KR100908271B1 - 프로브, 프로브 제조방법 및 프로브 결합방법 - Google Patents

프로브, 프로브 제조방법 및 프로브 결합방법 Download PDF

Info

Publication number
KR100908271B1
KR100908271B1 KR1020070097425A KR20070097425A KR100908271B1 KR 100908271 B1 KR100908271 B1 KR 100908271B1 KR 1020070097425 A KR1020070097425 A KR 1020070097425A KR 20070097425 A KR20070097425 A KR 20070097425A KR 100908271 B1 KR100908271 B1 KR 100908271B1
Authority
KR
South Korea
Prior art keywords
probe
sub
deformation
contact
contact tip
Prior art date
Application number
KR1020070097425A
Other languages
English (en)
Other versions
KR20090032315A (ko
Inventor
이억기
Original Assignee
주식회사 파이컴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파이컴 filed Critical 주식회사 파이컴
Priority to KR1020070097425A priority Critical patent/KR100908271B1/ko
Publication of KR20090032315A publication Critical patent/KR20090032315A/ko
Application granted granted Critical
Publication of KR100908271B1 publication Critical patent/KR100908271B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06733Geometry aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements

Abstract

본 발명은 전자 부품에 대하여 수직 정렬이 가능한 유연성 프로브 및 프로브를 제조하는 방법에 관한 것이고, 구체적으로 높은 공간 배치 효율성을 가지고 그리고 프로브 사이의 수직 오차를 보상할 수 있는 유연성을 가진 프로브 및 멤스 또는 마이크로 광 조형 기술을 적용하여 그와 같은 형태의 프로브를 제조하는 방법에 관한 것이다. 본 발명에 따른 프로브는 변형 경계선에서 서로 다른 방향으로 꺾인 몸체; 수평면에 대하여 경사지게 아래쪽으로 연장되고 그리고 상하 방향으로 유연성을 가지도록 형성된 한 쌍의 유연부; 및 한 쌍 유연부 각각의 한쪽 끝에 일체로 결합된 한 쌍의 접촉 팁을 포함하고 프로브는 전체가 판 형상이 된다.
프로브, PCB, 전기 기판, 유연성, 스페이스 트랜스포머

Description

프로브, 프로브 제조방법 및 프로브 결합방법{Probe, Method for Manufacturing the Same and Coupling the Same with a Electronic Component}
본 발명은 전자 부품에 대하여 수직 정렬이 가능한 프로브, 프로브의 제조 방법 및 전자 부품에 프로브를 결합하는 방법에 관한 것이고, 구체적으로 구조적으로 높은 공간 배치 효율성을 가지고 그리고 프로브 사이의 수직 오차를 보상할 수 있는 유연성을 가진 프로브, 사진 식각, 멤스(Micro Electro-Mechanical System) 또는 마이크로 광 조형 기술(Micro-Stereo-lithography Technology)을 적용하여 그와 같은 형태의 프로브를 제조하는 방법 및 전자 부품에 제조된 프로브를 결합하는 방법에 관한 것이다.
반도체 패키지 또는 액정 표시 소자(Liquid Crystal Display)로 조립이 되는 반도체 칩의 불량 여부를 판단하기 위하여 EDS(Electrical Die Sorting) 검사가 실시된다. EDS 검사를 위하여 테스터와 반도체 칩 접촉 단자 또는 패드의 전기적 연결 매개체로 사용되는 프로브 카드는 이 분야에서 공지되어 있다. 프로브 카드는 테스터로부터 전기적 신호를 전달을 위한 PCB(Print Circuit Board) 및 PCB의 신호를 전달하기 위하여 반도체 칩 접촉 단자에 직접 접촉하는 프로브를 포함한다. 반 도체 접촉 단자에 인가된 전기 신호는 프로브를 통하여 역방향으로 다시 테스터로 전달된다.
반도체 칩의 검사를 위한 프로브 카드와 관련된 다양한 형태의 선행 기술이 존재하고 그리고 이와 같은 선행 기술들은 주로 프로브의 구조 또는 프로브의 제조 방법과 관련된다. 프로브는 PCB에 캔틸레버 형태 또는 수직 형태로 결합될 수 있다. 프로브가 캔틸레버 형태로 정렬된 선행기술로 특허공개번호 제2007-50991호가 있다. 상기 선행기술은 좁은 피치로 배열된 전극 패드에 확실하게 접촉할 수 있는 프로브를 제공하는 목적으로 프로브 기판에 외팔보 방식으로 지지되는 빔 및; 빔의 선단부에 수직으로 형성된 접촉자 또는 프로브 팁에 대하여 개시하고 있다. 상기 발명은 프로브 팁의 높이 및 폭이 상관관계를 가지는 것을 특징으로 한다.
PCB에 프로브가 수직으로 배열되는 선행기술로 출원인에 의하여 출원되어 등록된 특허등록번호 제653636호가 있다. 상기 발명은 멤스(MEMS) 공정 기술을 적용하여 제조되고 그리고 접촉 패드에 접촉하는 2개의 프로브 팁을 가지는 접촉부; PCB에 연결되는 연결부; 및 접촉부와 연결부를 형성되어 접촉부에 가해지는 압력의 크기를 감소시키는 완충부를 가진 프로브에 대하여 개시한다.
선행기술에 개시된 프로브는 다양한 형태로 제조될 수 있고 그리고 특허등록번호 제638105호는 마이크로-광 조형 기술로 수직형 프로브를 제조하는 방법에 대하여 개시하고 있다. 마이크로 광 조형 기술은 자외선에 경화되는 광경화성 수지(photo-polymer)를 이용하여 일정한 층 두께를 가진 단면을 계속 적층하여 3차원 구조물을 제조하는 기술을 말한다.
반도체의 집적도가 높아지는 것에 비례하여 PCB에 배열되는 프로브 배치 밀도가 높아져야 한다. 캔틸레버 형태 프로브의 경우 외팔보 또는 암에 의하여 적절한 크기의 탄성을 유지할 수 있다는 장점을 가지는 한편 외팔보 또는 암이 차지하는 공간으로 인하여 프로브 배치 밀도가 일정 수준 이상으로 높이는 것이 어렵다는 단점을 가진다. 이에 비하여 수직 배열 프로브의 경우 배치 밀도의 관점에서 캔틸레버 형태의 프로브에 비하여 유리하지만 프로브가 일정한 탄성을 가지고 상하로 이동하도록 만들기 어렵다는 단점을 가진다. 아울러 이로 인하여 각각의 프로브가 동일 수평면에 위치하도록 하는 것이 어렵다. 한편 선행기술에 제조된 마이크로 광 조형 기술은 복잡한 3차원 형상을 정밀하게 구현할 수 있다는 이점을 가지지만 대량 생산이 어렵다는 단점을 가진다. 이에 비하여 멤스(MEMS) 공정은 3차원 형상의 구현을 위하여 복잡한 공정 단계가 필요하지만 대량 생산에 유리하고 또한 요구되는 정확한 형태를 제조할 수 있다는 이점을 가진다.
본 발명은 수직형 프로브가 가진 장점인 배치 밀도의 증가라는 이점을 가지면서 이와 동시에 유연성 또는 탄성이 약하다는 단점이 보완된 프로브를 제안한다. 그리고 이와 같은 선행 발명에 따른 수직형 프로브가 가진 단점을 극복한 본 발명의 프로브가 멤스(MEMS) 기술 또는 마이크로 광 조형 기술에 의하여 대량으로 생산될 수 있는 방법을 제안한다. 그러므로 본 발명은 아래와 같은 기술적 과제를 가진다.
본 발명의 목적은 전자 부품에 수직으로 배열될 수 있고 그리고 수직으로 또는 연장 길이 방향의 수직 방향으로 작용하는 힘에 대하여 쉽게 휘어질 수 있는 유연성 프로브를 제공하는 것이다.
본 발명의 다른 목적은 멤스(MEMS) 공정 또는 광 조형 기술을 적용하여 유연성 프로브를 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 전자 부품에 수직 배열될 수 있는 프로브를 결합하는 방법을 제공하는 것이다.
본 발명의 적절한 실시 형태에 따르면, 전기 소자의 검사를 위한 프로브는 변형 경계선에서 꺾인 몸체; 몸체와 일체로 형성되어 연장된 적어도 일부분이 유연성을 가지는 한 쌍의 빔부; 및 한 쌍의 빔부의 각각에 일체로 형성된 한 쌍의 접촉 팁을 포함하고, 상기에서 프로브는 판형이 된다.
본 발명의 다른 적절한 실시 형태에 따르면, 전기 소자의 검사를 위한 판형 프로브는 변형 경계선에서 서로 다른 방향으로 꺾인 몸체; 몸체로부터 연장된 한 쌍의 빔부; 및 한 쌍의 빔부에 각각 형성된 한 쌍의 접촉 팁을 포함하고, 상기에서 한 쌍의 접촉 팁은 서로 다른 방향으로 꺾인 몸체에 의하여 접촉 팁 사이의 이격 거리가 조절된다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 멤스 공정을 적용하여 프로 브를 제조하는 방법은 희생기판에 프로브 형상의 보호 막 패턴을 적용하여 미리 결정된 변형 경계 형태가 형성된 판형의 프로브를 제조하는 단계; 및 변형 경계 형태를 기준으로 판형의 프로브의 특정 부분들이 정해진 면각을 가지도록 꺾는 것에 의하여 입체 형태로 만드는 단계를 포함한다.
본 발명의 또 다른 적절한 실시 형태에 따르면. 프로브 및 전자 부품에 결합시키는 방법은 (a) 서로 다른 방향으로 꺾인 다수 개의 서브 몸체를 가진 판형 프로브를 제조하는 단계; 및 (b)서로 다른 방향으로 꺾인 다수 개의 서브 몸체를 전자 부품에 결합하는 단계를 포함한다.
본 발명에 따른 프로브는 피검사체에서 접촉하는 접촉 팁의 상대적인 위치의 조절이 가능하고, 제조 과정에서 발생하는 높이 오차 및 접촉 과정에서 발생하는 비틀림 변형을 보상할 수 있어 프로브와 접촉 패드 사이의 접촉 신뢰성을 향상시킬 수 있고, 그리고 각각의 프로브는 전자 부품에 수직으로 배열되고 그리고 서브 몸체는 꺾어지게 되어 공간 배치 밀도를 향상시킨다. 그러므로 실질적으로 배치 공간의 효율성을 향상시켜 프로브의 고밀도 배열이 가능하도록 한다는 이점을 가진다.
아래에서 본 발명은 첨부된 도면에 제시된 실시 예를 참조하여 상세하게 설명이 된다. 제시된 실시 예는 예시적인 것으로 본 발명의 범위를 제한하기 위한 것은 아니다.
본 명세서에서 전자 부품은 PCB, 세라믹 재질의 다층회로기판(Multi layer ceramic) 또는 배선이 형성된 임의의 전기 기판을 포함한다. 또한 전자 부품은 프로브가 결합되어 전기 신호를 전달하거나 또는 전달받을 수 있는 전기 구성 요소를 의미한다. 그러나 반드시 프로브와 결합되어야 한다는 것을 의미하지는 않는다. 이러한 장치는 프로브와 독립적으로 사용되어 전기 장치의 일부가 될 수 있다. 또한 피검사체는 프로브가 접촉하여 전기 신호를 전달할 수 있는 예를 들어 반도체 칩과 같은 전기 구성 요소를 의미한다.
본 발명의 프로브는 두께를 가진 판형(plate shape)이 될 수 있다. 본 명세서에서 판형이란 두께가 폭 길이의 1/3보다 작고 바람직하게는 1/5 내지 1/50이 되는 것을 말한다. 또한 프로브가 판형이라는 것은 프로브의 모든 부분들이 동일 평면에 존재해야 한다는 것을 의미하는 것은 아니다. 예를 들어 프로브의 일정 부분은 꺾인 형태가 될 수 있지만 꺾인 각각의 부분에서 여전히 판 형태를 유지한다면 전체적으로 판형의 프로브가 된다.
도 1a는 본 발명에 따른 프로브의 하나의 실시 예에 대한 사시도를 도시한 것이다.
도 1a를 참조하면, 본 발명에 따른 프로브(10)는 전자 부품(도시되지 않음)에 전기적으로 연결되는 몸체(11); 몸체(11)의 양끝에서 아래쪽으로 형성된 2개의 다리(12); 2개의 다리(12) 각각의 아래쪽 끝에 결합되어 결합 몸체(11)를 기준으로 안쪽으로 연장되는 유연부(13); 및 각각의 유연부(13)의 끝으로부터 돌출된 접촉 팁(14)을 포함한다. 도 1a에 명시적으로 나타나 있지는 않지만 본 발명에 따른 프로브는 일정한 두께를 가진 판형이 된다. 아래에서 특별히 언급하지 않는 한 본 발 명에 따른 프로브는 모두 판형이 된다.
본 명세서에서 전자 부품은 두 개의 서로 다른 평면에 존재하는 전기 구성 요소를 전기적으로 연결하기 위하여 표면 또는 내부에 배선이 형성된 임의의 전기 또는 전자 부품을 의미하며 특히 프로브 카드 분야에서 사용되거나 또는 사용될 수 있는 임의의 전기 또는 전자 부품을 포함한다. 예를 들어 전자 부품의 제1 면에 프로브가 결합되고 그리고 제1 면과 반대되는 제2 면에 접속 단자가 결합되어 접속 단자와 프로브가 내부회로 또는 배선에 의해서 서로 전기적으로 연결되어 전기적 신호의 전달이 가능하도록 만들어질 수 있다.
일정한 폭(W)을 가지는 몸체(11)는 수평으로 연장되면서 2개의 변형 경계선(BL1, BL2)에서 서로 다른 방향으로 꺾일 수 있다. 2개의 다리(12)는 아래쪽으로 일정한 폭을 가지거나 또는 폭이 좁아지는 형태로 연장될 수 있다. 2개의 유연부(13)는 폭이 좁아지는 형태로 서로 접근하는 방향으로 연장되지만 몸체(11)가 변형 경계선(BL1, BL2)에서 꺾이고 그리고 이로 인하여 엇갈린 방향으로 연장된다. 달리 말하면 변형 경계선(BL1)에서 몸체(11)가 꺾이는 것은 서로 접근하도록 형성된 2개의 유연부(13)가 서로 엇갈린 방향으로 멀어지도록 하기 위한 것이다. 그리고 이로 인하여 2개의 접촉 팁(14)이 일정한 간격을 유지할 수 있도록 하기 위한 것이다. 이와 같은 유연부(13) 및 접촉 팁(14)의 이격은 서로 간에 발생할 수 있는 전기적 또는 전자적 간섭(interference)을 방지할 수 있도록 한다. 유연부(13)는 또한 몸체와 일정한 각을 형성하여 아래쪽 방향으로 연장된다. 이와 같은 유연부(13)의 형태는 상하 방향의 압력에 대하여 프로브(10) 전체가 유연성을 가지도록 한다. 각각의 유연부(13) 끝에 형성된 2개의 접촉 팁(14)은 반도체 칩 또는 피검사체의 접촉 패드(도시되지 않음)와 접촉하여 적절한 압력이 가해질 때 접촉 패드에 긁힘(scribing)이 발생할 수 있는 임의의 형상을 가질 수 있다. 도 1에 도시된 접촉 팁(14)은 유연부(13)와 일정한 각을 형성하여 아래쪽으로 연장되고 그리고 끝 부분이 날카롭게 형성되어 있지만 본 발명은 이와 같은 접촉 팁(14)의 형상에 제한되는 것은 아니다.
설명의 편의를 위하여 몸체(11), 다리(12), 유연부(13) 및 접촉 팁(14)을 구분하여 설명을 하였지만 전체 구성요소는 일체로 하나의 구조를 이루고 있다.
도 1b는 도 1a의 몸체(11)가 꺾이기 전 상태의 정면도를 도시한 것이다.
도 1b를 참조하면 몸체(11)의 변형 위치 또는 변형 경계선(BL1, BL2)은 미리 결정되고 변형 경계선(BL1, BL2)을 기준으로 몸체(11)는 제1, 2 및 제3 서브 몸체(11a, 11b, 11c)로 나누어진다. 변형 경계선(BL1, BL2)을 기준으로 제2 및 제3 서브 몸체(11b, 11c)가 서로 다른 방향으로 꺾이는 경우 도 1a에 도시된 것처럼 제1 서브 몸체(11a)는 제2 서브 몸체(11b)와 변형 경계선(BL1)을 기준으로 제1 면각(θ1)을 형성하고 그리고 제1 서브 몸체(11a)와 제3 서브 몸체(11c)는 다른 변경 경계선(BL2)을 기준으로 제2 면각(θ2)을 형성한다. 본 명세서에서 면각이란 인접하는 2개의 면이 경계선을 기준으로 이루는 각 중 180°보다 작은 크기를 나타내는 각을 말한다. 도 1b에 도시된 것처럼 변형 경계선(BL1, BL2)에서 꺾이기 전에 제1 면각(θ1) 및 제2 면각(θ2)은 각각 180°가 되고, 각각의 변형 경계선(BL1, BL2)에서 제2 및 제3 서브 몸체(11b, 11c)가 꺾이면서 제1 및 제2 면각(θ1, θ2)은 30 내지 150도의 범위 내에 형성된다. 한편, 제2 면각(θ2)은 제1 면각(θ1)과 반대편으로 동일한 범위에서 제1 면각(θ1)과 서로 동일하거나 서로 다른 값을 가질 수도 있다. 제1 면각(θ1) 및 제2 면각(θ2)의 크기는 접촉 팁(14)이 접촉하는 피검사체의 접촉 패드(도시되지 않음)의 위치 또는 크기에 의하여 결정될 수 있고, 프로브(10) 자체의 구조적 안정성 및 공간 배치 밀도를 고려하여 결정될 수 있다. 프로브(10) 자체의 구조적 안정성 및 공간 배치 밀도만을 고려하는 경우 제1,2 및 제3 서브 몸체(11a, 11b, 11c)는 각각 폭 및 길이가 동일하고 그리고 제1 면각(θ1) 및 제2 면각(θ2)은 동일하게 각각 70 내지 110도의 크기를 가지는 것이 유리하다. 이와 같은 본 발명에 따른 프로브(10)는 서브 몸체(11a, 11b, 11c) 사이의 면각을 조절하는 것에 의하여 유연부(13) 및 접촉 팁(14) 사이의 간격을 조절할 수 있다는 것을 하나의 특징으로 한다.
도 1b에 도시된 것처럼 2개의 다리(12), 2개의 유연부(13) 및 2개의 접촉 팁(14)은 서로 대칭 형상을 가지고 이로 인하여 프로브(10)는 전체적으로 제1 서브 몸체(11a)를 기준으로 대칭 형상을 가진다. 결합된 각각의 다리(12)와 일정한 각(h)을 형성하는 2개의 유연부(13)는 아래쪽으로 폭이 좁아지는 형상으로 연장되면서 서로 접근하게 된다. 유연부(13)는 상하 또는 유연부(13)의 평면 또는 길이 방향에 대하여 수직인 방향으로 휘어질 수 있다. 유연부(13)의 상하 방향에 따른 휘어짐은 다리(12)가 몸체(11)에 수직으로 연장되고 그리고 유연부(13)가 안쪽으로 폭이 좁아지면서 다리(12)와 90도보다 더 큰 각(h)을 형성하면서 아래쪽으로 연장되는 구조로 인하여 발생한다. 평면에 수직 방향으로 휘어짐은 유연부(13)가 충분 히 작은 폭으로 연장되고 그리고 길이에 비하여 충분히 얇은 두께 또는 판형 구조로 인하여 가능해진다. 상하 방향의 휘어짐 또는 수직 방향의 휘어짐은 접촉 팁(14)에 접촉에 따른 힘, 압력 또는 마찰력이 가해짐에 따라 발생하고 그리고 힘, 압력 또는 마찰력이 제거되면 유연부(13)는 원래의 상태로 복원한다. 본 명세서에서 접촉 팁(14)이 피검사체의 접촉 패드와 접촉에 의하여 발생하는 힘, 압력 또는 마찰력으로 인하여 프로브의 다리(12), 유연부(13) 또는 접촉 팁(14)이 상하 또는 면에 수직 방향으로 변형되고 그리고 이후 힘, 압력 또는 마찰력의 제거에 의하여 원래 상태로 복원되는 성질을 유연성이라 명한다. 본 발명에 따른 프로브(10)의 유연성은 프로브(10)의 구조 또는 소재 자체 성질로부터 발생할 수 있다. 프로브(10)가 이와 같은 유연성을 가지기 위하여 프로브(10)는 탄성 소재 또는 유연성(flexible)을 가진 소재로 제조되고 그리고 판형의 구조를 가진다.
접촉 팁(14)은 실질적으로 피검사체의 접촉 패드와 접촉한다. 접촉 팁(14)은 접촉 패드에 형성된 산화 막을 긁으면서(scribing) 접촉하게 된다. 이러한 접촉 팁(14)과 접촉 패드의 접촉에 의하여 반도체 칩의 검사를 위한 전기적 신호가 반도체 칩 및 테스터 사이에 전달된다. 접촉 팁(14)은 전기적 신호의 원활한 전달을 위하여 일정 크기의 면적이 일정 크기의 힘을 받으면서 피검사체의 접촉 패드와 접촉해야 한다. 이와 같이 접촉 팁(14)과 접촉 패드의 신뢰성을 가진 접촉을 위하여 접촉 팁(14)은 충분한 탄성을 가질 수 있도록 점차 폭이 좁아지면서 끝 부분이 날카롭게 만들어진 신장(elongated) 핀셋 형태가 된다. 도 1b에 도시된 것처럼 접촉 팁(14)은 아래쪽 수직 방향으로 연장되면서 끝 부분이 날카롭게 형성되어 있지만 제시된 접촉 팁(14)은 예시적인 것으로 신뢰성을 가진 접촉을 위한 다양한 형태의 접촉 팁(14)이 가능하다.
본 발명에 따른 프로브는 판형으로 제조되고 그리고 몸체가 꺾인 형태로 전자 부품과 결합될 수 있다. 몸체가 면각을 형성하면서 꺾이게 되면 프로브는 전체적으로 입체 형태를 가지게 된다. 몸체에 다수 개의 변형 경계선이 형성된 경우 다수 개의 서브 몸체는 변형 경계선에서 동일 방향 또는 서로 다른 방향으로 꺾일 수 있다. 본 명세서에서 적어도 3개의 서브 몸체가 형성된 경우 2개의 서브 몸체가 동일 방향으로 꺾인다는 것은 제2 서브 몸체가 제1 서브 몸체에 대하여 양의 방향으로 꺾이는 경우 제3 서브 몸체가 제2 서브 몸체에 대하여 동일하게 양의 방향으로 꺾이는 것을 말한다. 다른 한편으로 2개의 서브 몸체가 서로 다른 방향으로 꺾인다는 것은 제2 서브 몸체가 제1 서브 몸체 대하여 양으로 꺾이는 경우 제3 서브 몸체가 제2 서브 몸체에 대하여 음의 방향으로 꺾이는 것을 말한다. 양의 방향 및 음의 방향이란 일반적으로 사용되는 것처럼 반시계 방향 및 시계 방향을 각각 의미한다.
위에서 2개의 변형 경계선에서 제2 및 제3 서브 몸체가 서로 다른 방향을 꺾이는 실시 예를 제시하였지만 변형 경계선은 적어도 2개가 될 수 있고 그리고 인접하는 2개의 서브 몸체는 동일 또는 서로 다른 방향으로 꺾일 수 있다. 만약 2개의 변형 경계선에 의하여 3개의 서브 몸체가 형성되고 그리고 2개의 서브 몸체가 동일방향으로 꺾인다면 전체적으로 프로브는 ‘ㄷ’자 형상이 될 것이다. 이와 같은 경우 접촉 팁은 접촉 형태 및 긁힘(scribing)이 발생하는 방향을 고려하여 적절한 형상으로 변형될 수 있다.
도 2a 및 도 2b는 본 발명에 따른 프로브의 다른 실시 예를 각각 도시한 것이다.
도 2a를 참조하면, 프로브(20)의 몸체(21)는 변형 경계선(BL1, BL2)을 기준으로 세 개의 서브 몸체(21a, 21b, 21c)로 이루어진다. 세 개의 서브 몸체(21a, 21b, 21c) 중 기준이 되는 제1 서브 몸체(21a)는 다른 두 개의 서브 몸체(21b, 21c)에 대하여 위쪽으로 돌출되어 있다. 제1 서브 몸체(21a)는 프로브(20)가 전자 부품에 결합되고 그리고 접촉 팁(24)이 피검사체의 접촉 패드와 접촉하는 기준 위치가 된다. 그러므로 이와 같은 제1 서브 몸체(21a)의 상대적인 위쪽 방향의 돌출은 프로브(20)의 전자 부품에 대한 결합 공정을 용이하게 하고 아울러 2개의 변형 경계선(BL1, BL2)의 위치를 명확하게 하여 꺾임 작업을 용이하게 한다는 이점을 가진다.
도 2a 및 도 2b에 도시된 것처럼 제2 및 제3 서브 몸체(21b, 21c)의 사이에 위치하는 제1 서브 몸체(21a)가 위쪽 방향으로 돌출된 경우 제1 및 제2 변형 경계선(BL1, BL2)은 제1 서브 몸체(21a)의 경계선에 의하여 결정된다. 그러므로 이와 같은 실시 예의 경우 특별히 변형 경계선(BL1, BL2)이 설정될 필요가 없다.
도 2a에 도시된 프로브(20)에 대하여 2개의 변형 경계선(BL1, BL2)을 기준으로 각각의 서브 몸체의 꺾임, 다리(22)의 구조, 유연부(23)의 유연성 및 접촉 팁(24)의 구조 또는 형태에 대하여 도 1a 또는 도 1b에서 이미 설명한 것과 동일한 내용이 적용될 수 있다.
도 2b는 본 발명에 따른 프로브의 또 다른 실시 예를 도시한 것이다.
도 2b를 참조하면, 프로브(20)의 제1 서브 몸체(21a)는 다른 각각의 서브 몸체(21b, 21c)에 대하여 위쪽으로 돌출되어 있다. 그리고 각각의 서브 몸체(21a, 21b, 21c) 사이에 변형 경계선(BL1, BL2)이 형성되어 있는 것은 도 2a에 제시된 실시 예의 프로브와 동일하다. 그러나 도 2b에 도시된 프로브(20)는 다리를 가지지 않고 만곡 유연부(25)가 몸체(21)의 양끝으로부터 아래쪽으로 곡선 형태로 연장된다. 그리고 만곡 유연부(25)의 양 끝에 위에서 이미 설명한 것과 동일한 형태의 접촉 팁(24)이 형성된다. 2개의 만곡 유연부(25)는 몸체(21)로부터 아래쪽으로 연장되면서 폭이 점점 좁아지고 그리고 전체적으로 곡선을 이루면서 신장 핀셋 형태의 접촉 팁(24)에 연결된다. 도 1a 및 도 1b와 관련하여 이미 설명을 한 것과 마찬가지로 만곡 유연부(25)는 상하 방향 또는 면에 수직되는 방향에 대한 유연성을 가지는 구조가 되어야 한다. 만곡 유연부(25)가 유연성을 가질 수 있는 가장 유리한 구조는 만곡 유연부(25)의 안쪽 면 또는 선(Ins)이 일정한 크기의 곡률을 가지는 곡선 형태가 되고 그리고 만곡 유연부(25)의 바깥 면 또는 선(Outs)이 아래쪽으로 갈수록 만곡 유연부(25)의 폭이 좁아지도록 형성되는 것이다. 일정한 크기의 곡률 반지름 중심은 프로브 배치 공간을 고려할 때 프로브 안쪽 면에 위치하게 된다. 대안으로 안쪽 면 또는 선(InS)은 포물선 형태 또는 다른 임의의 곡선 형태가 될 수 있다. 도 1a 및 도 1b에 제시된 실시 예의 프로브와 비교할 때 도 2b에 도시된 프로브(20)는 상하 방향의 유연성이 커진다는 이점을 가진다. 다만 접촉 팁(24)에 가해지는 반작용에 의한 압력이 직접 몸체(21)에 작용하고 이로 인하여 몸체와 전자 부품의 결합력을 약화시킬 수 있다는 약점을 가진다. 이에 비하여 도 1a 및 도 1b 에 제시된 프로브의 경우 다리가 몸체에 가해지는 힘을 완충시킬 수 있다는 이점을 가진다.
반도체 칩의 검사 과정에서 다수 개의 프로브가 동시에 접촉 패드에 접촉되어야 한다. 이에 비하여 피검사체 평면은 반드시 완전하게 평탄하지 않고 아울러 각각의 프로브의 수직 길이는 균일하지 않을 수 있다. 만곡 유연부(25)의 상하 방향의 유연성은 이와 같은 수직 오차를 보상할 수 있도록 한다. 아울러 접촉 패드는 공정 오차에 의하여 반드시 평면이 되지 않고 그리고 평면으로 된 경우에도 균일성이 보장되는 것은 아니다. 만곡 유연부(25)의 평면에 대한 수직 방향의 유연성은 이와 같이 접촉 패드가 평면이 아닌 경우 또는 평면의 불균일성을 보상할 수 있도록 한다. 도 2b에서 변형 경계선(BL1, BL2)에 의한 제1 서브 몸체(21a)와 제2 서브 몸체(21b) 사이의 면각 및 제1 서브 몸체(21a)와 제3 서브 몸체(21c) 사이의 면각의 형성, 그리고 접촉 팁(24)의 구조와 관련된 내용은 도 1a 및 도 1b에서 설명된 내용이 동일하게 적용될 수 있다.
도 1a 내지 도 2b의 프로브(10, 20)에서 각각의 서브 몸체(11a, 11b, 11c, 21a, 21b, 21c)의 수평 방향의 길이는 서로 다를 수 있다. 달리 말하면 변형 경계선(BL1, BL2)은 임의의 위치에 설정될 수 있다. 변형 경계선(BL1, BL2)의 위치는 면각의 크기(θ1, θ2)와 함께 접촉 팁(14, 24)의 수직 방향의 간격 및 수평 방향의 간격을 결정한다. 이와 같은 변형 경계선(BL1, BL2)의 위치 결정, 이에 따른 서브 몸체(11a, 11b, 11c, 21a, 21b, 21c)의 각각의 길이는 접촉 팁(14, 24)이 접하는 피검사체의 접촉 패드의 접촉 위치를 고려하여 결정될 수 있다.
도 1a 및 도 1b의 경우 변형 경계선(BL1, BL2)의 위치는 일종의 가상선이 될 수 있다. 가상선의 위치는 아래에서 설명하는 방법에 의하여 결정된다. 그러나 도 2a 내지 2b의 경우 변형 경계선(BL1, BL2)의 위치는 제1 서브 몸체(21a)의 경계선에 의하여 결정된다. 이와 같이 본 발명의 프로브(10, 20)에서 변형 경계선(BL1, BL2)은 단지 서브 몸체(11b, 11c, 21b, 21c)의 꺾임을 위한 기준선으로 이해되어야 할 것이다. 다만 아래에서 설명을 하는 것처럼 꺾임을 보조하기 위한 다양한 형태가 추가될 수 있다.
위에서 설명을 한 것처럼 본 발명에 따른 프로브의 유연부는 다리를 매개하여 몸체와 결합되거나(도 1a, 도 1b 또는 도 2a 참조) 또는 만곡유연부(도 2b 참조)를 형성하여 직접 몸체에 결합될 수 있다. 본 명세서에서 몸체 및 접촉 팁을 제외하고 프로브의 상하 방향의 유연성을 향상시키기 위한 프로브의 구성 요소를 빔부라고 한다. 예를 들어 빔부는 다리 및 유연부로 형성되거나 또는 만곡 유연부로 이루어질 수 있다.
본 발명에 따른 프로브는 사진 식각 공정, 멤스(MEMS) 공정 또는 광 조형 기술을 적용하여 제조될 수 있다.
예를 들어 사진 식각 공정을 이용하여 본 발명에 따른 프로브를 제조하는 방법은 출원인에 의하여 출원되어 등록된 특허등록번호 제564655호 “사진식각공정을 이용한 인쇄회로기판용 상호 접속체의 제조방법”에 개시된 공정 단계에 따라 진행될 수 있다. 상기 특허 중 사진 식각 공정과 관련된 내용은 본 명세서에 참조로 포함된다.
사진 식각 공정으로 본 발명에 따른 프로브를 제조하기 위하여 소재 금속 및 소재 금속의 두께가 결정되어야 한다. 바람직하게 꺾임 위치가 되는 변형 경계선의 위치가 선정될 수 있다. 소재 금속 및 변형 경계선의 위치가 결정되면 포토레지스트를 사용하여 금속 박막의 위쪽 및 아래쪽 표면에 보호막을 형성한다. 형성된 상부 보호막 및 하부 보호막에 요구되는 프로브 패턴이 형성된다. 프로브 패턴을 형성하는 과정에서 전자 부품과 결합될 부분이 설정되고 예를 들어 구형 또는 다른 임의의 돌출 형상으로 결합 부분 패턴이 형성된다. 이와 같은 패턴 형성은 위에서 언급된 특허에 개시된 방법에 따라 이루어지거나 다른 공지된 방법에 따라 진행될 수 있다. 이후 적당한 화학물질을 이용하여 보호막 및 금속을 각각 식각하여 프로브가 제조될 수 있다. 제조된 프로브는 실질적으로 평면 형태를 가진다. 그리고 다수 개의 프로브가 일괄적으로 제조된다. 각각의 프로브는 변형 경계선을 기준으로 필요한 면각을 가지도록 꺾여 입체적 구조로 변형되어 전자 부품에 결합될 수 있다.
본 발명에 따른 프로브를 제조하는 다른 방법은 멤스(MEMS) 공정을 적용하는 것이다. 멤스(MEMS) 공정과 관련하여 프로브를 제조하는 방법은 출원인에 의하여 출원되어 등록된 특허등록번호 제464681호 “전자소자 검사용 전기적 접촉체의 팁 제조방법”에 개시되어 있다. 상기 특허에 개시된 내용 중 중 제조 공정과 관련된 내용은 본 명세서에 참조로 포함된다.
멤스(MEMS) 공정을 적용하여 본 발명에 따른 프로브를 제조하는 경우 실리콘 재질의 희생기판이 사용된다. 프로브의 제조를 위하여 희생 기판에 보호막을 형성 한다. 보호막 상부는 포토레지스트로 도포가 되고 그리고 프로브 형태를 고려하여 포토레지스트 패턴이 형성된다. 그리고 포토레지스트 패턴을 마스크로 사용하여 보호막 및 희생기판을 적합한 화합물로 각각 프로브 형태로 식각을 한다. 필요한 경우 추후 포토레지스트 패턴이 다시 형성되고 그리고 요구되는 추가적인 형상이 희생기판에 식각이 될 수 있다. 희생기판에 프로브 형태가 식각이 되면 프로브 소재가 되는 금속 물질로 충전시키고 그리고 희생기판을 제거하여 프로브를 형태를 완성한다.
본 발명에 따른 프로브를 멤스(MEMS) 공정으로 제조하는 경우 프로브는 얇은 두께를 가진 평면 형태 또는 판형으로 만들어진다. 프로브는 전체적으로 동일한 두께를 가질 수 있지만 예를 들어 접촉 팁은 접촉 패드와 접촉하는 면적을 고려하여 몸체 또는 다리와 서로 다른 두께를 가질 수 있다. 그리고 프로브의 제조 공정에서 변형 경계선은 미리 결정되는 것이 유리하다. 그리고 사진 식각 공정과 마찬가지로 전자 부품과 결합되는 부분은 일정한 형태로 미리 형성되는 것이 유리하다.
본 발명에 따른 일정한 형상을 가진 변형 경계선이 형성된 판형 프로브를 제조하는 멤스(MEMS) 공정에 대한 실시 예를 도 3a 내지 도 3i를 참조하여 설명한다.
먼저 도 3a에 도시된 바와 같이 실리콘 재질의 희생기판(31) 상에 제1 보호막 패턴(32‘)을 형성한다. 이때, 상기 제 1 보호막 패턴(32‘)은 희생기판(31) 상에 포토레지스트를 도포하고 노광 및 현상하는 포토리소그래피(Photolithography) 공정과 같은 보호막 패턴 형성 공정에 의하여 아래 도 3d 및 도 3i에서 설명할 제1 변형 경계선(BL1)이 형성된 프로브 제1 두께 층(T1) 단면 형상으로 패턴을 형성한 다. 도 3a의 좌측은 도 3a의 우측에 도시된 A-A' 선을 따라 절단된 단면 형태를 도시한 것이다.
다음으로 도 3b에 도시된 바와 같이 상기 제 1 보호막 패턴(32')을 이용하여 식각공정을 수행하여 아래 도 3d 및 도 3i와 관련하여 설명할 프로브 제1 두께 층(T1)에 해당하는 트렌치를 희생기판(31) 상에 형성시킨다.
이후 상기 제 1 보호막 패턴(32‘)을 제거하고, 도 3c에 도시된 바와 같이 스퍼터링(sputtering) 공정에 의해 희생기판(31)에 후속 도금공정의 시드(Seed)로 기능하는 구리(Cu)와 같은 금속을 이용하여 시드층(34)을 형성한다.
그리고 도 3d에 도시된 바와 같이 희생기판(31)에 형성된 트렌치에 프로브의 소재가 되는 니켈, 니켈-코발트 합금 또는 니켈-코발트-텅스텐 합금과 같은 도전성 소재 금속을 매립시킨 후, CMP(Chemical Mechanical Polishing), 에치백(Etchback) 또는 그라인딩(Grinding)과 같은 평탄화 공정을 적용하여 매립된 금속 소재의 위쪽 면이 평탄해지도록 한다. 이와 같은 공정을 통하여 도 3d의 우측에 도시된 것과 같은 형태의 제1 변형 경계선(BL1)이 형성된 프로브 제1 두께 층(T1)이 형성된다.
이후 소정 두께로 포토레지스트를 코팅한 후 노광 및 현상공정을 거쳐 도 3e에 도시된 바와 같이 희생기판(31) 상에 제 2 보호막 패턴(32a)을 형성한다. 이때, 제 2 보호막 패턴(32a)은 아래 도 3f 및 도 3i와 관련하여 설명할 프로브 제2 두께 층(T2) 단면 형상의 패턴으로 공간부를 제공한다. 도 3e의 좌측은 도 3e의 우측에 도시된 B-B' 선을 따라 절단된 단면 형태를 도시한 것이다.
그리고, 도 3f에 도시된 바와 같이 상기 제 2 보호막 패턴(32a)에 형성된 공 간부에 프로브의 소재가 되는 니켈, 니켈-코발트 합금 또는 니켈-코발트-텅스텐 합금과 같은 도전성 소재 금속을 매립시킨 후, 도 3d와 관련하여 언급한 것과 동일한 방법으로 평탄화 공정을 적용하여 매립된 급속 소재의 위쪽 면이 평탄해지도록 한다. 이와 같은 공정을 통하여 도 3f의 우측에 도시된 것과 같은 형태의 프로브 제2 두께 층(T2)이 형성된다.
다음으로 소정 두께로 포토레지스트를 코팅한 후 노광 및 현상공정을 거쳐 도 3g에 도시된 바와 같이 제 2 보호막 패턴(32a) 및 프로브 제2 두께 층(T2) 상에 제 3 보호막 패턴(32b)을 형성한다. 이때, 제 3 보호막 패턴(32b)은 아래 도 3h 및 도 3i와 관련하여 설명할 프로브 제3 두께 층(T3) 단면 형상의 패턴으로 공간부를 제공한다. 도 3g의 좌측은 도 3g의 우측에 도시된 C-C' 선을 따라 절단된 단면 형태를 도시한 것이다.
그리고 도 3h에 도시된 바와 같이 상기 제 3 보호막 패턴(32b)에 형성된 공간부에 프로브의 소재가 되는 니켈, 니켈-코발트 합금 또는 니켈-코발트-텅스텐 합금과 같은 도전성 소재 금속을 매립시킨 후, 도 3d와 관련하여 언급한 것과 동일한 방법으로 평탄화 공정을 적용하여 매립된 금속 소재의 위쪽 면이 평탄해지도록 한다. 이와 같은 공정을 통하여 도 3h의 우측에 도시된 것과 같은 형태의 제2 변형 경계선(BL2)이 형성된 프로브 제3 두께 층(T3)이 형성된다.
마지막으로 도 3i에 도시된 바와 같이 식각에 의하여 보호막 패턴(32a,32b) 및 희생기판(31)을 제거하면 제1 변형 경계선(BL1)이 형성된 프로브 제1 두께 층(T1), 프로브 제2 두께 층(T2) 및 제2 변형 경계선(BL2)이 형성된 프로브 제3 두 께 층(T3)이 일체로 형성된 프로브가 제조된다.
한편 도 3j 내지 도 3k는 멤스(MEMS) 공정을 적용하여 본 발명에 따른 일정한 형상을 가진 변형 경계선이 형성된 판형 프로브를 제조하는 대안적인 제조 공정에 대한 다른 실시예를 도시한 것이다.
도 3j의 좌측에 도시된 것처럼, 시드 층(34)에 프로브의 제1 두께 층(T1)을 형성하기 위하여 소재 금속을 매립하기 전에 먼저 제2 보호 막 패턴(32a)을 형성한다. 도 3j의 우측은 도 3j의 좌측에 도시된 D-D′선을 따라 절단된 단면도를 도시한 것이다.
그리고 도 3k에 도시된 것처럼 금속 소재를 도 3j의 좌측에 도시된 희생 기층(31) 및 제2 보호막 패턴(32a)에 의하여 형성된 공간부에 도전성 금속을 매립시켜 프로브의 제1 두께 층 및 제2 두께 층을 동시에 형성할 수 있다. 이후 공정은 상기 도 3g 내지 도 3i에 설명한 내용과 동일하다. 이와 같이 본 발명에 따른 프로브는 다양한 공정 과정을 통하여 제조될 수 있다. 또한, 상기 도 3a 내지 도 3k에서 설명의 편의를 위하여 하나의 프로브가 제조되는 공정만을 도시하였지만 실질적으로 다수 개의 프로브가 하나의 희생 기판을 사용하여 동시에 제조된다. 그리고 도 1b 내지 도 2b에 제시된 프로브 역시 동일한 공정 단계를 적용하여 제조할 수 있다는 것은 이 분야에서 통상의 지식을 가진 자에게 자명할 것이다. 아울러 다양한 형태의 변형된 공정 단계를 적용하여 도 1b 내지 도 2b의 프로브를 제조할 수 있다.
도 4a에서 위쪽은 제조된 프로브의 정면도를 도시한 것이고 아래쪽은 제조된 프로브의 평면도를 도시한 것이다. 도 4a의 정면도에 도시된 것처럼 제1 변형 경계선(BL1)은 몸체(11)의 앞쪽 면에 좁은 폭을 가진 홈으로 형성되고 그리고 제2 변형 경계선(BL2)은 몸체(11)의 뒤쪽 면에 동일한 형태로 형성된다. 여기서, 일실시예로 제1 변형 경계선(BL1)과 제2 변형 경계선(BL2)이 몸체(11)의 서로 다른 면에 각각 형성된다. 그러나 다른 실시예로 제1 변형 경계선(BL1)과 제2 변형 경계선(BL2)이 몸체(11)의 동일한 면에 형성될 수도 있다. 만약, 제1 변형 경계선(BL1)과 제2 변형 경계선(BL2)이 몸체(11)의 동일한 면에 형성된다면, 상기 도 3a 내지 도 3k에서 설명한 멤스(MEMS) 공정 과정의 일부가 생략될 수도 있다.
그리고 설명의 편의를 위하여 상기 제1 및 제2 변형 경계선(BL1, BL2)은 일정한 너비(L)를 가진 직사각형 단면을 가진 홈의 형상을 실시 예로 제시하여 설명을 하였다. 그러나 제1 및 제2 변형 경계선(BL1, BL2)의 너비(L)는 임의의 크기로 작아질 수 있다. 그리고 단면의 형상은 도 4b의 (가) 또는 (나)에 도시된 것처럼 반원형, 삼각형 또는 임의의 형태가 될 수 있다.
위에서 이미 설명을 한 것처럼 제1 변형 경계선(BL1) 및 제2 변형 경계선(BL2)은 프로브 몸체(11)의 서브 몸체를 서로 다른 방향으로 꺾는 기준 위치가 된다. 제1 및 제2 변형 경계선(BL1, BL2)을 가진 프로브를 꺾는 공정은 프로브를 전자 부품에 결합시키는 공정과 동시에 이루어질 수 있다.
예를 들어 프로브 위치 설정 시스템(probe position system)을 사용하여 프로브를 전자 부품에 결합시키는 경우 위에서 설명한 것과 같은 멤스(MEMS) 공정을 적용하여 제조된 다수 개의 프로브가 정해진 위치에 고정된다. 각각의 프로브를 분 리시키면서 몸체를 변형 경계선(BL1, BL2)을 기준으로 꺾는 공정이 진행되고 그리고 몸체가 꺾인 프로브를 아래에서 설명되는 전자 부품의 결합 패드에 위치시킨다. 그리고 레이저를 이용하여 프로브를 전자 부품의 결합 패드에 견고하게 고정시킨다. 이와 같은 공정은 전체 프로브에 대하여 연속 공정 또는 배치 공정으로 이루어질 수 있다.
위에서 제시된 변형 경계선을 가진 프로브의 제조 방법은 예시적인 것으로 본 발명에 따른 프로브는 다양한 공정 단계를 통하여 제조될 수 있다. 이와 같은 제조 방법 또는 방법에 포함된 제조 공정에 의하여 본 발명의 범위는 제한되지 않는다.
또한 변형 경계선은 꺾임을 보조하기 위한 다양한 형상을 포함할 수 있다. 예를 들어 변형 경계선은 도 4c의 (가) 내지 (다)에 도시된 것과 같은 다양한 형태를 포함할 수 있다.
도 4c의 (가)는 제1, 2변형 경계선(BL1, BL2)에 꺾임을 보조하기 위하여 몸체(11)의 두께 방향으로 연장되는 단면이 사각형이 되는 사각 홈(41)이 형성된 것을 도시한 것이다. 두께 방향으로 연장되는 사각 홈(41)은 도 4b에서 설명한 것과 마찬가지로 다양한 형태를 가질 수 있다. 도 4c의 (나)는 꺾임을 보조하기 위하여 제1 변경 경계선(BL1, BL2)을 따라 몸체(11)에 적당한 크기의 홀(hole)(42)이 형성된 것을 도시하고 있다. 홀(hole)(42)은 프로브의 몸체(11)를 관통하여 형성되고 그리고 사각형, 원형 또는 타원형과 같은 다양한 형상을 가질 수 있다. 대안으로 도 4c의 (다)를 참조하면 제1 변경 경계선(BL1)의 위쪽 부분 및 제2 변형 경계 선(BL2)의 아래쪽 부분에 각각 몸체(11)의 두께 방향을 따라 단면이 쐐기 형태가 되는 쐐기 홈(43)이 형성될 수 있다. 쐐기 홈(43)은 도 4의 (다)의 오른쪽에 도시된 것처럼 몸체가 화살표로 표시된 것과 같이 꺾이는 방향(서로 반대 방향으로 꺾이는 경우에도 동일)을 고려하여 꺾임이 용이하도록 형성될 수 있다.
이와 같이 본 발명에 따른 프로브의 몸체에 형성된 변형 경계선은 다양한 형상을 가지거나 또는 꺾임을 보조하기 위한 다양한 형태를 포함할 수 있다. 그러나 본 발명에 따른 프로브의 몸체에 형성된 변형 경계선은 실질적으로 이와 같은 꺾임의 기준이 되는 형상 또는 꺾임을 보조하기 위한 형태를 전혀 가지지 않을 수도 있다. 예를 들어 변형 경계선은 단지 몸체에 임의의 형태로 표지(marking)만이 되고 그리고 프로브의 본딩 공정과정에서 표지(marking)를 기준으로 몸체가 꺾일 수 있다.
위와 같이 본 발명에 따른 프로브의 몸체에 형성되는 변형 경계선은 임의의 형태로 설정될 수 있고 본 발명의 범위는 특정 형태의 변형 경계선의 설정 또는 형태에 의하여 제한되지 않는다.
도 5는 사진 식각 공정 또는 멤스(MEMS) 공정으로 제조된 본 발명에 따른 프로브의 예시적인 형태를 도시한 것이다.
도 5를 살펴보면, 제조된 프로브는 전자 부품에 결합될 수 있는 결합 돌기(511)를 가진다. 결합 돌기(511)는 반구형 또는 사각 기둥(프로브 몸체는 두께가 얇은 판형이므로 직사각형 형태와 유사하다)과 같은 임의의 형태가 될 수 있고 그리고 제1 서브 몸체(21a)에 비하여 충분히 작은 부피를 가진다. 결합 돌기(511)는 프로브(20)를 전자 부품에 위치시키기 위한 기준 위치 기능을 하므로 제1 서브 몸체(21a)의 위쪽 면에 설치되는 것이 유리하다. 도 5에 도시된 프로브(20)는 제1 서브 몸체(21a)가 제2 및 제3 서브 몸체(21b, 21c)에 비하여 위쪽으로 돌출된 형태를 도시한 것이다. 프로브(20)를 전자 부품에 결합시키는 경우 제1 서브 몸체(21a)에 의하여 대략적으로 결합 위치가 결정되고 그리고 정확한 결합 위치는 결합 돌기(511)에 의하여 결정된다. 프로브(10)가 결합되는 전자 부품에 제1 서브 몸체(21a) 및 결합 돌기(511)에 대응되는 홈이 형성되어 있다. 그리고 결합 돌기(511)에 의하여 결합 위치가 결정된 프로브는 결합 돌기(511)를 전자 부품에 형성된 홈에 결합시키고 그리고 본딩(bonding) 작업 공정을 통하여 전자 부품에 결합된다. 이와 같이 위쪽으로 돌출된 제1 서브 몸체(21a) 및 결합 돌기(511)는 프로브(20)와 전자 부품의 결합 공정이 정확하고 용이하게 진행되도록 한다.
위에서 이미 설명을 한 것처럼 본 발명에 따른 본 발명에 따른 프로브는 마이크로 광 조형 기술에 의하여 제조될 수 있다.
도 6은 본 발명에 따른 프로브를 마이크로 광 조형 기술을 이용하여 제조하는 과정을 개략적으로 도시한 것이다.
도 6을 참조하면, 본 발명에 따른 프로브(10)를 제조하기 위하여 광 경화성 수지 용액(photo-polymer)(66)을 수용하는 다수 개의 격자 셀(64)이 설치된다. 설명의 편의를 위하여 하나의 격자 셀(64)만을 도시하였지만 격자 셀(64)은 상하좌우로 연속적으로 인접하여 설치된다. 그리고 격자 셀(64) 전체는 이동 가능한 수평 테이블(67)에 위치한다. 수평 테이블(67)은 이동 장치(68)에 의하여 X-Y-Z축 방향 으로 또는 경사 방향으로 이동 가능하다.
본 발명에 따른 프로브(10)의 제조를 위하여 우레탄 또는 아크릴 계통의 광 경화성 수지 용액(66)이 격자 셀(64)에 채워진다. 제조되어야 할 프로브(10)의 형태는 미리 3차원 캐드(Cad) 도면으로 작성되어 컴퓨터와 같은 제어 장치(도시되지 않음)에 입력된다. 그리고 입력된 프로브 캐드 도면에 의하여 이동 장치(68)의 이동 정도 및 이동 방향이 결정된다.
프로브(10)의 제조를 위하여 광원(61)으로부터 조사된 레이저 빔(LB)이 반사 거울(62)을 경유하여 렌즈(63)를 통과하게 된다. 렌즈(63)를 통과하면서 초점에 집중된 레이저 빔(LB)은 격자 셀(64)에 수용된 광 경화성 수지 용액(66)을 고화시키고(solidification) 그리고 이동 장치(68)의 이동에 의하여 프로브를 형상을 만들게 된다. 레이저 빔(LB)은 초점에 인접하는 부분을 함께 고화시키게 되므로 고화면적을 고려하여 레이저 빔(LB)이 조사되어야 한다. 또한 본 발명에 따른 프로브의 경우처럼 두께가 얇은 경우라면 특별히 프로브의 두께를 형성하기 위한 수평 테이블(67)의 높이 이동은 요구되지 않는다. 레이저 빔(LB)의 강도에 의하여 수평 및 수직 방향의 고화 정도가 결정되므로 프로브의 두께는 레이저 빔(LB)의 강도를 조절하는 것에 의하여 조절될 수 있다. 만약 프로브가 높이를 요구하는 3차원 구조를 가지는 경우라면 수평 테이블(67)을 수직 방향으로 이동시키면서 프로브를 3차원 입체 구조를 형성할 수 있다.
대량의 프로브(10)를 제조하기 위하여 다수 개의 격자 셀(64)이 상하 및 좌우 방향으로 배치될 필요가 있고 그리고 이와 함께 레이저 빔(LB)은 예를 들어 X 방향으로 연속적으로 움직이고, Y 방향으로 연속적으로 이동하고 그리고 마지막으로 경사 방향으로 연속적으로 이동하면서 다수 개의 프로브(10)를 동시에 제조할 수 있다. 프로브(10)는 전기 전도성을 가져야 한다. 프로브(10)의 전도성을 위하여 전도성을 가진 복합 광 경화성 수지 용액(66)을 사용하거나 또는 프로브(10)의 표면을 전도성 소재로 코팅할 수 있다. 위에서 이미 설명을 한 것처럼 본 발명에 따른 프로브(10)는 상하 방향에 대하여 충분한 유연성을 가져야 한다. 그러므로 광 경화성 수지 용액(66)은 경화되는 경우 충분한 유연성을 가지는 것이 유리하다. 이와 같은 점을 고려할 때 바람직한 형태의 전도성 및 유연성을 가진 탄소 나노 튜브가 분산된 우레탄계 광 경화성 수지 용액(66)이 본 발명의 프로브(10)의 제조를 위하여 사용될 수 있다.
도 6에 도시된 마이크로 광 조형 기술을 적용한 프로브의 제조 방법은 예시적인 것으로 본 발명에 따른 프로브는 이 분야에서 공지된 임의의 광 조형 기술을 적용하여 제조될 수 있다. 예를 들어 광 조형 기술을 적용하는 경우 도 1a와 관련하여 설명한 것과 같은 꺾인 형태의 판형 프로브의 제조가 가능하다. 또한 도 3과 관련하여 설명한 것과 같은 변형 경계선 형태를 차례대로 형성하면서 도 4와 같은 프로브의 제조가 가능하다.
마이크로 광 조형 기술을 이용하는 다른 이점은 꺾인 형태의 판형 프로브를 직접 형성할 수 있다는 것이다. 예를 들어 다수 개의 격자 셀 각각에 대하여 프로브의 좌측 다리 및 유연부를 형성하고 그리고 격자 셀의 바닥면의 높이를 균일하게 낮추면서 몸체를 경사지게 형성한다. 이와 같은 방법으로 차례대로 몸체를 형성한 후 다시 우측 다리 및 유연부를 형성할 수 있다. 실질적으로 멤스(MEMS) 공정을 통하여 꺾인 형태의 판형 프로브를 제조하는 것이 가능하지만 제조 공정의 관점에서 볼 때 마이크로 광 조형 기술을 적용하여 꺾인 형태의 판형 프로브를 제조하는 것이 유리하다. 또한 마이크로 광 조형 기술을 적용하는 경우 꺾임 각을 용이하게 제조 공정 단계에서 미리 결정 및 조절하여 프로브를 제조할 수 있다는 이점을 가진다.
사진 식각 기술, 멤스(MEMS) 공정, 마이크로 광 조형 기술 또는 이 분야에서 공지된 임의의 방법에 따라 제조된 본 발명에 따른 프로브는 스페이스 트랜스포머(space transformer)와 같은 전자 부품에 결합될 수 있다. 본 명세서에서 스페이스 트랜스포머는 프로브와 프로브 사이의 피치 간격(pitch interval)을 조정하기 위한 임의의 전기 또는 전자 부품을 의미하고 그리고 이와 같은 피치 간격의 조절을 위한 스페이스 트랜스포머는 이 분야에 공지되어 있다.
프로브는 개별 본딩 또는 일괄 본딩에 의하여 전자 부품에 결합될 수 있다. 개별 본딩을 위하여 레이저가 사용되고 그리고 일괄 본딩은 납땜 재료의 도포 또는 리플로우(reflow) 방식에 의하여 이루어진다. 개별 본딩 또는 일괄 본딩 방식, 그리고 관련 장비는 출원인에 의하여 출원하여 등록된 특허번호 제444191호 “프로브 포지셔닝 및 본딩 시스템 및 그 방법” 및 특허번호 제557201호 “프로브 본딩용 실리콘 웨이퍼 및 모듈 및 이를 이용한 프로브 본딩 방법”에 개시되어 있다. 상기 두 개의 발명은 참조로 본 발명에 포함된다.
아래의 설명에서 프로브는 몸체가 꺾인 상태에서 전자 부품과 같은 다른 구 성요소에 결합이 된다. 프로브 몸체의 꺾인 정도 또는 면각은 30 내지 150도의 범위에서 다양한 값을 가질 수 있다. 설명의 편의를 위하여 프로브의 몸체가 90도보다 큰 각으로 꺾인 상태의 도면을 기준으로 설명을 하지만 본 발명은 이와 같은 면각의 크기에 제한되는 것은 아니다.
도 7은 본 발명에 따른 프로브 본딩 방법의 실시 예를 도시한 것이다.
도 7을 참조하면, 제1 서브 몸체(21a)가 다른 두 개의 서브 몸체(21b, 21c)에 비하여 상대적으로 위쪽으로 돌출된 프로브(20)는 전자 부품(71)에 정렬된 다수 개의 결합 패드(72)에 각각 결합된다. 결합 패드(72)에 결합되기 전 먼저 프로브(20)는 제1 변형 경계선(BL1) 및 제2 변형 경계선(BL2)에서 정해진 평면각을 가지도록 서브 몸체가 꺾여야 한다. 도 7에 도시된 것은 평면각이 각각 90도보다 큰 경우를 도시한 것이다. 만약 평면각이 각각 90도가 된다면 제1 서브몸체(21a)는 선(line)으로 표시될 것이다. 프로브(20)는 제1 서브 몸체(21a)에 형성된 결합 돌기(511)에 의하여 결합 패드(72)와 결합될 기준 위치가 결정된다. 그리고 제1 서브 몸체(21a)가 결합 패드(72)의 결합 홈(721)에 결합되면서 프로브(20)가 전자 부품(71)에 결합될 수 있다.
전자 부품(71)에 형성된 결합 패드(72)는 피검사체의 접촉 패드(도시되지 않음)의 위치에 따라 정렬이 결정될 수 있다. 변형 경계선(BL1, BL2)에서 꺾이지 않은 평면 형태로 제조되는 프로브(20)는 변형 경계선(BL1, BL2)에서 꺾이는 각의 크기 또는 서브 몸체 사이의 평면각의 크기에 따라 전체적인 입체 형태가 결정되고 그리고 이와 동시에 결합 패드(72)에 결합되는 형태가 달라진다. 결합 패드(72)의 결합 홈(721)의 형태는 평면각의 크기 또는 꺾인 프로브(20)의 형태에 의하여 결정될 수 있다. 서브 몸체 사이의 평면각은 다양한 크기를 가질 수 있고 그에 따라 전자 부품(71)에 결합된 프로브(20)는 다양한 형태를 가질 수 있지만 아래에서 제한되지 않은 실시 예를 제시한다.
도 8의 (가) 내지 (라)는 프로브의 결합을 위하여 전자 부품에 형성된 접촉 패드의 결합 홈에 대한 실시 예를 도시한 것이다.
도 8의 (가) 및 (나)는 결합 패드(72)에 대하여 수직 또는 수평으로 형성된 결합 홈(721)에 프로브가 결합되는 형태를 도시한 것이다. 수직 또는 수평이란 프로브 서브 몸체 사이의 평면각에 의하여 결정되는 상대적인 의미를 가진다. 도 8의 (나)에 도시된 것처럼 프로브의 몸체는 3개의 서브 몸체(도 2a 및 도 2b 참조)로 이루어지고 중간에 위치하는 제1 서브 몸체(21a)가 결합 홈(721)에 결합된다. 제2 서브 몸체 및 제3 서브 몸체(21b 및 21c)는 각각 서로 다른 방향으로 꺾여 제1 서브 몸체(21a)와 각각 90도의 평면각을 형성하게 된다. 이에 따라 두 개의 접촉 팁(24)은 서로 멀어져서 어긋난 위치에서 대각선 방향으로 마주보는 곳에 위치하게 된다.
도 8의 (다) 및 (라)는 결합 패드(72)에 대하여 경사지게 형성된 결합 홈(721)에 프로브의 제1 서브 몸체가 결합되는 형태를 도시한 것이다.
도 8의 (라)를 참조하면, 제2 서브 몸체(21b) 및 제3 서브 몸체(21c)는 제1 서브 몸체와 각각 약 45도 크기의 평면각을 가지도록 서로 다른 방향으로 꺾인 상태로 결합 패드(72)에 결합되고 이에 따라 두 개의 접촉 팁(24)은 서로 멀어져서 어긋난 위치에서 대각선 방향으로 마주보는 곳에 위치하게 된다. 도 8에 도시되어 있지만 결합 홈(721)에 필요에 따라 결합 돌기(도 7참조)에 대응되는 홈이 형성될 수도 있다.
만약 프로브의 결합 위치의 기준이 되는 제1 서브 몸체가 다른 2개의 서브 몸체에 비하여 상대적으로 위쪽으로 돌출되지 않는 경우(도 1b 참조) 결합 패드(72)의 결합 홈(721)은 다른 형태가 될 수 있다. 이와 같은 경우 결합 패드(72)에 프로브를 결합시키는 대안은 결합 패드(72)에 미리 3개의 서브 몸체에 해당하는 결합 홈(721)을 형성하는 것이다. 도 8의 (가) 및 (다)의 결합 홈(721)에 점선으로 표시된 부분은 제2 및 제3 서브 몸체에 해당하는 결합 홈을 나타낸다. 각각의 서브 몸체는 해당하는 결합 패드(72)의 홈에 각각 결합되어 프로브가 전자 부품에 견고하게 결합이 될 수 있도록 한다.
위에서 구체적으로 설명을 하지 않았지만 프로브를 결합 패드에 결합시키는 과정에서 도전성 페이스트가 프로브의 서브 몸체 또는 결합 패드에 홈에 미리 적층되어 프로브와 전자 부품의 결합을 견고하게 만들 수 있다. 도전성 페이스트 종류 및 이를 사용한 결합 공정은 이 분야에서 공지되어 있다. 본 발명에 따른 프로브는 공지된 임의의 도전성 페이스트로 공지된 임의의 방법에 따라 전자 부품에 결합될 수 있다.
전자 부품에 결합된 프로브는 반도체 팁의 검사 과정에서 피검사체의 접촉 패드와 접촉하여 전기 신호를 전달하게 된다. 아래에서 본 발명에 따른 프로브가 접촉 패드에 접촉하는 과정을 설명한다.
도 9a 및 도 9b는 본 발명에 따른 프로브가 반도체 칩의 검사 과정에서 접촉 패드와 접촉하는 과정을 도시한 것이다.
도 9a를 참조하면, 다수 개의 프로브(20, 20a, 20b)가 전자 부품(71)의 결합 패드(72, 72a, 72b)에 결합된다. 그리고 반도체 칩의 검사 과정에서 각각의 프로브(20, 20a, 20b)는 피검사체 또는 반도체 칩(91)에 형성된 대응하는 접촉 패드(911, 911a, 911b)에 접근하게 된다. 전자 부품(71)은 화살표 M으로 표시된 상하 방향으로 이동하게 되고 그리고 전자 부품(71)에 결합된 프로브의 접촉 팁(24, 24a, 24b)은 결합 패드(72, 72a, 72b) 사이의 높이 오차(e1) 또는 접촉 패드(911, 911a, 911b) 사이의 높이 오차(e2)로 인하여 동시에 접촉 패드(911, 911a, 911b)에 접할 수 없는 경우가 발생한다. 이와 같은 높이 오차는 프로브(20, 20a, 20b) 자체의 높이 차이로 인하여 발생할 수도 있다. 도 9a에 도시된 실시 예의 경우 좌측의 프로브(20)가 가장 먼저 접촉 패드(911)에 접하게 된다. 이와 같은 높이 오차는 본 발명에 따른 프로브(20, 20a, 20b)의 유연성에 의하여 보상될 수 있다. 위에서 이미 설명을 한 것처럼 본 발명에 따른 프로브(20, 20a, 20b)는 유연부 또는 접촉 팁(24, 24a, 24b)이 상하 방향 또는 면에 수직되는 방향으로 유연성을 가진다. 특히 높이 오차의 경우 상하 방향의 유연성에 의하여 보상될 수 있다.
도 9b에 도시된 것처럼, 좌측 프로브(20)가 먼저 접촉 패드(911)에 도달하고 그리고 계속해서 전자 부품(71)이 아래쪽으로 화살표 M 방향으로 이동하면 중간 및 우측 프로브(20a, 20b)가 각각 접촉 패드(911a, 911b)에 도달하게 된다. 그리고 전자 부품(71)이 아래쪽으로 다시 이동하면, 좌측 프로브의 2개의 접촉 팁(14)은 화 살표 S로 표시된 것처럼 접촉 패드(911)의 평면을 따라 서로 어긋난 위치에서 평행하게 서로 멀어지는 방향으로 이동하게 된다. 이와 같은 이동은 접촉 팁(24)이 유연성을 가지므로 유연부가 위쪽으로 약간 휘어지면서 진행된다. 이와 동시에 중간 및 우측 프로브의 접촉 팁(24a, 24b)이 각각 대응되는 접촉 패드(911a, 911b)에 접촉하게 된다. 그리고 전자 부품(71)이 다시 아래쪽으로 이동하면 세 개의 프로브의 접촉 팁(24, 24a, 24b)은 대응되는 접촉 패드(911, 911a, 911b)의 표면을 따라 산화 막을 긁어내면서 이동하게 된다.
접촉 팁(24, 24a, 24b)이 접촉 패드(911, 911a, 911b)의 표면을 따라 이동하면서 표면 마찰에 의하여 비틀림이 발생할 수 있다. 이와 같은 비틀림은 프로브 면에 수직되는 방향의 유연성 또는 서로 다른 방향으로 꺾인 몸체에 의하여 접촉 팁 사이의 이격 거리에 의하여 보상된다. 그러므로 본 발명에 따른 프로브는 제조 과정에서 발생한 높이 공차 및 접촉 과정에서 발생하는 표면 마찰로 인한 비틀림 변형을 모두 보상할 수 있도록 한다. 이로 인하여 접촉 패드에 대한 프로브 팁의 접촉 신뢰성을 향상시켜 반도체 칩의 검사 효율을 높일 수 있다.
본 발명에 따른 프로브는 여러 가지 특징을 가지지만 특히 세 개의 관점에서 이점이 두드러진다.
먼저 위에서 이미 설명을 한 것처럼 프로브 몸체는 3개의 서브 몸체로 이루어지고 서브 몸체는 각각 서로 꺾어지면서 서로 면각을 형성하게 된다. 면각은 임의로 조절될 수 있고 그리고 이와 같은 면각의 조절은 접촉 팁의 상대적인 위치를 조절하게 된다. 그러므로 결과적으로 피검사체에서 접촉하는 접촉 팁의 상대적인 위치의 조절이 가능하다는 이점을 가진다.
둘째, 프로브는 상하 방향 및 면에 수직되는 방향에 대하여 유연성을 가진다. 이러한 유연성은 제조 과정에서 발생하는 높이 오차 및 접촉 과정에서 발생하는 비틀림 변형을 보상할 수 있도록 한다. 이로 인하여 프로브와 접촉 패드 사이의 접촉 신뢰성이 향상될 수 있다.
셋째, 각각의 프로브는 전자 부품에 수직으로 배열되고 그리고 서브 몸체는 꺾어지게 되어 배치 공간을 밀도를 향상시킨다. 그러므로 실질적으로 배치 공간의 효율성을 향상시켜 프로브의 고밀도 배열이 가능하도록 한다.
추가로 본 발명에 따른 설명의 편의를 위하여 위에서 본 발명에 따른 프로브가 2개의 변형 경계선을 가진 실시 예를 기준으로 설명을 하였지만 필요에 따라 다수 개의 변형 경계선이 프로브의 몸체에 형성될 수 있다. 그리고 이와 같은 다수 개의 변형 경계선은 프로브의 몸체가 이웃하는 변형 경계선에 대하여 서로 다른 방향으로 꺾이는 기준선이 된다. 이와 같은 다수 개의 변형 경계선 및 다수 개의 변형 경계선에 의하여 형성되는 서브 몸체 사이의 면각은 접촉 팁의 정밀한 배치를 가능하도록 한다.
접촉 신뢰성을 향상시키기 위하여 접촉 팁은 다양한 구조를 가질 수 있다. 위에서 프로브 접촉 팁은 끝 부분이 날카로운 핀셋 형태로 제시되어 있지만 본 발명에 따른 프로브의 접촉 팁은 이러한 형태에 제한되는 것은 아니다.
도 10의 (가) 내지 (다)는 본 발명에 따른 프로브의 접촉 팁의 형태에 대한 실시 예를 도시한 것이다.
도 10의 (가)는 이미 위에서 설명한 것과 같은 핀셋 형태의 접촉 팁(14)을 도시한 것이다. 프로브의 다리(12)는 수직으로 형성되고 그리고 유연부(13)는 다리(12)와 경사지고 그리고 폭이 좁아지면서 안쪽으로 연장된다. 2개의 접촉 팁(14)은 수직 방향(VL)과 평행한 안쪽 선과 그리고 수직 방향(VL)에 대하여 경사진 바깥 선이 아래쪽에서 만나면서 날카로운 끝 부분을 형성하게 된다. 접촉 팁(14)이 접촉 패드와 같은 접촉 평면(HS)에 접촉하는 경우 접촉 팁(14)은 화살표로 표시된 것과 같이 서로 멀어지는 방향으로 이동한다. 본 명세서에서 접촉 팁(14)의 길이 방향의 연장선 중 어느 하나가 접촉 평면에 수직이 되는 도 10의 (가)의 좌측에 표시된 것과 접촉 팁(14)을 수직 접촉 팁(14)이라 한다. 이에 비하여 도 10의 (가)의 오른쪽에 도시된 접촉 팁(14)은 수직 방향에 대하여 일정한 경사각을 가진다. 본 명세서에서 이와 같이 수직 방향에 대하여 경사각을 가지는 접촉 팁(14)을 경사 접촉 팁(14)이라 한다. 경사 접촉 팁(14)의 경사각은 접촉 평면(HS)에서 경사 접촉 팁(14)의 이동 방향을 고려하여 결정될 수 있지만 바람직하게 수직 방향에 대하여 10 내지 45도의 각을 가질 수 있다.
도 10의 (나)의 좌측에 도시된 것은 유연부(13a)는 경사진 방향으로 폭이 좁아지면서 직선 형태로 연장되고 그리고 접촉 팁(14a)은 아래쪽 면이 완전하게 접촉 평면(HS)에 접하거나 또는 곡선 형태로 되어 있다. 본 명세서에서 이와 같이 접촉 팁(14a)의 아래쪽 면의 적어도 일부분의 면적이 접촉 평면(HS)과 접하는 접촉 팁을 수평 접촉 팁(14a)이라 한다. 수평 접촉 팁(14a)은 상하 방향의 유연성을 증가시킬 수 있다. 다만 접촉 패드의 산화 막을 긁어내는 것(scribing)이 어렵다는 문제점을 가진다. 그러나 이러한 문제는 접촉 팁(14a)의 아래쪽 면에 날카로운 부분을 형성하는 것에 의하여 해결될 수 있다. 도 10의 (나)의 우측에 도시된 접촉 팁(14a)은 유연부(13a)와 접촉 팁(14a)이 전체로 곡선형으로 이루어진 프로브를 도시한 것이다. 이러한 프로브의 경우 프로브의 다리가 형성되지 않고 유연부(13a)가 직접 프로브의 몸체에 결합된다. 좌측에 도시된 접촉 팁(14a)과 마찬가지로 수평 접촉 팁(14a)에 해당한다.
도 10의 (다)에 도시된 접촉 팁(14b)은 일정한 면이 접촉 평면(HS)과 접촉한다. 도 10의 (나)에 도시된 접촉 팁(14a)은 실질적으로 길이 방향의 접촉 크기가 폭 방향의 접촉 방향에 비하여 상당히 크게 된다. 이에 비하여 도 10의 (다)에 도시된 접촉 팁(14b)은 길이 및 폭 방향으로 일정한 크기를 가진 면적이 접촉 평면(HS)과 접하게 된다. 구체적으로 도 10의 (나)의 경우 굵은 선이 접촉 평면(HS)과 접하게 되지만 도 10의 (다)의 경우 면적이 접촉 평면(HS)과 접하게 된다. 본 명세서에서 이와 같이 면적이 접촉 평면(HS)과 접하게 되는 접촉 팁(14b)을 면 접촉 팁(14b)이라 한다. 이와 같이 면적이 직사각형, 정사각형 평행 사변형, 마름모 또는 원과 같이 임의의 형태의 다각형 또는 원이 될 수 있다. 면 접촉 팁(14b)의 경우 접촉 표면(HS)의 긁힘(scribing)이 문제가 되는 경우 도 10의 (다)의 오른쪽에 도시된 것처럼 아래쪽에 날카로운 정점(peak)을 설정할 수 있다. 이와 같은 경우 실질적으로 접촉 팁(14b)은 각뿔대 형태가 되지만 일종의 면 접촉 팁(14b)에 해당한다. 면 접촉 팁은 실질적으로 접촉 팁의 무게를 증가시키는 것에 의하여 접촉신뢰성을 높이게 된다. 면 접촉 팁(14b)의 경우 면 접촉 팁(14b)의 단위부피당 면 적이 유연부(13b)의 끝 부분의 단위부피 당 중량보다 더 크게 된다. 이로 인하여 접촉 팁(14b)이 충분한 탄성을 가지면서 동시에 접촉신뢰성이 높아질 수 있다. 다만 제조 공정이 복잡하다는 단점을 가지지만 사진 식각 공정 또는 멤스(MEMS) 공정을 적용하여 본 발명에 따른 프로브를 제조하는 경우 형상의 복잡성을 쉽게 해결된다.
위와 같은 형태의 프로브는 임의의 PCB, 전기 기판 또는 스페이스 트랜스포머와 같은 전자 부품에 결합된다. 그리고 상기 전자 부품은 적당한 방법으로 프로브 기판에 전기적으로 결합되어 프로브 카드로 제조될 수 있다. 또는 프로브가 부착된 전자 부품으로만 프로브 카드를 형성할 수도 있다. 그리고 제조된 프로브 카드는 공지 발명에 대하여 프로브 집적도가 높고 그리고 접촉 신뢰성을 높아 검사 신뢰도 및 검사 효율이 높다는 이점을 가진다.
위에서 본 발명이 반도체 칩을 중심으로 하여 설명이 되었다. 그러나 본 발명에 따른 프로브는 임의의 전기 소자의 검사에 대하여 적용될 수 있다는 것은 이 분야에서 통상의 지식을 가진 자에게 자명하다.
본 발명은 실시 예를 이용하여 상세하게 설명이 되었다. 제시된 실시 예는 예시적인 것으로 이 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 벗어나지 않는 제시된 실시 예에 대한 다양한 변형 및 수정 발명을 만들 수 있을 것이다. 본 발명의 범위는 이러한 변형 및 수정발명에 의하여 제한되지 않고 다만 아래에 첨부된 청구범위에 의해서만 제한된다.
도 1a는 본 발명에 따른 프로브의 하나의 실시 예에 대한 사시도를 도시한 것이다.
도 1b는 도 1a의 몸체가 꺾이기 전 상태의 정면도를 도시한 것이다.
도 2a 및 도 2b는 본 발명에 따른 프로브의 다른 실시 예를 각각 도시한 것이다.
도 3a 내지 도 3i는 멤스 공정을 적용하여 본 발명에 따른 변형 경계선이 형성된 판형 프로브를 제조하는 공정의 하나의 실시 예를 도시한 것이고, 도 3j 및 도 3k는 대안적인 제조 공정으로 다른 실시 예를 도시한 것이다.
도 4a는 멤스 공정으로 제조된 프로브를 도시한 것이고, 도 4b는 변형 경계선의 대안적인 형태를 도시한 것이고, 도 4c는 프로브 몸체의 변형 경계선에 형성되는 꺾임 보조 형상에 대한 다양한 실시 예를 도시한 것이다.
도 5는 사진 식각 공정 또는 멤스 공정으로 제조된 본 발명에 따른 프로브의 예시적인 형태를 도시한 것이다.
도 6은 본 발명에 따른 프로브를 마이크로 광 조형 기술을 이용하여 제조하는 과정을 개략적으로 도시한 것이다.
도 7은 본 발명에 따른 프로브 본딩 방법의 실시 예를 도시한 것이다.
도 8의 (가) 내지 (라)는 프로브의 결합을 위하여 전자 부품에 형성된 접촉 패드의 결합 홈에 대한 실시 예를 도시한 것이다.
도 9a 및 도 9b는 본 발명에 따른 프로브가 반도체 칩의 검사 과정에서 접촉 패드와 접촉하는 과정을 도시한 것이다.
도 10의 (가) 내지 (다)는 본 발명에 따른 프로브의 접촉 팁의 형태에 대한 실시 예를 도시한 것이다.

Claims (26)

  1. 전기 소자의 검사를 위한 프로브에 있어서,
    변형 경계선에서 30 내지 150도로 꺾인 몸체;
    몸체의 단부 각각에 일체로 형성되어 아래쪽으로 연장되고, 적어도 일부분이 유연성을 가지는 한 쌍의 빔부; 및
    상기 빔부 각각의 한쪽 끝에 일체로 형성된 한 쌍의 접촉 팁을 포함하고,
    상기 프로브는 판형으로 형성되는 것을 특징으로 전기 소자의 검사를 위한 프로브.
  2. 청구항 1에 있어서, 변형 경계선은 2개가 되고 그리고 2개의 변형 경계선을 기준으로 몸체가 서로 다른 방향으로 꺾인 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  3. 청구항 1에 있어서, 유연성을 가지는 빔부의 적어도 일부분은 직선 형태가 되는 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  4. 청구항 1에 있어서, 유연성을 가지는 빔부의 적어도 일부분은 곡선 형상 또는 만곡 형상이 되는 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  5. 청구항 1에 있어서, 빔부의 적어도 일부분은 접촉 팁으로 연장되면서 폭이 좁아지는 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  6. 청구항 1에 있어서, 몸체의 꺾임을 보조하기 위하여 변형 경계선에 몸체의 폭 방향으로 홈이 형성된 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  7. 청구항 1에 있어서, 몸체의 꺾임을 보조하기 위하여 변형 경계선에 몸체의 두께를 관통하는 홀이 형성되거나 또는 몸체의 두께 방향을 따라 홈이 형성된 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  8. 청구항 1에 있어서, 변형 경계선에서 꺾임에 의하여 몸체는 서브 몸체로 구분되고 그리고 서브 몸체 중 중간 서브 몸체는 다른 서브 몸체에 대하여 위쪽으로 돌출된 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  9. 청구항 1에 있어서, 변형 경계선에서 꺾이는 것에 의하여 몸체는 서브 몸체로 구분되고 그리고 서브 몸체는 인접하는 서브 몸체와 면각을 형성하는 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  10. 삭제
  11. 청구항 1에 있어서, 몸체의 위쪽 면에 결합 돌기가 형성된 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  12. 청구항 1에 있어서, 빔부의 적어도 일부분이 가지는 유연성은 접촉 팁이 접하는 면의 상하 방향 또는 빔부의 연장 방향에 대하여 수직 방향의 유연성이 되는 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  13. 청구항 1에 있어서, 접촉 팁은 수직 접촉 팁, 경사 접촉 팁, 수평 접촉 팁 또는 면 접촉 팁이 되는 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  14. 청구항 1에 있어서, 빔부는 몸체에 수직으로 연결된 다리 및 다리로부터 연장된 유연부로 이루어진 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  15. 청구항 1에 있어서, 빔부는 몸체에 연결된 만곡 유연부로 이루어진 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  16. 전기 소자의 검사를 위한 프로브에 있어서,
    변형 경계선 30 내지 150도로 꺾인 몸체;
    몸체로부터 아래쪽으로 연장된 한 쌍의 빔부; 및
    한 쌍의 빔부에 각각 형성된 접촉 팁을 포함하고,
    상기 접촉 팁은 몸체의 꺾임에 의하여 접촉 팁 사이의 이격 거리가 조절되는 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  17. 멤스 공정을 적용하여 프로브를 제조하는 방법에 있어서,
    희생기판에 프로브 형상의 보호 막 패턴을 적용하여 미리 결정된 변형 경계 형태가 형성된 판형의 프로브를 제조하는 단계; 및 변형 경계 형태를 기준으로 판형의 프로브의 특정 부분들이 30 내지 150도로 꺾는 것에 의하여 입체 형태로 만드는 단계를 포함하는 멤스 공정을 이용한 프로브의 제조 방법.
  18. 청구항 17에 있어서, 미리 결정된 변형 경계 형태는 폭 방향으로 연장된 홈 형태가 되는 것을 특징으로 하는 멤스 공정을 적용한 프로브의 제조 방법.
  19. 전자 부품에 프로브를 결합시키는 방법에 있어서,
    (a) 서로 다른 방향으로 30 내지 150도 꺾인 다수 개의 서브 몸체를 가진 판형 프로브를 제조하는 단계; 및,
    (b)서로 다른 방향으로 30 내지 150도 꺾인 다수 개의 서브 몸체를 전자 부품에 결합하는 단계를 포함하는 전자 부품과 프로브의 결합 방법.
  20. 청구항 19에 있어서, 상기 (a)단계는
    (a1) 변형 경계선에 의하여 구분되는 다수 개의 서브 몸체로 이루어진 몸체를 가진 판형의 프로브를 제조하는 단계; 및
    (a2) 다수 개의 서브 몸체를 변형 경계선을 기준으로 서로 꺾는 단계를 포함하는 전자 부품과 프로브의 결합 방법.
  21. 청구항 19에 있어서, 상기 (b)단계 이전에
    전자 부품에 결합 패드를 형성하고 그리고 상기 결합 패드에 서브 몸체에 대응되는 결합 홈을 형성하는 단계를 더 포함하는 전자 부품과 프로브의 결합 방법.
  22. 청구항 21에 있어서, 상기 결합 홈은 결합이 기준에 되는 어느 한 개의 서브 몸체에만 대응되도록 형성된 것을 특징으로 하는 전자 부품과 프로브의 결합 방법.
  23. 청구항 21에 있어서, 상기 결합 홈은 다수 개의 서브 몸체 각각에 대응되도록 다수 개로 형성된 것을 특징으로 하는 전자 부품과 프로브의 결합 방법.
  24. 청구항 19에 있어서, 다수 개의 서브 몸체를 서로 다른 방향으로 꺾는 것에 의하여 인접하는 서브 몸체 사이에 일정한 크기의 면각이 형성되는 것을 특징으로 하는 전자 부품과 프로브의 결합 방법.
  25. 청구항 1에 있어서, 변형 경계선은 2개가 되고 그리고 2개의 변형 경계선에 서 몸체가 동일 방향으로 꺾이는 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
  26. 청구항 25에 있어서, 동일 방향으로 꺾이는 것에 의하여 프로브가 ‘ㄷ’자 형태가 되는 것을 특징으로 하는 전기 소자의 검사를 위한 프로브.
KR1020070097425A 2007-09-27 2007-09-27 프로브, 프로브 제조방법 및 프로브 결합방법 KR100908271B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070097425A KR100908271B1 (ko) 2007-09-27 2007-09-27 프로브, 프로브 제조방법 및 프로브 결합방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070097425A KR100908271B1 (ko) 2007-09-27 2007-09-27 프로브, 프로브 제조방법 및 프로브 결합방법

Publications (2)

Publication Number Publication Date
KR20090032315A KR20090032315A (ko) 2009-04-01
KR100908271B1 true KR100908271B1 (ko) 2009-07-20

Family

ID=40759152

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070097425A KR100908271B1 (ko) 2007-09-27 2007-09-27 프로브, 프로브 제조방법 및 프로브 결합방법

Country Status (1)

Country Link
KR (1) KR100908271B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102388030B1 (ko) * 2020-07-15 2022-04-20 (주)엠투엔 프로브 핀, 이를 제조하는 방법 및 이를 구비하는 프로브 카드
KR102321083B1 (ko) * 2021-07-21 2021-11-03 (주)새한마이크로텍 접촉 프로브

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041978A (ja) 1999-07-30 2001-02-16 Japan Electronic Materials Corp プローブ及びこれを用いたプローブカード
KR20050023828A (ko) * 2003-09-03 2005-03-10 주식회사 파이컴 판재 절개형 프로브 및 이의 제조방법
KR20050076058A (ko) * 2004-01-19 2005-07-26 학교법인 포항공과대학교 수직형 프로브
JP2006084450A (ja) 2004-09-17 2006-03-30 Sumitomo Electric Ind Ltd コンタクトプローブおよびプローブカード

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001041978A (ja) 1999-07-30 2001-02-16 Japan Electronic Materials Corp プローブ及びこれを用いたプローブカード
KR20050023828A (ko) * 2003-09-03 2005-03-10 주식회사 파이컴 판재 절개형 프로브 및 이의 제조방법
KR20050076058A (ko) * 2004-01-19 2005-07-26 학교법인 포항공과대학교 수직형 프로브
JP2006084450A (ja) 2004-09-17 2006-03-30 Sumitomo Electric Ind Ltd コンタクトプローブおよびプローブカード

Also Published As

Publication number Publication date
KR20090032315A (ko) 2009-04-01

Similar Documents

Publication Publication Date Title
KR101293348B1 (ko) 한번에 다수 방식으로 와이어 본드 프로브 카드를 구축하는 방법
TWI333547B (ko)
TW469671B (en) Contact structure formed by microfabrication process
TW396657B (en) Small contactor for test probes, chip packaging and the like
US7501840B2 (en) Probe assembly comprising a parallelogram link vertical probe made of a metal foil attached to the surface of a resin film
KR100891066B1 (ko) 미세 전자 접속체, 미세 전자 접속체의 제조 방법, 반도체 장치 및 접속 구조물
US6330744B1 (en) Customized electrical test probe head using uniform probe assemblies
KR100588026B1 (ko) 프로브 헤드, 그 조립 방법 및 프로브 카드
US20060171425A1 (en) Probe and method of making same
US20110031991A1 (en) Probe block
US20080174327A1 (en) Electric signal connecting device and probe assembly and probing device using the same
US9000793B2 (en) Fine pitch probes for semiconductor testing, and a method to fabricate and assemble same
US20110014727A1 (en) Thin film probe sheet and semiconductor chip inspection system
US7423441B2 (en) Contactor assembly
KR101168147B1 (ko) 프로브 카드용 프로브 핀 및 그의 제조 방법
US8640324B2 (en) Method of fabricating a compliant membrane probe
JP2009503535A (ja) 垂直型プローブ、その製造方法及びプローブのボンディング方法
KR100728453B1 (ko) 프로브 배열체, 그 제조 방법, 프로브를 설치하는 방법 및 프로브를 설치하는 장치
KR100908271B1 (ko) 프로브, 프로브 제조방법 및 프로브 결합방법
KR101811859B1 (ko) 프로브 카드
KR101694768B1 (ko) 반도체 테스트 소켓 및 그 제조 방법
JP3891343B2 (ja) 垂直型プローブカード
US20180294211A1 (en) Vertically curved mechanically flexible interconnects, methods of making the same, and methods of use
US20100140793A1 (en) Process For Manufacturing Contact Elements For Probe Card Assembles
KR101846303B1 (ko) 양방향 도전성 모듈, 반도체 테스트 소켓, 그리고 그 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120711

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee