KR100951656B1 - 프로베네시드를 포함하는 trpv2 활성제 - Google Patents

프로베네시드를 포함하는 trpv2 활성제 Download PDF

Info

Publication number
KR100951656B1
KR100951656B1 KR1020080016749A KR20080016749A KR100951656B1 KR 100951656 B1 KR100951656 B1 KR 100951656B1 KR 1020080016749 A KR1020080016749 A KR 1020080016749A KR 20080016749 A KR20080016749 A KR 20080016749A KR 100951656 B1 KR100951656 B1 KR 100951656B1
Authority
KR
South Korea
Prior art keywords
trpv2
neurons
activity
probeneside
treated
Prior art date
Application number
KR1020080016749A
Other languages
English (en)
Other versions
KR20090091472A (ko
Inventor
황선욱
방상수
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020080016749A priority Critical patent/KR100951656B1/ko
Priority to US12/196,116 priority patent/US7915012B2/en
Publication of KR20090091472A publication Critical patent/KR20090091472A/ko
Application granted granted Critical
Publication of KR100951656B1 publication Critical patent/KR100951656B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5058Neurological cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Food Science & Technology (AREA)
  • Neurosurgery (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Neurology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 프로베네시드(Probenecid)를 포함하는 TRPV2(transient receptor potential vanilloid 2) 활성제에 관한 것으로, 구체적으로는 프로베네시드를 이용한 TRPV2 활성 억제제 후보물질 확인방법에 관한 것이다. 본 발명의 프로베네시드는 TRPV2에만 특이적으로 작용하여, TRPV2를 발현하는 감각 신경세포만을 분리할 수 있게 할 수 있게 함으로 TRPV2 작용 기작 연구 및 TRPV2 작용 진통제 개발에 유용하게 이용될 수 있다.
프로베네시드, TRPV2(transient receptor potential vanilloid 2)

Description

프로베네시드를 포함하는 TRPV2 활성제{Activator for transient receptor potential vanilloid 2 comprising probenecids}
본 발명은 TRPV2(transient receptor potential vanilloid 2) 활성제 및 이의 용도에 관한 것이다.
인체 생리학 및 약리학 분야의 연구를 통해 1999년에 인체에 존재하는 TRPV2(transient receptor potential vanilloid 2)가 발견되었고, 다양한 조직에서 생존유지에 필수기능을 수행할 것으로 예측되었다. 특히 상기 TRPV2는 인체가 통증을 최초로 감지하는 말초감각 신경섬유에 발현되어 있으며, 온도 및 통증유발 유해자극을 감지하는 통각수용체 군인 thermoTRP 군(temperature-sensitive transient receptor potential ion channels)에 속해 있다. 통각수용체 TRPV2의 기능을 명확히 규명함으로써 인체의 통각 기전을 밝히고, 아울러 TRPV2 조절약물의 개발을 통해 통증 경감의 목표를 달성할 수 있으리라 예측되고 있다. 상기 TRPV2 기능 규명과 조절약물 개발을 위해서는 다른 TRP 수용체에 작용하지 않으면서 선택 적으로 TRPV2 활성화만 유발할 수 있는 특이적인 활성제 개발이 요구되고 있는 실정이다.
상기 TRPV2의 특이적인 활성제의 개발에 쓰이는 기반 기술을 이해하기 위한 TRPV2 수용체의 특성은 다음과 같다. TRPV2는 이온채널이며, 이의 활성화를 통하여 양이온이 감각 신경세포 내부로 이동하고, 이에 의해 세포막 전류가 변화한다. 상기 세포막 전류의 변화에 의해 활동전압이 발생하고 이 전압신호가 궁극적으로 뇌로 전달되어 통증을 감지하는 것이다. 상기 TRPV2의 활성화를 측정하는 기술로는 첫 번째, 세포막 전류를 증폭하여 그 변화를 측정할 수 있는 팻취클램프 전기생리학 기술과 두 번째, TRPV2가 칼슘 이온 등의 양이온을 이동시키는 데에서 착안한 세포내 칼슘 농도 변화 측정 기술이 있다. 첫 번째 기술의 경우 측정의 정밀도에 있어 두 번째 기술보다 우위에 있으며, 두 번째 기술의 경우, 첫 번째 기술 보다 고속 측정이 가능하다는 장점이 있어 서로 보완적이다. 또한 상기한 TRPV2 활성화 측정 기술들은 동물의 뉴런 배양기술, 세포주 배양기술, TRPV2 DNA 관리 및 형질감염 기술이 뒷받침되어야 구현할 수 있다. 즉, 각종 TRPV2 특이적 활성제 후보물질들을 TRPV2 과발현 세포에 투여하여, TRPV2 활성화를 측정하고 활성제 여부 및 그 강력성을 측정할 수 있다.
TRPV2 특이적 활성제는 향후 TRPV2 조절약물개발이라는 취지에서 TRPV2 활성화를 측정하는데 필수적인 기술이다. 그러나 현재까지 TRPV2 수용체 특이적 활성제가 발명된 사례는 없다. 현재까지 TRPV2의 활성제로 밝혀진 물질에는 2-APB(2-APB(2-aminoethoxydiphenyl borate)와 칸나비노이드(cannabinoid)계 물질들이 있으 나, 2-APB는 TRPV1 및 TRPV3 등 다른 TRP 수용체도 활성화시키는 비특이적 성격 때문에 그 활용도가 떨어지고, 칸나비노이드계 물질 역시 고유의 칸나비노이드 수용체 활성화 작용이 있어 역시 비특이성이 있으므로 TRPV2 수용체 특이적이라고 할 수 없다.
임상학적으로 프로베네시드는 통풍(痛風; gout)의 원인인 고요산혈증(hyperuricemia)의 요산 조절제(uricosuric agent)로 사용되고 또한 항생물질(antibiotics)과 결합하여 사용되어 상기 항생물질의 배출을 억제함으로써 혈중 농도를 증가시키는 데에 사용된다. 프로베네시드의 상기 두 가지 작용에 기초한 메커니즘은 신장에서 요산 또는 항생물질을 운반하는 유기성 음이온 전달자(transporters)를 차단하는 것이다. 프로베네시드는 또한 낭포성 섬유증 막횡단 전도 조절자 유전자(CFTR; cystic fibrosis transmembrane conductance regulators)와 같은 이온 채널도 차단하는 것으로 보고되었다. 이와 같은 차단 현상은 감각신경의 TRPV2 활성화 현상과는 무관하다.
이에 본 발명자들은 여러 TRP를 발현하는 세포주를 제작하여 프로베네시드 및 TRP 활성제로 알려진 화학물질들 처리에 대한 반응을 비교한 결과, 상기 프로베네시드가 TRPV2만을 특이적으로 활성시킴을 확인함으로써 본 발명을 완성하였다.
본 발명의 목적은 TRPV2에 특이적으로 활성을 나타내는 활성제인 프로베네시드를 이용하여 TRPV2 활성 억제제를 스크리닝하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은 프로베네시드(Probenecid)를 포함하는 TRPV2(transient receptor potential vanilloid 2) 활성제를 제공한다.
또한, 본 발명은
1) 피검체로부터 분리된 뉴런을 배양한 후 프로베네시드를 처리하는 단계;
2) 단계 1)의 처리된 뉴런의 TRPV2 활성을 측정하는 단계; 및,
3) 단계 2)의 측정치를 프로베네시드가 비처리된 뉴런의 TRPV2 활성 측정치와 비교하여 TRPV2 양성 반응을 나타낸 뉴런을 선별하는 단계를 포함하는 TRPV2 양성 뉴런의 분리 방법을 제공한다.
또한, 본 발명은
1) 피검체로부터 분리된 뉴런을 배양한 후 프로베네시드 및 TRPV2 비특이적 활성제를 순차적으로 또는 역순으로 처리하는 단계;
2) 단계 1)의 처리된 뉴런의 칼슘 이온 채널 활성을 각각 측정하는 단계; 및,
3) 단계 2)의 측정치를 프로베네시드 및 TRPV2 비특이적 활성제가 비처리된 뉴런의 칼슘 이온 채널 활성 측정치와 비교하여 TRPV2 비특이적 활성제에는 양성 반응을 나타내지만 프로베네시드에는 음성 반응을 나타내는 뉴런을 선별하는 단계를 포함하는 TRPV2 음성 뉴런의 분리 방법을 제공한다.
또한, 본 발명은
1) TRPV2 양성 뉴런에 프로베네시드 및 TRPV2 활성 억제제 후보물질을 처리하는 단계;
2) TRPV2 음성 뉴런에 상기 TRPV2 활성 억제제 후보물질 및 TRPV2 비특이적 활성제를 처리하는 단계;
3) 단계 1) 및 단계 2)의 처리된 TRPV2 양성 뉴런 및 TRPV2 음성 뉴런의 칼슘 이온 채널 활성을 각각 측정하는 단계; 및,
4) 단계 3)의 각각의 측정치를 프로베네시드만 처리된 TRPV2 양성 뉴런의 활성 측정치와 비교하여 프로베네시드 및 TRPV2 활성 억제제 후보물질을 처리한 TRPV2 양성 뉴런의 칼슘 이온 채널 활성을 억제하고 상기 TRPV2 활성 억제제 후보물질 및 TRPV2 비특이적 활성제를 처리한 TRPV2 음성 뉴런의 칼슘 이온 채널 활성에 영향을 주지 않는 후보물질을 선별하는 단계를 포함하는 TRPV2 활성 억제제 스크리닝 방법을 제공한다.
또한, 본 발명은
1) TRPV2를 암호화하는 폴리뉴클레오티드를 포함하는 플라스미드가 숙주세포에 형질도입된 형질전환체를 제조하는 단계;
2) 상기 형질전환체에 프로베네시드 및 TRPV2 활성 억제제 후보물질을 처리 하는 단계;
3) TRPV2 음성 뉴런에 상기 TRPV2 활성 억제제 후보물질 및 TRPV2 비특이적 활성제를 처리하는 단계;
4) 단계 2) 및 단계 3)의 처리된 형질전환체 및 TRPV2 음성 뉴런의 TRPV2 칼슘 이온 채널 활성을 각각 측정하는 단계; 및,
5) 단계 4)의 각각의 측정치를 프로베네시드만 처리된 형질전환체의 TRPV2 활성 측정치와 비교하여 프로베네시드 및 TRPV2 활성 억제제 후보물질을 처리한 형질전환체의 칼슘 이온 채널 활성을 억제하고 상기 TRPV2 활성 억제제 후보물질 및 TRPV2 비특이적 활성제를 처리한 TRPV2 음성 뉴런의 칼슘 이온 채널 활성에 영향을 주지 않는 후보물질을 선별하는 단계를 포함하는 TRPV2 활성 억제제 스크리닝 방법을 제공한다.
아울러, 본 발명은
1) 피검체에 프로베네시드와 TRPV2 활성 억제제 후보물질을 투여하는 단계;
2) 단계 1)의 처리된 피검체의 침해성 행동 유발을 측정하는 단계; 및,
3) 단계 2)의 측정치를 프로베네시드만 처리된 피검체의 침해성 행동 유발 측정치와 비교하여 후보물질의 침해성 행동을 유발하는 후보물질을 선별하는 단계를 포함하는 TRPV2 활성 조절제 스크리닝 방법을 제공한다.
이하, 본 발명을 상세히 설명한다.
본 발명은 프로베네시드(Probenecid)를 포함하는 TRPV2(transient receptor potential vanilloid 2) 활성제를 제공한다.
상기 프로베네시드는 TRPV2의 활성을 촉진하는 역할을 수행한다. 본 발명의 구체적인 실시예에서는 상기 프로베네시드 및 TRPV2 활성제로 알려진 2-APB(2-aminoethoxydiphenyl borate)가 TRPV2에 미치는 영향을 팻취클램프 기법의 일종인 전세포 전압 클램프 실험 및 세포내 칼슘 농도 변화 측정 기술의 일종인 칼슘 이미지화로 확인한 결과 상기 두 물질이 TRPV2의 활성을 촉진하는 것으로 나타났고(도 1a 참조), 상기 활성은 일반적인 TRP 통로 활성 억제제(pore blocker)인 루테늄 레드(ruthenium red)에 의해 억제되었다(도 1b 참조). 즉, 프로베네시드에 반응한 모든 세포들은 2-APB에 대해서도 반응하였다. 또한, 프로베네시드 및 2-APB에 반응한 상기 전류들은 TRPV2-관련 전류의 전형적인 특성을 나타내는 외향 정류 현상(outward rectifying)을 나타내었다.
또한 상기 프로베네시드는 TRPV2를 특이적으로 활성화하는 역할을 수행한다. 본 발명의 구체적인 실시예에서 삼차 신경절 감각 뉴런에서 발현되는 것으로 알려진 TRP 중에서 TRPA1(Transient receptor potential cation channel, subfamily A, member 1), TRPV1, TRPV3, TRPV4 및 TRPM8(Transient receptor potential cation channel, subfamily M, member 8)를 발현하는 형질전환 세포주에서 프로베네시드에 의한 활성을 측정한 결과, 활성이 나타나지 않았다(도 1d 참조). 즉, 프로베네시드는 TRPV2에 대해서만 활성을 나타낸다.
또한, 본 발명의 구체적인 실시예에서 삼차 신경절 뉴런에서 발생한 프로베 네시드-유발 칼슘 유입의 대부분은 2-APB(도 2a 및 도 2c 참조; 60개의 뉴런 중 59개의 뉴런이 반응함)에 대한 반응이었고, 나머지 화학물질에 대해서는 프로베네시드-유도성 세포내 칼슘 증가를 나타내지 않았다. 즉, 삼차 신경절 뉴런은 2-APB에 대해 넓은 감수성을 나타내었다(전체 뉴런의 46.8%). 또한 캡사이신(capsaicin)에 대해 반응성을 나타내는 뉴런 중에서 프로베네시드에 대한 감수성을 나타내는 작은 그룹이 발견되었다(n = 111 개중 5개). 2-APB-감수성군 중에서 40.2%는 캡사이신(TRPV1 발현자로 추정)에도 반응을 나타내었다. 즉, 2-APB 처리에 의해 상승된 칼슘량을 나타내는 많은 뉴런은 알려지지 않은 2-APB 감수성 성분 또는 TRPV3을 가질 가능성을 나타낸다. 복합적인 감각기관 화학물질로 처리된 삼차 신경절 뉴런의 전체적인 반응 양상은 특정 소규모 뉴런이 프로베네시드 반응자를 구성하는 것을 시사한다. 또한, 2-APB-감수성 삼차 신경절 뉴런에서의 프로베네시드-유발 전류가 외향 정류현상을 나타내었고, 전세포 전압 클램프 실험에서 루테늄 레드에 의해 차단되었다(도 2b 참조).
프로베네시드는 TRPV2에만 특이적인 활성을 나타내므로, 감각 신경세포 중에 TRPV2 양성 세포만을 분리하는 데에 유용하게 사용될 수 있어서, 상기 감각 신경세포의 통각 감지 성격(예: 열, 화학적 및 기계적 자극에 대한 감수성)의 파악 및 특히 취약한 질환(예: 염증성, 신경병증성 및 약물부작용의 통증)의 판별이 가능할 수 있다. 또한, 상기 프로베네시드를 동물에 투여하여 통증행동반응 강도를 측정함으로써 상기 TRPV2 활성이 실제 행동반응으로 외삽되는 지를 확인할 수 있고, 또한 이를 통해 여러 통증 중 TRPV2의 관련 통증을 판별할 수 있을 것이다. 아울러, TRPV2 활성 억제제 개발에도 유용하게 사용될 것이다. 즉, TRPV2 활성제 개발의 경우, TRPV2 활성 후보물질의 표준 물질로 사용될 수 있을 것이다. 또한, TRPV2 활성 억제제 개발의 경우, TRPV2 활성 억제제 후보물질이 프로베네시드에 의한 TRPV2 활성화를 차단하는지 여부를 확인하는 데에 이용될 수 있을 것이다. 아울러, 상기 프로베네시드는 현재까지 알려진 유일한 TRPV2 특이적 활성제이므로 이의 화학적 가공을 통해 더욱 높은 강도의 활성제 또는 활성 억제제로 변화시킬 수 있도록 활용할 수 있을 것이다.
또한, 본 발명은
1) 피검체로부터 분리된 뉴런을 배양한 후 프로베네시드를 처리하는 단계;
2) 단계 1)의 처리된 뉴런의 TRPV2 활성을 측정하는 단계; 및,
3) 단계 2)의 측정치를 프로베네시드가 비처리된 뉴런의 TRPV2 활성 측정치와 비교하여 TRPV2 양성 반응을 나타낸 뉴런을 선별하는 단계를 포함하는 TRPV2 양성 뉴런의 분리 방법을 제공한다.
상기 피검체는 척추동물이고 바람직하게는 포유동물이며, 더욱 바람직하게는 쥐, 토끼, 기니아피크, 햄스터, 개, 고양이와 같은 실험동물이고, 가장 바람직하게는 침팬지, 고릴라와 같은 유인원류 동물이다. 상기 프로베네시드는 10 내지 1000 μM의 농도로 처리하는 것이 바람직하다. 또한, 단계 1)의 TRPV2 비특이적 활성제는 2-APB(2-aminoethoxydiphenyl borate), 캡사이신(capsaicin), 계피알데히드(cinnamaldehyde) 및 멘톨(menthol) 등이 TRPV2를 포함하는 thermoTRP 군(temperature-sensitive transient receptor potential ion channels)의 활성 활성제로 알려진 것이 바람직하나 이에 한정되는 것은 아니다.
또한, 단계 3)의 TRPV2 활성의 측정은 이에 제한되는 것은 아니나, 세포막 전류를 증폭하여 그 변화를 측정할 수 있는 전세포 전압 클램프 기술 및 TRPV2가 칼슘 이온 등의 양이온을 이동시키는 데에서 착안한 세포내 칼슘 농도 변화 측정 기술인 칼슘 이미지화에 의해 수행될 수 있다.
본 발명의 구체적인 실시예에서 약리학적 결과 및 전류-전압 프로파일링 방법을 이용하여 삼차 신경절 뉴런에서 프로베네시드에 의해 반응성이 특이적으로 나타난 것을 확인하였다(도 2a-2c 참조). 또한, 프로베네시드 감수성 뉴런(도 2d의 2 참조)의 70% 이상은 넓은 직경의 뉴런에서 발견되었는데(> 25 ㎛의 세포체 직경), 이는 이전에 보고된 결과와 동일하다. 그러므로, 상기 삼차 신경절 뉴런의 크기분석, 약리학적 결과 및 전류-전압 프로파일링을 결과를 통합적으로 분석함으로써, TRPV2 활성 억제제 및 활성제의 선별이 가능할 뿐만 아니라, 신규 TRPV2 활성제인 프로베네시드를 사용하여 TRPV2-양성 뉴런을 약리학적으로 분리될 수 있음을 시사하였다.
또한, 본 발명은
1) 피검체로부터 분리된 뉴런을 배양한 후 프로베네시드 및 TRPV2 비특이적 활성제를 순차적으로 또는 역순으로 처리하는 단계;
2) 단계 1)의 처리된 뉴런의 칼슘 이온 채널 활성을 각각 측정하는 단계; 및,
3) 단계 2)의 측정치를 프로베네시드 및 TRPV2 비특이적 활성제가 비처리된 뉴런의 칼슘 이온 채널 활성 측정치와 비교하여 TRPV2 비특이적 활성제에는 양성 반응을 나타내지만 프로베네시드에는 음성 반응을 나타내는 뉴런을 선별하는 단계를 포함하는 TRPV2 음성 뉴런의 분리 방법을 제공한다.
또한, 단계 3)의 TRPV2 칼슘 이온 채널 활성의 측정은 이에 제한되는 것은 아니나, 전세포 전압 클램프 기술 및 세포내 칼슘 농도 변화 측정 기술인 칼슘 이미지화에 의해 수행될 수 있다.
또한, 본 발명은
1) TRPV2 양성 뉴런에 프로베네시드 및 TRPV2 활성 억제제 후보물질을 처리하는 단계;
2) TRPV2 음성 뉴런에 상기 TRPV2 활성 억제제 후보물질 및 TRPV2 비특이적 활성제를 처리하는 단계;
3) 단계 1) 및 단계 2)의 처리된 TRPV2 양성 뉴런 및 TRPV2 음성 뉴런의 칼슘 이온 채널 활성을 각각 측정하는 단계; 및,
4) 단계 3)의 각각의 측정치를 프로베네시드만 처리된 TRPV2 양성 뉴런의 활성 측정치와 비교하여 프로베네시드 및 TRPV2 활성 억제제 후보물질을 처리한 TRPV2 양성 뉴런의 칼슘 이온 채널 활성을 억제하고 상기 TRPV2 활성 억제제 후보물질 및 TRPV2 비특이적 활성제를 처리한 TRPV2 음성 뉴런의 칼슘 이온 채널 활성 에 영향을 주지 않는 후보물질을 선별하는 단계를 포함하는 TRPV2 활성 억제제 스크리닝 방법을 제공한다.
상기 TRPV2 양성 뉴런 및 TRPV2 음성 뉴런은 본 발명의 방법에 의해 분리되는 것을 특징으로 한다. 단계 1)의 후보물질은 천연화합물, 합성화합물, RNA, DNA, 폴리펩티드, 효소, 단백질, 리간드, 항체, 항원, 박테리아 또는 진균의 대사산물 및 생활성 분자인 것이 바람직하나 이에 한정되는 것은 아니다.
또한, 본 발명은
1) TRPV2를 암호화하는 폴리뉴클레오티드를 포함하는 플라스미드가 숙주세포에 형질도입된 형질전환체를 제조하는 단계;
2) 상기 형질전환체에 프로베네시드 및 TRPV2 활성 억제제 후보물질을 처리하는 단계;
3) TRPV2 음성 뉴런에 상기 TRPV2 활성 억제제 후보물질 및 TRPV2 비특이적 활성제를 처리하는 단계;
4) 단계 2) 및 단계 3)의 처리된 형질전환체 및 TRPV2 음성 뉴런의 TRPV2 칼슘 이온 채널 활성을 각각 측정하는 단계; 및,
5) 단계 4)의 각각의 측정치를 프로베네시드만 처리된 형질전환체의 TRPV2 활성 측정치와 비교하여 프로베네시드 및 TRPV2 활성 억제제 후보물질을 처리한 형질전환체의 칼슘 이온 채널 활성을 억제하고 상기 TRPV2 활성 억제제 후보물질 및 TRPV2 비특이적 활성제를 처리한 TRPV2 음성 뉴런의 칼슘 이온 채널 활성에 영향을 주지 않는 후보물질을 선별하는 단계를 포함하는 TRPV2 활성 억제제 스크리닝 방법을 제공한다.
상기 숙주세포는 이에 제한되는 것은 아니나, HEK 세포주, CHO 세포주, HeLa 세포주, RBL-2H3 세포주 등의 칼슘 채널 활성 연구 및 고효율 억제제 검색에 이용할 수 있는 세포주가 바람직하다. 단계 2)의 프로베네시드는 TRPV2만을 특이적으로 활성화하는 작용을 수행한다. 이미 THC(Delta9-tetrahydrocannabinol) 및 2-APB가 TRPV2를 활성 시키는 것으로 알려져 있으나, TRPV2만을 특이적으로 활성화하지는 못한다. 즉, THC는 TRPA1도 활성시키고 2-APB는 TRPV1 및 TRPV3도 활성화한다. 본 발명의 구체적인 실시예에서 감각 뉴런에서 발현되는 것으로 알려진 TRP 중에서 TRPV2를 발현하는 형질전환 세포주에서만 프로베네시드에 의한 활성을 나타냈다(도 1d 참조). 상기 프로베네시드는 10 내지 1000 μM의 농도로 처리하는 것이 바람직하다. 본 발명의 구체적인 실시예에서 프로베네시드의 TRPV2에 대한 EC50(effective concentration 50%: 50% 효과 농도)은 31.9 μM이었고, 최대 유효량은 대략 1 mM이었다. 이것은 프로베네시드가 마이크로몰라 농도의 범위에서 TRPV2에 활성 효과를 나타내는 것을 시사한다(도 1c 참조).
아울러, 본 발명은
1) 피검체에 프로베네시드와 TRPV2 활성 억제제 후보물질을 투여하는 단계;
2) 단계 1)의 처리된 피검체의 침해성 행동 유발을 측정하는 단계; 및,
3) 단계 2)의 측정치를 프로베네시드만 처리된 피검체의 침해성 행동 유발 측정치와 비교하여 후보물질의 침해성 행동을 유발하는 후보물질을 선별하는 단계를 포함하는 TRPV2 활성 조절제 스크리닝 방법을 제공한다.
상기 피검체는 척추동물이고 바람직하게는 포유동물이며, 더욱 바람직하게는 인간을 제외한 포유동물이며, 그 보다 바람직하게는 쥐, 토끼, 기니아피크, 햄스터, 개, 고양이와 같은 실험동물이고, 가장 바람직하게는 침팬지, 고릴라와 같은 유인원류 동물이다. 또한 단계 2)의 프로베네시드는 10 내지 100 mM의 농도로 투여하는 것이 바람직하다. 단계 2)의 투여방법은 특별히 이에 제한되는 것은 아니나, 비경구투여 방법이 바람직하고, 피내 투여가 가장 바람직하다. 단계 3)의 침해성 행동 유발의 측정은 이에 제한되는 것은 아니나, 바람직하게는 염증성 감작 유발에 의한 뒷발 핥기/튀기기 행동 분석에 의해 수행될 수 있다. 상기 염증성 감작은 상기 프로베네시드 주사 전에 카라기난(carrageenan) 또는 CFA(complete Freund's adjuvant)를 주사하여 유발할 수 있다.
TRPV2는 가는 유수성 침해 수용체(thinly myelinated nociceptors)에서 발현되는 통각 기관(pain sensor)에서 필요하다. 본 발명의 구체적인 실시예에서는 상기 프로베네시드 처리에 의해 침해성(nocifensive) 행동을 실제로 유발할 수 있는지를 시험하였다. 우선, 구두 기피 행동 검사를 통해 상기 프로베네시드 투여 시 물 또는 사료 섭취에 영향을 나타낼 수 있는 구두 기피가 발생하지 않을 것을 확인한 후(도 3a 참조), 뒷발에 카라기난 또는 CFA에 의해 염증을 일으킨 쥐에서 프로베네시드 투여한 결과, 프로베네시드를 포함하지 않는 부형액만 투여한 군에서는 행동성 반응이 유발되지 않았으나, 프로베네시드를 투여한 군에서는 행동 소요 시간의 현저한 증가를 나타내었다(도 3b 내지 3f 참조).
본 발명의 프로베네시드는 TRPV2에만 특이적으로 작용하여, TRPV2를 발현하는 감각 신경세포만을 분리할 수 있게 할 수 있게 함으로 TRPV2 작용 기작 연구 및 TRPV2 작용 진통제 개발에 유용하게 이용될 수 있다.
이하, 본 발명을 실시예에 의해 상세히 설명한다.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
< 실시예 1> TRPV 형질전환 세포주 시료
HEK293T 세포주(ATCC CRL-11268)를 rTRPV1(서열번호 1), rTRPV2(서열번호 2), mTRPV3(서열번호 3), rTRPV4(서열번호 4), mTRPM8(서열번호 5) 및 mTRPA1(서열번호 6) 플라스미드 DNA를 이용하여 일시적(transiently) 형질전환하였다.
구체적으로, HEK293T 세포주를 각각 35 ㎜ 디쉬 당 3 ㎍의 rTRPV1, rTRPV2, mTRPV3, rTRPV4, mTRPM8 및 mTRPA1 플라스미드 DNA 및 600 ng/웰의 pCDNA3(Invitrogen Corp., USA; 녹색 형광 단백질 cDNA 포함)로 Fugene6(Roche DiagnosticsCorp., 미국)를 이용하여 제조업체의 프로토콜에 따라 형질전환하였다. 상기 형질전환된 세포를 24 시간 동안 CO2 인큐베이터에서 10% FBS, 1% 페니실린/스트렙토마이신을 포함하는 DMEM/F12 배지에서 배양한 후, 폴리-L-라이신 코팅된 유리 커버 슬립에 도말한 후, 10 내지 24 시간 동안 추가 배양하였다.
< 실시예 2> 삼차 신경절 뉴런 시료
차가운 PBS에서 성체 ICR계 마우스(한림실험동물연구소, 한국)의 삼차 신경절(trigeminal ganglia)을 분리하여 세절한 후, 1.5 ㎎/㎖ 콜라지나아제/디스파아제(collagenase/dispase; Roche Diagnostics Corp., USA)를 37℃에서 45분 동안 처리 및 0.25% 트립신(Invitrogen Corp., USA)를 15분 동안 처리하였다. 상기 방법으로 제조한 삼차 신경절 뉴런을 10% FBS, 1% 페니실린/스트렙토마이신 및 5 ng/㎖ 2.5S NGF(Invitrogen Corp., USA)를 포함하는 DMEM/F12 배지에서 폴리-L-라이신 코팅된 유리 커버 슬립에 도말한 후, 48 내지 72시간 동안 CO2 인큐베이터에서 배양하였다.
< 실험예 1> TRPV2 프로베네시드(probenecid)와 2-APB(2- aminoethoxydiphenyl borate)에 대한 반응 조사
<1-1> 프로베네시드와 2- APB 처리
실시예 1의 방법으로 제조한 TRPV2 형질전환 세포주에 100 μM 프로베네시 드(Probenecid; Sigma-Aldrich, USA)와 300 μM 2-APB(2-aminoethoxydiphenyl borate; Cayman Chemical, USA)를 처리하였다. 상기 화학물질들의 저장 용액은 물, DMSO 또는 에탄올을 이용하여 제조하였고, 사용하기 직전에 검사용액으로 희석하여 사용하였다.
<1-2> 전세포 전압 클램프 실험
상기 실험예 1-1의 방법으로 처리된 형질전환 세포에 팻취클램프 기법의 일종인 전세포 전압 클램프(Whole-cell voltage clamp) 기록을 Bandell M 외(Neuron 41:849-857, 2004)의 방법에 따라 수행하였다.
구체적으로, 세포외 용액(extracellular solution, 140 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM HEPES를 포함하고 NaOH를 이용하여 pH 7.4로 적정)과 파이펫 용액(pipette solution; 140 mM CsCl, 5 mM EGTA, 10 mM HEPES, 2.0 mM MgATP, 0.2 mM NaGTP를 포함하고 CsOH를 이용하여 pH 7.2로 적정)을 이용하였다. 또한 250 ㎳ 동안 -60 ㎷, -80 ㎷에서 + 80 ㎷로 325초 동안 전압경사, 250 ㎳ 동안 -60 ㎷로 되돌리는 조건을 지속적으로 반복하여 인터스윕(intersweep) 구간이 없이 실험을 수행하였다. 상기 실험은 5회 반복수행하였다.
그 결과, 도 1a에 나타난 바와 같이 프로베네시드를 처리하자마자 전류의 현저한 증가가 생성되었고, 상기 세포는 또한 TRPV2 활성제로 알려진 2-APB 처리에 의해서도 이에 버금가는 반응을 나타내었다(도 1a). 즉, 프로베네시드에 반응한 모든 세포들은 2-APB에 대해서도 반응하였다. 프로베네시드 및 2-APB에 반응한 상 기 전류들은 TRPV2-관련 전류의 전형적인 특성을 나타내는 외향 정류현상(outward rectifying)을 나타내었다.
< 실험예 2> 루테늄 레드에 의한 TRPV2 프로베네시드와 2- APB 에 대한 반응의 억제 조사
실시예 1의 방법으로 제조한 TRPV2 형질전환 세포주에 100 μM 프로베네시드, 100 μM 프로베네시드 + 20 μM 루테늄 레드(ruthenium red; Sigma-Aldrish, USA) 및 300 μM 2-APB를 각각 처리하였다. 상기 화학물질들의 저장 용액은 물, DMSO 또는 에탄올을 이용하여 만들었고, 사용하기 직전에 검사용액으로 희석하여 사용하였다. 이후 실시예 1-2의 방법과 동일한 방법으로 상기 실험예 2-1의 방법으로 처리된 형질전환 세포에 전세포 전압 클램프 기록을 수행하였다.
그 결과, 도 1b에 나타나 바와 같이 일반적인 TRP 통로 활성 억제제(pore blocker)인 루테늄 레드에 의해 도 1a에서 나타낸 프로베네시드에 의한 반응이 억제되었다.
< 실험예 3> TRPV2 프로베네시드 특이적 및 농도 의존적 반응 조사
<3-1> 프로베네시드와 2- APB 처리
실시예 1의 방법으로 제조한 TRPV2 형질전환 세포주에 100 μM 프로베네시드와 300 μM 2-APB를 처리하였다.
<3-2> 프로베네시드의 농도별 처리
실시예 1의 방법으로 제조한 TRPV2 형질전환 세포주에 0.1에서 1,000 μM까지 농도를 점진적으로 증가시키며 프로베네시드를 처리하였다.
<3-3> 칼슘 이미지화를 이용한 세포내 칼슘수준변화 측정
상기 실험예 3-1의 방법으로 처리된 형질전환 세포에 칼슘 이미지화를 수행하였다.
구체적으로, 0.02% 풀루로닉산(pluronic acid; Invitrogen Corp., USA)을 포함하는 배스 용액(bath solution, 140 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 10 mM HEPES를 포함하고 NaOH를 이용하여 pH 7.4로 적정)에서 상기 실험예 3-1의 방법으로 처리된 형질전환 세포에 Fluo-3AM(5 μM; Sigma aldrich, USA)을 37℃에서 1시간 동안 주입하였다. 이후, LSM5 Pascal 공초점 현미경(Carl Zeiss, 독일)을 이용하여 칼슘 이미지화(Calcium imaging)를 수행하였고, Carl Zeiss ratio tool software(Carl Zeiss, 독일)를 이용하여 저속촬영이미지(time-lapse image; 488 ㎚ 여기/514 ㎚ 방출)를 매 3초마다 저장하였다. 힐 플랏(Hill plot; Kd 값: 31.9 μM, n 값: 2.8)에 의해 칼슘 유입 반응의 평균 수치(각 실험값 당 n=12-62) 곡선을 작성하였다.
그 결과, Fluo-3 칼슘 이미지화 실험(n = 59)에서도 도 1a에서와 마찬가지로 TRPV2-특이 반응 결과를 나타내었다.
또한, 도 1c에서 나타난 바와 같이 프로베네시드의 TRPV2에 대한 EC50(effective concentration 50%: 50% 효과 농도)은 31.9 μM이었고, 최대 유효량 은 대략 1 mM이었다. 이것은 프로베네시드가 마이크로몰라 농도의 범위에서 TRPV2에 활성 효과를 나타내는 것을 시사한다.
< 실험예 4> TRP 형질전환 세포주별 프로베네시드에 대한 반응 조사
실시예 1의 방법으로 제조한 TRPA1, TRPV1, TRPV2, TRPV3, TRPV4 및 TRPM8 형질전환 세포주 및 형질전환되지 않은 HEK 세포주(대조군)에 100 μM 프로베네시드를 처리하였다. 이후 실시예 3-2의 방법과 동일한 방법으로 상기 방법으로 처리된 형질전환 세포에 칼슘 이미지화를 수행하였다.
그 결과, 도 1d에서 나타낸 바와 같이 삼차 신경절 뉴런에서 발현되는 것으로 알려진 상기 5개의 TRP 중에서 TRPV2만이 프로베네시드에 의해 활성을 나타내었다.
< 실험예 5> 삼차 신경절 뉴런에서 프로베네시드에 대한 반응 조사
실시예 2의 방법으로 처리된 삼차 신경절 뉴런에 프로베네시드 100 μM 및 상기 네 개의 TRP 활성제: TRPM8에 대한 활성제 멘톨 400 μM, TRPA1에 대한 활성제 계피알데히드(Cinnamaldehyde; MP Biomedicals, USA) 300 μM, TRPV1에 대한 활성제 캡사이신(capsaicin: Sigma-aldrich, USA) 2 μM 및 TRPV1-3에 대한 활성제 2-APB 300 μM를 처리한 후, 실험예 3-3과 동일한 방법으로 칼슘 이미지화를 수행하였다.
그 결과, 도 2a에서 나타난 바와 같이 프로베네시드에 반응하여 칼슘유입되 는 뉴런 그룹을 발견하였다. 즉, 2-APB 반응성 뉴런은 프로베네시드에 반응하였다(도 2a의 3, 4) 그러나 TRPV1/TRPA1 공동-발현자(co-expressors)로 여겨지는 캡사이신-감수성 뉴런의 주요 그룹(도 2a의 1) 및 캡사이신/계피알데히드-감수성 뉴런의 모든 그룹(도 2a의 2)은 프로베네시드-유도성 세포내 칼슘 증가를 나타내지 않았고, TRPM8-양성 뉴런인 멘톨-반응자는 프로베네시드의 첨가에 반응을 나타내지 않았다(도 2a의 5).
< 실험예 6> 루테늄 레드에 의한 삼차 신경절 뉴런에서 프로베네시드와 2- APB 에 대한 반응의 억제 조사
실시예 2의 방법으로 처리된 삼차 신경절 뉴런에 100 μM 프로베네시드, 100 μM 프로베네시드 + 20 μM 루테늄 레드 및 300 μM 2-APB를 각각 처리하였다. 이후 실시예 1-2의 방법과 동일한 방법으로 전세포 전압 클램프 기록을 수행하였다.
그 결과, 도 2b에서 나타난 바와 같이 2-APB-감수성 삼차 신경절 뉴런에서의 프로베네시드-유발 전류가 외향 정류현상을 나타내었고, 전세포 전압 클램프 실험에서 루테늄 레드에 의해 차단되었다.
< 실험예 7> 삼차 신경절 뉴런에서 프로베네시드와 2- APB 에 대한 반응 조사
실시예 2의 방법으로 처리된 삼차 신경절 뉴런에 프로베네시드 및 상기 네 개의 TRP 활성제를 복합 처리하였다. 즉, 2-APB 300 μM + 프로베네시드 100 μM 투여군, 2-APB 300 μM + 캡사이신 2 μM 투여군, 2-APB 300 μM + 계피알데히드 300 μM + 캡사이신 2 μM 투여군, 2-APB 300 μM + 캡사이신 2 μM + 프로베네시드 100 μM 투여군, 2-APB 300 μM + 멘톨 400 μM 투여군 및 2-APB 300 μM 단독 투여군으로 나누어 처리한 후, 실험예 3-3과 동일한 방법으로 칼슘 이미지화를 수행하였다.
그 결과, 도 2c에서 나타난 바와 같이 뉴런에서 발생한 프로베네시드-유발 칼슘 유입의 대부분은 2-APB(60개의 뉴런 중 59개의 뉴런이 반응함)에 대한 반응이었다. 즉, 삼차 신경절 뉴런은 2-APB에 대해 넓은 감수성을 나타내었다(전체 뉴런의 46.8%). 또한 캡사이신에 대해 반응성을 나타내는 뉴런 중에서 프로베네시드에 대한 감수성을 나타내는 작은 그룹이 발견되었다(n = 111 개중 5개). 2-APB-감수성군 중에서 40.2%는 캡사이신(TRPV1 발현자로 추정)에도 반응을 나타내었다. 즉, 2-APB 처리에 의해 상승된 칼슘량을 나타내는 많은 뉴런은 알려지지 않은 2-APB 감수성 성분 또는 TRPV3을 가질 가능성을 나타낸다. 프로베네시드-감수성의 7.7%가 캡사이신 반응을 나타내었고, 캡사이신-감수성의 3.5%가 프로베네시드 반응성을 나타내었다. 복합적인 감각기관 화학물질로 처리된 삼차 신경절 뉴런의 전체적인 반응 양상은 특정 소규모 뉴런이 프로베네시드 반응자를 구성하는 것을 시사한다. 모든 뉴런들은 중간 크기였고, n=5이다.
< 실험예 8> 프로베네시드 -감수성 뉴런의 크기 측정
프로베네시드-감수성 뉴런의 세포체 크기를 현미경 축적과 눈금자를 이용하여 측정한 후, 크기 분류에 따라 반응한 뉴런 개수 대 전체 뉴런 개수의 비율을 측 정하였다.
그 결과, 도 2d에서 나타난 바와 같이 프로베네시드 감수성 뉴런(도 2d의 2)의 70% 이상은 넓은 직경의 뉴런에서 발견되었다(> 25 ㎛의 세포체 직경). 반대로 캡사이신-감수성 뉴런(도 2d의 1)은 작은 크기에서 중간 크기의 뉴런(10-25 ㎛)에서 발견되었다. TRPV2 발현 뉴런은 주로 중간 크기에서 넓은 직경의 뉴런에서 발견되는 것으로 알려져 있고, 동일한 결과가 본 발명에서도 수득되었다.
< 실험예 9> 구두 기피 행동 검사
구두 기피 행동(oral aversion) 검사는 Caterina MJ 외(Science 288:306-313, 2000) 및 Kwan KY 외(Neuron 50: 277-289, 2006)의 방법에 따라 수행하였다.
구체적으로, 임의로 사육된 성체 ICR 마우스에 0.125% 사카린(Sigma aldrich, USA)을 포함한 물을 하루에 오직 3시간 동안만 마시게 하였다. 유체병에 매일 물과 사료 소비량을 측정하여 4일 동안 지속적으로 주입하였다. 4일째에 20 mM 프로베네시드를 포함하는 물을 3시간 동안 공급하였다. 통계적 자료는 양측 꼬리(two-tailed), 쌍을 이루지 않은(unpaired) 스튜던트 검정(Student's t-test)을 이용하여 분석하였고, 평균±S.E.M.의 형태로 나타내었다.
그 결과, 도 3a에서 나타난 바와 같이 프로베네시드 비투여군(n=5)과 비교하여 유의있는 차이도 없고 프로베네시드 처리 3일 전의 보통의 물 섭취율 및 사료 섭취율과 프로베네시드-포함 물(20 mM)을 공급한 쥐에게서 차이점이 없었다. 상기 결과는 프로베네시드로 처리되었을 때 물 또는 사료 섭취에 영향을 나타낼 수 있는 구두 기피가 발생하지 않을 것을 시사한다.
< 실험예 10> 뒷발 핥기/튀기기 행동
<10-1> 염증성 감작 유발
프로베네시드에 의한 염증성 감작(inflammatory sensitization) 반응을 관찰하기 위하여, 오른쪽 뒷발의 발바닥에 상기 프로베네시드 주사 3 시간 전에 50 ㎕의 1% 카라기난(carrageenan; Sigma aldrich, USA)을 주사하거나, 또는 상기 프로베네시드 주사 24 시간 전에 50 ㎕의 CFA(complete Freund's adjuvant; Sigma aldrich, USA)를 주사하였다. 또한, 실험에 앞서 쥐를 1 시간 동안 실험환경에 적응하도록 순화시켰으며, 부형액(3% DMSO 및 0.5% Tween 80을 포함하는 식염수) 및 프로베네시드(20 mM)를 포함하는 부형액 각각 25 ㎖를 쥐의 오른쪽 뒷발에 피내 주사하였다.
<10-2> 급성 핥기/튀기기 행동 분석
뒷발 핥기/튀기기 행동(hindpaw licking/flicking behavior)에 걸린 시간을 Bandell M 외(Neuron 41:849-857, 2004) 및 Moqrich A 외(Science 307:1468-1472, 2005)의 방법에 따라 10분 동안 측정하였다. 통계적 자료는 양측 꼬리(two-tailed), 쌍을 이루지 않은(unpaired) 스튜던트 검정(Student's t-test)을 이용하여 분석하였고, 평균±S.E.M.의 형태로 나타내었다(***p < 0.001, **p < 0.01, *p < 0.05 and ND, p > 0.05).
그 결과, 프로베네시드를 뒷발의 피내에 주사한 결과, 정상 쥐에서는 행동의 현저한 변화가 발견되지 않았으나, 카라기난으로 3시간 동안 또는 CFA로 1일 동안 국부적으로 염증을 일으킨 쥐에서는 시간이 지남에 따라 행동에 변화가 나타났고(도 3b, 도 3c 및 도 3e), 부형액만 투여한 쥐에서는 효과가 나타나지 않았다(도 3b, 도 3d 및 도 3f). 즉, 상기 결과들은 프로베네시드가 특히 염증성 조건하에서 고통을 유도할 수 있음을 지시한다.
도 1은 프로베네시드의 TRPV2 특이적 활성을 나타낸 도이다(PRO:프로베네시드, RR:루테늄 레드, A1:TRPA1, V1:TRPV1, V2:TRPV2, V3:TRPV3, V4:TRPV4, M8:TRPM8):
a: 100 μM 프로베네시드 처리에 의한 TRPV2-형질전환 HEK293T 세포에서 +60 ㎷ 및 -60 ㎷에서 전세포 전류의 빠른 증가(n=5);
b: 100 μM 프로베네시드, 100 μM 프로베네시드 + 20 μM 루테늄 레드 및 100 μM 프로베네시드 + 300 μM 2-APB 처리에 반응하는 TRPV2의 전류-전압 관련성;
c: Fluo-3 칼슘 이미지화 실험에 의해 결정된 프로베네시드에 대한 반응에 의한 TRPV2 활성의 양적 관계; 및,
d: 프로베네시드 처리에 대한 여러 TRP 형질전환된 세포주의 반응.
도 2 는 TRPV2 활성제 처리에 의한 배양된 마우스 삼차 신경절 뉴런의 반응을 나타낸 도이다(MET: 멘톨, CA: 계피알데히드, CAP: 캡사이신):
a: 뉴런의 약리학적 반응의 대표도(N은 각 뉴런의 개수);
1: 캡사이신-반응성 뉴런은 프로베네시드에 반응하지 않았음;
2: 캡사이신/계피알데히드 반응성 뉴런은 프로베네시드에 반응하지 않았음;
3: 2-APB 반응성 뉴런은 프로베네시드에 반응함;
4: 2-APB 반응성 뉴런은 프로베네시드에 반응함; 및,
5: 멘톨 반응성뉴런은 프로베네시드에 반응하지 않았음;
b: 100 μM 프로베네시드, 100 μM 프로베네시드 + 20 μM 루테늄 레드 및 100 μM 프로베네시드 + 300 μM 2-APB 처리에 반응하는 삼차 신경절 뉴런의 전류-전압 관련성;
c: 2-APB 반응성 뉴런에서 드럭-감수성 뉴런의 조성; 및,
d: 전류 반응이 캡사이신 또는 프로베네시드 처리에 의해 유발된 삼차 신경절 뉴런의 세포체 직경의 분포:
1: 캡사이신-감수성군; 및,
2: 프로베네시드-감수성군.
도 3은 염증성 조건에서 프로베네시드가 고통을 유발하는 것을 나타낸 도이다(VEH:부형액(vehicle), ND:차이없음(no difference), CAR:카라기난(carrageenan), CFA:complete Freund's adjuvant):
[도 3의 선명한 Tif. 또는 jpg 파일을 당소로 송부하여 주시기 바랍니다.]
a: 20 mM 프로베네시드 투여에 의한 매일의 물과 사료 소비량(삼각형: 물 소비, 원형: 사료 소비, 빈 도형; 프로베네시드 투여군);
b: 프로베네시드 처리 전 10분 동안의 쥐의 핥기/튀기기 행동(licking/flicking behavior); 및,
c-f: 여러 염증 유도 물질 처리에 의한 10분 동안의 핥기/튀기기 행 동(licking/flicking behavior)의 소요 시간:
c: 카라기난 + 25 ㎖ 부형액;
d: 카라기난 + 25 ㎖ 부형액 + 20 mM 프로베네시드;
e: CFA + 25 ㎖ 부형액; 및,
f: CFA + 25 ㎖ 부형액 + 20 mM 프로베네시드.
<110> KOREA UNIVERSITY Industry & Academy Collaboration Foundation <120> Activator for transient receptor potential vanilloid 2 comprising probenecids <130> 8P-02-27 <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 2847 <212> DNA <213> Artificial Sequence <220> <223> rTRPV1 <400> 1 cagctccaag gcacttgctc catttggggt gtgcctgcac ctagctggtt gcaaattggg 60 ccacagagga tctggaaagg atggaacaac gggctagctt agactcagag gagtctgagt 120 ccccacccca agagaactcc tgcctggacc ctccagacag agaccctaac tgcaagccac 180 ctccagtcaa gccccacatc ttcactacca ggagtcgtac ccggcttttt gggaagggtg 240 actcggagga ggcctctccc ctggactgcc cttatgagga aggcgggctg gcttcctgcc 300 ctatcatcac tgtcagctct gttctaacta tccagaggcc tggggatgga cctgccagtg 360 tcaggccgtc atcccaggac tccgtctccg ctggtgagaa gcccccgagg ctctatgatc 420 gcaggagcat cttcgatgct gtggctcaga gtaactgcca ggagctggag agcctgctgc 480 ccttcctgca gaggagcaag aagcgcctga ctgacagcga gttcaaagac ccagagacag 540 gaaagacctg tctgctaaaa gccatgctca atctgcacaa tgggcagaat gacaccatcg 600 ctctgctcct ggacgttgcc cggaagacag acagcctgaa gcagtttgtc aatgccagct 660 acacagacag ctactacaag ggccagacag cactgcacat tgccattgaa cggcggaaca 720 tgacgctggt gaccctcttg gtggagaatg gagcagatgt ccaggctgcg gctaacgggg 780 acttcttcaa gaaaaccaaa gggaggcctg gcttctactt tggtgagctg cccctgtccc 840 tggctgcgtg caccaaccag ctggccattg tgaagttcct gctgcagaac tcctggcagc 900 ctgcagacat cagcgcccgg gactcagtgg gcaacacggt gcttcatgcc ctggtggagg 960 tggcagataa cacagttgac aacaccaagt tcgtgacaag catgtacaac gagatcttga 1020 tcctgggggc caaactccac cccacgctga agctggaaga gatcaccaac aggaaggggc 1080 tcacgccact ggctctggct gctagcagtg ggaagatcgg ggtcttggcc tacattctcc 1140 agagggagat ccatgaaccc gagtgccgac acctatccag gaagttcacc gaatgggcct 1200 atgggccagt gcactcctcc ctttatgacc tgtcctgcat tgacacctgt gaaaagaact 1260 cggttctgga ggtgatcgct tacagcagca gtgagacccc taaccgtcat gacatgcttc 1320 tcgtggaacc cttgaaccga ctcctacagg acaagtggga cagatttgtc aagcgcatct 1380 tctacttcaa cttcttcgtc tactgcttgt atatgatcat cttcaccgcg gctgcctact 1440 atcggcctgt ggaaggcttg cccccctata agctgaaaaa caccgttggg gactatttcc 1500 gagtcaccgg agagatcttg tctgtgtcag gaggagtcta cttcttcttc cgagggattc 1560 aatatttcct gcagaggcga ccatccctca agagtttgtt tgtggacagc tacagtgaga 1620 tacttttctt tgtacagtcg ctgttcatgc tggtgtctgt ggtactgtac ttcagccaac 1680 gcaaggagta tgtggcttcc atggtgttct ccctggccat gggctggacc aacatgctct 1740 actatacccg aggattccag cagatgggca tctatgctgt catgattgag aagatgatcc 1800 tcagagacct gtgccggttt atgttcgtct acctcgtgtt cttgtttgga ttttccacag 1860 ctgtggtgac actgattgag gatgggaaga ataactctct gcctatggag tccacaccac 1920 acaagtgccg ggggtctgcc tgcaagccag gtaactctta caacagcctg tattccacat 1980 gtctggagct gttcaagttc accatcggca tgggcgacct ggagttcact gagaactacg 2040 acttcaaggc tgtcttcatc atcctgttac tggcctatgt gattctcacc tacatccttc 2100 tgctcaacat gctcattgct ctcatgggtg agaccgtcaa caagattgca caagagagca 2160 agaacatctg gaagctgcag agagccatca ccatcctgga tacagagaag agcttcctga 2220 agtgcatgag gaaggccttc cgctctggca agctgctgca ggtggggttc actcctgacg 2280 gcaaggatga ctaccggtgg tgtttcaggg tggacgaggt aaactggact acctggaaca 2340 ccaatgtggg tatcatcaac gaggacccag gcaactgtga gggcgtcaag cgcaccctga 2400 gcttctccct gaggtcaggc cgagtttcag ggagaaactg gaagaacttt gccctggttc 2460 cccttctgag ggatgcaagc actcgagata gacatgccac ccagcaggaa gaagttcaac 2520 tgaagcatta tacgggatcc cttaagccag aggatgctga ggttttcaag gattccatgg 2580 tcccagggga gaaataatgg acactatgca gggatcaatg cggggtcttt gggtggtctg 2640 cttagggaac cagcagggtt gacgttatct gggtccactc tgtgcctgcc taggcacatt 2700 cctaggactt cggcgggcct gctgtgggaa ctgggaggtg tgtgggaatt gagatgtgta 2760 tccaaccatg atctccaaac atttggcttt caactcttta tggactttat taaacagagt 2820 gaatggcaaa tctctacttg gacacat 2847 <210> 2 <211> 2768 <212> DNA <213> Artificial Sequence <220> <223> rTRPV2 <400> 2 ctgctctgtc cactgtgtga gacgaacagg tggagggtgg acgacgcaga gaaagctcgg 60 agcgggccgc ggaggttccc acagccccat tactgtcagc gttgagccgc acccctccgg 120 gccgcacttc ctctctcagt ccccgctgcc ggagagcccc gctaggctcg gtgatcctag 180 cctgcagttt gccgccgcta caccttggct tcagcctgcg ggcccctctc catcaccttc 240 tccaggtccc agccaggcct gcccctgcgg tatgagagag gaaccttaac atctccatct 300 ctacagaggt ttcagctgta aggagcatcc tcctctctca ggatgacttc agcctccagc 360 cccccagctt tcaggctgga gacttccgat ggagatgaag agggcaatgc tgaggtgaac 420 aaggggaagc aggaaccgcc ccccatggag tcaccattcc agagggagga ccggaattcc 480 tcccctcaga tcaaagtgaa cctcaacttc ataaagagac ctcctaaaaa cacttctgct 540 cccagccagc aggagccaga tcggtttgac cgtgaccgac tcttcagtgt ggtctcccgg 600 ggtgtccccg aggaactgac tggactgcta gaatacctgc gctggaacag caagtacctc 660 actgactctg catacacaga aggctccact ggaaagacgt gcctgatgaa ggctgtgctg 720 aaccttcagg atggggtcaa tgcctgcatc atgccgctgc tgcagattga caaggattcc 780 ggcaatccca agcccctcgt caatgcccag tgcatcgatg agttctacca aggccacagt 840 gcgctgcaca tcgccataga gaagaggagc ctgcagtgcg tgaagctgct ggtagagaat 900 ggagcggatg ttcacctccg agcctgtggc cgcttcttcc aaaagcacca aggaacttgt 960 ttctattttg gagagctacc tctttctctg gctgcgtgca ccaagcagtg ggatgtggtg 1020 acctacctcc tggagaaccc acaccagccg gccagcctgg aggccaccga ctccctgggc 1080 aacacagtcc tgcatgctct ggtaatgatt gcagataact cgcctgagaa cagtgccctg 1140 gtgatccaca tgtacgacgg gcttctacaa atgggggcgc gcctctgccc cactgtgcag 1200 cttgaggaaa tctccaacca ccaaggcctc acacccctga aactagccgc caaggaaggc 1260 aaaatcgaga ttttcaggca cattctgcag cgggaattct caggaccgta ccagcccctt 1320 tcccgaaagt ttactgagtg gtgttacggt cctgtgcggg tatcgctgta cgacctgtcc 1380 tctgtggaca gctgggaaaa gaactcggtg ctggagatca tcgcttttca ttgcaagagc 1440 ccgaaccggc accgcatggt ggttttagaa ccactgaaca agcttctgca ggagaaatgg 1500 gatcggctcg tctcaagatt cttcttcaac ttcgcctgct acttggtcta catgttcatc 1560 ttcaccgtcg ttgcctacca ccagccttcc ctggatcagc cagccatccc ctcatcaaaa 1620 gcgacttttg gggaatccat gctgctgctg ggccacattc tgatcctgct tgggggtatt 1680 tacctcttac tgggccagct gtggtacttt tggcggcggc gcctgttcat ctggatctca 1740 ttcatggaca gctactttga aatcctcttt ctccttcagg ctctgctcac agtgctgtcc 1800 caggtgctgc gcttcatgga gactgaatgg tacctacccc tgctagtgtt atccctagtg 1860 ctgggctggc tgaacctgct ttactacaca cggggctttc agcacacagg catctacagt 1920 gtcatgatcc agaaggtcat ccttcgagac ctgctccgtt tcctgctggt ctacctggtc 1980 ttccttttcg gctttgctgt agccctagta agcttgagca gagaggcccg aagtcccaaa 2040 gcccctgaag ataacaactc cacagtgacg gaacagccca cggtgggcca ggaggaggag 2100 ccagctccat atcggagcat tctggatgcc tccctagagc tgttcaagtt caccattggt 2160 atgggggagc tggctttcca ggaacagctg cgttttcgtg gggtggtcct gctgttgctg 2220 ttggcctacg tccttctcac ctacgtcctg ctgctcaaca tgctcattgc tctcatgagc 2280 gaaactgtca accacgttgc tgacaacagc tggagcatct ggaagttgca gaaagccatc 2340 tctgtcttgg agatggagaa tggttactgg tggtgccgga ggaagaaaca tcgtgaaggg 2400 aggctgctga aagtcggcac caggggggat ggtacccctg atgagcgctg gtgcttcagg 2460 gtggaggaag taaattgggt tgcttgggag aagactcttc ccaccttatc tgaggatcca 2520 tcagggccag gcatcactgg taataaaaag aacccaacct ctaaaccggg gaagaacagt 2580 gcctcagagg aagaccatct gccccttcag gtcctccagt ccccctgatg gcccagatgc 2640 agcagcaggc tggcaggatg gagtagggaa tcttcccagc cacaccagag gctactgagt 2700 tttggtggaa atataaatat ttttttgcat aaccaaaaaa aaaaaaaaaa aaaaaaaaaa 2760 aaaaaagg 2768 <210> 3 <211> 2440 <212> DNA <213> Artificial Sequence <220> <223> mTRPV3 <400> 3 gatctcaagg caaggactgc caccaccatc tggaacctgc cagcatatgc cttaggctcc 60 agcaatgaat gcccactcca aggagatggt gcccctcatg ggcaaaagaa ccacggcacc 120 tggcgggaac cctgttgtac tgacagagaa gaggccagca gatctcaccc ccaccaagaa 180 gagtgcacac ttcttcctgg agatagaagg atttgagccc aaccccacgg tcaccaagac 240 ctctccaccc atcttctcca agccgatgga ctccaacatc cggcagtgcc tctctggcaa 300 ctgtgatgac atggactctc cccagtctcc tcaggatgat gtgacagaga ccccatccaa 360 tcccaacagt ccgagcgcaa acctggccaa ggaagaacag aggcagaaga agaagcgact 420 gaagaagcgc atcttcgcgg ctgtgtccga gggctgcgtg gaggagctgc gggaactcct 480 acaggatctg caggacctct gcaggaggcg ccgcggcctg gatgtgcctg acttcctcat 540 gcacaagctg acagcctcag acaccgggaa gacctgcctg atgaaggctt tgctcaacat 600 caatcccaac accaaagaga tcgtgcggat tctgcttgcc ttcgctgagg agaacgacat 660 cctggacagg ttcatcaacg ctgagtacac ggaagaggcc tatgaagggc agacagcgct 720 gaacatcgcc atcgagcggc gccagggaga catcacagca gtgcttatag cagcgggtgc 780 tgacgtcaat gctcacgcca agggggtctt cttcaacccc aaataccagc atgaaggctt 840 ctattttggc gagacacccc tggctttggc agcgtgtact aaccagcctg agattgtgca 900 gctgctgatg gagaatgagc agacagacat cacttcccag gattcccggg gaaacaacat 960 cctgcacgcg ctggtgacag tggctgagga cttcaagact cagaatgact tcgttaagcg 1020 catgtatgac atgatcctgc tgaggagtgg caactgggag ctggagacca tgcgcaacaa 1080 cgatgggctc acaccactgc agctggctgc caagatgggc aaggctgaga tcctgaagta 1140 catcctcagc cgcgagatca aggagaagcc tctccggagc ttgtccagga agttcacgga 1200 ctgggcgtat gggcctgtgt catcctcact ctatgacctc accaatgtag acacaacgac 1260 ggataactct gtgctggaaa tcatcgtcta caacaccaac attgataacc gacatgagat 1320 gctgaccctg gagcctctgc atacgctgct acacacgaaa tggaagaaat ttgccaagta 1380 catgttcttc ttgtccttct gcttctattt cttctacaac atcaccctga cccttgtctc 1440 ttactaccgt cctcgggaag atgaggatct cccacacccc ttggccctga cacacaaaat 1500 gagttggctt cagctcctag ggaggatgtt tgtcctcatc tgggccacat gcatctctgt 1560 gaaagaaggc attgccattt tcctgctgag accctccgat cttcagtcca tcctgtcaga 1620 tgcctggttt cactttgtct tttttgtcca agctgtactt gtgatactgt ctgtattctt 1680 gtacttgttt gcctacaaag aatacctcgc ctgcctcgtg ctggccatgg ccctgggctg 1740 ggcgaacatg ctctactaca cgagaggctt ccagtctatg ggcatgtaca gcgtcatgat 1800 ccagaaggtc attttgcatg atgtcctcaa gttcttgttt gtttacatcc tgttcttact 1860 tggatttgga gtagcgctgg cctcactgat tgagaagtgc tccaaggaca aaaaggactg 1920 cagttcctat ggcagcttca gcgacgcggt gctggagctc ttcaagctca ccataggcct 1980 gggcgacctg aacatccagc agaactccac ctaccccatc ctctttctct tcctactcat 2040 cacctatgtc atcctcacct tcgtcctcct cctcaacatg ctcatcgccc tgatggggga 2100 gacggtggag aacgtctcca aagaaagtga gcggatctgg cgcttgcaga gagccaggac 2160 catcttggag tttgagaaaa tgttaccaga atggctgaga agcagattcc gcatgggcga 2220 gctgtgcaaa gtagcagatg aggacttccg gctgtgtctg cggatcaacg aggtgaagtg 2280 gacggaatgg aaaacacacg tgtccttcct taatgaagac ccgggaccca taagacggac 2340 agcagattta aacaagattc aagattcttc caggagcaat agcaaaacca ccctctatgc 2400 gtttgatgaa ttagatgaat tcccagaaac gtcggtgtag 2440 <210> 4 <211> 3211 <212> DNA <213> Artificial Sequence <220> <223> rTRPV4 <400> 4 gggaggagga cgcggcggga tcaggaagcg gctgcgctgc gcccgcgtcc caagcaggcc 60 gagaagtcca aacagatctg ctcagggtcc agtatggcag atcctggtga tggcccccgt 120 gcagcgcctg gggatgtggc tgagccccct ggagacgaga gtggcacttc tggtggggag 180 gccttccccc tctcttccct ggccaacctg tttgagggag aggaaggctc ctcttctctt 240 tcaccagtgg atgctagccg ccctgctggc cccggggatg gacgtccaaa cctgcgtatg 300 aagttccagg gcgctttccg caagggggtt cccaacccca ttgacctgct ggagtccacc 360 ctgtatgagt cctcagtagt gcctgggccc aagaaagcgc ccatggattc gttgttcgac 420 tatggcactt accggcacca ccccagtgac aacaagagat ggaggaggaa ggtcgtagag 480 aagcagccac agagccccaa agctcccgcc ccccagccac cccccatcct caaagtcttc 540 aaccggccca tcctctttga catcgtgtcc cggggctcca ctgccgacct ggacggactg 600 ctctcctact tgctgaccca caagaagcgc ctgactgatg aggagttccg ggaaccatcc 660 acagggaaga cctgcctgcc caaggcactt ctgaacttaa gcaatggccg aaacgacacc 720 atcccagtgt tgctggacat tgcggaacgc acgggcaaca tgcgggagtt catcaactcg 780 cccttcagag acatctacta ccgagggcag acggcactgc acatcgccat tgaacggcgc 840 tgcaagcatt acgtggagct cctggtggcc cagggagccg atgtgcacgc gcaggcccga 900 gggcggttct tccagcccaa ggatgagggt ggctacttct actttgggga gctgcccttg 960 tccttggcag cctgcaccaa ccagccgcac atcgtcaact acctgacaga gaaccctcac 1020 aagaaagccg atatgaggcg acaggactcc agaggcaaca cggtgctcca cgcgctggtg 1080 gccatcgctg acaacacccg agagaacacc aagtttgtca ccaagatgta tgacctgttg 1140 cttctcaagt gctcccgcct cttcccagac agcaacctgg agactgtgct taacaatgac 1200 ggtctttcgc ccctcatgat ggctgccaag actggcaaga tcggggtctt tcagcacatc 1260 atccgacggg aggtgacaga tgaggacaca cggcacctgt ctcgcaagtt caaggactgg 1320 gcctacgggc ctgtgtattc ttctctctac gacctctcct ccctggatac gtgcggggag 1380 gaagtgtccg tgctggagat cctggtttac aacagcaaga tcgagaaccg ccatgagatg 1440 ctggctgtgg agcccattaa cgaactgctg agggacaagt ggcgtaagtt cggggccgtg 1500 tccttctaca tcaacgttgt ctcctatctg tgtgccatgg tcatcttcac cctcacagcc 1560 tactatcagc cactggaggg cacgccaccc tacccttacc gtaccacggt ggactacctg 1620 aggctggctg gtgaggtcat cacgctcctc acaggagtcc tgttcttctt taccagtatc 1680 aaagacttgt tcatgaagaa atgccctgga gtgaattctc tcttcgtcga tggctccttc 1740 cagttgctct acttcatcta ctcagtgctg gtggttgtgt ctgcggcgct ctacctggca 1800 gggatcgagg cctatctggc tgtgatggtc tttgccctgg tcctgggctg gatgaatgcc 1860 ctttacttca cccgtgggct gaagctgaca gggacctaca gcatcatgat tcagaagatc 1920 ctcttcaaag atctcttccg ctttctgctg gtctacctgc tttttatgat tggctatgcc 1980 tcagctctgg tcaccctcct gaatccgtgc accaacatga aggtctgtaa cgaggaccag 2040 agcaactgca cggtgccctc ataccccgcg tgccgggaca gcgagacctt cagcgccttc 2100 ctactggacc tcttcaagct caccatcggc atgggcgacc tggagatgct gagcagcgct 2160 aagtaccccg tggtcttcat tctcctgctg gttacctaca tcatcctcac cttcgtgctc 2220 ctgctgaaca tgctcatcgc cctcatgggt gagaccgtgg gccaggtgtc caaggagagc 2280 aagcacatct ggaagctgca gtgggccacc accatcctgg acatcgagcg ctccttccct 2340 gtgttcctga ggaaggcctt ccgctccgga gagatggtga cagtgggcaa gagctcggat 2400 ggcactccag accgcaggtg gtgcttcagg gtggacgagg tgaactggtc tcactggaac 2460 cagaacctgg gcatcattaa cgaggacccc ggcaagagcg agatctacca gtactatggc 2520 ttctcccata ccatggggcg cctccgcagg gatcgctggt cctcagtggt gccccgcgtg 2580 gtggagctga acaagaactc aggcacagat gaagtggtgg tccccctgga taacctaggg 2640 aaccccaact gtgacggcca ccagcaaggt tatgctccca agtggagggc ggaggacgca 2700 ccactgtagg ggccatgcca gggctggggt caatggccca ggcttggccc ttgctcccac 2760 ctacatttca gcatctgtcc tgtgtcttcc cacacccaca cgtgacctcg gaggtgaggg 2820 cctctgtgga gactctgggg aggccccagg accctctggt ccccacaaag acttttgctc 2880 ttatttctac tcctccccac atgggggacg gggctcctgg ccacctgtct cactcccatg 2940 gagtcaccta agccagctca gggcccctcc actcacaggg ctcaggcccc tgtccctctt 3000 gtgcactatt tattgctctc ctcaggaaaa tgacatcaca ggagtctacc tgcagctgga 3060 acctggccag ggctgaggct catgcaggga cactgcagcc ctgacccgct gcagatctga 3120 cctgctgcag cccgggctag ggtgggtctt ctgtactttg tagagatcgg ggctgttggt 3180 gctcaataaa tgtttgttta ttctcggtgg a 3211 <210> 5 <211> 3869 <212> DNA <213> Artificial Sequence <220> <223> mTRPM8 <400> 5 tcctccctcc tccagtgagc taagagacaa gcaggctctt tgaggagaga gaagctcttg 60 gctgattgag cagctccacg tcctggctgt cccggagctt gatacataga aaagactgac 120 ctcagataca cagagatcct tctgcttctg tctcccaagt gctgggatca caggcaagat 180 gtccttcgag ggagccaggc tcagcatgag gagccgcaga aatggtacta tgggcagcac 240 ccggaccctg tactccagtg tatctcggag cacagacgtg tcctacagtg acagtgattt 300 ggtgaatttt attcaggcaa attttaaaaa acgagaatgt gtcttcttta ccagagactc 360 caaggccatg gagaacatat gcaagtgtgg ttatgcccag agccagcaca tcgaaggcac 420 ccagatcaac caaaatgaga agtggaacta caaaaaacat accaaggagt ttccaacaga 480 cgccttcggg gacattcagt ttgagactct ggggaagaaa ggcaagtact tacgcttgtc 540 ctgtgacacc gactctgaaa ctctctacga actgctgacc cagcactggc acctcaaaac 600 acccaacctg gtcatttcag tgacgggtgg agccaaaaac tttgctttga agccacgcat 660 gcgcaagatc ttcagcaggc tgatttacat cgcacagtct aaaggtgcgt ggattctcac 720 tggaggcact cactacggcc tgatgaagta cataggcgag gtggtgagag acaacaccat 780 cagcaggaac tcagaagaga acatcgtggc cattggcatc gcagcatggg gcatggtctc 840 caacagggac accctcatca ggagctgtga tgatgaggga catttttcag ctcaatacat 900 catggatgac tttaccagag accctctata catcctggac aacaaccata cccacctgct 960 gcttgtggac aacggttgtc atggacaccc cacagtggaa gccaagctcc ggaatcagct 1020 ggaaaagtac atctctgagc gcaccagtca agattccaac tatggtggta agatccccat 1080 cgtgtgtttt gcccaaggag gtggaagaga gactctaaaa gccatcaaca cctctgtcaa 1140 aagcaagatc ccttgtgtgg tggtggaagg ctcggggcag attgctgatg tgatcgccag 1200 cctggtggag gtggaggatg ttttaacctc ttccatggtc aaagagaagc tggtacgctt 1260 tttaccacgc actgtgtccc ggctgcctga agaggaaatt gagagctgga tcaaatggct 1320 caaagaaatt cttgagagtt ctcacctact cacagtaatt aagatggaag aggctggaga 1380 tgagattgtg agcaacgcca tttcctatgc gctgtacaaa gccttcagca ctaatgagca 1440 agacaaggac aactggaatg gacagctgaa gcttctgctg gagtggaacc agttggacct 1500 tgccagtgat gagatcttca ccaatgatcg ccgctgggag tctgccgacc ttcaggaggt 1560 catgttcacg gctctcataa aggacagacc caagtttgtc cgcctctttc tggagaatgg 1620 cctgaatctg cagaagtttc tcaccaatga agtcctcaca gagctcttct ccacccactt 1680 cagcacccta gtgtaccgga atctgcagat cgccaagaac tcctacaatg acgcactcct 1740 cacctttgtc tggaagttgg tggcaaactt ccgtcgaagc ttctggaaag aggacagaag 1800 cagcagggag gacttggatg tggaactcca tgatgcatct ctcaccaccc ggcacccgct 1860 gcaagctctc ttcatctggg ccattcttca gaacaagaag gaactctcca aggtcatttg 1920 ggagcagacc aaaggctgta ctctggcagc cttgggggcc agcaagcttc tgaagaccct 1980 ggccaaagtt aagaatgata tcaacgctgc tggggaatcg gaggaactgg ccaatgaata 2040 tgagacccga gcagtggagt tgttcaccga gtgttacagc aatgatgaag acttggcaga 2100 acagctactg gtctactcct gcgaagcctg gggtgggagc aactgtctgg agctggcagt 2160 ggaggctaca gatcagcatt tcatcgctca gcctggggtc cagaatttcc tttctaagca 2220 atggtatgga gagatttccc gagacacgaa gaactggaag attatcctgt gtctattcat 2280 catcccctta gtgggctgtg gcctcgtatc atttaggaag aaacccattg acaagcacaa 2340 gaagctgctg tggtactatg tggccttctt cacgtcgccc ttcgtggtct tctcctggaa 2400 cgtggtcttc tacatcgcct tcctcctgct gtttgcctat gtgctgctca tggacttcca 2460 ctcagtgcca cacacccccg agctgatcct ctacgccctg gtcttcgtcc tcttctgtga 2520 tgaagtgagg cagtggtaca tgaacggagt gaattatttc accgacctat ggaacgttat 2580 ggacaccctg ggactcttct acttcatagc gggtattgta ttccggctcc actcttctaa 2640 taaaagctcg ttgtactctg ggcgcgtcat tttctgtctg gattacatta tattcacgct 2700 aaggctcatc cacattttca ccgtcagcag gaacttggga cccaagatta taatgctgca 2760 gcggatgctg atcgacgttt tcttcttcct gttcctcttt gctgtgtgga tggtggcctt 2820 tggcgtggcc agacagggga tcctaaggca aaatgaacag cgctggagat ggatcttccg 2880 ctctgtcatc tatgagccct acctggccat gtttggccag gttcccagtg acgtggatag 2940 taccacatat gacttctccc actgtacctt ctcgggaaat gagtccaagc cactgtgtgt 3000 ggagctggat gagcacaacc tgccccgctt ccctgagtgg atcaccattc cgctggtgtg 3060 catctacatg ctctccacca atatccttct ggtcaacctc ctggtcgcca tgtttggcta 3120 cacggtaggc attgtacagg agaacaacga ccaggtctgg aaattccagc ggtacttcct 3180 ggtgcaggag tactgcaacc gcctaaacat ccccttcccc ttcgttgtct tcgcttattt 3240 ctacatggtg gtgaagaagt gtttcaaatg ctgctgtaaa gagaagaata tggagtctaa 3300 tgcctgctgt ttcagaaatg aggacaatga gactttggcg tgggagggtg tcatgaagga 3360 gaattacctt gtcaagatca acacgaaagc caacgacaac tcagaggaga tgaggcatcg 3420 gtttagacaa ctggactcaa agcttaacga cctcaaaagt cttctgaaag agattgctaa 3480 taacatcaag taaggctggc gatgcttgtg gggagaaacc aaatcacaat gaggtcacag 3540 caaccacctg gatgtggagg ctcatgggac actgatggac agtactgcta atgacttcta 3600 aaggagacat tttcaggtcc ctgagcacag ggtggatgac tcttagtcac cctcaagggc 3660 ataggtcagg gagcaaagtg tacagaggac tttacacctg aagaggggtg caaaggacca 3720 tgttcttctg tgaaggtgcc tgtgttttct gcatctcaga gccttgtcct gatgctgagg 3780 gattaagtgt tgacactcct ttcccacgac tgtgactctg gccctgattt tatacttata 3840 ctgcaaaaaa aaaaaaaaaa aaaaaaaaa 3869 <210> 6 <211> 4263 <212> DNA <213> Artificial Sequence <220> <223> mTRPA1 <400> 6 gcgccagccg gcgtccaggt ggagtcaatg aagcgcggct tgaggaggat tctgctcccg 60 gaggaaagga aggaggtcca gggcgttgtc tatcgcggcg tcggggaaga catggactgc 120 tccaaggaat cctttaaggt ggacattgaa ggagatatgt gtagattaga agacttcatc 180 aagaaccgaa gaaaactaag caaatatgag gatgaaaatc tctgtcctct gcatcacgca 240 gcagcagaag gtcaagttga actgatggaa ctgatcatca atggttcttc gtgtgaagtg 300 ctgaatataa tggatggtta tggaaatacc ccactgcatt gtgctgcaga aaaaaatcaa 360 gttgaaagtg taaagtttct tctcagccaa ggagcaaatc caaacctccg aaatagaaac 420 atgatgtcac cccttcacat agctgtgcat ggcatgtaca acgaagtgat caaggtgttg 480 actgagcaca aggccactaa catcaattta gaaggagaga atgggaacac ggctttgatg 540 tccacgtgtg ccaaagacaa cagtgaagct ttgcaaattt tgttagaaaa aggagctaag 600 ctgtgtaaat caaataagtg gggagactac cctgtgcacc aggcagcatt ttcaggtgcc 660 aaaaaatgca tggaattaat cttagcatat ggtgaaaaga acggctacag cagggagact 720 cacattaatt ttgtgaatca caagaaagcc agccctctcc acctagcagt tcaaagcgga 780 gacttggaca tgattaagat gtgcctggac aacggtgcac acatcgacat gatggagaat 840 gccaaatgca tggccctcca ttttgctgca acccagggag ccactgacat cgttaagctc 900 atgatctcat cctataccgg aagtagtgat attgtgaatg cagttgatgg caatcaggag 960 accctgcttc acagagcctc gttatttgat caccatgacc tggcagaata cctaatatca 1020 gtgggagcag acatcaacag cactgattct gaaggacgct ctccacttat tttagcaaca 1080 gcttctgcat cctggaacat tgtgaatttg ctcctctgta aaggtgccaa agtagacata 1140 aaagatcatc ttggacgtaa ctttttgcat ttgactgtgc agcagcctta tggactaaga 1200 aatttgcggc ctgagtttat gcagatgcaa cacatcaaag agctggtgat ggatgaagac 1260 aatgacggat gcacacctct ccattatgcc tgtaggcagg gggttcctgt ctctgtaaat 1320 aacctccttg gcttcaatgt gtccattcat agcaaaagta aagataagaa gtcgcccctg 1380 cattttgcag ccagttatgg gcgcatcaat acatgtcaga gacttctgca agacataagt 1440 gatacgaggc ttttgaatga aggggatctc catgggatga cccctctcca cctggcagca 1500 aaaaatgggc atgataaagt cgttcaactc cttctgaaga aaggggcctt atttctcagt 1560 gaccacaatg gctggactgc tttgcatcac gcctccatgg gtgggtacac tcagaccatg 1620 aaggtcattc ttgatactaa cttgaaatgc acagaccgac tagatgaaga agggaacaca 1680 gcactccact ttgcagcacg ggaaggccat gccaaggctg ttgcaatgct tttgagctac 1740 aatgctgaca tcctcctgaa caagaagcaa gcttcctttc tgcatattgc cctgcacaat 1800 aagcgcaagg aagtggttct cacaaccatc agaaataaaa gatgggatga gtgtcttcaa 1860 gttttcactc ataattctcc aagcaatcga tgtccaatca tggagatggt agaatacctc 1920 cccgagtgca tgaaagttct tttagatttc tgcatgatac cttccacaga agacaagtcc 1980 tgtcaagact accatattga gtataatttc aagtatctcc aatgcccatt atccatgacc 2040 aaaaaagtag cacctaccca ggatgtggta tatgagcctc ttacaatcct caatgtcatg 2100 gtccaacata accgcataga actcctcaac caccctgtgt gtagggagta cttactcatg 2160 aaatggtgtg cctatggatt cagagcccat atgatgaacc taggatctta ttgtcttggt 2220 ctcataccca tgacccttct tgttgtcaaa atacagcctg gaatggcctt caattctact 2280 ggaataatca atggaactag tagtactcat gaggaaagaa tagacactct gaattcattt 2340 ccaataaaaa tatgtatgat tctagttttt ttatcaagta tatttggata ttgcaaagaa 2400 gtgatccaaa ttttccaaca gaaaaggaat tacttcctgg attacaacaa tgctctggaa 2460 tgggttatct atacaactag tatcatcttc gtgttgccct tgttcctcaa catcccagcg 2520 tatatgcagt ggcaatgtgg agcaatagcg atattcttct actggatgaa cttcctactg 2580 tatcttcaaa ggtttgagaa ctgtggaatt ttcattgtta tgttggaggt gatttttaaa 2640 acattgctga gatcgaccgg agtgtttatc ttcctcctac tggcttttgg cctcagcttt 2700 tatgttctcc tgaatttcca agatgccttc agcaccccat tgctttcctt aatccagaca 2760 ttcagtatga tgctaggaga catcaattat cgagatgcct tcctagaacc attgtttaga 2820 aatgagttgg catacccagt cctgaccttt gggcagctta ttgccttcac aatgtttgtc 2880 ccaattgttc tcatgaactt actgattggc ttggcggttg gggacattgc tgaggtccag 2940 aagcatgcgt cattgaagag gattgctatg caggtggaac ttcataccaa cttagaaaaa 3000 aagctgccac tctggtactt acgcaaagtg gatcagaggt ccaccatcgt gtatccaaat 3060 agacccaggc acggcaggat gctacggttt tttcattact ttcttaatat gcaagaaaca 3120 cgacaagaag taccaaacat tgacacatgc ttggaaatgg aaatattgaa acagaaatat 3180 cggctgaagg acctcacttc cctcttggaa aagcagcatg agctcatcaa actcatcatc 3240 cagaagatgg agatcatctc agagacagaa gatgaagata accattgctc tttccaagac 3300 aggttcaaga aggagaggct ggaacagatg cacagcaagt ggaattttgt cttaaacgca 3360 gttaagacta aaacacattg ttctattagc cacccggact tttagttctg tgtcttatgg 3420 gagtgggaga ctgctttaca tacttatttc agtgaatttc agtttggaaa agagcaaaga 3480 aacagaaagt tgactaacat tgctgcatgg agatcctagt tcctgcaacc tcacccatac 3540 atatgctcat atttcctgtc aattactatg tattgagaag atcctttctg acatgttcaa 3600 tttgaacatg aaggatagtc tctttcgagt gaataaaaac cagggttgtt ggaatgcata 3660 ttatggagga taagaattaa tgtaactatt aaggcagaac acaactacat aatacaagat 3720 gcatataatt ccaagtatta tatttaatct cctaccatgt taaaccttcc tgtgttataa 3780 cctgtctggg acactataat ctctgttcct actatgatta gatcatagtc tcaccctcct 3840 cgtcccatca cacatgacat cattttgagc cacatgacag aagtcctagt tagtagactg 3900 tgataagtat gaatgttaca atagaaatgt gttcccttag tgttcatcag ttgtgatggt 3960 ttaaatgaga aacgttgccc acagactcat acatttaaac ccttagtccc agttgttgct 4020 gctgcttagg ggggccacac agccttgctt gctctctcct ttctgagtgt ggagagaaat 4080 gtgatcagta agactcctgc tcctgctgcc atgctcttta ttccattatg gacttcttct 4140 gaaactgcaa gcagaaattc actgttcctt cctcaaattt cttttggtca tggtattata 4200 tcatagcaac agaaactaac ttatgtacca atggtcttaa taaagaataa agcctgtaca 4260 gtc 4263

Claims (24)

  1. 프로베네시드(Probenecid)를 유효성분으로 포함하는 TRPV2(transient receptor potential vanilloid 2) 활성제 또는 활성 억제제 스크리닝용 조성물.
  2. 제 1항에 있어서, 상기 프로베네시드는 TRPV2의 활성을 특이적으로 촉진하는 것을 특징으로 하는 TRPV2 활성제 또는 활성 억제제 스크리닝용 조성물.
  3. 1) 피검체로부터 분리된 뉴런을 배양한 후 프로베네시드를 처리하는 단계;
    2) 단계 1)의 처리된 뉴런의 TRPV2(transient receptor potential vanilloid 2) 활성을 측정하는 단계; 및,
    3) 단계 2)의 측정치를 프로베네시드가 비처리된 뉴런의 TRPV2 활성 측정치와 비교하여 TRPV2가 활성화되는 뉴런을 선별하는 단계를 포함하는 TRPV2를 발현하는 뉴런의 분리 방법.
  4. 제 3항에 있어서, 프로베네시드는 10 내지 1000 μM의 농도로 처리하는 것을 특징으로 하는 분리 방법.
  5. 제 3항에 있어서, 단계 3)의 TRPV2 활성의 측정은 전세포 전압 클램프 기술 및 칼슘 이미지화에 의해 수행되는 것을 특징으로 하는 분리 방법.
  6. 1) 피검체로부터 분리된 뉴런을 배양한 후 프로베네시드 및 TRPV2(transient receptor potential vanilloid 2) 비특이적 활성제를 순차적으로 또는 역순으로 처리하는 단계;
    2) 단계 1)의 처리된 뉴런의 칼슘 이온 채널 활성을 각각 측정하는 단계; 및,
    3) 단계 2)의 측정치를 프로베네시드 및 TRPV2 비특이적 활성제가 비처리된 뉴런의 칼슘 이온 채널 활성 측정치와 비교하여 TRPV2 비특이적 활성제에는 양성 반응을 나타내지만 프로베네시드에는 음성 반응을 나타내는 뉴런을 선별하는 단계를 포함하는 TRPV2를 발현하지 않는 뉴런의 분리 방법.
  7. 제 6항에 있어서, 프로베네시드는 10 내지 1000 μM의 농도로 처리하는 것을 특징으로 하는 분리 방법.
  8. 제 6항에 있어서, TRPV2 비특이적 활성제는 2-APB(2-aminoethoxydiphenyl borate), 캡사이신(capsaicin), 계피알데히드(cinnamaldehyde) 및 멘톨(menthol) 등으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 분리 방법.
  9. 제 6항에 있어서, 단계 3)의 TRPV2 칼슘 이온 채널 활성의 측정은 전세포 전압 클램프 기술 및 칼슘 이미지화에 의해 수행되는 것을 특징으로 하는 분리 방법.
  10. 1) TRPV2(transient receptor potential vanilloid 2)를 발현하는 뉴런에 프로베네시드 및 TRPV2 활성 억제제 후보물질을 처리하는 단계;
    2) TRPV2를 발현하지 않는 뉴런에 상기 TRPV2 활성 억제제 후보물질 및 TRPV2 비특이적 활성제를 처리하는 단계;
    3) 단계 1) 및 단계 2)의 처리된 TRPV2를 발현하는 뉴런 및 TRPV2를 발현하지 않는 뉴런의 칼슘 이온 채널 활성을 각각 측정하는 단계; 및,
    4) 단계 3)의 각각의 측정치를 프로베네시드만 처리된 TRPV2를 발현하는 뉴런의 활성 측정치와 비교하여 프로베네시드 및 TRPV2 활성 억제제 후보물질을 처리한 TRPV2를 발현하는 뉴런의 칼슘 이온 채널 활성을 억제하고 상기 TRPV2 활성 억제제 후보물질 및 TRPV2 비특이적 활성제를 처리한 TRPV2를 발현하지 않는 뉴런의 칼슘 이온 채널 활성에 영향을 주지 않는 후보물질을 선별하는 단계를 포함하는 TRPV2 활성 억제제 스크리닝 방법.
  11. 제 10항에 있어서, TRPV2를 발현하는 뉴런은 제 3항의 방법으로 분리되는 것을 특징으로 하는 스크리닝 방법.
  12. 제 10항에 있어서, TRPV2를 발현하지 않는 뉴런은 제 7항의 방법으로 분리되는 것을 특징으로 하는 스크리닝 방법.
  13. 제 10항에 있어서, 프로베네시드는 10 내지 1000 μM의 농도로 처리하는 것을 특징으로 하는 스크리닝 방법.
  14. 제 10항에 있어서, TRPV2 비특이적 활성제는 2-APB(2-aminoethoxydiphenyl borate), 캡사이신(capsaicin), 계피알데히드(cinnamaldehyde) 및 멘톨(menthol) 등으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 스크리닝 방법.
  15. 제 10항에 있어서, 단계 3)의 TRPV2 칼슘 이온 채널 활성의 측정은 전세포 전압 클램프 기술 및 칼슘 이미지화에 의해 수행되는 것을 특징으로 하는 스크리닝 방법.
  16. 1) TRPV2(transient receptor potential vanilloid 2)를 암호화하는 폴리뉴클레오티드를 포함하는 플라스미드가 숙주세포에 형질도입된 형질전환체를 제조하는 단계;
    2) 상기 형질전환체에 프로베네시드 및 TRPV2 활성 억제제 후보물질을 처리하는 단계;
    3) TRPV2를 발현하지 않는 뉴런에 상기 TRPV2 활성 억제제 후보물질 및 TRPV2 비특이적 활성제를 처리하는 단계;
    4) 단계 2) 및 단계 3)의 처리된 형질전환체 및 TRPV2를 발현하지 않는 뉴런의 TRPV2 칼슘 이온 채널 활성을 각각 측정하는 단계; 및,
    5) 단계 4)의 각각의 측정치를 프로베네시드만 처리된 형질전환체의 TRPV2 활성 측정치와 비교하여 프로베네시드 및 TRPV2 활성 억제제 후보물질을 처리한 형질전환체의 칼슘 이온 채널 활성을 억제하고 상기 TRPV2 활성 억제제 후보물질 및 TRPV2 비특이적 활성제를 처리한 TRPV2를 발현하지 않는 뉴런의 칼슘 이온 채널 활성에 영향을 주지 않는 후보물질을 선별하는 단계를 포함하는 TRPV2 활성 억제제 스크리닝 방법.
  17. 제 16항에 있어서, TRPV2를 발현하지 않는 뉴런은 제 7항의 방법으로 분리되는 것을 특징으로 하는 스크리닝 방법.
  18. 제 16항에 있어서, 프로베네시드는 10 내지 1000 μM의 농도로 처리하는 것을 특징으로 하는 스크리닝 방법.
  19. 제 16항에 있어서, TRPV2 비특이적 활성제는 2-APB(2-aminoethoxydiphenyl borate), 캡사이신(capsaicin), 계피알데히드(cinnamaldehyde) 및 멘톨(menthol) 등으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 스크리닝 방법.
  20. 제 16항에 있어서, 단계 3)의 TRPV2 칼슘 이온 채널 활성의 측정은 전세포 전압 클램프 기술 및 칼슘 이미지화에 의해 수행되는 것을 특징으로 하는 스크리닝 방법.
  21. 1) 피검체에 프로베네시드와 TRPV2(transient receptor potential vanilloid 2) 활성 억제제 후보물질을 투여하는 단계;
    2) 단계 1)의 처리된 피검체의 염증성 감작 유발에 의한 뒷발 핥기/튀기기 행동을 분석하는 단계; 및,
    3) 프로베네시드만 처리된 피검체의 뒷발 핥기/튀기기 행동을 단계 2)에서 분석한 뒷발 핥기/튀기기 행동과 비교하여 뒷발 핥기/튀기기 정도를 완화시킨 후보물질을 선별하는 단계를 포함하는 TRPV2 활성 억제제 스크리닝 방법.
  22. 제 21항에 있어서, 단계 2)의 프로베네시드는 10 내지 100 mM의 농도로 투여하는 것을 특징으로 하는 스크리닝 방법.
  23. 삭제
  24. 제 23항에 있어서, 상기 염증성 감작은 상기 프로베네시드 주사 전에 카라기난(carrageenan) 또는 CFA(complete Freund's adjuvant)를 주사하여 유발되는 것을 특징으로 하는 스크리닝 방법.
KR1020080016749A 2008-02-25 2008-02-25 프로베네시드를 포함하는 trpv2 활성제 KR100951656B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080016749A KR100951656B1 (ko) 2008-02-25 2008-02-25 프로베네시드를 포함하는 trpv2 활성제
US12/196,116 US7915012B2 (en) 2008-02-25 2008-08-21 Methods for screening for inhibitors of TRPV2 activation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080016749A KR100951656B1 (ko) 2008-02-25 2008-02-25 프로베네시드를 포함하는 trpv2 활성제

Publications (2)

Publication Number Publication Date
KR20090091472A KR20090091472A (ko) 2009-08-28
KR100951656B1 true KR100951656B1 (ko) 2010-04-07

Family

ID=40998691

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080016749A KR100951656B1 (ko) 2008-02-25 2008-02-25 프로베네시드를 포함하는 trpv2 활성제

Country Status (2)

Country Link
US (1) US7915012B2 (ko)
KR (1) KR100951656B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210150011A (ko) 2020-06-03 2021-12-10 주식회사 삼오파마켐 프로베네시드 및 아르기닌의 아미드 유도체, 이를 포함하는 약제학적 조성물 및 이의 제조 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2629610T3 (pl) 2010-07-27 2018-02-28 Flex Pharma, Inc. Sposoby i kompozycje do zapobiegania i zmniejszania kurczy mięśni i do regeneracji po nerwowo-mięśniowym podrażnieniu i zmęczeniu po ćwiczeniach fizycznych
US10806711B2 (en) 2011-08-12 2020-10-20 University Of Cincinnati Method of treating acute decompensated heart failure with probenecid
MX2015012547A (es) 2013-03-13 2016-02-10 Univ Cincinnati Tratamiento de una disfuncion cardiaca diastolica con un agonista del receptor trpv2.
US11253493B2 (en) 2017-01-23 2022-02-22 Cliff-Cartwright Corporation Compositions and methods affecting exercise performance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1952160B1 (en) 2005-10-31 2011-04-06 Janssen Pharmaceutica NV Methods for identifying modulators of trpv2
US7960130B2 (en) 2008-04-24 2011-06-14 Korea University Industry and Academy Cooperation Foundation Method for activation of transient receptor potential cation channel, subfamily A, member 1 using acetaldehyde
KR101034300B1 (ko) * 2008-12-02 2011-05-16 고려대학교 산학협력단 Trpv3 활성 억제 약물 및 이의 활용

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
논문1:J. Biol. Chem.
논문2:Arch Pharm Res
논문3:British Journal of Pharmacology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210150011A (ko) 2020-06-03 2021-12-10 주식회사 삼오파마켐 프로베네시드 및 아르기닌의 아미드 유도체, 이를 포함하는 약제학적 조성물 및 이의 제조 방법

Also Published As

Publication number Publication date
KR20090091472A (ko) 2009-08-28
US20090215107A1 (en) 2009-08-27
US7915012B2 (en) 2011-03-29

Similar Documents

Publication Publication Date Title
Von Essen et al. Vitamin D controls T cell antigen receptor signaling and activation of human T cells
Kano et al. Phospholipase Cβ4 is specifically involved in climbing fiber synapse elimination in the developing cerebellum
Li et al. KCC2 interacts with the dendritic cytoskeleton to promote spine development
Hettie et al. Selective catecholamine recognition with NeuroSensor 521: a fluorescent sensor for the visualization of norepinephrine in fixed and live cells
Braco et al. Energy-dependent modulation of glucagon-like signaling in Drosophila via the AMP-activated protein kinase
Sato et al. Hypotonic-induced stretching of plasma membrane activates transient receptor potential vanilloid channels and sodium–calcium exchangers in mouse odontoblasts
JP4939432B2 (ja) α−シヌクレイン毒性のモジュレーター
KR100951656B1 (ko) 프로베네시드를 포함하는 trpv2 활성제
Rauch et al. Ecdysteroid receptor and ultraspiracle from Chironomus tentans (Insecta) are phosphoproteins and are regulated differently by molting hormone
US20020034728A1 (en) Methods and compositions for screening icrac modulators
EP2622351B1 (en) Neuropeptide q as modulator of gpcr galr2 and uses thereof
Kubista et al. Evidence for structural and functional diversity among SDS-resistant SNARE complexes in neuroendocrine cells
Narayanan et al. Intramolecular interaction between the DEP domain of RGS7 and the Gβ5 subunit
CN105969847B (zh) 营养制品和医药产品用质量控制生物测定
KR101223990B1 (ko) Dmapp 또는 그 염을 이용한, trpv4의 활성제 또는 활성 억제제를 스크리닝 하기 위한 조성물, trpv4 양성 또는 음성 뉴런의 분리방법, 및 trpv4 활성제 또는 활성 억제제를 스크리닝 하기 위한 방법
KR101091810B1 (ko) 신규 활성제를 이용한 trpv1 활성화 방법
Pollenz et al. Characterization of two continuous cell lines derived from Oncorhynchus mykiss for models of aryl-hydrocarbon-receptor-mediated signal transduction: direct comparison to the mammalian hepa-1c1c7 cell line
US20110065128A1 (en) Methods for Assessing CDK5 Activation and Function
JP6200501B2 (ja) 栄養医薬品および医薬品のための細胞ベース品質管理バイオアッセイ
Skiba et al. Label-free impedance measurements to unravel biomolecular interactions involved in G protein-coupled receptor signaling
EP1546732B1 (de) Modulation der insulinsynthese
US20040033508A1 (en) Simple quantitative fluorescent assay method for determining the activity of transport proteins of interest
AU2001276569A1 (en) Quantitative fluorescent assay for determining the activity of transport proteins
WO2001032912A1 (en) Use of the jak-stat system in cultured cells to trace effects of tested compounds
Chao et al. The Role of δ-Opioid Receptors in Brain Ionic Homeostasis Under Physiological Condition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140120

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150423

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160128

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170116

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180112

Year of fee payment: 9