KR100947432B1 - 오버랩 기법을 적용한 css 시스템의 성능 분석 방법 - Google Patents

오버랩 기법을 적용한 css 시스템의 성능 분석 방법 Download PDF

Info

Publication number
KR100947432B1
KR100947432B1 KR1020080115044A KR20080115044A KR100947432B1 KR 100947432 B1 KR100947432 B1 KR 100947432B1 KR 1020080115044 A KR1020080115044 A KR 1020080115044A KR 20080115044 A KR20080115044 A KR 20080115044A KR 100947432 B1 KR100947432 B1 KR 100947432B1
Authority
KR
South Korea
Prior art keywords
css system
overlap
ber
iii
css
Prior art date
Application number
KR1020080115044A
Other languages
English (en)
Inventor
윤태웅
윤석호
김상훈
안상호
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020080115044A priority Critical patent/KR100947432B1/ko
Application granted granted Critical
Publication of KR100947432B1 publication Critical patent/KR100947432B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B2001/6912Spread spectrum techniques using chirp

Abstract

본 발명은 오버랩 기법이 적용된 첩 확산 대역(chirp spread spectrum, CSS) 시스템에서의 비트오류율(bit error rate, BER)을 구하는 방법에 관한 것이다. 보다 상세하게는 근사화된 가우시안 Q 함수를 이용하여 오버랩 기법이 적용된 CSS 시스템의 BER 성능을 유도하는 방법 및 닫힌꼴 BER 성능 수식을 구하는 방법에 관한 것이다.
본 발명에 따르는 오버랩 기법을 적용한 CSS 시스템의 성능분석 방법은, (ⅰ) CSS 시스템에서 오버랩된 송신 신호를 모형화하는 단계; (ⅱ) 상기 CSS 시스템에서 채널을 통과한 오버랩 된 수신 신호를 모형화하는 단계; (ⅲ) 상기 CSS 시스템에서 오버랩된 수신 신호의 다운-첩 필터 출력 신호를 모형화하는 단계; 및 (ⅳ)상기 CSS 시스템에서 닫힌꼴 BER 수식을 유도하는 단계;를 포함하는 것을 구성적 특징으로 한다.
BER, BPSK, 오버랩, 가우시안 Q 함수, 다운-첩 필터, 업-첩 필터

Description

오버랩 기법을 적용한 CSS 시스템의 성능 분석 방법{Method of Analysis for the efficiency of CSS System using Overlap Method}
본 발명은 오버랩 기법이 적용된 첩 확산 대역(chirp spread spectrum, CSS) 시스템에서의 비트오류율(bit error rate, BER)을 구하는 방법에 관한 것이다. 보다 상세하게는, 근사화된 가우시안 Q 함수를 이용하여 오버랩 기법이 적용된 CSS 시스템의 BER 성능을 유도하는 방법 및 닫힌꼴 BER 성능 수식을 구하는 방법에 관한 것이다.
CSS 기술은 시간에 따라 순간 주파수가 변하는 첩 신호와 펄스 압축 기술을 이용하는 기술로 1940년대부터 군용 레이더 및 잠수함 음향 탐지 기술 분야에서 널리 사용되어 왔다. CSS 기술은 소비 전력이 낮고 시간 분해능이 높으며 다중 경로 간섭 및 채널 페이딩 현상에 강한 장점을 지니고 있다. 또한 복잡한 신호 처리 과정 없이 간단한 아날로그 하드웨어와 표면음파(surface acoustic wave, SAW) 필터를 이용하여 구현이 가능하다.
이러한 CSS 기술의 다양한 장점들로 인해 차세대 실내 무선 통신 분야를 선도할 핵심 기술 중 하나로 CSS 기술이 최근 많은 주목을 받고 있다. 일례로 2007년 3월에는 국제전기전자기술자협회(institute of electrical and electronics engineers, IEEE)가 CSS 기술을 새로운 실내 무선 통신 표준인 802.15.4a의 물리 계층 표준 기술 중 하나로 채택하였다. 새로운 표준은 CSS 기술이 실시간 위치 시스템(real time location systems, RTLS), 산업 제어(industrial control), 센서 네트워킹 기술 및 의료 장비 등 다양한 분야에 적용되어 널리 사용될 수 있을 것으로 전망되고 있다.
CSS 시스템에서는 데이터 전송량을 증가시키기 위한 방법 중 하나로 오버랩 기법을 사용한다. 오버랩 기법이란 하나의 첩 신호가 완전히 생성되지 않은 상태에서 다음 첩 신호를 생성하여 시간 영역에서 다수의 첩 신호를 중첩시켜 전송하는 방법으로, 추가적인 하드웨어의 설치 및 변경 없이 오버랩 횟수만 조절함으로써 데이터 전송량을 증가시킬 수 있다는 장점을 갖는다.
그러나 데이터 전송 시 오버랩 횟수를 증가시키면 주어진 시간 내에 더 많은 데이터를 전송할 수 있지만 동시에 인접 심벌 간의 간섭(intersymbol interference, ISI)과 다운-첩 필터(down-chirp filter) 출력 신호의 포락선 크기 변화를 유발하여 심각한 BER 성능 저하를 초래한다.
따라서 오버랩 기법을 적용한 CSS 시스템에서 높은 데이터 전송률과 높은 전송 신뢰성을 동시에 보장하기 위해서는 심벌 오버랩이 BER 성능 저하에 미치는 영향을 고려한 후 적절한 횟수로 오버랩을 실시해야 한다.
이러한 상기의 목적을 달성하기 위해서는 오버랩 사용에 따른 BER 성능 변화에 대한 분석이 선행적으로 연구되어야 한다. P. Zhang 및 H. Liu의 논문 “An ultra-wide band system with chirp spread spectrum transmission technique”에는 오버랩 횟수에 따라 BER 성능이 변한다는 사실이 언급되어 있다. 하지만 BER 성능에 대한 수학적 유도 과정 및 오버랩 횟수를 매개 변수로 가지는 닫힌꼴 BER 수식은 제시되어 있지 않아 종래의 방법만으로는 요구되는 BER 성능을 만족시키는 적절한 오버랩 횟수를 결정할 수가 없다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 오버랩 기법을 적용한 CSS 시스템에서 요구되는 BER 성능을 만족시키는 적절한 오버랩 횟수를 결정하는데 도움을 줄 수 있는 BER 수식 유도 과정 및 오버랩 횟수를 매개 변수로 가지는 닫힌꼴 BER 수식을 제공함을 목적으로 한다.
상기와 같은 목적을 달성하기 위해 본 발명에 따르는 오버랩 기법을 적용한 CSS 시스템의 성능 분석 방법은, (ⅰ) CSS 시스템에서 오버랩 된 송신 신호를 모형화 하는 단계; (ⅱ) 상기 CSS 시스템에서 채널을 통과한 오버랩 된 수신 신호를 모형화 하는 단계; (ⅲ) 상기 CSS 시스템에서 오버랩 된 수신 신호의 다운-첩 필터 출력 신호를 모형화 하는 단계; 및 (ⅳ)상기 CSS 시스템에서 닫힌꼴 BER 수식을 유도하는 단계;를 포함하는 것을 구성적 특징으로 한다.
본 발명에서는 근사화 된 가우시안 Q 함수를 이용하여 오버랩 기법이 적용된 CSS 시스템의 BER 성능 수식 유도 과정 및 닫힌꼴 BER 성능 수식을 제공한다.
근사화된 가우시안 Q 함수의 계산을 위해 긴 길이를 가지는 하나의 지수적으로 감소하는 코사인(exponentially decreasing cosine, EDC) 급수 대신 두 개의 짧은 길이를 가지는 EDC 급수가 사용되었으며, 이는 유도된 닫힌꼴 BER 수식을 더욱 간편하게 사용할 수 있도록 한다.
수학적 분석 결과는 유도된 BER 수식의 이론값이 모의실험값과 거의 일치하며 상당히 정확한 값을 가진다는 사실을 보여주므로, 본 발명에서 새롭게 유도한 BER 수식은 오버랩을 적용한 CSS 시스템 설계 시 요구되는 BER 성능을 만족시키는 적절한 오버랩 횟수를 결정하는데 유용하게 이용될 수 있다.
CSS 기술은 데이터 변조 방법에 따라 크게 이진직교변조(binary orthogonal keying, BOK) 방식과 직접변조(direct modulation, DM) 방식 두 가지로 분류될 수 있다. 우선 BOK 방식에서는 첩 신호 자체가 데이터 정보를 표현하는데 사용된다. 예를 들어 비트 "1"을 표현하기 위해서는 업-첩(up-chirp) 신호가, 비트 “0”을 표현하기 위해서는 다운-첩(down-chirp) 신호가 각각 사용된다. 반면 DM 방식에서는 첩 신호가 단지 확산 기능을 담당하는 부호로만 사용된다. 즉 DM 방식은 데이터 변복조 과정을 첩 수행 과정과 독립적으로 수행하며 기존의 다양한 데이터 변복조 기법과 결합하여 사용된다. 본 발명에서는 첩 신호 송수신 과정을 위하여 DM 기법과 이진 위상 편이 방식(binary phase shift keying, BPSK)이 결합한 DM-BPSK 시스템을 고려하였다.
도 1은 오버랩 기법을 적용한 DM-BPSK 시스템의 구조를 나타낸 블록도이다.
본 발명의 DM-BPSK 시스템은 데이터 변/복조를 수행하는 이진 위상 변/복조기, 중간 주파수(intermediate frequency, IF) 펄스 생성 및 표본화를 수행하는 스위치, 첩 신호의 생성과 압축을 위한 업-첩/다운-첩 필터, 그리고 데이터 수신 여부를 검사하는 검파기로 구성된다.
CSS 시스템에서 송신되는 선형 첩 신호의 기저 대역 등가 형태 는 다음의 수학식 1과 같이 표현된다.
Figure 112008079678065-pat00001
여기서 c μ(μ≠0)는 첩 신호 구간, 첩율을 각각 나타낸다. 첩율은 순간 주파수의 변화량을 나타내는 값으로 μ>0 인 경우에는 업-첩 신호, μ<0 인 경우에는 다운-첩 신호라고 정의된다. 도 1에서 입력 데이터는 우선 송신단에서 BPSK 방식으로 매핑 된 후 매 c 초 마다 IF 펄스로 변조 된다. 이후 위상 변조된 IF 펄스는 임펄스 응답이 h(t)
Figure 112008079678065-pat00002
인 업-첩 필터를 통과하게 되며, 이때 생성된 i번째 첩 전송 신호 s i (t)는 수학식 2와 같이 표현된다.
Figure 112008079678065-pat00003
여기서 E b b i 는 (∈{±1}) 전송 심벌 당 비트 에너지와 i번째 전송 데이터를 각각 의미한다. 송신 안테나를 통하여 전송된 첩 신호는 채널을 통과한 후 수신안테나를 통해 수신되게 되며, 수신기에서는 신호가 다운-첩 필터를 통과한 후 높 은 처리 이득을 가지는 신호로 압축된다.
A. Springer, W. Gugler, R. Koller 및 R. Weigel의 논문 “A wireless spread-spectrum communication system using SAW chirp delay lines”에 따르면, 다운-첩 필터의 임펄스 응답을
Figure 112008079678065-pat00004
라 할 때, 다운-첩 필터 출력 신호
Figure 112008079678065-pat00005
는 다음의 수학식 3과 같이 표현된다.
Figure 112008079678065-pat00006
여기서 B
Figure 112008079678065-pat00007
확산 대역폭으로 첩 신호 구간 동안 순간 주파수가 변화한 범위를 의미하고, '
Figure 112008079678065-pat00008
'는 길쌈 연산 기호를 나타내며 p(t)는
Figure 112008079678065-pat00009
로 정의된다. 수학식 (3)에서
Figure 112008079678065-pat00010
Figure 112008079678065-pat00011
에서 처음으로 원점을 지난다. 따라서 첩 신호 구간 대
Figure 112008079678065-pat00012
의 주 첨두 폭의 비로 정의된 압축비 (compression ratio) 또는 수행 이득은 BT c (processing gain) 가 된다. 압축된 신호의 다운-첩 필터 출력 신호는
Figure 112008079678065-pat00013
가 최대값을 가지는 t=0에서 표본화되며, 데이터 복조 과정을 과정과 검파 과정을 거친 후 최종적으로 출력 데이터가 생성되게 된다.
오버랩 기법을 사용하면 다수의 첩 신호들이 시간 영역에서 중첩되어 전송되 고 수신 신호 및 다운-첩 필터의 출력 신호 역시 중첩되어 생성되게 된다. 따라서 오버랩 된 i 번째 DM-BPSK 송신 신호
Figure 112008079678065-pat00014
는 수학식 4와 같이 i번째 첩 신호와 일정 시간 간격만큼 떨어진 다수의 인접 첩 신호들의 합의 형태로 나타낼 수 있으며, 부가 백색 가우시안 잡음 채널(additve white Gaussian channel, AWGN)을 통과한 수신 신호 r(t)는 수학식 5와 같이 송신 신호에 잡음이 더해진 형태로 표현할 수 있다.
Figure 112008079678065-pat00015
Figure 112008079678065-pat00016
여기서 O f 는 총 오버랩 횟수, τ(=T c / O f )는 오버랩 간격, n(t)는 평균이 0이고 양측 전력 스펙트럼 밀도가 N 0 /2인 가우시안 잡음 성분을 각각 의미한다. 그러면 t=0에서 표본화한 i번째 DM-BPSK 신호에 대한 다운-첩 필터의 출력
Figure 112008079678065-pat00017
는 다음 수학식 6과 같이 나타낼 수 있다.
Figure 112008079678065-pat00018
여기서 n은 평균이 0이고 분산이 N 0 /2인 필터를 통과한 잡음 성분을 의미한다. 전송 데이터 1과 -1은 동일한 확률로 발생하고, 가우시안 확률 밀도 함수(probability density function: pdf)는 0에 대하여 대칭이므로 평균 비트 오류 확률 P B 는 아래 수학식 7과 같이 구할 수 있다.
Figure 112008079678065-pat00019
오버랩 된 다운-첩 필터 출력 신호
Figure 112008079678065-pat00020
내의 정규화 된 전체 ISI 성분을 아래 수학식 8에 표현되어 있는
Figure 112008079678065-pat00021
라고 정의하자.
Figure 112008079678065-pat00022
여기서
Figure 112008079678065-pat00023
는 오버랩 성분에 의한 ISI 성분을 나타낸다. 수학식 6과 수학식 8을 수학식 7에 대입하여 정리하면, 특정
Figure 112008079678065-pat00024
에 대한 조건부 비트 오류 확률
Figure 112008079678065-pat00025
는 다음 수학식 9와 같이 표현된다.
Figure 112008079678065-pat00026
여기서
Figure 112008079678065-pat00027
는 가우시안 Q 함수이며, σ는 가우시안 잡음의 표준 편차를 나타낸다. 따라서 P B 는 특정
Figure 112008079678065-pat00028
에 대해 조건부 기댓값을 취함으로써 아래 수학식 10과 같이 구할 수 있다.
Figure 112008079678065-pat00029
여기서
Figure 112008079678065-pat00030
Figure 112008079678065-pat00031
에 대한 조건부 기댓값을 나타낸다. 수학식 10에서 볼 수 있듯이, 닫힌꼴 P B 를 구하기 위해서는
Figure 112008079678065-pat00032
의 확률 밀도 함수에 대한 가우시안 Q 함수의 기댓값을 구해야 하는데, 이는 매우 복잡한 연산 과정을 수반한다. 보다 간단한 방법으로 닫힌꼴 가우시안 Q 함수의 기댓값을 구하기 위해서 본 발명에서는
Figure 112008079678065-pat00033
를 아래 수학식 11과 같이 EDC 급수로 이루어진
Figure 112008079678065-pat00034
로 근사화하였다.
Figure 112008079678065-pat00035
여기서 N T 급수의 길이,
Figure 112008079678065-pat00036
는 실수 값을 취하는 연산자를 나타내며, Cm, λm 그리고 ωm은 실수 파라미터들로써 아래 수학식 12에서 정의된
Figure 112008079678065-pat00037
Figure 112008079678065-pat00038
사이의 대칭형 제곱 상대오차(symmetric squared relative error, SSRE),
Figure 112008079678065-pat00039
가 최소가 되도록 그 값들이 결정된다.
Figure 112008079678065-pat00040
여기서 수학식 12의 아래 식은 위 식의 이산적인 표현 형태이며, χ와 N s 는 각각 인수
Figure 112008079678065-pat00041
의 근사화 범위와 주어진 근사화 범위를 표본화한 총 표본화 점의 개수를 각각 나타낸다. 수학식 8과 수학식 11을 수학식 10에 대입하여 풀면, P B 는 아래 수학식 13과 같이 다시 쓸 수 있다.
Figure 112008079678065-pat00042
여기서
Figure 112008079678065-pat00043
Figure 112008079678065-pat00044
의 모멘트 생성 함수를 의미한다.
Figure 112008079678065-pat00045
이므로
Figure 112008079678065-pat00046
는 다음 수학식 14와 같이 나타낼 수 있다.
Figure 112008079678065-pat00047
수학식 14를 13에 대입하여 정리한 최종 닫힌꼴 BER 수식은 아래 수학식 15와 같다.
Figure 112008079678065-pat00048
한편, 가우시안 Q 함수의 급격한 감소율 때문에
Figure 112008079678065-pat00049
가 보다 넓은 BER 범위에서 정확한 근사값을 가지기 위해서는 더 많은 수의 EDC 급수 항이 필요하게 된다. 이를 위해서는 상당한 양의 파라미터 값들을 추정해야 하는데, 이는 매우 복잡 한 연산 과정을 수반한다. 이러한 문제를 해결하기 위하여 본 발명에서는 전체 유효 BER 범위 0.5에서 10-10를 0.5에서 10-3, 10-3에서 10-10, 두 개의 범위로 나눠서 각각의 BER 범위를 균일하게 분포된 1000개의 점들로 표본화한 후 수학식 13을 이용하여 정확한 근사 값을 가지는
Figure 112008079678065-pat00050
를 구하였다. 이후 두 개의
Figure 112008079678065-pat00051
를 결합하여 결과적으로 적은 파라미터를 가지고도 전체 유효 BER 범위에서 정확한 근사값을 가지는 BER 수식 표현을 도출하였다.
Figure 112008079678065-pat00052
의 유효 BER 범위 및 각 BER 범위에 대한
Figure 112008079678065-pat00053
의 파라미터 값들은 표 1과 표 2에 기재되어 있다.
Figure 112008079678065-pat00054
Figure 112008079678065-pat00055
다음으로, 모의실험의 결과와 본 발명에서 유도한 오버랩 기반 DM-BPSK 시스템의 BER 성능 식을 비교하여 보았다. 모의실험에서 첩 신호 구간 (Tc), 첩율(μ), 그리고 확산 대역폭은 (B) 각각 0.5㎲, 400MHz/㎲, 200MHz로 설정되었으며, 수신기에서 표본화오류는 발생하지 않는다고 가정하였다.
Figure 112008079678065-pat00056
연산을 위한 파라미터들은 표 1과 표 2에 기재되어 있는 값을 사용하였다.
도2는 AWGN(Additive White Gaussian Noise) 채널 환경에서 BPSK 신호에 대한 BER 성능과 오버랩을 실시하지 않은 (O f =1) DM-BPSK 시스템의 BER 성능을 비교한 그래프이다. 여기서 BPSK 신호와 DM-BPSK 시스템의 BER 그래프들은 각각 수학식 10과 수학식 16을 이용하여 나타내었다. 도 2에서 두 BER 그래프는 거의 일치한다. DM 변조 방식에서는 첩 수행 과정이 데이터 변조 과정과는 독립적으로 발생하므로 BER 성능에는 영향을 미치지 않는다. 따라서 AWGN 채널 환경에서는 오버랩을 실시하지 않을 경우 DM-BPSK 시스템의 BER 성능과 BPSK 신호의 BER 성능은 동일하게 나타난다. 그 결과 그림 2의 두 BER 그래프는 동일하게 나타나며, 이를 통해 가우시안 Q 함수를 근사화한
Figure 112008079678065-pat00057
가 매우 정확한 값을 가진다는 사실 또한 확인할 수 있다.
도3은 다양한 오버랩 횟수에 대해 오버랩 기반 DM-BPSK 시스템의 BER 성능 이론값과 모의실험 결과를 비교한 그래프이다. 그림을 통해 우선 본 논문에서 유도한 BER 이론값이 몬테카를로법(Monte Carlo Method)에 기반한 모의실험을 통해 얻은 BER 결과값과 거의 일치하는 것을 볼 수 있다. 이전의 고찰 결과를 통해 BER 이론값과 모의실험 결과값의 차이는 파라미터 N T 가 더 큰 값을 가질수록 더 줄어들 것이라는 것을 쉽게 예상할 수 있다. 또한 도 3에서 O f =1일 때와 O f =10일 때 오버랩에 따른 BER 성능 차이가 거의 발생하지 않는다는 사실을 확인할 수 있다. CSS 시스템에서 다운-첩 필터 통과 후 압축된 신호는 매우 좁은 주 첨두 폭을 가지고 있다. 따라서 표본화 오류가 발생하지 않는다고 가정할 때 만약 오버랩된 첩 심벌들의 간격이 다운-첩 필터 출력 신호의 주 첨두 폭 보다 충분히 넓다면, 인접 데이터 간의 간섭은 거의 발생하지 않게 된다. O f =10인 경우 인접 심벌 간의 간격은 50㎱(=0.5㎲/10)이며, 이는 대략적인 주 첨두 폭인 10㎱(=2/B) 보다 약 5배 정도 넓은 수치이다. 그러므로 O f =1인 경우에 표본화 점에서 인접 데이터에 의한 간섭은 거의 발생 하지 않게 되고, 오버랩에 따른 BER 성능 저하는 거의 발생하지 않게 된다.
도4는 특정 신호 대 잡음비에서 (11dB) 오버랩 횟수에 따른 DM-BPSK 시스템의 BER 성능 변화를 보여준다. 도4를 살펴보면 더 많은 횟수의 오버랩이 항상 더 큰 BER 성능 저하를 초래하지는 않는다는 것을 확인할 수 있다. 이는 다운-첩 필터 출력 신호가 sinc 함수와 유사한 다수의 0 교차 지점을 가지는 파형을 가지므로 인접 심벌의 위치에 따라 표본화 점에서 ISI의 크기가 달라지기 때문에 발생하게 된다. 즉, 만약 표본화 지점에서 오버랩에 의한 간섭 성분들이 0에 가까운 값을 가진다면 다수의 첩 심벌을 오버랩 하더라도 심벌 간 간섭은 많이 발생하지 않게 된다. 반면 많은 횟수로 오버랩을 실시하지 않았다 할지라도 표본화 지점에서 오버랩에 의한 간섭 성분이 큰 값을 가지게 되면 ISI의 크기가 커지게 되고, 결론적으로 큰 BER 성능 저하가 일어나게 되는 것이다. 이를 통해 오버랩 횟수와 BER 성능 저하가 항상 비례하는 것은 아니라는 사실을 추론할 수 있다.
도4의 결과 그래프는 요구되는 BER 성능을 만족시키는 오버랩 횟수를 결정하는데 유용하게 이용될 수 있다. 예를 들어 신호 대 잡음비가 11 dB일 때 신뢰성 높은 데이터 송수신을 위해 요구되는 한계 BER 성능이 10-5라고 가정하자. 그림에서 점선 (10-5) 아래에 위치하는 점들은 요구되는 BER 성능을 만족시키는 다양한 오버랩 횟수들을 나타내며 이들 중 최대 허용 가능한 오버랩 횟수는 50이다. 따라서 주어진 조건 내에서 만약 50개의 첩 심벌을 오버랩하게 된다면, 요구되는 BER 성능을 만족시키는 동시에 데이터 전송률 또한 최대로 높일 수 있게 된다. 이처럼, 도4의 결과 그래프는 요구되는 BER 성능을 만족시키는 적절한 오버랩 횟수를 결정할 때 기준이 되는 지표로써 유용하게 사용될 수 있다.
이상의 설명은 본 발명의 기술 사항을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이런 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
도1은 직접 변조 이진 위상 천이 방식(direct modulation binary phase shift keying, DM-BPSK) 시스템의 블록도.
도2는 BPSK 신호와 오버랩을 실시하지 않은(O f =1) DM-BPSK 시스템의 비트오류율 이론 성능 비교 그래프.
도3은 본 발명에 따르는 닫힌꼴 비트오류율 성능 수식을 이용해 표현한 오버랩 기반 DM-BPSK 시스템의 비트오류율 이론식과 모의실험 결과 비교 그래프.
도4는 특정 신호 대 잡음비에서 다양한 오버랩 횟수에 대한 DM-BPSK 시스템의 비트오류율 그래프.

Claims (7)

  1. (ⅰ) CSS 시스템에서 오버랩 된 송신 신호를 모형화 하는 단계;
    (ⅱ) 상기 CSS 시스템에서 채널을 통과한 오버랩 된 수신 신호를 모형화 하는 단계;
    (ⅲ) 상기 CSS 시스템에서 오버랩 된 수신 신호의 다운-첩 필터 출력 신호를 모형화 하는 단계; 및
    (ⅳ) 상기 CSS 시스템에서 닫힌꼴 BER 수식을 유도하는 단계;를 포함하는 것을 특징으로 하는
    오버랩 기법을 적용한 CSS 시스템의 성능분석 방법.
  2. 제 1 항에 있어서,
    상기 (ⅰ)단계는 오버랩을 실시하지 않은 경우(O f =1), BPSK 방식으로 변조되어 표본화된 후 업-첩 필터를 통과해 생성된 i번째 DM-BPSK 전송 신호를 모형화하는 단계를 더 포함하는 것을 특징으로 하는
    오버랩 기법을 적용한 CSS 시스템의 성능분석 방법.
  3. 제 1 항에 있어서,
    상기 (ⅰ)단계는 다수의 첩 심벌을 오버랩한 경우, 오버랩된 i번째 DM-BPSK 전송 신호
    Figure 112008079678065-pat00058
    를 모형화하는 단계를 더 포함하는 것을 특징으로 하는
    오버랩 기법을 적용한 CSS 시스템의 성능분석 방법.
  4. 제 1 항에 있어서,
    상기 (ⅲ)단계는 오버랩을 실시하지 않은 경우(O f =1), 수신 신호
    Figure 112008079678065-pat00059
    가 다운-첩 필터를 통과한 필터 출력 신호
    Figure 112008079678065-pat00060
    를 모형화하는 단계를 더 포함하는 것을 특징으로 하는
    오버랩 기법을 적용한 CSS 시스템의 성능분석 방법.
  5. 제 1 항에 있어서,
    상기 (ⅲ)단계는 다수의 첩 심벌을 오버랩한 경우 다운-첩 필터를 통과한 오버랩 된 번째 필터 출력 신호
    Figure 112008079678065-pat00061
    를 모형화하는 단계를 더 포함하는 것을 특징으로 하는
    오버랩 기법을 적용한 CSS 시스템의 성능분석 방법.
  6. 제 1 항에 있어서,
    상기 (ⅳ)단계는,
    (a) 상기 CSS 시스템에서 특정 ISI 성분에 대한 조건부 BER을 가우시안 Q 함수 형태로 나타내는 단계;
    (b) 상기 CSS 시스템에서 가우시안 Q 함수를 근사화하는 단계; 및
    (c) 상기 CSS 시스템에서 근사화된 가우시안 Q 함수를 이용하여 특정 ISI 성분에 대한 조건부 기댓값을 취해 최종 닫힌꼴 BER 수식을 구하는 단계;를 더 포함하는 것을 특징으로 하는
    오버랩 기법을 적용한 CSS 시스템의 성능분석 방법.
  7. 제 6 항에 있어서,
    상기 (b) 단계는 가우시안 Q 함수와 근사화된 가우시안 Q 함수와의 오차를 최소화하기 위해 표 1과 표 2에 제시된 파라미터들을 사용하는 것을 특징으로 하는
    오버랩 기법을 적용한 CSS 시스템의 성능분석 방법.
KR1020080115044A 2008-11-19 2008-11-19 오버랩 기법을 적용한 css 시스템의 성능 분석 방법 KR100947432B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080115044A KR100947432B1 (ko) 2008-11-19 2008-11-19 오버랩 기법을 적용한 css 시스템의 성능 분석 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080115044A KR100947432B1 (ko) 2008-11-19 2008-11-19 오버랩 기법을 적용한 css 시스템의 성능 분석 방법

Publications (1)

Publication Number Publication Date
KR100947432B1 true KR100947432B1 (ko) 2010-03-12

Family

ID=42183295

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080115044A KR100947432B1 (ko) 2008-11-19 2008-11-19 오버랩 기법을 적용한 css 시스템의 성능 분석 방법

Country Status (1)

Country Link
KR (1) KR100947432B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101126441B1 (ko) 2010-06-11 2012-03-28 성균관대학교산학협력단 오버랩 기반 디엠-비피에스케이 첩 대역확산 시스템에서의 오버랩 횟수에 따른 심벌간 간섭 분석 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문 1 : IEEE 2008

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101126441B1 (ko) 2010-06-11 2012-03-28 성균관대학교산학협력단 오버랩 기반 디엠-비피에스케이 첩 대역확산 시스템에서의 오버랩 횟수에 따른 심벌간 간섭 분석 방법

Similar Documents

Publication Publication Date Title
KR20090011594A (ko) 초광대역 레인징 시스템에서 협대역 간섭제거 방법
Rahnama et al. Performance comparison of chaotic spreading sequences generated by two different classes of chaotic systems in a chaos‐based direct sequence‐code division multiple access system
Quyen et al. Design and analysis of a spread‐spectrum communication system with chaos‐based variation of both phase‐coded carrier and spreading factor
KR101034949B1 (ko) 톤 재밍 신호에 따른 css시스템의 성능 분석 방법
Alsharef et al. M-ary chirp modulation for coherent and non-coherent data transmission
KR100947432B1 (ko) 오버랩 기법을 적용한 css 시스템의 성능 분석 방법
Yin et al. A joint multiuser detection scheme for UWB sensor networks using waveform division multiple access
Le et al. Survey on diversity‐combining techniques for interference suppression in fast frequency hopping systems
KR20080110790A (ko) 다중경로 및 다중 안테나 무선 시스템을 위한 데이터-비도움 채널 추정기
Zheng et al. Biorthogonal Fourier transform for multichirp-rate signal detection over dispersive wireless channel
CN102171938A (zh) 移除经调制的单频干扰
Chaparro et al. Channel modeling for spread spectrum via evolutionary transform
Ibrahim et al. OFDM over wideband ionospheric HF channel: Channel modelling & optimal subcarrier power allocation
Temaneh-Nyah et al. An investigation of the effects of impulsive noise and channel distortion in narrow band power line communication
Szczepaniak et al. Radio transmission masking on the example of FSK modulation
Lei et al. A chaotic direct sequence spread spectrum communication system in shallow water
Yoon et al. Bit-error-rate performance analysis of an overlap-based CSS system
KR101040799B1 (ko) 처프 스프레드 스펙트럼 기반의 직접 변조-차동 4상 위상 변이 키잉 시스템에서의 부분 대역 방해 전파 환경에 대한 비트오류율 분석 방법 및 그 장치
Li et al. Symbol rate estimation based on wavelet transform and cyclic spectrum
KR101126441B1 (ko) 오버랩 기반 디엠-비피에스케이 첩 대역확산 시스템에서의 오버랩 횟수에 따른 심벌간 간섭 분석 방법
CN113904703B (zh) 连续频谱随机信号载波通信方法
Elechi et al. Performance Analysis of BER and SNR of BPSK in AWGN Channel
KR101074566B1 (ko) 다중 경로 채널 환경에서 처프 확산 대역 시스템의 성능 분석 방법
Kennedy et al. Simulation of the multipath performance of FM-DCSK digital communications using chaos
Ra et al. Superimposed DSSS transmission based on cyclic shift keying in underwater acoustic communication

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140106

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee