KR100937465B1 - 복잡도가 감소된 슬라이딩 윈도우 기반의 등화기 - Google Patents
복잡도가 감소된 슬라이딩 윈도우 기반의 등화기 Download PDFInfo
- Publication number
- KR100937465B1 KR100937465B1 KR1020067006058A KR20067006058A KR100937465B1 KR 100937465 B1 KR100937465 B1 KR 100937465B1 KR 1020067006058 A KR1020067006058 A KR 1020067006058A KR 20067006058 A KR20067006058 A KR 20067006058A KR 100937465 B1 KR100937465 B1 KR 100937465B1
- Authority
- KR
- South Korea
- Prior art keywords
- delete delete
- vector
- equation
- noise
- fourier transform
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/01—Equalisers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03305—Joint sequence estimation and interference removal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/7103—Interference-related aspects the interference being multiple access interference
- H04B1/7105—Joint detection techniques, e.g. linear detectors
- H04B1/71055—Joint detection techniques, e.g. linear detectors using minimum mean squared error [MMSE] detector
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03178—Arrangements involving sequence estimation techniques
- H04L25/03331—Arrangements for the joint estimation of multiple sequences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03993—Noise whitening
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Power Engineering (AREA)
- Noise Elimination (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
- Radio Transmission System (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명은 많은 면들을 가진다. 본 발명의 한 면은 슬라이딩 윈도우를 사용하여 등화를 수행하는 것이다. 제2 면은 후속 윈도우에 의한 사용을 위해 각각의 윈도우에 대해 유도된 정보를 재사용한다. 제3 면은 등화를 위해 이산 푸리에 변환에 기초한 접근법을 사용한다. 제4 면은 수신된 신호들과 제4 응답의 오버샘플링을 처리하는 것에 관한 것이다. 제5 면은 다중 수신 안테나를 처리하는 것에 관한 것이다. 제6 실시예는 오버샘플링 및 다중 수신 안테나 양자 모두를 처리하는 것에 관한 것이다.
데이터 추정, 절삭, 슬라이딩 윈도우, 에러 보상, 등화기.
Description
도 1은 띠형 채널 응답 행렬을 나타내는 도면이다.
도 2는 띠형 채널 응답 행렬의 중간 부분을 도시하는 도면이다.
도 3은 일례로서 분할된 데이터 벡터 윈도우를 도시한 도면이다.
도 4는 분할된 신호 모델을 도시하는 도면이다.
도 5는 과거 보정 계수를 이용한 슬라이딩 윈도우 데이터 검출의 플로차트이다.
도 6은 과거 보정 계수를 이용한 슬라이딩 윈도우 데이터 검출을 이용한 수신기이다.
도 7은 노이즈 자기상관 보정 계수를 이용한 슬라이딩 윈도우 데이터 검출의 플로차트이다.
도 8은 노이즈 자기상관 보정 계수를 이용한 슬라이딩 윈도우 데이터 검출을 사용하는 수신기이다.
도 9는 슬라이딩 윈도우 프로세스의 그래픽 표현이다.
도 10은 원형 근사화를 사용한 슬라이딩 윈도우 프로세스의 그래픽 표현이다.
도 11은 이산 푸리에 변환(DFT)을 사용한 데이터 검출을 위한 실시예의 회로이다.
본 발명은 대체로 무선 통신 시스템에 관한 것으로, 특히, 이와 같은 시스템에서의 데이터 검출에 관한 것이다.
개선된 수신기 성능에 대한 수요 증가로 인해, 많은 진보된 수신기들이 제로 포싱(ZF) 블럭 선형 등화기와 최소 평균 자승 오차(MMSE) 등화기를 사용한다.
이들 양 접근법에서, 수신된 신호는 전형적으로 수학식 1에 의해 모델링된다.
r은 수신 벡터이고, 수신된 신호의 샘플들을 포함한다.
H는 채널 응답 행렬이고, d는 데이터 벡터이다. 코드 분할 다중 액세스(CDMA) 시스템과 같은 확산 스펙트럼 시스템들에서, d는 확산 데이터 벡터이다. CDMA 시스템들에서, 각각의 개개 코드에 대한 데이터는, 추정된 데이터 벡터 d를 그 코드로 확산시켜 생성된다. n은 노이즈 벡터이다.
ZF 블럭 선형 등화기에서, 데이터 벡터는 수학식 2에 의해 추정된다.
(ㆍ)H는 복소 공액 트랜스포즈(또는 헤르메시안(Hermetian)) 연산이다. MMSE 블럭 선형 등화기에서, 데이터 벡터는 수학식 3에 따라 추정된다.
다중경로 전파(multipath propagation)를 겪는 무선 채널에서, 이들 접근법들을 사용하여 데이터를 정확하게 검출하기 위해서는, 무한한 갯수의 수신 샘플들이 사용될 것이 요구된다. 복잡도를 줄이기 위한 한 접근법은 슬라이딩 윈도우 접근법(sliding window approach)이다. 슬라이딩 윈도우 접근법에서, 수신된 샘플들의 사전설정된 윈도우와 채널 응답들이 데이터 검출에서 사용된다. 초기 검출 이후, 이 윈도우는 샘플들의 다음 윈도우로 미끄러진다. 이러한 프로세스는 통신이 중단될 때까지 계속된다.
무한 갯수의 샘플들을 사용하지 않음으로써, 데이터 검출에는 에러가 유입된다. 무한 시퀀스의 실효 절삭부(effectively truncated portion)들이 가장 큰 충격을 갖게 되는 윈도우의 시작과 끝에서, 이러한 에러가 가장 현저하다. 이들 에러들을 줄이기 위한 한 접근법은, 큰 윈도우 크기를 이용하고 윈도우의 시작과 끝에서 그 결과를 절삭하는 것이다. 윈도우의 절삭부들은 이전 및 후속 윈도우들에서 결정된다. 이 접근법은 상당한 복잡도를 가진다. 큰 윈도우 크기는, 데이터 추정에서 사용되는 행렬과 벡터들의 차원을 크게 한다. 또한, 이 접근법은, 윈도우의 시작과 끝에서의 데이터 검출 및 그 데이터의 폐기에 의해 계산적으로 효율적이지 않다.
따라서, 데이터 검출을 위한 대안적인 접근법이 필요하다.
본 발명은 많은 면들을 가진다. 본 발명의 한 면은 슬라이딩 윈도우를 사용하여 등화를 수행하는 것이다. 제2 면은 후속 윈도우에 의한 사용을 위해 각각의 윈도우에 대해 유도된 정보를 재사용한다. 제3 면은 등화를 위해 이산 푸리에 변환에 기초한 접근법을 사용한다. 제4 면은 수신된 신호들과 제4 응답의 오버샘플링을 처리하는 것에 관한 것이다. 제5 면은 다중 수신 안테나를 처리하는 것에 관한 것이다. 제6 실시예는 오버샘플링 및 다중 수신 안테나 양자 모두를 처리하는 것에 관한 것이다.
비록 본 발명의 특징 및 요소들은 특정한 조합의 양호한 실시예들에 기술되어 있지만, 각각의 특징 및 요소는 (양호한 실시예들의 다른 특징들 및 요소들 없이) 단독으로, 또는 본 발명의 다른 특징 및 요소들 없이 또는 이들과 함께 다양한 조합으로 사용될 수 있다.
이하, 무선 송수신 유닛(WTRU)은 사용자 장비, 이동국, 고정 또는 이동형 가입자 유닛, 페이저, 또는 무선 환경에서 동작할 수 있는 임의의 다른 유형의 장치를 포함하지만, 이에 한정되는 것은 아니다. 이하에서 언급할 때, 기지국은 노드-B, 싸이트 제어기, 액세스 포인트, 또는 무선 환경 내의 임의 유형의 인터페이싱 장치를 포함하지만, 이에 한정되는 것은 아니다.
비록 복잡도가 감소된 슬라이딩 윈도우 등화기가, CDMA2000 및 UMTS FDD(Universal Mobile Terrtrial System Frequency Division Duplex), 시분할 듀플렉스(TDD) 모드 및 시분할 동기 CDMA(TD-SCDMA)와 같은 양호한 무선 코드 분할 다중 액세스 통신 시스템과 연계하여 설명되지만, 다양한 통신 시스템, 특히, 다양한 무선 통신 시스템에도 적용될 수 있다. 무선 통신 시스템에서, 이 등화기는, 기지국으로부터 발생하여 WTRU에 의해 수신되는 전송에 적용될 수 있으며, 하나 또는 복수의 WTRU로부터 발생하여 기지국에 의해 수신되는 전송이나, 애드 혹(ad hoc) 모드의 동작에서와 같이, 한 WTRU로부터 발생되어 또 다른 WTRU에 의해 수신되는 전송에도 적용될 수 있다.
이하, 양호한 MMSE 알고리즘을 이용하여 복잡도가 감소된 슬라이딩 윈도우 기반의 등화기의 구현에 대해 설명한다. 그러나, 제로 포싱과 같은 다른 알고리즘도 이용할 수 있다. h(ㆍ)는 채널의 임펄스 응답이다. d(k)는 확산 코드를 사용하여 심볼을 확산시킴으로써 발생되는 k번째 전송된 샘플이다. 이것은, 직교 코드(orthogonal code)와 같은 한 세트의 코드를 이용하여 한 세트의 심볼들을 확산시킴으로써 발생된 칩(chip)들의 합계일 수도 있다. r(ㆍ)은 수신된 신호이다. 시스템의 모델은 수학식 4에 의해 표현될 수 있다.
n(t)는 부가적 노이즈와 간섭(셀내 간섭 및 셀간 간섭)의 합계이다. 비록 칩 레이트(chip rate)의 배수와 같은 다른 샘플링 레이트가 사용될 수 있지만, 간략성을 위해, 수신기에서 칩 레이트 샘플링이 사용된다고 가정할 것이다. 샘플링 된 수신된 신호는 수학식 5에 의해 표현될 수 있다.
(수학식 5)
T c 는 간략한 표기를 위해 생략되었다.
h(ㆍ)는 유한 지원(finite support)을 가지며 시불변(time invariant)이다. 이것은, 이산 시간 도메인(discrete-time domain)에서, 인덱스 L은 h(i) = 0 (i < 0고 i≥L)이 되도록 존재한다는 것을 의미한다. 그 결과, 수학식 5는 수학식 6과 같이 다시 씌어질 수 있다.
수신된 신호는 M개의 수신된 신호들 r(0), ..., r(M-1)을 가진다는 점을 고려하면, 수학식 7은 결과적으로 하기와 같이 된다.
여기서,
(수학식 7)
벡터 d의 부분은 근사식을 이용하여 결정될 수 있다. M > L이라고 가정하고, N = M - L + 1이라 정의하면, 벡터 d는 수학식 8이다.
(수학식 8)
수학식 7에서 H 행렬은 띠형 행렬(banded matrix)로서, 도 1의 도면과 같이 표현될 수 있다. 도 1에서, 음영진 영역의 각 행은, 수학식 7에 도시된 바와 같은, 벡터 [h(L-1),h(L-2),...,h(1),h(0)]를 나타낸다.
도시된 바와 같이, r의 처음 L-1과 마지막 L-1 요소들은 수학식 10의 우변에서 동일하지 않다. 그 결과, 벡터 의 2개 끝에서의 요소들은 중심에 가까운 요소들보다 덜 정확하게 추정된다. 이러한 속성으로 인해, 슬라이딩 윈도우 접근법은, 칩들과 같은, 전송된 샘플들의 추정에 양호하게 사용된다.
슬라이딩 윈도우 접근법의 각각의 k번째 단계에서, 소정 갯수의 수신된 샘플들은 차원 N + L - 1의 r[k]에 유지된다. 이들은 수학식 10을 사용하는 차원 N의 한 세트의 전송된 데이터 를 추정하는데 사용된다. 벡터 가 추정된 후에, 추정된 벡터 의 "중간(middle)" 부분만이 역확산(despreading)과 같은 추가의 데이터 처리에 사용된다. 의 "하위" 부분(시간적으로 나중 부분)은 슬라이딩 윈도우 프로세스의 다음 단계에서 다시 한번 추정된다. 여기서, r[k+1]은 요소들 r[k] 중 일부와 새로이 수신된 샘플들 일부를 가진다. 즉, r[k]의 시프트(슬라이드) 버전이다.
비록, 양호하게는, 윈도우 크기 N과 슬라이딩 단계 크기는, (채널의 지연 확산(L), 데이터 추정의 정확도 요건, 및 구현시의 복잡도 제한에 기초한) 설계 파라미터들이지만, 이하에서는 예시적 목적을 위해 수학식 12의 윈도우 크기를 사용한다.
SF는 확산 계수이다. 전형적인 윈도우 크기는, 비록 다른 크기가 이용가능하긴 하지만, 채널 임펄스 응답보다 5 내지 20배 정도 더 크다.
수학식 12의 윈도우 크기에 기초한 슬라이딩 단계 크기는, 양호하게는 2N s ×SF이다. N s ∈ {1, 2, ...}는 양호하게는, 설계 파라미터로서 남겨진다. 또한, 각각의 슬라이딩 단계에서, 역확산기에 전송되는 추정된 칩들은, 추정된 의 중간에 있는 2N s × SF개의 요소들이다. 이 프로시져는 도 3에 도시되어 있다.
데이터 검출의 한 알고리즘은 MMSE 알고리즘을 사용하고, 그 모델 에러 보정은 수학식 10의 시스템 모델과 슬라이딩 윈도우 기반의 접근법을 사용한다.
근사화로 인해, 칩들과 같은 데이터의 추정은 에러를 가지는데, 특히, 각각의 슬라이딩 단계에서의 데이터 벡터의 양끝에서 에러를 갖는다. 이 에러를 보정하기 위해, 수학식 7의 H 행렬은 수학식 13에 따라 블럭 행 행렬(block row matrix)로 분할된다(단계 50).
H f 는 수학식 15에 따른다.
벡터 d는 수학식 16에 따라 블럭들로 분할된다.
d f 는 수학식 18에 따른다.
원래의 시스템 모델은 수학식 19에 따르며, 도 4에 도시되어 있다.
수학식 19를 모델링하기 위한 한 접근법은 수학식 20에 따른다.
는 이전의 슬라이딩 윈도우 단계에서 의 추정의 일부이다. 은 의 자기상관 행렬이다. 즉, 이다. 만일 H f d f 및 n이 상관되지 않는다고 가정하면, 수학식 24의 결과가 나온다.
이 접근법은 또한 도 5의 플로차트, 및 WTRU나 기지국으로 구현될 수 있는 도 6의 양호한 수신기 컴포넌트들과 연계하여 기술된다. 도 6의 회로는 주문형 집적 회로(ASIC)과 같은 하나의 집적 회로(IC) 상에 구현되거나, 개별적인 컴포넌트들 또는 IC와 개별적인 컴포넌트들과의 조합과 같은 복수의 IC들 상에 구현될 수 있다.
채널 추정 장치(20)는 수신 벡터 r을 처리하여 채널 추정 행렬 부분들, , 및 H f 를 생성한다(단계 50). 미래 노이즈 자기상관 장치(24)는 미래 노이즈 자기상관 계수, 를 결정한다(단계 52). 노이즈 자기상관 장치(22)는 노이즈 자기상관 계수, E{nn H}를 결정한다(단계 54). 합산기(26)는 2개의 계수들을 합산하여 를 생성한다(단계 56).
과거 입력 보정 장치(28)는, 채널 응답 행렬 H p 의 과거 부분과 데이터 벡터 의 과거의 사전설정된 부분을 취하여, 과거 보정 계수 를 생성한다(단계 58). 감산기(30)는 수신 벡터로부터 과거 보정 계수를 감산하여, 수정된 수신 벡터 를 생성한다(단계 60). MMSE 장치(34)는 수학식 21에 따른 수신 데이터 벡터 중심부 를 결정하기 위해 ,및를 사용한다(단계 62). 의 부분을 다음 윈도우 결정에서의로서 사용하여 동일한 방식으로 다음 윈도우가 결정된다(단계 64). 이 접근법에서 설명된 바와 같이, 관심 부분에 대한 데이터 만이 결정되어, 데이터 검출 및 데이터 벡터의 원치 않는 부분의 절삭에 연관된 복잡도를 줄이게 된다.
데이터 검출에 대한 다른 접근법에서, 노이즈 항(noise term)만이 보정된다. 이 접근법에서, 시스템 모델은 수학식 25에 따른다.
H p d p , H f d f 및 n은 상관되지 않은 것으로 가정하여, 수학식 27이 결과로서 생긴다.
수학식 27을 사용하여 수학식 26을 풀기 위한 복잡도를 줄이기 위해, 및 에 대한 전체 행렬 곱셈은 필요하지 않다. 이는 H p 및 H f 의 상위 및 하위 코너만이 대개 0이 아니기 때문이다.
이러한 접근법은, 또한 도 7의 플로차트, 및 WTRU나 기지국으로 구현될 수 있는 도 8의 양호한 수신기의 컴포넌트들과 연계하여 설명된다. 도 8의 회로는, 주문형 집적 회로(ASIC)와 같은 하나의 집적 회로(IC) 상에 구현되거나, 개별적인 컴포넌트들 또는 IC와 개별적인 컴포넌트들과의 조합과 같은 복수의 IC상에 구현될 수 있다.
채널 추정 장치(36)는 수신 벡터를 처리하여, 채널 추정 행렬 부분 , 및 H f 를 생성한다(단계 70). 노이즈 자기상관 장치(38)는 채널 응답 행렬의 미래부 및 과거부를 사용하여 노이즈 자기상관 보정 계수 를 결정한다(단계 72). 노이즈 자기상관 장치(40)는 노이즈 자기상관 계수 E{nn H}을 결정한다(단계 74). 합산기(42)는 노이즈 자기상관 계수에 노이즈 자기상관 보정 계수를 가산하여 를 생성한다(단계 76). MMSE 장치(44)는 데이터 벡터 의 중심 부분을 추정하기 위해 채널 응답 행렬 의 중심 부분, 수신 벡터 r, 및 를 사용한다(단계 78). 이러한 접근법의 한 잇점은, 검출된 데이터를 사용하는 피드백 루프가 필요하지 않다는 것이다. 그 결과, 상이한 슬라이드 윈도우 버전이, 순차적 방식이 아니라 병렬로 결정될 수 있다.
이산 푸리에 변환에 기초한 등화
상술한 슬라이딩 윈도우 접근법은 복잡한 프로세스인 매트릭스 역변환을 요구한다. 슬라이딩 윈도우를 구현하기 위한 한 실시예는 다음과 같이 이산 푸리에 변환(DFT)을 이용한다. 비록 DFT 기반의 접근법의 양호한 구현은 MMSE로 이루어지지만, 제로 포싱(ZF) 기반의 알고리즘과 같은 다른 알고리즘에도 적용될 수 있다.
이런 종류의 행렬은 수학식 (29)과 같이, DFT와 IDFT 연산자를 사용하여 표현된다.
여기서, , 즉, 적절히 퍼뮤테이션(permutation)된다면, 행렬 의 제1 컬럼이 아닌 다른 컬럼이 사용될 수 있다. F N 은 임의의 x ∈ CN에 대해 수학식 (30)에 따라 정의되는 N-포인트 DFT 행렬이다.
F N -1은 x ∈ CN에 대해 수학식 (31)에 따라 정의되는 N-포인트 역 DFT 행렬이다.
슬라이딩 윈도우 기반의 칩 레벨 등화기를 사용하는 데이터 추정 프로세스에 대해 DFT 기반의 접근법을 적용하는 예이다.
수신기 시스템은 수학식 34에 따라 모델링된다.
은 채널의 임펄스 응답이다. 는 확산 코드를 사용하여 심볼들을 확산시킴으로써 발생되는 k번째 전송된 칩 샘플들이다. 은 수신된 신호이다. 은 부가적 잡음 및 (셀간 및 셀내) 간섭의 합이다.
칩 레이트 샘플링과 유한 지원을 갖는 을 이용하면, 이것은 이산-시간 도메인에서, i < 0 이고 i ≥ L에 대한 h(i) = 0이 되는 정수 L이 있음을 의미하고, 샘플링된 수신된 신호는, 수학식(35)에 따라 표현될 수 있다.(Tc는 표기의 간략화를 위해 생략되었다)
M(M > L)개의 수신된 신호들 r(0), ..., r(M-1)에 기초하여, 수학식(36)이 나온다.
여기서,
수학식(36)에 도시된 바와 같이, H 행렬은 토플리츠(Toeplitz)이다. 다중 칩 레이트 샘플링 및/또는 다중 수신 안테나를 위한 응용에서 후속해서 기술되는 바와 같이, H 행렬은 블럭 토플리츠이다. 블럭 토플리츠 속성을 이용하여, 이산 푸리에 변환 기술이 적용될 수 있다. 토플리츠/블럭 토플리츠 속성은, 한개 채널과의 컨벌루션 또는 유한 갯수의 유효 병렬 채널들과 입력 신호의 컨벌루션의 결과로서 생성된다. 유효 병렬 채널들은 오버샘플링 또는 다중 수신 안테나 중 어느 하나의 결과로서 나타난다. 한개 채널에 대해, 하나의 행(row)은 본질적으로 슬라이드 다운되며, 우변에서 토플리츠 행렬을 생성한다.
노이즈 벡터의 통계는 수학식(37)에 따라 자기상관을 갖는 것으로 다루어진다.
수학식 5의 좌변은 연속된 입력 신호 스트림의 "윈도우"로서 볼 수 있다. 데이터를 추정하기 위해, 근사화된 모델이 사용된다. 이 근사화된 모델에서, 벡터 d의 첫번째 L-1 요소와 마지막 L-1 요소는 MMSE 알고리즘을 적용하기 이전에 제로인 것으로 가정되며, d의 리셋된 M - L + 1 요소들은 새로운 벡터 를 형성한다. 근사화된 모델은 수학식 38에 따라 명시적으로 표현될 수 있다.
여기서,
벡터 가 추정된 후에, 그 중간 부분만이 역확산용으로 취해진다. 후속해서, 관측의 윈도우(즉, 수신된 신호)는 (M - L + 1)/2 요소들만큼 슬라이드되고, 프로세스는 반복된다. 도 9는 상술한 슬라이딩 윈도우 프로세스의 그래픽 표현이다.
MMSE 알고리즘을 이용하여, 추정된 데이터는 수학식 39를 이용하여 표현된다.
수학식(39)에서, 행렬 R 및 행렬 중 어느 것도 DFT 구현을 용이하게 하기 위해 원형 행렬(circulant)이 아니다. DFT 구현을 용이하게 하기 위해, 각각의 슬라이딩 단계에 대해, 수학식(40)에 따른 근사화된 시스템 모델이 사용된다.
수학식 40에서, 처음의 L-1 요소들(수학식들)만이 수학식 36의 요소들에 대한 근사치이다.
(수학식 41)
각각의 슬라이딩 단계에 대한 시스템 모델은 수학식 42에 따른다.
수학식 42에서 벡터 d는, 새로운 모델로 인해, 수학식 36에서의 벡터 d와는 상이하다. 수학식 42는 수학식 39의 처음 L-1 요소에 추가 왜곡을 부가한다. 이러한 왜곡은 추정된 벡터 d의 양 극단(two ends)을 부정확하게 만든다. 도 10은 모델 구성 프로세스의 그래픽 표현이다.
수학식 42에 따른 근사화된 모델을 사용하여, MMSE 알고리즘은 수학식 43에 따르는 추정된 데이터를 산출한다.
(수학식 44)
원형 행렬의 속성을 적용하면, 추정된 데이터는 수학식 45에 따른다.
도 11은 수학식 45에 따른 데이터 추정을 위한 회로도이다. 도 11의 회로는, 주문형 집적 회로(ASIC)과 같은 하나의 집적 회로(IC) 상에 구현되거나, 이산형 컴포넌트 또는 IC와 이산형 컴포넌트의 조합으로서, 복수의 IC 상에 구현될 수 있다.
추정 채널 응답 는 토플리츠 행렬 를 결정하기 위해 결정 장치(80)에 의해 처리된다. 원형 근사화 장치(82)는 원형 행렬 을 생성하기 위해 를 처리한다. 헤르메시안 장치(84)는 의 헤르메시안, 을 생성한다. , , 및 노이즈 편차 을 이용하여, 이 결정 장치(86)에 의해 결정된다. 의 첫번째 컬럼을 사용하여, 결정 장치(90)에 의해 역 대각 행렬이 결정된다. 이산 푸리에 변환 장치(92)는 수신 벡터 r 상에 변환을 수행한다. 대각, 역대각, 및 푸리에 변환 결과는 곱셈기(96)에 의해 서로 곱해진다. 역 푸리에 변환 장치(94)는 데이터 벡터 를 생성하기 위해 곱셈 결과의 역변환을 취한다.
슬라이딩 윈도우 접근법은, 채널이 각각의 슬라이딩 윈도 내에서 불변 (invariant)이라는 가정에 기초하고 있다. 슬라이딩 윈도우의 시작 부근에서의 채널 임펄스 응답이 각각의 슬라이딩 단계에 대해 사용될 수 있다.
는 심볼의 갯수이며, M > L이 되도록 선택되어야 하는 설계 파라미터이다. M은 FFT 알고리즘을 이용하여 구현될 수 있는 DFT에 대한 파라미터이기도 하기 때문에, M은 Radix-2 FFT 또는 프라임 팩터 알고리즘(PFA) FFT가 적용될 수 있도록 충분히 크게 만들어질 것이다. 데이터가 추정된 후에, 샘플로부터 시작하는 역확산을 처리하기 위해 샘플들이 취해진다. 도 11은 역확산을 위해 샘플들을 취하는 도면이다.
다중 수신 안테나 등화
이하는 K 수신 안테나와 같은 다중 수신 안테나를 이용하는 실시예이다. 수신된 벡터의 샘플들과 채널 임펄스 응답의 추정치는, 각각의 안테나에 대해 독립적으로 취해진다. 단일 안테나 실시예에 대한 것과 동일한 프로세스를 따라, 각각의 안테나 입력 가 수학식 47에 따라 근사화된다.
또는 수학식 48에 따른 블럭 행렬 형태이다.
수학식 49 및 50은, 노이즈 항들의 자기상관 및 상호상관 속성들의 추정치이다.
및
MMSE 알고리즘을 적용하면, 추정된 데이터는 수학식 51에 따라 표현될 수 있다.
만일 수신 안테나들이 서로 가까이 위치하면, 노이즈 항들은 시간적 및 공간적으로 상관될 수 있다. 그 결과, 약간의 성능상의 열화가 초래될 수 있다.
다중 칩 레이트 샘플링 (오버샘플링) 등화
이하에서, 다중 칩 레이트 샘플링을 이용한 슬라이딩 기반의 등화 접근법을 사용하는 실시예들에 대한 설명이 이루어질 것이다. 다중 칩 레이트 샘플링은, 2배, 3배 등과 같은, 칩 레이트의 정수배인 샘플링 레이트에서 채널이 샘플링되는 때이다. 비록 이하에서는 칩 샘플링당 2배에 집중하지만, 이들 접근법들은 다른 배수에도 적용될 수 있다.
폭이 N칩인 슬라이딩 윈도우와 2배 칩 레이트 샘플링을 이용하면, 수신 벡터 이다. 이 벡터는 재정렬되어, 짝수 수신 벡터 이고, 홀수 수신 벡터 로 분리될 수 있다. 여기서, 이다. 일반성을 잃지 않고, 데이터 전송 모델은 수학식 53에 따른다.
수학식 53은, 칩당 유효 2-샘플 이산-시간 채널을, 2개의 칩레이트 이산-시간 채널들로 분리한다.
수학식 53에서 행렬 및 는 짝수 및 홀수 채널 응답 행렬에 대응한다. 이들 행렬들은 짝수 및 홀수 응답 벡터 및 로부터 구성되며, 이들은 칩당 2 샘플에서 채널 응답을 샘플링하고 이를 짝수 및 홀수 채널 응답 벡터들로 분리함으로써 얻어진다.
만일 채널이 추가 화이트 가우시안 노이즈(AWGN) 채널이고 수신된 데이터가 샘플링된 채널로부터 직접 제공된다면, 수학식 55는 다음과 같이 된다.
그 결과, 문제는 앞서 설명된 바와 같이, 상관되지 않은 노이즈를 갖는 2 수신 안테나들에 대한 칩-레이트 등화기의 경우와 수학적으로 유사하다. 그러나, 많은 구현들에서 수신된 안테나 신호들은 추가 처리를 위해 디지털 수신기 로직에 의해 제공되기 이전에 수신측 루트-레이즈드 코사인(RRC, receive-side root-raised cosine)에 의해 처리된다. 이와 같은 처리에 후속하여, 수신된 노이즈 벡터는 더 이상 화이트가 아니지만, 레이즈드-코사인(RC) 자기상관 함수를 가진다. RC는 RRC 응답의 주파수 영역 스퀘어(square)이다. RC 펄스는 나이키스트 펄스이므로, 수학식 54는 유효하나, 수학식 55는 유효하지 않다. 행렬 의 번째 요소는 수학식 56을 따른다.
의 속성은 실수(real), 대칭, 및 토플리츠라는 것이고, 띠형으로 되지 않고, 제로 엔트리를 갖지 않으며, 그 엔트리들은, 주 대각선으로부터 떨어질수록 더 작아지며 0이 되는 경향이 있다.
정확한 해
r의 관찰로부터 d의 선형 최소 평균 제곱 추정 문제에 대한 정확한 해는 수학식 58에 따른다.
와 는 어느 것도 토플리츠가 아니며, 의 구조에 기인하여, 기본 단위 연산(elemental unitary operation; 예를 들어, 행/열 재배열)을 통해 토플리츠로 만들어질 수 없다. 따라서, 토플리츠 행렬의 원형 근사화에 기초한 DFT-기반의 방법들은 여기서는 적용될 수 없으며 정확한 해는 고도로 복잡하다.
이 문제를 풀기 위한 효율적인 알고리즘을 유도하기 위한 2개 실시예가 기술된다. 제1 실시예는 간단한 근사화를 사용하며 제2 실시예는 거의 정확한 해를 사용한다.
간단한 근사화
이 간단한 근사화 접근법의 복잡성은 다음과 같다. N-칩 데이터 블럭들이 고려된다. 대강의 근사화를 위해, 초당 NlogN 연산(ops)에 의해 주어지는, N-포인트 DFT 복잡도가 가정된다. 추가적으로, N-포인트 벡터 곱셈은 N ops를 취하는 것으로 가정되고, 벡터 덧셈들은 무시된다.
DFT-기반의 복잡도는 대략 2개 컴포넌트로 분할될 수 있다: 매 수신 데이터 세트 상에 수행되어야 하는 프로세싱과, 대체로 이전 동작보다 1 내지 2배 정도 덜 빈번하게 이루어지는, 채널 추정이 갱신될 때 수행되는 프로세싱.
각각의 수신된 데이터 세트 상에 수행되는 프로세싱에 대해, 이하의 동작들이 수행된다: 수신된 벡터를 주파수 영역으로 변환하는 2N-포인트 DFT; 2N-포인트 벡터 곱셈(각각의 수신된 벡터를 적절한 "상태" 벡터로 곱함); 및 결과를 시간 영역으로 되변환하기 위한 하나 이상의 DFT. 따라서, 적절한 복잡도는 수학식 59에 따른다.
채널 응답이 갱신될때 수행되는 프로세싱에 대해, 이하의 동작들이 수행된다: 2회의 DFT 연산, 6회의 N-포인트 벡터 곱셈, 및 벡터 곱셈 연산의 10배 정도 필요한 벡터 나눗셈. 따라서, 이 단계의 복잡도는 대략 수학식 60에 따라 주어진다.
거의 정확한 해
블럭-토플리츠 해를 사용하는 거의 정확한 해를 위해, 벡터와 행렬들은 벡터 이 되도록, 그들의 자연순(natural order)에 따라 재정렬된다. 수학식 61은 자연순 모델이다.
(수학식 61)
는 의 i번째 행(row)이고, 는 의 i번째 행이다. 는 그 첫번째 행이 이고 그 두번째 행이 인 2×N 행렬이다. 행-x, 열-y 요소 로서 를 사용하는 것이 수학식 62에 도시된 블럭-토플리츠이다.
의 블럭-토플리츠 구조는 및 및 행-재배열의 토플리츠 구조로부터 직접적으로 따른다. I 및 의 토플리츠 구조로부터, 재정의된 문제에서 노이즈의 자기상관 행렬도 역시 토플리츠이다. 이 행렬은 역시 대칭이기 때문에, 수학식 63에 따라 다시 표현할 수 있다.
후속해서, 토플리츠 행렬에 대한 블럭-원형 근사화가 생성된다. 행렬도 역시 띠형으로 되기 때문에, 의 블럭 원형 근사화는 직접 얻어진다. 그러나, 는 띠형으로 되지 않고, 그에 따라 직접적으로 블럭-원형 근사화를 생성할 수 없다. 의 요소들은 주 대각선으로부터 멀어지는 경향이 있으므로, 의 띠형 근사화는 수학식 64에 따른다.
(수학식 64)
노이즈-공분산-대역폭, 은 선택되는 설계 파라미터이다. RC 펄스 형상의 감쇄 속성으로 인해, 단지 몇개의 칩을 가능성이 높다. 이제 는 띠형 블럭-토플리츠이고, 이에 대한 원형 근사화가 생성된다.
(수학식 65)
(수학식 66)
MMSE 추정기는 수학식 69에 따라 다시 씌어질 수 있다.
수학식 68에 따른 MMSE 추정기 형태는 몇가지 잇점을 가진다. 이것은 하나의 역행렬 계산만을 요구하며, 따라서 DFT 도메인에서 단지 하나의 벡터 나눗셈만을 요구한다. 이것은 잠재적으로 상당한 절약을 제공하는데, 이는 나눗셈은 고도로 복잡하기 때문이다.
거의-정확한 해는, 비록 다른 접근법들이 사용될 수는 있지만, 가장 양호한 실시예에서 2개의 단계들을 가진다. 새로운 채널 추정이 얻어질 때마다. 채널 필터가 갱신된다(이 결정된다). 매 데이터 블럭에 대해, 이 필터 는 수신된 데이터 블럭에 적용된다. 이러한 분할은, 수신된 데이터 블럭 프로세싱에 비해 채널이 덜 빈번하게 갱신되기 때문에 이용된다. 따라서 전체 프로세스를 이들 2개 단계들로 분리함으로써 상당한 복잡도 감소가 얻어질 수 있다.
의 DFT는, 노이즈 분산 에 의해 곱해지는 펄스 성형 필터의 DFT이다. 펄스 성형 필터는 전형적으로 시스템의 고정된 특징이기 때문에, 그 DFT는 미리계산되어 메모리에 저장될 수 있다. 따라서, 값 만이 갱신된다. 펄스-성형 필터는 "이상적인" (IIR) 펄스 형상에 가까우므로, 이상적 펄스 형상의 DFT가 에 대해 사용될 수 있어, 복잡도를 감소시키고, 캐리어로부터 멀리 떨어질 수도 있다.
채널 갱신 단계에 대해, 이하의 동작들이 수행된다:
2. 의 "블럭-DFT"는 요소별 자기상관을 발견한 다음 와 의 상호상관에 의해 계산된다. 이것은 6N회의 복소수 곱셈과 2N회의 복소수 덧셈을 요구했다: N개의 2×2 행렬들의 곱들이 그들 자신의 헤르메시안 트랜스포즈를 이용하여 계산된다.
4. 의 역이 블럭-DFT 도메인에서 취해진다. 이를 위해, N개의 2×2 행렬들 각각의 역이 블럭-DFT 도메인에서 취해진다. 연산의 총 갯수를 추정하기 위해, 헤르메시안 행렬 을 고려해 보자. 이 행렬의 역은 수학식 70에 따라 주어진다.
따라서, 각각의 역을 계산하는 복잡도는 3회의 실수 곱셈과 1회의 실수 감산(대략 1회의 복소수 곱셈) 및 1회의 실수 나눗셈을 포함한다.
요약하면, 다음과 같은 계산이 요구된다: 2회의 N-포인트 DFT; 18N회의 복소수 계산(17 N-포인트 벡터 곱셈 + N 단독형 곱셈); 및 1N회의 실수 나눗셈.
2N 값(N 칩 길이)들의 데이터 블럭 r을 처리하는 복잡도는, 2회의 N-포인트 DFT; 8N회의 복소 곱셈과 4N회의 복소수 가산을 요구하는, N-포인트 블럭 DFT의 1회 곱(필터와 데이터); 및 1회의 N-포인트 역 DFT를 포함한다.
요약하면, 이하의 연산이 요구된다: 3회의 N-포인트 DFT; 8N회의 복소수 곱셈(8회의 N-포인트 벡터 곱셈); 및 4N회의 복소수 덧셈(4회의 N-포인트 벡터 덧셈 ).
복수의 칩 레이트 샘플링 및 복수의 수신 안테나 등화
이하는 복수의 칩 레이트 샘플링과 복수의 수신 안테나를 사용하는 실시예들이다. L 수신 안테나에 대해, 2L 채널 행렬-각각의 안테나에 대한 하나의 "짝수" 및 하나의 "홀수" 행렬-이 귀결된다. 번째 안테나에 대한 채널 행렬은 및 로 표기되고, 및 는 이와같은 행렬의 n번째 행을 나타낸다. 각각의 채널 행렬은 토플리츠이고 적절한 행 재배열을 통해 조인트 채널 행렬은 수학식 71에 따른 블럭-토플리츠 행렬이다.
수신된 관찰 r로부터의 벡터 d의 추정은 수학식 72에 따라 모델링된다.
MMSE 추정 공식은 수학식 73을 따른다.
은 노이즈 벡터 n의 공분산이다. 수학식 73의 해의 형태는 에 대해 이루어진 가정에 따라 달라진다. 다중 수신 안테나의 도입은 추가적인 공간 차원(spatial dimension)을 도입한다. 비록 시간적 및 공간적 상관의 상호작용은 지극히 복잡하지만, 노이즈의 공간적 상관 속성은, 수학식 74에 따라 2개의 직접적 곱으로 표시되는 경우를 제외하고는, 시간적 상관 속성과 상호작용하지 않는다고 가정할 수 있다.
는 수학식 57에 따라 신호 안테나에서 관측되는 노이즈의 노이즈 공분산 행렬이다. 의 차원은 이다. 는 정규화된 동기화 공간 공분산 행렬이다. 즉, L 안테나에서 관측되며 동시에 주 대각선 상에서 1을 갖도록 정규화된 L 노이즈 샘플들간의 공분산 행렬이다. 는 크로넥커 곱(Kroenecker product)을 나타낸다.
은 헤르메시안 포지티브 반유한(Hermitian positive semi-definite) 행렬로서, 블럭들을 갖는 블럭-토플리츠이다. 데이터를 추정하기 위해, 4개의 양호한 실시예들이 기술된다: 정확한 해; L 수신 안테나는 상관되지 않은 노이즈를 갖는다는 가정에 의한 단순화; 동일한 안테나로부터의 짝수 및 홀수 스트림의 시간적 상관의 무시에 의한 단순화; 및 모든 2L 칩-레이트 노이즈 스트림은 상관되지 않는다는 가정에 의한 단순화.
원형 근사화를 사용한 DFT-기반의 프로세싱의 복잡도는 2개의 성분으로 분할 될 수 있다: 모든 새로운 데이터 블럭에 대해 이루어질 필요는 없는 채널 추정 프로세싱과, 모든 데이터 블럭에 대해 수행되는 데이터 그 자체의 프로세싱. 4개 모두의 실시예에서, 데이터 프로세싱의 복잡도는 2L회의 포워드 N-포인트 DFT; 2LN회의 복소수 곱셈; 및 1회의 N-포인트 DFT를 포함한다. 채널 추정 프로세싱의 복잡도는 각각의 실시예마다 다르다.
정확한 MMSE 해의 경우, 채널 추정으로부터 "MMSE 필터"를 계산하는 복잡도는 다음과 같다: 2L회의 N-포인트 DFT; 를 계산하기 위한, N회의 2L×2L 행렬 곱셈 + N회의 2L×2L 행렬 덧셈; 의 역변환을 계산하기 위한, N회의 2L×2L 행렬 역변환; 및 실제 필터를 생성하기 위한 N회의 2L×2L 행렬 곱셈.
이러한 프로세스의 전체 복잡도에 대한 주요 기여자는 행렬 역변환 단계이며, 여기서는 2L×2L 행렬의 역변환이 취해져야만 한다. 이하에 열거한 바와 같은, 코렐레이트되지 않는 노이즈의 성질에 대한 다양한 가정에 의해 이러한 복잡도는 감소될 수 있다.
1. 노이즈가 시간적(짝수/홀수 샘플들) 및 공간적(안테나를 가로질러) 양자 모두 상관되지 않는다고 가정하면, 은 대각 행렬로 축소되고, 문제는 공간적으로 상관되지 않는 노이즈를 갖는 2L 안테나에서의 칩-샘플링당-싱글-샘플링과 동일해진다. 그 결과, 행렬 역변환의 연산은 나눗셈으로 전환되는데, 이것은 모든 포함된 행렬들이 토플리츠이기 때문이다.
2. 노이즈가 공간적으로 코렐레이트되지 않는다고 가정하면, 포함된 행렬 역은 2×2 행렬의 경우와 같다.
3. 공간적 노이즈 상관은 유지되나 짝수/홀수 스트림들이 시간적으로 상관되지 않는다고 가정하면, 포함된 행렬들의 역은 L×L이다.
본 발명에 의해 복잡도가 감소된 슬라이딩 윈도우 기반의 등화기가 제공된다.
Claims (70)
- 무선 송수신 유닛(WTRU)에 있어서,데이터 신호 칩 레이트의 배수로 샘플링함으로써 수신 벡터를 생성하기 위해 수신된 무선 통신 신호를 변환하도록 구성된 수신기와;상기 수신 벡터를 슬라이딩 윈도우 기반의 접근법을 이용하여 처리하되, 복수의 처리 윈도우들의 각각의 처리 윈도우에 대해,근사 원형 채널 응답 행렬(approximate circulant channel response matrix)이 생성되고,상기 근사 원형 채널 응답 행렬은 상기 윈도우에 대응하는 데이터 벡터를 추정하기 위해 이산 푸리에 변환 기반의 접근법에서 이용되도록, 상기 수신 벡터를 처리하도록 구성된 프로세서를 포함하는 무선 송수신 유닛.
- 삭제
- 제1항에 있어서, 루트-레이즈드 코사인 필터(root-raised cosine filter)를 상기 수신 벡터에 적용하도록 구성된 루트-레이즈드 코사인 필터링 유닛을 더 포함하는, 무선 송수신 유닛.
- 제1항에 있어서, 상기 프로세서는 샘플들간의 노이즈 상호 상관(noise cross correlation)을 무시하도록 구성된 것인, 무선 송수신 유닛.
- 제1항에 있어서, 상기 프로세서는, 자연순(natural order)으로 배열된 상기 근사 원형 채널 응답 행렬과 상기 수신 벡터를 이용하도록 구성된 것인, 무선 송수신 유닛.
- 제1항에 있어서, 상기 수신기는, 수신 벡터를 생성하기 위해 복수의 안테나로부터의 복수의 수신된 무선 통신 신호를 변환하도록 구성된 것인, 무선 송수신 유닛.
- 제6항에 있어서, 상기 프로세서는, 안테나들간의 노이즈 상호 상관을 무시하도록 구성된 것인, 무선 송수신 유닛.
- 제1항에 있어서, 상기 프로세서는, 노이즈 벡터 상호 상관의 이산 푸리에 변환을 생성하기 위해, 측정된 노이즈 분산을 펄스 성형 필터의 이산 푸리에 변환에 곱하도록 구성된 것인, 무선 송수신 유닛.
- 제1항에 있어서, 상기 프로세서는, 노이즈 벡터 상호 상관의 이산 푸리에 변환을 생성하기 위해, 측정된 노이즈 분산을 이상적 펄스 형상의 이산 푸리에 변환에 곱하도록 구성된 것인, 무선 송수신 유닛.
- 제1항에 있어서, 결합된 데이터 벡터를 형성하기 위해 각각의 윈도우에 대응하는 데이터 벡터를 결합하도록 구성된 합산기를 더 포함하는, 무선 송수신 유닛.
- 무선 통신에서 이용하기 위한 방법에 있어서,데이터 신호 칩 레이트의 배수로 샘플링함으로써 수신 벡터를 생성하기 위해 수신된 무선 통신 신호를 변환하는 것과;상기 수신 벡터를 슬라이딩 윈도우 기반의 접근법을 이용하여 처리하되, 복수의 처리 윈도우들의 각각의 처리 윈도우에 대해,근사 원형 채널 응답 행렬(approximate circulant channel response matrix)이 생성되고,상기 근사 원형 채널 응답 행렬은 상기 윈도우에 대응하는 데이터 벡터를 추정하기 위해 이산 푸리에 변환 기반의 접근법에서 이용되도록, 상기 수신 벡터를 처리하는 것을 포함하는, 무선 통신에서 이용하기 위한 방법.
- 삭제
- 제11항에 있어서, 루트-레이즈드 코사인 필터(root-raised cosine filter)를 상기 수신 벡터에 적용하는 것을 더 포함하는, 무선 통신에서 이용하기 위한 방법.
- 제11항에 있어서, 상기 처리하는 것은, 샘플들간의 노이즈 상호 상관(noise cross correlation)을 무시하는 것을 포함하는 것인, 무선 통신에서 이용하기 위한 방법.
- 제11항에 있어서, 상기 처리하는 것은, 자연순(natural order)으로 배열된 상기 근사 원형 채널 응답 행렬과 상기 수신 벡터를 이용하는 것을 포함하는 것인, 무선 통신에서 이용하기 위한 방법.
- 제11항에 있어서, 상기 변환하는 것은, 복수의 안테나로부터의 복수의 수신된 무선 통신 신호에 대응하는 복수의 수신 벡터를 생성하는 것을 포함하는 것인, 무선 통신에서 이용하기 위한 방법.
- 제16항에 있어서, 상기 처리하는 것은, 안테나들간의 노이즈 상호 상관을 무시하는 것을 포함하는 것인, 무선 통신에서 이용하기 위한 방법.
- 제11항에 있어서, 상기 처리하는 것은, 노이즈 벡터 상호 상관의 이산 푸리에 변환을 생성하기 위해, 측정된 노이즈 분산을 펄스 성형 필터의 이산 푸리에 변환에 곱하는 것을 포함하는 것인, 무선 통신에서 이용하기 위한 방법.
- 제11항에 있어서, 상기 처리하는 것은, 노이즈 벡터 상호 상관의 이산 푸리에 변환을 생성하기 위해, 측정된 노이즈 분산을 이상적 펄스 형상의 이산 푸리에 변환에 곱하는 것을 포함하는 것인, 무선 통신에서 이용하기 위한 방법.
- 제11항에 있어서, 결합된 데이터 벡터를 형성하기 위해 각각의 윈도우에 대응하는 데이터 벡터를 결합하는 것을 더 포함하는, 무선 통신에서 이용하기 위한 방법.
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
- 삭제
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48233303P | 2003-06-25 | 2003-06-25 | |
US60/482,333 | 2003-06-25 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020057024621A Division KR100768737B1 (ko) | 2003-06-25 | 2004-06-24 | 복잡도가 감소된 슬라이딩 윈도우 기반의 등화기 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020097013161A Division KR100937467B1 (ko) | 2003-06-25 | 2004-06-24 | 복잡도가 감소된 슬라이딩 윈도우 기반의 등화기 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060057634A KR20060057634A (ko) | 2006-05-26 |
KR100937465B1 true KR100937465B1 (ko) | 2010-01-19 |
Family
ID=33563853
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020097013161A KR100937467B1 (ko) | 2003-06-25 | 2004-06-24 | 복잡도가 감소된 슬라이딩 윈도우 기반의 등화기 |
KR1020057024621A KR100768737B1 (ko) | 2003-06-25 | 2004-06-24 | 복잡도가 감소된 슬라이딩 윈도우 기반의 등화기 |
KR1020067006058A KR100937465B1 (ko) | 2003-06-25 | 2004-06-24 | 복잡도가 감소된 슬라이딩 윈도우 기반의 등화기 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020097013161A KR100937467B1 (ko) | 2003-06-25 | 2004-06-24 | 복잡도가 감소된 슬라이딩 윈도우 기반의 등화기 |
KR1020057024621A KR100768737B1 (ko) | 2003-06-25 | 2004-06-24 | 복잡도가 감소된 슬라이딩 윈도우 기반의 등화기 |
Country Status (10)
Country | Link |
---|---|
EP (1) | EP1636900A4 (ko) |
JP (1) | JP4213747B2 (ko) |
KR (3) | KR100937467B1 (ko) |
CN (1) | CN101048934B (ko) |
AR (1) | AR044904A1 (ko) |
CA (1) | CA2530518A1 (ko) |
MX (1) | MXPA05013518A (ko) |
NO (1) | NO20060421L (ko) |
TW (3) | TW200537868A (ko) |
WO (1) | WO2005004338A2 (ko) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7570689B2 (en) * | 2005-02-14 | 2009-08-04 | Interdigital Technology Corporation | Advanced receiver with sliding window block linear equalizer |
US8064556B2 (en) * | 2005-09-15 | 2011-11-22 | Qualcomm Incorporated | Fractionally-spaced equalizers for spread spectrum wireless communication |
US7929597B2 (en) * | 2005-11-15 | 2011-04-19 | Qualcomm Incorporated | Equalizer for a receiver in a wireless communication system |
CN100405865C (zh) * | 2006-07-19 | 2008-07-23 | 北京天碁科技有限公司 | Td-scdma终端及其同频小区时延和功率检测方法 |
JP4991870B2 (ja) * | 2006-10-27 | 2012-08-01 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | G−rake受信機内の白色化計算を簡略化する方法および受信機 |
KR101446927B1 (ko) * | 2013-04-04 | 2014-10-06 | 전북대학교산학협력단 | 대규모 mimo에서 cjm에 기반한 채널 추정 방법 및 시스템 |
CN106452670B (zh) * | 2016-09-22 | 2020-04-03 | 江苏卓胜微电子股份有限公司 | 一种低复杂度滑窗处理方法 |
CN107678011B (zh) * | 2017-09-28 | 2020-08-18 | 天津大学 | 一种应用于激光测量系统的全波形数据实时上传处理方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5047859A (en) * | 1990-10-09 | 1991-09-10 | North American Philips Corporation | Method and apparatus for communication channel identification and signal restoration |
US6185251B1 (en) * | 1998-03-27 | 2001-02-06 | Telefonaktiebolaget Lm Ericsson | Equalizer for use in multi-carrier modulation systems |
TW491879B (en) * | 1999-05-13 | 2002-06-21 | Sumitomo Chemical Co | Liquid crystal polyester resin composition and molded article |
US6674919B1 (en) * | 1999-09-21 | 2004-01-06 | Matsushita Electric Industrial Co., Ltd. | Method for determining the skew angle of a two-dimensional barcode |
US6700919B1 (en) * | 1999-11-30 | 2004-03-02 | Texas Instruments Incorporated | Channel estimation for communication system using weighted estimates based on pilot data and information data |
TW540200B (en) * | 2000-11-09 | 2003-07-01 | Interdigital Tech Corp | Single user detection |
KR100399057B1 (ko) * | 2001-08-07 | 2003-09-26 | 한국전자통신연구원 | 이동통신 시스템의 음성 활성도 측정 장치 및 그 방법 |
-
2004
- 2004-06-24 KR KR1020097013161A patent/KR100937467B1/ko not_active IP Right Cessation
- 2004-06-24 CA CA002530518A patent/CA2530518A1/en not_active Abandoned
- 2004-06-24 KR KR1020057024621A patent/KR100768737B1/ko not_active IP Right Cessation
- 2004-06-24 EP EP04756111A patent/EP1636900A4/en not_active Withdrawn
- 2004-06-24 JP JP2006517665A patent/JP4213747B2/ja not_active Expired - Fee Related
- 2004-06-24 MX MXPA05013518A patent/MXPA05013518A/es unknown
- 2004-06-24 TW TW093141261A patent/TW200537868A/zh unknown
- 2004-06-24 WO PCT/US2004/020427 patent/WO2005004338A2/en active Search and Examination
- 2004-06-24 TW TW093118361A patent/TWI257793B/zh not_active IP Right Cessation
- 2004-06-24 TW TW096122193A patent/TW200818790A/zh unknown
- 2004-06-24 KR KR1020067006058A patent/KR100937465B1/ko not_active IP Right Cessation
- 2004-06-24 CN CN2004800155844A patent/CN101048934B/zh not_active Expired - Fee Related
- 2004-06-25 AR ARP040102224A patent/AR044904A1/es active IP Right Grant
-
2006
- 2006-01-25 NO NO20060421A patent/NO20060421L/no not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
IEEE JOURNAL ON SELECTED AREAS IN CUMMUNICATIONS, VOL.19 NO.8 pages 1461-1475 |
Also Published As
Publication number | Publication date |
---|---|
CN101048934B (zh) | 2010-09-08 |
EP1636900A2 (en) | 2006-03-22 |
MXPA05013518A (es) | 2006-03-09 |
TWI257793B (en) | 2006-07-01 |
CN101048934A (zh) | 2007-10-03 |
NO20060421L (no) | 2006-03-23 |
KR20060063803A (ko) | 2006-06-12 |
EP1636900A4 (en) | 2007-04-18 |
CA2530518A1 (en) | 2005-01-13 |
WO2005004338A3 (en) | 2005-05-12 |
KR20060057634A (ko) | 2006-05-26 |
KR100768737B1 (ko) | 2007-10-22 |
TW200818790A (en) | 2008-04-16 |
WO2005004338A2 (en) | 2005-01-13 |
KR20090079265A (ko) | 2009-07-21 |
TW200507552A (en) | 2005-02-16 |
KR100937467B1 (ko) | 2010-01-19 |
AR044904A1 (es) | 2005-10-05 |
TW200537868A (en) | 2005-11-16 |
JP2007525081A (ja) | 2007-08-30 |
JP4213747B2 (ja) | 2009-01-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7609794B2 (en) | Reduced complexity sliding window based equalizer | |
KR100861736B1 (ko) | 고속 결합 검출 방법 및 수신기 | |
KR100947008B1 (ko) | 일반화 2단 데이터 추정 | |
US7539238B2 (en) | Extended algorithm data estimator | |
KR100937465B1 (ko) | 복잡도가 감소된 슬라이딩 윈도우 기반의 등화기 | |
KR101021569B1 (ko) | 복잡도가 감소된 슬라이딩 윈도우 기반의 등화기 | |
WO2000077942A1 (en) | Low computational complexity joint detection for hybrid td-cdma systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121220 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20131219 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |