KR100791677B1 - High density plasma chemical vapor deposition apparatus for semiconductor device manufacturing - Google Patents

High density plasma chemical vapor deposition apparatus for semiconductor device manufacturing Download PDF

Info

Publication number
KR100791677B1
KR100791677B1 KR1020060104855A KR20060104855A KR100791677B1 KR 100791677 B1 KR100791677 B1 KR 100791677B1 KR 1020060104855 A KR1020060104855 A KR 1020060104855A KR 20060104855 A KR20060104855 A KR 20060104855A KR 100791677 B1 KR100791677 B1 KR 100791677B1
Authority
KR
South Korea
Prior art keywords
gas
reaction
wafer
shower head
reaction gas
Prior art date
Application number
KR1020060104855A
Other languages
Korean (ko)
Inventor
이성원
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020060104855A priority Critical patent/KR100791677B1/en
Application granted granted Critical
Publication of KR100791677B1 publication Critical patent/KR100791677B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4558Perforated rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)

Abstract

A high-density plasma chemical vapor deposition apparatus for manufacturing a semiconductor device is provided to improve a yield and reliability by forming a deposition layer having a uniform thickness on a wafer. A shower head(206a) is installed in an upper side within a reaction chamber(202) in order to face a wafer(w) loaded on a fixing chuck(204). A plurality of injection holes are formed on a bottom surface of the shower head. A gas supply unit(208) supplies a reaction gas to the shower head and supplies a cooling gas to the fixing chuck in order to cool the wafer. A coil ring(214) is installed between the shower head and the fixing chuck. The coil ring includes a ring-shaped body(214a) and a coil(214b) inserted into the ring-shaped body, in order to form plasma within through-holes or transfer the reaction gas through the through-holes. A power generator(210) is formed to apply low-frequency power to the coil of the coil ring.

Description

반도체 소자 제조를 위한 고밀도 플라즈마 화학기상증착 장치{HIGH DENSITY PLASMA CHEMICAL VAPOR DEPOSITION APPARATUS FOR SEMICONDUCTOR DEVICE MANUFACTURING}High Density Plasma Chemical Vapor Deposition Apparatus for Manufacturing Semiconductor Devices {HIGH DENSITY PLASMA CHEMICAL VAPOR DEPOSITION APPARATUS FOR SEMICONDUCTOR DEVICE MANUFACTURING}

도 1은 종래의 고밀도 플라즈마 화학기상증착(HDP-CVD) 장치를 보여주는 개략도, 1 is a schematic view showing a conventional high density plasma chemical vapor deposition (HDP-CVD) apparatus,

도 2는 본 발명의 바람직한 실시예에 따른 고밀도 플라즈마 화학기상증착 장치를 보여주는 개략도, 2 is a schematic view showing a high density plasma chemical vapor deposition apparatus according to a preferred embodiment of the present invention,

도 3은 본 발명의 바람직한 실시예에 따른 고밀도 플라즈마 화학기상증착 장치의 샤워헤드 부분에 대한 저면도이다. 3 is a bottom view of a showerhead portion of a high density plasma chemical vapor deposition apparatus according to a preferred embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

100, 200 : 고밀도 플라즈마 화학기상증착(HDP-CVD) 장치100, 200: high density plasma chemical vapor deposition (HDP-CVD) apparatus

102, 202 : 반응챔버 102a : 상부벽102, 202: reaction chamber 102a: upper wall

102a-1 : 코일 104, 204 : 고정척102a-1: Coil 104, 204: Fixed Chuck

106 : 반응가스주입구 206a : 반응가스 분사용 샤워헤드106: reaction gas inlet 206a: reaction gas injection shower head

206b : 커튼가스 분사용 샤워헤드 206a-1, 206b-1 : 분사공206b: curtain gas spray shower head 206a-1, 206b-1: spray hole

108, 208 : 가스공급부 110, 210 : 저주파수 전력발생기108, 208: gas supply unit 110, 210: low frequency power generator

112, 212 : 고주파수 전력발생기 214 : 코일링112, 212: high frequency power generator 214: coiling

214a : 링형 몸체 214b : 코일214a: ring-shaped body 214b: coil

w : 웨이퍼w: wafer

본 발명은 반도체 소자 제조를 위한 고밀도 플라즈마 화학기상증착(High Density Plasma Chemical Vapor Deposition ; HDP-CVD) 장치에 관한 것으로서, 더욱 상세하게는 반응챔버내의 상부측에서 샤워헤드(shower head)를 이용하여 하부측의 웨이퍼에 대해 반응가스가 집중되면서 균일하게 분사되도록 함과 아울러 샤워헤드와 웨이퍼 사이에 링형태로 구비되는 코일링(coil ring)을 통해 해당 코일링의 내측으로 분사되는 반응가스가 통과하도록 하면서 해당 코일링의 내측에 플라즈마가 집중되게 형성되도록 하여, 집중되는 플라즈마와 반응가스의 반응에 의해 대응되는 하부측의 웨이퍼상에 증착막이 균일한 두께로 형성되도록 하게 되는 반도체 소자 제조를 위한 고밀도 플라즈마 화학기상증착 장치에 관한 것이다. The present invention relates to a High Density Plasma Chemical Vapor Deposition (HDP-CVD) apparatus for manufacturing a semiconductor device, and more particularly, by using a shower head at an upper side in a reaction chamber. While the reaction gas is concentrated on the wafer on the side, the reaction gas is injected uniformly, and the reaction gas injected into the coiling ring passes through a coil ring provided in a ring form between the shower head and the wafer. High density plasma chemistry for the manufacture of semiconductor devices in which the plasma is concentrated on the inside of the coiling, and the deposition film is formed on the lower side wafer corresponding to the reaction of the concentrated plasma and the reaction gas. The present invention relates to a vapor deposition apparatus.

일반적으로, 반도체 소자가 고집적화됨에 따라 점차 금속배선의 선폭이 좁아지고 있으며, 또한 해당 금속배선 사이의 간격도 대폭 좁아지고 있다. In general, as semiconductor devices are highly integrated, the line width of metal wirings is gradually narrowing, and the spacing between the metal wirings is also narrowing.

따라서, 간격이 좁아진 금속배선 사이에 층간절연막을 형성함에 있어, 기존의 화학기상증착(Chemical Vapor Deposition ; CVD)법 또는 플라즈마 CVD(Plasma Enhanced CVD ; PECVD)법으로는 금속배선 사이의 미세한 갭(gap)을 완전하게 매입할 수 없게 됨으로써, 최근에는 갭 충전(gap filling) 특성이 매우 우수한 고밀도 플라즈마 CVD(High Density Plasma Chemical Vapor Deposition ; HDP-CVD)법을 주로 이용하고 있다. Therefore, in forming the interlayer insulating film between the metal wirings having a narrow gap, there is a gap between the metal wirings by the conventional chemical vapor deposition (CVD) method or the plasma enhanced CVD (PECVD) method. ), The high density plasma CVD (High Density Plasma Chemical Vapor Deposition; HDP-CVD) method, which has a very good gap filling property, is mainly used in recent years.

HDP-CVD법은 익히 주지된 바와 같이, 고밀도 플라즈마에 의해 반응가스를 분해하여 웨이퍼 기판상에 증착되도록 하는 것에 의해 층간절연막이 형성되도록 하는 것으로, 층간절연막의 증착(deposition) 및 스퍼터 식각(sputter etching)이 동시에 진행되게 된다. As is well known, the HDP-CVD method is to form an interlayer insulating film by decomposing a reaction gas by a high density plasma and depositing it on a wafer substrate, whereby the deposition and sputter etching of the interlayer insulating film are performed. ) Will proceed simultaneously.

도 1은 종래의 고밀도 플라즈마 화학기상증착(HDP-CVD) 장치를 보여준다. 1 shows a conventional high density plasma chemical vapor deposition (HDP-CVD) apparatus.

고밀도 플라즈마 화학기상증착(HDP-CVD) 장치(100)는, 내부에 밀폐되는 반응공간을 형성하며 그 돔(dome)형태의 상부벽(102a)내에는 플라즈마 형성을 위한 코일(coil)(102a-1)이 감겨져 내장되게 되는 반응챔버(chamber)(102)와, 이 반응챔버(102)내의 하부측에 구비되어 그 상면상에 공정대상물인 웨이퍼(w)가 안착되어 고정되게 되는 고정척(chuck)(104)과, 이 고정척(104)의 측방에 해당하는 반응챔버(102)의 측벽상에 원주방향을 따라 이격되도록 다수개 구비되어 내부로 반응가스를 분사하여 주입하게 되는 반응가스주입구(106)와, 이 반응가스주입구(106)로 반응가스를 공급하게 됨과 아울러 전술한 고정척(104)측으로 웨이퍼(w)의 냉각을 위한 냉각가스를 공급하게 되는 가스공급부(108)와, 반응챔버(102) 상부벽(102a)내의 코일(102a-1)에 대해 저주파수 전력을 인가하여 반응챔버(102) 내부에 플라즈마가 형성되도록 하게 되는 저주파수 전력발생기(Low Frequency generator)(110)와, 웨이퍼(w)상에 증착되는 층간절연막을 스퍼터 식각하기 위한 바이어스 전력(bias power)인 고주파수 전력을 고정척(104)에 대해 인가하게 되는 고주파수 전력발생 기(How Frequency generator)(112)를 포함하게 된다. The high density plasma chemical vapor deposition (HDP-CVD) apparatus 100 forms a reaction space enclosed therein, and a coil 102a-for forming plasma is formed in the dome-shaped upper wall 102a. A fixed chuck (1) is provided on the reaction chamber (102) to be wound up and embedded therein, and a wafer (w), which is a process object, is seated and fixed on the upper surface of the reaction chamber (102). 104 and a plurality of reaction gas injection holes provided on the sidewalls of the reaction chamber 102 corresponding to the sides of the fixed chuck 104 in a circumferential direction to inject and inject the reaction gas into the reaction gas inlet ( 106, the gas supply unit 108 which supplies the reaction gas to the reaction gas inlet 106 and supplies the cooling gas for cooling the wafer w to the fixed chuck 104 as described above, and the reaction chamber. (102) A low-frequency power is applied to the coil 102a-1 in the upper wall 102a so that the reaction chamber ( 102. Low-frequency power generator 110, which allows plasma to be formed inside, and high-frequency power, which is a bias power for sputter etching the interlayer insulating film deposited on the wafer w, is fixed. And a high frequency power generator 112 applied to 104.

이때, 층간절연막은 주로 실리콘산화막(SiO2)으로 형성되게 되며, 이와 같이 실리콘산화막(SiO2)으로 형성되는 경우에 있어, 반응가스로는 실렌(SiH4)가스, 산소(O2)가스 및 아르곤(Ar)가스가 이용되고 있으며, 이 중 SiH4가스와 O2가스는 증착을 위한 메인 반응가스가 되게 되고, Ar가스는 스퍼터 식각을 위한 메인 반응가스가 되게 된다. In this case, the interlayer insulating film is mainly formed of a silicon oxide film (SiO 2 ), and thus, when the interlayer insulating film is formed of a silicon oxide film (SiO 2 ), the reaction gases include silane (SiH 4 ) gas, oxygen (O 2 ) gas, and argon. (Ar) gas is used, of which SiH 4 gas and O 2 gas is to be the main reaction gas for deposition, Ar gas is to be the main reaction gas for sputter etching.

그리고, 고정척(104)측으로 공급되어 고정척(104)상에 안착된 웨이퍼(w)의 후면(back side)에 대해 분사되어 해당 웨이퍼(w)를 냉각하게 되는 냉각가스로는 헬륨(He)가스가 이용되게 된다. In addition, the cooling gas supplied to the fixed chuck 104 and injected onto the back side of the wafer w seated on the fixed chuck 104 to cool the wafer w is helium gas. Will be used.

따라서, 그 공정진행 과정에 대해 개략적으로 설명하면, 저주파수 전력발생기(110)로부터 반응챔버(102)의 상부벽에 대해 저주파수 전력이 인가되어 반응챔버(102)내의 상부측에 플라즈마가 계속적으로 우선 형성되어 있는 상태에서 공정대상물인 웨이퍼(w)가 반응챔버(102)내의 고정척(104)상에 안착 고정되도록 로딩(loading)되게 되면, 이어서 고주파수 전력발생기(112)로부터 고정척(104)에 대해 고주파수 전력이 인가되어 웨이퍼(w)를 적정하게 초반 가열하게 되고, 다음으로 가스공급부(108)로부터 반응가스주입구(106)로 SiH4가스, O2가스 및 Ar가스의 반응가스들이 공급되어 반응가스주입구(106)에서 반응챔버(102)내로 분사되어 주입되게 되며, 이에 따라 주입된 반응가스들이 내부에 형성되어 있던 플라즈마에 의해 화학적 반응을 일으켜 웨이퍼(w)상에 증착되게 됨과 동시에 스퍼터 식각이 진행되어, 결국 웨이퍼(w)상에는 적정두께로 층간절연막이 형성되게 된다. Therefore, when the process proceeds schematically, low frequency power is applied to the upper wall of the reaction chamber 102 from the low frequency power generator 110 so that plasma is continuously formed on the upper side of the reaction chamber 102 first. When the wafer w, which is an object to be processed, is loaded to be seated and fixed on the fixed chuck 104 in the reaction chamber 102, the high frequency power generator 112 is fixed to the fixed chuck 104. High frequency power is applied to properly heat the wafer w early, and then reactant gases of SiH 4 gas, O 2 gas and Ar gas are supplied from the gas supply unit 108 to the reaction gas inlet 106. The injection hole 106 is injected into the reaction chamber 102 to be injected. Accordingly, the injected reaction gases are deposited on the wafer w by causing a chemical reaction by the plasma formed therein. Soon as the sputter etching proceeds at the same time, the interlayer insulation film is to be formed finally in an appropriate thickness on the wafer (w).

이와 같이, 반응가스들의 유입에 따라 증착과 식각이 동시에 진행되게 되는데, 이때 증착은 저주파수 전력에 의해, 그리고 식각은 고주파수 전력에 의해 이루어지게 되고, 또한 증착은 반응가스중의 SiH4가스, O2가스에 의한 화학적 결합에 의해, 그리고 식각은 반응가스중의 Ar가스의 이온화된 이온의 충돌에 의해 이루어지게 된다. As such, the deposition and etching proceed simultaneously with the inflow of the reaction gases, wherein the deposition is performed by low frequency power, and the etching is performed by high frequency power, and the deposition is performed by SiH 4 gas, O 2 in the reaction gas. By chemical bonding by gas, and etching is performed by collision of ionized ions of Ar gas in the reaction gas.

다음으로, 증착과 식각이 동시에 진행되어 웨이퍼(w)상에 적정하게 층간절연막이 형성된 후에는 해당 웨이퍼(w)를 반응챔버(102)로부터 언로딩(unloading)한 다음, 별도의 냉각챔버(미도시)에서 냉각하게 된다. Next, after deposition and etching proceed simultaneously to form an interlayer insulating film on the wafer w, the wafer w is unloaded from the reaction chamber 102, and then a separate cooling chamber (not shown). Cooling).

덧붙여, 이상의 공정진행 과정에서 고정척(104)에 대해 인가되는 고주파수 전력은 주로 식각을 위한 이온 및 라디칼들을 웨이퍼(w)쪽으로 끌어당기기 작용을 하게 된다. In addition, the high frequency power applied to the fixed chuck 104 during the process proceeds mainly to attract ions and radicals for etching toward the wafer (w).

그러나, 이상과 같은 고밀도 플라즈마 화학기상증착(HDP-CVD) 장치를 이용하여 웨이퍼(w)상에 층간절연막을 형성하게 되면, 결과적으로 웨이퍼(w)상의 센터(center)부와 에지(edge)부간에서 형성되는 층간절연막의 두께가 매우 불균일하게 형성되게 된다. However, when the interlayer insulating film is formed on the wafer w by using the above-described high density plasma chemical vapor deposition (HDP-CVD) apparatus, the result is that the center portion and the edge portion of the wafer w are consequently formed. The thickness of the interlayer insulating film formed at is very unevenly formed.

이와 같이 층간절연막이 불균일하게 형성되게 되는 원인으로는, 첫째, 반응가스를 주입하는 반응가스주입구(106)가 고정척(104)상에 안착된 웨이퍼(w)의 측방에 위치되어 있어 해당 측방으로부터 반응가스를 공급하게 됨에 따라 아무래도 주 입되는 반응가스가 반응챔버(102)내에서 불균일하게 분포되게 되고, 그 결과로서 웨이퍼(w)상에 불균일한 증착이 이루어지는 것으로 판단된다. As a cause of the non-uniformity of the interlayer insulating film, firstly, the reaction gas inlet 106 for injecting the reaction gas is located on the side of the wafer w seated on the fixed chuck 104, and thus from the side. As the reaction gas is supplied, the reaction gas that is injected is unevenly distributed in the reaction chamber 102, and as a result, it is determined that non-uniform deposition is performed on the wafer w.

둘째, 돔형태의 상부벽(102a)내에 전반적으로 넓게 펴져 있는 코일(102a-1)에 대해 저주파수 전력을 인가하여 플라즈마를 형성하게 되는데, 코일(102a-1)이 넓게 퍼져 있음에 따라 인가되는 저주파수 전력이 분산되게 되고 그에 따라 반응챔버(102) 내부에 형성되는 플라즈마도 분산되게 됨으로써 웨이퍼(w)에 대해 집중되지 못하게 되므로, 그 결과로서 웨이퍼(w)상에 불균일한 증착막이 형성되게 되는 것으로도 판단된다. Second, a low frequency electric power is applied to the coil 102a-1, which is generally widened in the dome-shaped upper wall 102a, to form a plasma. The low frequency applied as the coil 102a-1 is widely spread. Since the power is distributed and thus the plasma formed inside the reaction chamber 102 is also dispersed, it is not concentrated on the wafer w. As a result, an uneven deposition film is formed on the wafer w. Judging.

이상과 같이, 웨이퍼(w)상에 층간절연막이 불균일하게 형성되게 되면, 이후 두께차가 형성된 부분에서 물리적인 크랙(crack)이 용이하게 발생되어 전개될 수 있게 되고, 또한 전기적인 단락도 유발될 수 있게 되므로, 제조되는 반도체 소자의 수율 및 신뢰성을 대폭 저하시키게 된다. As described above, when the interlayer insulating film is formed nonuniformly on the wafer w, physical cracks can be easily generated and developed at the portion where the thickness difference is formed, and electric short circuit can be caused. As a result, the yield and reliability of the semiconductor device to be manufactured are greatly reduced.

본 발명은 상기와 같은 제반 문제점을 해결하기 위하여 창안된 것으로서, 반응가스를 상부측의 샤워헤드(shower head)를 이용하여 하부측의 웨이퍼에 대해 집중되면서 균일하게 분사하여 공급함과 아울러, 샤워헤드와 웨이퍼 사이에 링형태의 코일링(coil ring)을 개재하여 해당 코일링의 내측으로 분사되는 반응가스가 통과되도록 하면서 해당 코일링의 내측에 플라즈마가 집중되게 형성되도록 함으로써, 집중되는 반응가스와 플라즈마의 반응에 따라 대응되는 하부측의 웨이퍼상에 증착막이 매우 균일하게 형성되도록 하게 되는 반도체 소자 제조를 위한 고밀도 플라즈 마 화학기상증착 장치를 제공하는데 그 목적이 있다. The present invention was devised to solve the above-mentioned problems, and the reaction gas is uniformly sprayed and supplied to the lower wafer by using the shower head of the upper side, and the shower head and By allowing a reaction gas injected into the coil ring to pass through a ring-shaped coil ring between the wafers, plasma is concentrated inside the coil ring, thereby forming the concentrated reaction gas and the plasma. It is an object of the present invention to provide a high-density plasma chemical vapor deposition apparatus for manufacturing a semiconductor device in which a deposition film is formed very uniformly on a wafer on a lower side corresponding to the reaction.

상술한 목적을 달성하기 위한 본 발명의 반도체 소자 제조를 위한 고밀도 플라즈마 화학기상증착 장치는, 내부에 밀폐되는 반응공간을 형성하는 반응챔버와, 상기 반응챔버내의 하부측에 구비되어 상면상에 웨이퍼가 안착되게 되는 고정척과, 상기 고정척에 대해 고주파수 전력을 인가하게 되는 고주파수 전력발생기를 구비하는 반도체 소자 제조를 위한 고밀도 플라즈마 화학기상증착 장치에 있어서, 상기 고정척상에 안착되는 상기 웨이퍼에 대향되도록 상기 반응챔버내의 상부측에 구비되며 하면상에 균일하게 분포되도록 형성된 다수개의 분사공을 통해 반응가스를 하향되도록 분사하게 되는 반응가스 분사용 샤워헤드와, 상기 반응가스 분사용 샤워헤드측으로 상기 반응가스를 공급함과 아울러 상기 웨이퍼의 냉각을 위한 냉각가스를 상기 고정척측으로 공급하게 되는 가스공급부와, 상부측의 상기 반응가스 분사용 샤워헤드와 하부측의 상기 고정척 사이에 링형태로 구비되며 링형 몸체내에 코일이 삽입되어 있어 상기 코일에 저주파수 전력이 인가됨에 따라 상기 몸체 내측의 관통공내에 플라즈마가 형성되도록 하면서 상기 관통공을 통해 상기 반응가스 분사용 샤워헤드로부터 분사되는 상기 반응가스가 통과되도록 하게 되는 코일링과, 상기 코일링의 코일에 대해 저주파수 전력을 인가하게 되는 저주파수 전력발생기를 포함하는 것을 특징으로 한다. The high-density plasma chemical vapor deposition apparatus for manufacturing a semiconductor device of the present invention for achieving the above object is provided with a reaction chamber for forming a reaction space sealed therein, and a lower side in the reaction chamber to provide a wafer on the upper surface. In the high-density plasma chemical vapor deposition apparatus for manufacturing a semiconductor device having a fixed chuck to be seated, and a high frequency power generator for applying a high frequency power to the fixed chuck, the reaction to face the wafer seated on the fixed chuck The reaction gas injection shower head which is provided on the upper side in the chamber and sprays the reaction gas downward through a plurality of injection holes formed to be uniformly distributed on the lower surface, and supplies the reaction gas to the reaction gas injection shower head side. And fixing the cooling gas for cooling the wafer. It is provided in the form of a ring between the gas supply unit to be supplied to the side, and the reaction gas injection shower head of the upper side and the fixed chuck of the lower side and the coil is inserted in the ring-shaped body as the low frequency power is applied to the coil Coiling to allow the reaction gas injected from the reaction gas injection shower head to pass through the through hole while the plasma is formed in the through hole inside the body, and to apply low frequency power to the coil of the coil ring Characterized in that it comprises a low frequency power generator.

본 발명의 상기 목적과 여러 가지 장점은 이 기술분야에 숙련된 사람들에 의해 첨부된 도면을 참조하여 아래에 기술되는 발명의 바람직한 실시예로부터 더욱 명확하게 될 것이다. The above objects and various advantages of the present invention will become more apparent from the preferred embodiments of the invention described below with reference to the accompanying drawings by those skilled in the art.

이하, 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 바람직한 실시예에 따른 고밀도 플라즈마 화학기상증착(HDP-CVD) 장치를 보여준다. 2 shows a high density plasma chemical vapor deposition (HDP-CVD) apparatus according to a preferred embodiment of the present invention.

본 발명에 따른 고밀도 플라즈마 화학기상증착(HDP-CVD) 장치(200)는, 내부에 밀폐된 반응공간을 형성하는 반응챔버(202)와, 이 반응챔버(202)내의 하부측에 구비되어 그 상면상에 공정대상물인 웨이퍼(w)가 안착되어 고정되게 되는 고정척(204)과, 이 고정척(204)상에 안착되는 웨이퍼(w)에 대향되도록 반응챔버(202)내의 상부측에 구비되며 그 하면상에 균일하게 분포되도록 형성된 다수개의 분사공(206a-1)을 통해 반응가스(SiH4가스, O2가스 및 Ar가스)를 하향되도록 균일하게 분사하게 되는 반응가스 분사용 샤워헤드(shower head)(206a)와, 이 반응가스 분사용 샤워헤드(206a)로 반응가스를 공급하게 됨과 아울러 전술한 고정척(204)측으로 웨이퍼(w)의 냉각을 위한 냉각가스(He가스)를 공급하게 되는 가스공급부(208)와, 상부측의 반응가스 분사용 샤워헤드(206a)와 하부측의 고정척(204) 사이에 링형태로 구비되며 그 링형 몸체(214a)내에 코일(214b)이 균일하게 감겨져 있어 해당 코일(214b)에 대해 저주파수 전력이 인가됨에 따라 그 몸체(214a)의 내측에 플라즈마가 형성되도록 하면서 상부로부터 분사되는 반응가스가 또한 해당 몸체(214a)의 내측을 통과하도록 하게 되는 코일링(coil ring)(214)과, 이 코일링(214)의 코 일(214b)에 대해 저주파수 전력을 인가하게 되는 저주파수 전력발생기(210)와, 웨이퍼(w)상에 증착되는 층간절연막을 스퍼터 식각하기 위한 바이어스 전력인 고주파수 전력을 고정척(204)에 대해 인가하게 되는 고주파수 전력발생기(212)를 포함하게 된다. The high-density plasma chemical vapor deposition (HDP-CVD) apparatus 200 according to the present invention includes a reaction chamber 202 for forming a reaction space enclosed therein, and a lower side of the reaction chamber 202 provided thereon. It is provided on the upper side in the reaction chamber 202 so as to face the fixed chuck 204 to be seated and fixed to the wafer (W) to be processed on the surface and the wafer (w) seated on the fixed chuck 204 Reaction gas injection shower head (shower) to uniformly spray the reaction gas (SiH 4 gas, O 2 gas and Ar gas) through a plurality of injection holes (206a-1) formed to be uniformly distributed on the lower surface The reaction gas is supplied to the head 206a and the reaction gas spray shower head 206a, and the cooling gas (He gas) for cooling the wafer w is supplied to the fixed chuck 204 described above. The gas supply unit 208, the reaction gas injection shower head 206a on the upper side, and the lower side It is provided in a ring shape between the fixed chuck 204 and the coil 214b is uniformly wound in the ring-shaped body 214a so that the low frequency power is applied to the coil 214b so that the plasma inside the body 214a is fixed. And a low frequency relative to the coil ring 214 and the coil 214b of the coil ring 214 to allow the reaction gas injected from the upper portion to pass through the inside of the body 214a. The low frequency power generator 210 to apply power and the high frequency power generator 212 to apply high frequency power, which is a bias power for sputter etching the interlayer insulating film deposited on the wafer w, to the fixed chuck 204. It will include.

따라서, 종래와 달리, 반응가스를 샤워헤드(206a)를 이용하여 상부측으로부터 하부측의 웨이퍼(w)에 대해 집중되면서 균일하게 분사하게 되며, 또한 웨이퍼(w)의 직상부에 위치하는 코일링(214)을 통해 웨이퍼(w) 부분에만 집중되도록 플라즈마가 형성되도록 하게 된다. Therefore, unlike the related art, the reaction gas is uniformly sprayed while being concentrated on the wafer w from the upper side to the lower side by using the shower head 206a, and also coiling located directly above the wafer w. Through 214, the plasma is formed to be concentrated only on the portion of the wafer w.

이때, 반응가스 분사용 샤워헤드(206a)는 웨이퍼(w)의 형상에 대응되도록 원형으로 형성될 수 있으며, 그 크기는 웨이퍼(w)의 크기보다 조금 크게 형성될 수 있다. In this case, the reaction gas injection shower head 206a may be formed in a circular shape so as to correspond to the shape of the wafer w, and the size thereof may be slightly larger than the size of the wafer w.

또한, 코일링(214)은 플라즈마가 형성되는 그 몸체(214a) 내측 부분이 웨이퍼(w)의 크기보다 조금 크게 형성될 수 있으며, 그 몸체(214a)는 반응공간내에 위치하게 되므로 내부식성이 있는 스테인레스 스틸이나 알루미늄 재질로 형성될 수 있다. In addition, the coiling 214 may be formed to be a little larger than the size of the wafer (w) the inner portion of the body 214a, the plasma is formed, the body 214a is located in the reaction space is corrosion-resistant It may be formed of stainless steel or aluminum.

이와 같이, 반응가스 분사용 샤워헤드(206a)와 코일링(214)이 웨이퍼(w)에 대해 거의 동일한 크기로 형성되어 반응가스 및 플라즈마를 웨이퍼(w)에 대해 집중되도록 하게 되므로, 웨이퍼(w)상에 균일한 두께의 층간절연막이 형성되도록 할 수 있게 된다. As such, the reaction gas jet showerhead 206a and the coiling 214 are formed to be substantially the same size with respect to the wafer w, so that the reaction gas and the plasma are concentrated with respect to the wafer w. It is possible to form an interlayer insulating film of uniform thickness.

또한, 본 발명에 따르면, 전술한 반응가스 분사용 샤워헤드(206a)의 외측을 따라 링형태로 그 하면상에 다수개의 분사공(206b-1)이 균일하게 분포되도록 형성된 커튼가스 분사용 샤워헤드(206b)가 구비될 수 있으며, 해당 커튼가스 분사용 샤워헤드(206b)는 그 하면상의 분사공들(206b-1)을 통해 커튼가스(curtain gas)를 적정압력으로 하향되게 분사함으로써 내측에서 분사되는 반응가스가 웨이퍼(w)에 대해 집중되지 못하고 일부 외측으로 빠져나가는 것을 최대한 차단시키게 된다. In addition, according to the present invention, the curtain gas injection shower head formed so that a plurality of injection holes 206b-1 are uniformly distributed on the lower surface thereof in a ring shape along the outside of the reaction gas injection shower head 206a described above. 206b may be provided, and the curtain gas spray shower head 206b is sprayed from the inside by spraying curtain gas downward at an appropriate pressure through the spray holes 206b-1 on the lower surface thereof. The reactant gas that is not concentrated on the wafer w is prevented from escaping to some outside.

물론, 커튼가스 분사용 샤워헤드(206b)측으로 커튼가스를 외부로부터 공급하는 부분은 전술한 가스공급부(208)가 될 수 있으며, 커튼가스로는 공정에 영향을 미치지 않을 수 있는 질소가스, 헬륨가스와 같은 통상적인 불활성가스가 이용될 수 있다. Of course, the portion for supplying the curtain gas from the outside toward the curtain gas injection shower head 206b may be the gas supply unit 208 described above, and the curtain gas may include nitrogen gas and helium gas, which may not affect the process. The same conventional inert gas can be used.

또한, 미도시하였으나 반응챔버(202)의 내측 하면측에는 분사되어 하부측으로 이동된 커튼가스를 그대로 외부로 배기시킬 수 있는 커튼가스배기구가 적절히 형성될 수 있으며, 이 커튼가스배기구에 대해서는 외부의 펌핑수단의 구동에 의해 외부로 끌어당기는 펌핑압이 제공될 수 있다. In addition, although not shown, a curtain gas exhaust port may be appropriately formed on the inner lower surface of the reaction chamber 202 to exhaust the curtain gas, which is injected and moved to the lower side, to the outside, and external pumping means may be provided for the curtain gas exhaust port. Pumping pressure to be drawn to the outside by the driving of can be provided.

참고로, 전술한 반응가스 분사용 샤워헤드(206a) 및 커튼가스 분사용 샤워헤드(206b)에 대한 저면도를 도 3에 나타낸다. For reference, FIG. 3 shows a bottom view of the reaction gas spray shower head 206a and the curtain gas spray shower head 206b described above.

덧붙여, 웨이퍼(w) 상부측에 위치하는 코일링(214) 및 반응가스 분사용 샤워헤드(206a)는 하부측의 웨이퍼(w)에 대해 그 상하높이를 조정할 수 있도록 구비될 수 있으며, 이와 같이 하는 이유는 웨이퍼(w)상에 증착막이 너무 과다하게 형성되게 되는 경우에는 웨이퍼(w)로부터 보다 이격되도록 하여 증착막이 보다 얇게 형성되도록 조정하고, 반대로 증착막이 부족하게 형성되게 되는 경우에는 보다 이격거 리를 좁혀 증착막이 보다 두껍게 형성되도록 조정하기 위함이다. In addition, the coiling 214 and the reactive gas injection shower head 206a positioned on the upper side of the wafer w may be provided to adjust the vertical height of the lower side of the wafer w. The reason for this is that when the deposition film is formed too much on the wafer w, the deposition film is formed to be thinner by being further separated from the wafer w, and conversely, when the deposition film is insufficiently formed, This is to adjust the thickness so that the deposited film is made thicker by narrowing the gap.

마지막으로, 이상과 같은 본 발명에 따른 고밀도 플라즈마 화학기상증착 장치(200)의 작용은 종래와 거의 동일하게 실시되게 되므로 그 설명은 생략하기로 하며, 그 작용상의 주요 요지에 대해서만 설명하면, 가장 상부측의 반응가스 분사용 샤워헤드(206a)로부터 코일링(214)의 내측을 통과하도록 반응가스가 분사되게 되고, 코일링(214)의 내측에만 플라즈마가 형성되게 되므로, 코일링(214)의 내측 부분에서 플라즈마와 반응가스가 만나 반응되면서 대응되는 하부측의 웨이퍼(w)상에 증착막이 매우 균일하게 형성되도록 하게 된다. Finally, since the operation of the high-density plasma chemical vapor deposition apparatus 200 according to the present invention as described above will be carried out almost the same as the conventional description thereof will be omitted, and only the main points of the operation will be described, the uppermost Reaction gas is injected to pass through the inside of the coil ring 214 from the reaction gas injection shower head 206a on the side, and since only plasma is formed inside the coil ring 214, the inside of the coil ring 214 As the plasma and the reaction gas meet and react at the portion, the deposition film is formed very uniformly on the corresponding lower wafer w.

이상, 상기 내용은 본 발명의 바람직한 일 실시예를 단지 예시한 것으로 본 발명의 당업자는 본 발명의 요지를 변경시킴이 없이 본 발명에 대한 수정과 변경을 가할 수 있음을 인지해야 한다.In the foregoing description, it should be understood that those skilled in the art can make modifications and changes to the present invention without changing the gist of the present invention as merely illustrative of a preferred embodiment of the present invention.

본 발명에 따르면, 상부측의 샤워헤드를 이용하여 웨이퍼에 대해 반응가스를 집중되면서 균일하게 분사하여 공급함과 아울러 코일링을 이용하여 웨이퍼 부분에 대해서만 집중되도록 플라즈마를 형성함으로써 웨이퍼상에 두께 균일성이 우수한 증착막이 형성되도록 할 수 있게 되므로, 제조되는 반도체 소자의 수율 및 신뢰성을 대폭 향상시킬 수 있게 되는 효과가 달성될 수 있다. According to the present invention, the thickness of the uniformity on the wafer is formed by uniformly injecting and supplying the reaction gas to the wafer by using the shower head of the upper side, and by forming a plasma to concentrate only on the wafer portion by using coiling. Since the excellent deposition film can be formed, the effect that can significantly improve the yield and reliability of the semiconductor device to be manufactured can be achieved.

Claims (5)

내부에 밀폐되는 반응공간을 형성하는 반응챔버(202)와, 상기 반응챔버(202)내의 하부측에 구비되어 상면상에 웨이퍼(w)가 안착되게 되는 고정척(204)과, 상기 고정척(204)에 대해 고주파수 전력을 인가하게 되는 고주파수 전력발생기(212)를 구비하는 반도체 소자 제조를 위한 고밀도 플라즈마 화학기상증착 장치에 있어서, A reaction chamber 202 for forming a reaction space enclosed therein, a fixing chuck 204 provided at a lower side of the reaction chamber 202 to allow the wafer w to be seated on an upper surface thereof, and the fixing chuck ( In the high-density plasma chemical vapor deposition apparatus for manufacturing a semiconductor device having a high frequency power generator 212 to apply a high frequency power to the 204, 상기 고정척(204)상에 안착되는 상기 웨이퍼(w)에 대향되도록 상기 반응챔버(202)내의 상부측에 구비되며 하면상에 균일하게 분포되도록 형성된 다수개의 분사공(206a-1)을 통해 반응가스를 하향되도록 분사하게 되는 반응가스 분사용 샤워헤드(206a)와, Reaction is provided through a plurality of injection holes 206a-1 provided at an upper side in the reaction chamber 202 so as to face the wafer w seated on the fixed chuck 204 and uniformly distributed on a lower surface thereof. Reaction gas injection shower head 206a for injecting the gas downward, 상기 반응가스 분사용 샤워헤드(206a)측으로 상기 반응가스를 공급함과 아울러 상기 웨이퍼(w)의 냉각을 위한 냉각가스를 상기 고정척(204)측으로 공급하게 되는 가스공급부(208)와, A gas supply unit 208 which supplies the reaction gas to the reaction gas injection shower head 206a and supplies cooling gas for cooling the wafer w to the fixed chuck 204 side; 상부측의 상기 반응가스 분사용 샤워헤드(206a)와 하부측의 상기 고정척(204) 사이에 링형태로 구비되며 링형 몸체(214a)내에 코일(214b)이 삽입되어 있어 상기 코일(214b)에 저주파수 전력이 인가됨에 따라 상기 몸체(214a) 내측의 관통공내에 플라즈마가 형성되도록 하면서 상기 관통공을 통해 상기 반응가스 분사용 샤워헤드(206a)로부터 분사되는 상기 반응가스가 통과되도록 하게 되는 코일링(214)과, It is provided in the form of a ring between the reaction gas injection shower head 206a on the upper side and the fixing chuck 204 on the lower side, and a coil 214b is inserted into the ring-shaped body 214a, so that the coil 214b is inserted into the coil 214b. As the low frequency power is applied, the plasma is formed in the through hole inside the body 214a while the reaction gas injected from the reaction gas injection shower head 206a passes through the through hole. 214), 상기 코일링(214)의 코일(214b)에 대해 저주파수 전력을 인가하게 되는 저주 파수 전력발생기(210)를 포함하는 것을 특징으로 하는 반도체 소자 제조를 위한 고밀도 플라즈마 화학기상증착 장치.High-density plasma chemical vapor deposition apparatus for semiconductor device manufacturing, characterized in that it comprises a low frequency power generator 210 to apply a low frequency power to the coil (214b) of the coiling (214). 제 1 항에 있어서, The method of claim 1, 상기 코일링(214) 및 상기 반응가스 분사용 샤워헤드(206a)는 상기 웨이퍼(w)로부터의 이격거리를 조정할 수 있도록 승강가능하게 구비되게 되는 것을 특징으로 하는 반도체 소자 제조를 위한 고밀도 플라즈마 화학기상증착 장치.The coiling 214 and the reaction gas injection shower head 206a are provided to be liftable to adjust the separation distance from the wafer w. Deposition apparatus. 제 1 항에 있어서, The method of claim 1, 상기 반응가스 분사용 샤워헤드(206a)의 둘레를 따라 구비되며 하면상에 균일하게 분포되도록 형성된 다수개의 분사공(206b-1)을 통해 커튼가스를 하향되도록 분사하여 내측에서 분사되는 상기 반응가스가 외측으로 분산되는 것을 차단하게 되는 커튼가스 분사용 샤워헤드(206b)를 더 포함하는 것을 특징으로 하는 반도체 소자 제조를 위한 고밀도 플라즈마 화학기상증착 장치.The reaction gas is injected from the inside by spraying the curtain gas downward through a plurality of injection holes 206b-1 provided along the circumference of the reaction gas injection shower head 206a and uniformly distributed on a lower surface thereof. High density plasma chemical vapor deposition apparatus for manufacturing a semiconductor device, characterized in that it further comprises a curtain gas injection shower head (206b) to block the dispersion to the outside. 제 3 항에 있어서, The method of claim 3, wherein 상기 커튼가스는, The curtain gas is, 질소가스, 헬륨가스와 같은 불활성가스인 것을 특징으로 하는 반도체 소자 제조를 위한 고밀도 플라즈마 화학기상증착 장치.High density plasma chemical vapor deposition apparatus for manufacturing a semiconductor device, characterized in that the inert gas, such as nitrogen gas, helium gas. 제 3 항에 있어서, The method of claim 3, wherein 상기 반응챔버(202)의 내측 하면측에 구비되어 상부로부터 분사되는 상기 커튼가스가 외부로 배기되도록 하게 되는 커튼가스배기구를 더 포함하는 것을 특징으로 하는 반도체 소자 제조를 위한 고밀도 플라즈마 화학기상증착 장치.And a curtain gas exhaust mechanism provided on the inner lower surface side of the reaction chamber 202 to allow the curtain gas injected from the upper side to be exhausted to the outside.
KR1020060104855A 2006-10-27 2006-10-27 High density plasma chemical vapor deposition apparatus for semiconductor device manufacturing KR100791677B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060104855A KR100791677B1 (en) 2006-10-27 2006-10-27 High density plasma chemical vapor deposition apparatus for semiconductor device manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060104855A KR100791677B1 (en) 2006-10-27 2006-10-27 High density plasma chemical vapor deposition apparatus for semiconductor device manufacturing

Publications (1)

Publication Number Publication Date
KR100791677B1 true KR100791677B1 (en) 2008-01-03

Family

ID=39216724

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060104855A KR100791677B1 (en) 2006-10-27 2006-10-27 High density plasma chemical vapor deposition apparatus for semiconductor device manufacturing

Country Status (1)

Country Link
KR (1) KR100791677B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099223B1 (en) * 2008-08-20 2011-12-27 시너스 테크놀리지, 인코포레이티드 Reaction module for vapor deposition and vapor deposition reactor
US8333839B2 (en) 2007-12-27 2012-12-18 Synos Technology, Inc. Vapor deposition reactor
US8470718B2 (en) 2008-08-13 2013-06-25 Synos Technology, Inc. Vapor deposition reactor for forming thin film
US8758512B2 (en) 2009-06-08 2014-06-24 Veeco Ald Inc. Vapor deposition reactor and method for forming thin film
US8840958B2 (en) 2011-02-14 2014-09-23 Veeco Ald Inc. Combined injection module for sequentially injecting source precursor and reactant precursor
CN113502461A (en) * 2021-07-29 2021-10-15 合肥科晶材料技术有限公司 System and method for preparing thin film material used by combining ALD (atomic layer deposition) and CVD (chemical vapor deposition)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807785A (en) 1996-08-02 1998-09-15 Applied Materials, Inc. Low dielectric constant silicon dioxide sandwich layer
KR20010034810A (en) * 1998-04-21 2001-04-25 조셉 제이. 스위니 Method and apparatus for modifying the profile of high-aspect-ratio gaps using differential plasma power
EP1156134A2 (en) 2000-05-19 2001-11-21 Applied Materials, Inc. Method and apparatus of depositing a layer of nitrogen-doped fluorinated silicate glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807785A (en) 1996-08-02 1998-09-15 Applied Materials, Inc. Low dielectric constant silicon dioxide sandwich layer
KR20010034810A (en) * 1998-04-21 2001-04-25 조셉 제이. 스위니 Method and apparatus for modifying the profile of high-aspect-ratio gaps using differential plasma power
EP1156134A2 (en) 2000-05-19 2001-11-21 Applied Materials, Inc. Method and apparatus of depositing a layer of nitrogen-doped fluorinated silicate glass

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8333839B2 (en) 2007-12-27 2012-12-18 Synos Technology, Inc. Vapor deposition reactor
US8470718B2 (en) 2008-08-13 2013-06-25 Synos Technology, Inc. Vapor deposition reactor for forming thin film
KR101099223B1 (en) * 2008-08-20 2011-12-27 시너스 테크놀리지, 인코포레이티드 Reaction module for vapor deposition and vapor deposition reactor
US8758512B2 (en) 2009-06-08 2014-06-24 Veeco Ald Inc. Vapor deposition reactor and method for forming thin film
US8840958B2 (en) 2011-02-14 2014-09-23 Veeco Ald Inc. Combined injection module for sequentially injecting source precursor and reactant precursor
CN113502461A (en) * 2021-07-29 2021-10-15 合肥科晶材料技术有限公司 System and method for preparing thin film material used by combining ALD (atomic layer deposition) and CVD (chemical vapor deposition)

Similar Documents

Publication Publication Date Title
US20210180188A1 (en) Substrate support plate, substrate processing apparatus including the same, and substrate processing method
US20210166910A1 (en) Substrate support plate, substrate processing apparatus including the same, and substrate processing method
US20210140044A1 (en) Film forming method and film forming apparatus
TWI731130B (en) Film forming device and its gas discharge member
CN101952940B (en) Apparatus and method for processing substrate
US8821641B2 (en) Nozzle unit, and apparatus and method for treating substrate with the same
KR100791677B1 (en) High density plasma chemical vapor deposition apparatus for semiconductor device manufacturing
JP2006100305A (en) Plasma processing apparatus
KR102102320B1 (en) Wafer Processing Apparatus And Method of depositing Thin film Using The Same
US20220093365A1 (en) Atomic layer treatment process using metastable activated radical species
CN111326443A (en) Apparatus for manufacturing semiconductor device
TW201602388A (en) Sealing film forming method and sealing film manufacturing apparatus
KR100963287B1 (en) Apparatus and method for processing substrate
KR101835755B1 (en) Manufacturing method for thin film and substrate process apparatus
KR101017163B1 (en) Plasma chemical vapor deposition apparatus
US20100330301A1 (en) Apparatus and method for processing substrate
KR101172274B1 (en) Gas spraying apparatus and substrate processing apparatus having the same
KR101063752B1 (en) Shower head of chemical vapor deposition apparatus
KR20120021514A (en) Method of cleaning a process apparatus
TW202115767A (en) Plasma processing apparatus
JP4896861B2 (en) Semiconductor manufacturing method and semiconductor manufacturing apparatus
KR100957456B1 (en) Thin film layer deposition apparatus using atomic layer deposition method
US20230053083A1 (en) Plasma processing apparatus and film forming method
KR20030027505A (en) Semiconductor processing apparatus having improved exhausting structure
KR100450286B1 (en) Chemical vapor deposition apparatus using plasma

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee