when the position of the injection hole is biased in part, the uniformity of injection gas is reduced, so the arrangement of the injection hole should be uniform.                     

샤워링(100)을 통해 공정챔버(20) 내부로 분사되는 가스는 소스가스유입관(70), 반응가스유입관(80) 또는 퍼지가스유입관(60,90)을 통해 공급된다.Gas injected into the process chamber 20 through the shower ring 100 is supplied through a source gas inlet pipe 70, a reaction gas inlet pipe 80, or a purge gas inlet pipe 60, 90.

도면에서는 샤워링(100)이 공정챔버(20)의 측벽내부에 형성되는 것으로 도시하였으나, 이는 예시에 불과하므로 당업자에 의해 다양한 형태로 변경이 가능하다. 예를 들어 공정챔버(20)의 내측벽에 별도의 샤워링을 설치하거나, 다수의 인젝터를 설치하는 등의 구성을 예상할 수 있다.In the drawings, the shower ring 100 is illustrated as being formed inside the sidewall of the process chamber 20. However, since the shower ring 100 is merely an example, the shower ring 100 may be modified in various forms by those skilled in the art. For example, a configuration such as installing a separate shower ring on the inner wall of the process chamber 20, or installing a plurality of injectors can be expected.

이와 같은 구성의 원자층증착장치에서는 도 4 및 도 5에 표시된 화살표방향 즉, 웨이퍼홀더(40)의 가장자리로부터 중심의 관통홀(110)방향으로 가스가 유동한다. In the atomic layer deposition apparatus having such a configuration, gas flows in the direction of the arrow shown in FIGS. 4 and 5, that is, from the edge of the wafer holder 40 to the center through hole 110.

이러한 흐름에서는 중심으로 갈수록 가스의 부분압이 높아지게 되나, 가스가 중심부의 관통홀(110)을 통해 하부의 배기구(120)로 배기되므로 전체적으로 균일한 가스부분압을 형성할 수 있다.In this flow, the partial pressure of the gas increases toward the center, but since the gas is exhausted through the through hole 110 in the center to the lower exhaust port 120, a uniform gas partial pressure may be formed as a whole.

도 6은 상기와 같은 구성을 가지는 원자층증착장치에서 중심으로부터의 거리에 따른 공급가스의 압력분포를 나타내고 있는데, 거리에 관계없이 균일한 부분압이 형성됨을 알 수 있다.6 shows the pressure distribution of the supply gas according to the distance from the center in the atomic layer deposition apparatus having the above configuration, it can be seen that a uniform partial pressure is formed regardless of the distance.

따라서 균일한 부분압으로 인하여 박막증착이 균일하게 이루어지며, 종래와 같이 가스공급시간이나 퍼지시간을 특별히 길게 할 필요가 없으므로, 전체적으로 생산성이 향상된다.Therefore, the thin film is uniformly deposited due to the uniform partial pressure, and thus, there is no need to lengthen the gas supply time or the purge time as in the prior art, and thus the productivity is improved overall.

이상에서는 본 발명의 바람직한 실시예에 대하여 설명하였으나, 당업자에 의 한 다양한 수정이나 변경이 가능하며, 이러한 수정이나 변경이 본 발명의 기술적 사상의 범위에 속하는 한 본 발명의 권리범위에 속하게 됨은 당연하다.
In the above description of the preferred embodiment of the present invention, various modifications or changes are possible by those skilled in the art, and it is natural that such modifications or changes belong to the scope of the present invention as long as they fall within the scope of the technical idea of the present invention. .

본 발명에 따르면 공정챔버내의 가스압력분포를 균일하게 함으로써, 박막균일도를 향상시킬 수 있을 뿐만아니라, 가스공급 및 퍼지에 소요되는 공정시간을 단축하여 생산성향상과 생산장비에 대한 원가절감에 기여할 수 있게 된다.
According to the present invention, by uniformizing the gas pressure distribution in the process chamber, not only can the thin film uniformity be improved, but also the process time required for gas supply and purge can be shortened, thereby contributing to productivity improvement and cost reduction for production equipment. do.

Claims (5)

반응공간을 형성하는 공정챔버와; A process chamber forming a reaction space; 상기 공정챔버의 내부에 설치되고, 상면에 웨이퍼 안치대가 다수 형성되며, 중심부에는 관통홀이 형성되어 있는 웨이퍼홀더와; A wafer holder installed inside the process chamber and having a plurality of wafer rests formed on an upper surface thereof, and having through holes formed in a central portion thereof; 상기 웨이퍼홀더의 상부에 위치하며, 상기 공정챔버의 내측면에 설치되는 가스분사장치와;A gas injection device disposed above the wafer holder and installed on an inner surface of the process chamber; 상기 가스분사장치와 연결되는 가스유입관과;A gas inlet pipe connected to the gas injection device; 상기 웨이퍼홀더의 상기 관통홀과 연결되며, 상기 공정챔버의 하부에 형성된 배기구An exhaust port connected to the through hole of the wafer holder and formed in the lower portion of the process chamber; 를 포함하는 박막증착장치.Thin film deposition apparatus comprising a. 제1항에 있어서,The method of claim 1, 상기 가스분사장치는 상기 공정챔버 내부를 향해 관통된 다수의 분사구를 포함하는 박막증착장치.The gas injection device comprises a plurality of injection holes penetrated toward the inside of the process chamber. 반응공간을 형성하는 공정챔버와;A process chamber forming a reaction space; 상면에 다수의 기판을 안치하며, 중심부에는 관통홀이 형성되어 있는 웨이퍼홀더와;A wafer holder in which a plurality of substrates are placed on an upper surface, and a through hole is formed in a central portion thereof; 상기 공정챔버의 내측면에 형성된 다수의 가스분사구와;A plurality of gas injection ports formed on an inner surface of the process chamber; 상기 공정챔버를 관통하여 상기 가스분사구에 연결된 가스유입관과;A gas inlet pipe passing through the process chamber and connected to the gas injection port; 상기 웨이퍼홀더의 상기 관통홀과 연결되며, 상기 웨이퍼홀더의 하부에 형성된 배기구An exhaust port connected to the through hole of the wafer holder and formed under the wafer holder; 를 포함하는 박막증착장치.Thin film deposition apparatus comprising a. 다수의 기판을 처리하는 박막증착장치로써,Thin film deposition apparatus for processing a plurality of substrates, 공정챔버와;A process chamber; 상기 공정챔버의 내측벽에 가스분사구가 형성되는 가스분사장치와;A gas injection device in which a gas injection port is formed on an inner wall of the process chamber; 상기 다수의 기판을 안치하며, 상기 가스분사구를 통해 상기 공정챔버로 유입된 가스가 배기되는 관통홀이 중심부에 설치된 웨이퍼홀더와;A wafer holder in which the plurality of substrates are placed, and a through hole in which a gas introduced into the process chamber through the gas injection port is exhausted is installed at a central portion thereof; 상기 웨이퍼홀더의 상기 관통홀과 연결되어, 상기 웨이퍼홀더의 하부에 형성된 배기구An exhaust port connected to the through hole of the wafer holder and formed under the wafer holder; 를 포함하는 박막증착장치.Thin film deposition apparatus comprising a. 공정챔버와 상기 공정챔버의 내측벽에 가스분사구를 포함하는 가스분사장치와, 다수의 기판을 안치하는 웨이퍼홀더를 포함하는 박막증착장치로써,A thin film deposition apparatus comprising a gas ejection apparatus including a gas ejection opening on a process chamber, an inner wall of the process chamber, and a wafer holder for placing a plurality of substrates. 상기 웨이퍼홀더는 중심부에 관통홀을 포함하고, 상기 가스분사구를 통해 상기 공정챔버의 내부로 분사되는 가스가 상기 관통홀로 유동하도록 상기 관통홀과 연결되는 배기구The wafer holder includes a through hole at a central portion thereof, and an exhaust port connected to the through hole so that gas injected into the process chamber through the gas injection hole flows into the through hole. 를 포함하는 박막증착장치. Thin film deposition apparatus comprising a.
KR1020030035385A 2003-06-02 2003-06-02 Thin film layer deposition apparatus using atomic layer deposition method KR100957456B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030035385A KR100957456B1 (en) 2003-06-02 2003-06-02 Thin film layer deposition apparatus using atomic layer deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030035385A KR100957456B1 (en) 2003-06-02 2003-06-02 Thin film layer deposition apparatus using atomic layer deposition method

Publications (2)

Publication Number Publication Date
KR20040104022A KR20040104022A (en) 2004-12-10
KR100957456B1 true KR100957456B1 (en) 2010-05-14

Family

ID=37379749

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030035385A KR100957456B1 (en) 2003-06-02 2003-06-02 Thin film layer deposition apparatus using atomic layer deposition method

Country Status (1)

Country Link
KR (1) KR100957456B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101029776B1 (en) * 2009-05-11 2011-04-19 엘아이지에이디피 주식회사 Gas supply structure for substrate treatment device
CN114351116A (en) * 2020-10-13 2022-04-15 中国科学院微电子研究所 Atomic layer deposition apparatus and atomic layer deposition method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020088619A (en) * 2001-05-18 2002-11-29 주식회사 피에스티 Device for growing thin-film over semiconductor wafer without rotation
KR20030039670A (en) * 2001-11-14 2003-05-22 국제엘렉트릭코리아 주식회사 Semiconductor manufacturing apparatus for progressing a process after suppling process gas in tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020088619A (en) * 2001-05-18 2002-11-29 주식회사 피에스티 Device for growing thin-film over semiconductor wafer without rotation
KR20030039670A (en) * 2001-11-14 2003-05-22 국제엘렉트릭코리아 주식회사 Semiconductor manufacturing apparatus for progressing a process after suppling process gas in tube

Also Published As

Publication number Publication date
KR20040104022A (en) 2004-12-10

Similar Documents

Publication Publication Date Title
US9732424B2 (en) Gas injection apparatus and substrate processing apparatus using same
KR100946159B1 (en) Atomic Layer Deposition Device
TWI654658B (en) Substrate processing apparatus and thin film deposition method using the same
KR20100002886A (en) Atomic layer deposition apparatus
KR101829665B1 (en) Apparatus for processing substrate
KR100908987B1 (en) Substrate Support of Thin Film Deposition Equipment
KR20100005318A (en) Atomic layer depositon apparatus and mathod used in manufacturing semiconductor device
KR101835755B1 (en) Manufacturing method for thin film and substrate process apparatus
US11098406B2 (en) Substrate support unit and deposition apparatus including the same
KR100791677B1 (en) High density plasma chemical vapor deposition apparatus for semiconductor device manufacturing
KR20110041665A (en) Substrate processing apparatus
KR101046611B1 (en) Batch Type Atomic Layer Deposition System
KR100568456B1 (en) Semiconductor manufacturing System and Wafer-Film manufacturing Method
KR20110076386A (en) Atomic layer depositon apparatus used in manufacturing semiconductor device
KR20080035735A (en) Equipment for plasma enhanced chemical vapor deposition
KR100957456B1 (en) Thin film layer deposition apparatus using atomic layer deposition method
KR101253332B1 (en) Gas distribution plate for uniform gas injection
KR20090051984A (en) Apparatus for treating a substrate
KR20100018134A (en) Plasma chemical vapor deposition apparatus
KR20140081067A (en) Apparatus for processing wafers and method of processing wafers
KR20130035039A (en) Gas injecting device and substrate treatment apparatus having the same
KR101063752B1 (en) Shower head of chemical vapor deposition apparatus
JP7468926B2 (en) Shower head and substrate processing apparatus
KR200266071Y1 (en) Chemical vapor deposition apparatus using plasma
KR100450286B1 (en) Chemical vapor deposition apparatus using plasma

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140402

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160502

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180403

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190328

Year of fee payment: 10