KR100897825B1 - Non-volatile memory and method of manufacturing the same - Google Patents

Non-volatile memory and method of manufacturing the same Download PDF

Info

Publication number
KR100897825B1
KR100897825B1 KR1020070088250A KR20070088250A KR100897825B1 KR 100897825 B1 KR100897825 B1 KR 100897825B1 KR 1020070088250 A KR1020070088250 A KR 1020070088250A KR 20070088250 A KR20070088250 A KR 20070088250A KR 100897825 B1 KR100897825 B1 KR 100897825B1
Authority
KR
South Korea
Prior art keywords
substrate
film
schottky barrier
schottky
barrier film
Prior art date
Application number
KR1020070088250A
Other languages
Korean (ko)
Other versions
KR20090022688A (en
Inventor
박찬혁
Original Assignee
주식회사 동부하이텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동부하이텍 filed Critical 주식회사 동부하이텍
Priority to KR1020070088250A priority Critical patent/KR100897825B1/en
Publication of KR20090022688A publication Critical patent/KR20090022688A/en
Application granted granted Critical
Publication of KR100897825B1 publication Critical patent/KR100897825B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66833Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a charge trapping gate insulator, e.g. MNOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/4234Gate electrodes for transistors with charge trapping gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

본 발명은 구현이 쉽고, 제조 공정에 의한 오염을 방지 및 고집적화 시킬 수 있는 비휘발성 메모리 및 그 제조방법에 관한 것이다.The present invention relates to a nonvolatile memory and a method of manufacturing the same, which are easy to implement and can prevent and highly integrate contamination by a manufacturing process.

본 발명에 비휘발성 메모리는 기판과, 상기 기판의 활성화 영역에 형성된 쇼트키 베리어막, 질화막, 산화막, 및 게이트 전극이 순차적으로 적층된 게이트 패턴과, 상기 기판에 불순물 이온이 선택적으로 주입되어 형성된 소스 및 드레인 영역을 포함하며, 상기 쇼트키 베리어막은 일함수가 4.0eV이상인 금속 물질로 형성되는 것을 특징으로 한다.According to the present invention, a nonvolatile memory includes a substrate, a gate pattern in which a Schottky barrier film, a nitride film, an oxide film, and a gate electrode are sequentially stacked on an active region of the substrate, and a source formed by selectively implanting impurity ions into the substrate. And a drain region, wherein the Schottky barrier film is formed of a metal material having a work function of 4.0 eV or more.

이러한 구성에 의하여 본 발명은 ONO 구조의 하부 베리어층을 일함수가 높은 백금 및 팔라듐으로 형성하여 금속과 반도체가 접합시 자연적으로 형성되는 쇼트키 터널 장벽(Schottky tunnel barrier)을 터널 장벽으로 이용함으로써, 재현성 및 균일성 구현이 쉬워 고집적화가 가능하다. 또한, 제조 공정 진행 중 하부 산화막에 이온들이 외부확산되어 발생되는 오염을 방지할 수 있다.According to this configuration, the present invention forms a lower barrier layer of the ONO structure by platinum and palladium having a high work function, and thus uses a Schottky tunnel barrier, which is formed naturally when the metal and the semiconductor are bonded, as a tunnel barrier. It is easy to implement reproducibility and uniformity, so high integration is possible. In addition, it is possible to prevent contamination caused by ions are externally diffused in the lower oxide film during the manufacturing process.

메모리, 쇼트키, 일함수 Memory, schottky, work function

Description

비휘발성 메모리 및 그 제조방법{NON-VOLATILE MEMORY AND METHOD OF MANUFACTURING THE SAME}Non-volatile memory and manufacturing method thereof {NON-VOLATILE MEMORY AND METHOD OF MANUFACTURING THE SAME}

본 발명은 반도체 소자의 제조방법에 관한 것으로, 특히 구현이 쉽고, 제조 공정에 의한 오염을 방지 및 고집적화 시킬 수 있는 비휘발성 메모리 및 그 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a nonvolatile memory and a method of manufacturing the same, which can be easily implemented and prevent and highly integrate contamination by a manufacturing process.

일반적으로, 반도체 메모리 장치는 크게 휘발성 메모리(volatile memory)와 비휘발성 메모리(non-volatile memory)로 구분된다. 휘발성 메모리의 대부분은 DRAM(Dynamic Random Access Memory), SRAM(Static Random Access Memory) 등의 RAM이 차지하고 있으며, 전원 인가시 데이타의 입력 및 보존이 가능하지만, 전원 제거시 데이타가 휘발되어 보존이 불가능한 특징을 가진다. 반면에, ROM(Read Only Memory)이 대부분을 차지하고 있는 비휘발성 메모리는 전원이 인가되지 않아도 데이타가 보존되는 특징을 가진다.In general, semiconductor memory devices are largely classified into volatile memory and non-volatile memory. Most of volatile memory is occupied by RAM such as DRAM (Dynamic Random Access Memory) and SRAM (Static Random Access Memory), and data can be input and stored when power is applied, but data cannot be saved because of volatilization when power is removed. Has On the other hand, nonvolatile memory, which is mostly occupied by ROM (Read Only Memory), is characterized in that data is preserved even when power is not applied.

현재, 공정기술 측면에서 비휘발성 메모리장치는 플로팅 게이트(floating gate) 계열과 두 종류 이상의 유전막이 2중, 혹은 3중으로 적층된 MIS(Metal Insulator Semiconductor) 계열로 구분된다.Currently, in terms of process technology, nonvolatile memory devices are classified into a floating gate series and a metal insulator semiconductor (MIS) series in which two or more dielectric layers are stacked in two or three layers.

플로팅 게이트 계열의 메모리 장치는 전위 우물(potential well)을 이용하여 기억 특성을 구현하며, 현재 플래시 EEPROM(Electrically Erasable Programmable Read Only Memory)으로 가장 널리 응용되고 있는 ETOX(EPROM Tunnel Oxide) 구조가 대표적이다.Floating gate series memory devices implement potential characteristics using potential wells, and are typically represented by an EPROM Tunnel Oxide (ETOX) structure, which is widely used as a flash electrically electrically programmable read only memory (EEPROM).

반면에 MIS 계열은 유전막 벌크, 유전막-유전막 계면 및 유전막-반도체 계면에 존재하는 트랩(trap)을 이용하여 기억 기능을 수행한다. 현재 플래시 EEPROM으로 주로 응용되고 있는 MONOS/SONOS(Metal/Silicon ONO Semiconductor)구조가 대표적인 예이다.On the other hand, the MIS series performs a memory function by using traps present at the dielectric bulk, the dielectric film-dielectric film interface, and the dielectric film-semiconductor interface. A typical example is the MONOS / SONOS (Metal / Silicon ONO Semiconductor) structure, which is mainly used as a flash EEPROM.

도 1은 종래 기술에 의한 SONOS 구조의 비휘발성 메모리의 간략 구조를 나타낸 수직 단면도이다. 도 1을 참조하면, SONOS 구조의 메모리 소자는 반도체 기판(10)의 활성 영역 상부에 순차적으로 적층된 터널링 절연막(tunneling dielectric layer)(20) 전하 저장용 절연막(charging dielectric layer)(30), 블록킹 절연막(blocking layer)(40)으로 이루어진 ONO막이 형성되어 있으며 ONO(Oxide/nitride/Oxide)막 상부에 도시되지 않은 게이트 전극이 형성될 수 있다. 게이트 전극 양쪽 활성 영역의 기판내에 소오스/드레인 접합(50, 60)이 형성되어 있다. ONO막의 터널링 절연막(30) 및 블록킹 절연막(40)은 실리콘 산화막(SiO2)으로 형성되고 그 가운데 전하 저장용 절연막(30)은 질화막으로 형성된다.1 is a vertical cross-sectional view showing a simplified structure of a nonvolatile memory of a SONOS structure according to the prior art. Referring to FIG. 1, a memory device having a SONOS structure includes a tunneling dielectric layer 20, a charge dielectric layer 30, and a blocking layer sequentially stacked over an active region of a semiconductor substrate 10. An ONO film formed of an insulating layer 40 is formed, and a gate electrode (not shown) may be formed on the ONO (Oxide / nitride / Oxide) film. Source / drain junctions 50 and 60 are formed in the substrates in both active regions of the gate electrode. The tunneling insulating film 30 and the blocking insulating film 40 of the ONO film are formed of a silicon oxide film SiO2, and the insulating film 30 for charge storage is formed of a nitride film.

이와 같은 종래 기술에 의해 완성된 SONOS 구조의 메모리 소자는 게이트 전극에 프로그래밍 전압이 인가되면, 터널링 절연막(20)을 통하여 전자가 터널링되어 전하 저장용 절연막(40)인 질화막내에 트랩(trap)된다. 전하 저장용 절연막(30) 내 에 전자가 충전됨에 따라 문턱 전압(threshold voltage)이 높아진다. 이러한 동작을 데이터 프로그램 상태 (program state)로 일컫는다. When the programming voltage is applied to the gate electrode, electrons are tunneled through the tunneling insulating film 20 and trapped in the nitride film, which is the insulating film 40 for charge storage, when the programming voltage is applied to the gate electrode. As the electrons are charged in the charge storage insulating layer 30, the threshold voltage increases. This operation is called a data program state.

이와 반대로 게이트 전극에 소거 전압이 인가되면, 전하 저장용 절연막(30)에 트랩된 전자가 하부의 터널링 절연막(30)을 통하여 반도체 기판(10)으로 빠져나가고 동시에, 기판(10)으로부터 정공(hole)이 터널링 절연막(20)을 통과하여 전하 저장용 절연막(30)에 트랩되어 문턱 전압이 낮아진다. 이러한 동작을 데이터 소거 상태(erase state)로 일컫는다.On the contrary, when an erase voltage is applied to the gate electrode, electrons trapped in the charge storage insulating film 30 exit the semiconductor substrate 10 through the lower tunneling insulating film 30, and at the same time, holes are removed from the substrate 10. ) Is passed through the tunneling insulating film 20 and trapped by the charge storage insulating film 30 to lower the threshold voltage. This operation is called a data erase state.

이러한, 종래 기술에 의한 SONOS 구조의 비휘발성 메모리 소자는 터널링 절연막(20)에서 터널링 방법이나 핫 캐리어 주입(hot carrier injection)에 의해서 프로그램되고 지워지고 있다. The nonvolatile memory device having the SONOS structure according to the related art is programmed and erased by the tunneling method or hot carrier injection in the tunneling insulating film 20.

따라서, ONO구조의 터널링 절연막(20)은 비휘발성 메모리 소자의 특성을 결정짓는 아주 중요한 요소이다. 하지만, 터널링 절연막(20)은 환경에 따른 두께의 변화로 구현이 어려워 고집적화가 될 수 록 이를 조절 하는데 어려운 문제점이 발생하게 된다.Therefore, the tunneling insulating film 20 of the ONO structure is a very important factor in determining the characteristics of the nonvolatile memory device. However, the tunneling insulating film 20 is difficult to implement the high integration due to the change in thickness according to the environment is difficult to control this problem occurs.

상기와 같은 문제점을 해결하기 위하여, 본 발명은 구현이 쉽고, 제조 공정에 의한 오염을 방지 및 고집적화 시킬 수 있는 비휘발성 메모리 및 그 제조방법을 제공하는데 있다.In order to solve the above problems, the present invention is easy to implement, and to provide a non-volatile memory and a method for manufacturing the same that can be prevented and highly integrated by the manufacturing process.

본 발명에 비휘발성 메모리는 기판과, 상기 기판의 활성화 영역에 형성된 쇼트키 베리어막, 질화막, 산화막, 및 게이트 전극이 순차적으로 적층된 게이트 패턴과, 상기 기판에 불순물 이온이 선택적으로 주입되어 형성된 소스 및 드레인 영역을 포함하며, 상기 쇼트키 베리어막은 일함수가 4.0eV이상인 금속 물질로 형성되는 것을 특징으로 한다.According to the present invention, a nonvolatile memory includes a substrate, a gate pattern in which a Schottky barrier film, a nitride film, an oxide film, and a gate electrode are sequentially stacked on an active region of the substrate, and a source formed by selectively implanting impurity ions into the substrate. And a drain region, wherein the Schottky barrier film is formed of a metal material having a work function of 4.0 eV or more.

본 발명에 따른 비휘발성 메모리의 제조방법은 기판 상에 일함수가 4.0eV이상인 금속물질 또는 비금속 물질을 이용하여 쇼트키 베리어막을 형성하는 단계와, 상기 쇼트키 베리어막 상에 질화막 및 산화막을 형성하는 단계와, 상기 산화막, 질화막 및 쇼트키 베리어막을 식각하여 활성화 영역을 형성하는 단계와, 상기 기판에 불순물 이온을 선택적으로 주입하여 소스 및 드레인 영역을 형성하는 단계를 포함하여 구성하는 것을 특징으로 한다.A method of manufacturing a nonvolatile memory according to the present invention includes forming a schottky barrier film using a metal material or a nonmetallic material having a work function of 4.0 eV or more on a substrate, and forming a nitride film and an oxide film on the schottky barrier film. And etching the oxide film, the nitride film, and the Schottky barrier film to form an active region, and selectively implanting impurity ions into the substrate to form a source and a drain region.

본 발명에 따른 비휘발성 메모리의 제조방법은 ONO 구조의 하부 베리어층을 일함수가 높은 백금 및 팔라듐으로 형성하여 금속과 반도체가 접합시 자연적으로 형성되는 쇼트키 터널 장벽(Schottky tunnel barrier)을 터널 장벽으로 이용함으로써, 재현성 및 균일성 구현이 쉬워 고집적화가 가능하다. 또한, 제조 공정 진행 중 하부 산화막에 이온들이 외부확산되어 발생되는 오염을 방지할 수 있다.In the method of manufacturing a nonvolatile memory according to the present invention, a lower barrier layer of an ONO structure is formed of platinum and palladium having a high work function to form a Schottky tunnel barrier, which is formed naturally when a metal and a semiconductor are bonded. By using it, it is easy to implement reproducibility and uniformity, and high integration is possible. In addition, it is possible to prevent contamination caused by ions are externally diffused in the lower oxide film during the manufacturing process.

이하, 첨부된 도면 및 실시 예를 통해 본 발명의 실시 예를 구체적으로 살펴보면 다음과 같다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings and embodiments.

도 2a 내지 도 2d는 본 발명의 실시 예에 따른 SONOS 구조의 비휘발성 메모리를 나타낸 단면도이다. 2A through 2D are cross-sectional views illustrating a nonvolatile memory of a SONOS structure according to an embodiment of the present invention.

먼저, 도 2a를 참조하면, 기판(102)상에 쇼트키 베리어막(104)이 형성된다. 여기서, 쇼트키 베리어막(104)은 CVD방법 등으로 기판(102)의 전면에 형성한다. 이때, 쇼트키 베리어막(104)은 쇼트키 베리어막(104)의 일함수는 4.0eV이상인 금속 또는 비금속 물질로 형성된다. 또한, 쇼트키 베리어막(104)은 백금(Pt), 팔라듐(Pd) 및 적어도 어느 하나 또는 이들의 합금으로 형성된다.First, referring to FIG. 2A, a Schottky barrier film 104 is formed on a substrate 102. Here, the Schottky barrier film 104 is formed on the entire surface of the substrate 102 by the CVD method or the like. At this time, the Schottky barrier film 104 is formed of a metal or nonmetallic material having a work function of the Schottky barrier film 104 of 4.0 eV or more. In addition, the Schottky barrier film 104 is formed of platinum (Pt), palladium (Pd) and at least one or alloys thereof.

이어, 쇼트키 베리어막(104)의 상부 전면에 질화막(106)및 산화막(108)이 형성된다. 여기서 질화막(106) 및 산화막(108)은 LPCVD(Low Pressure Chemical Vapor Deposition) CVD(Chemical Vapor Deposition, CVD) 또는 PECVD(Plasma Enhanced Chemical Vapor Deposition, PECVD) 등의 방법으로 형성한다.Subsequently, a nitride film 106 and an oxide film 108 are formed on the entire upper surface of the Schottky barrier film 104. The nitride film 106 and the oxide film 108 may be formed by a low pressure chemical vapor deposition (LPCVD) chemical vapor deposition (CVD) or plasma enhanced chemical vapor deposition (PECVD).

도 2b 및 도 2c에 도시된 바와 같이, 쇼트키 베리어막(104), 질화막(106) 및 산화막(108)을 포토레지스트(110)를 이용한 포토 및 식각 공정을 이용하여 게이트 전극이 형성될 아일랜드 형태의 활성화 영역을 마련한다.As shown in FIGS. 2B and 2C, an island shape in which a gate electrode is formed using a photolithography process using a photoresist 110 on the Schottky barrier film 104, the nitride film 106, and the oxide film 108 is performed. To prepare the activation area.

도 2d에 도시된 바와 같이, 반도체 기판(102)에 채널을 설정하는 소스 및 드레인 영역(114, 112)이 형성된다. 여기서 소스 및 드레인 영역(114, 112)은 비활성화 영역에 불순물을 선택적으로 이온 주입하여 형성한다. 이후, 소스 및 드레인 영역(114, 112)을 활성화 시키기 위한 어닐링 공정이 수행 될 수 있다.As shown in FIG. 2D, source and drain regions 114 and 112 for establishing channels are formed in the semiconductor substrate 102. The source and drain regions 114 and 112 are formed by selectively ion implanting impurities into the inactive region. Thereafter, an annealing process for activating the source and drain regions 114 and 112 may be performed.

도 3a 내지 도 3b는 쇼키트 베리어막을 통해 전자가 이동되는 것을 나타낸 도면이다.3A to 3B are diagrams illustrating electrons moving through the schottky barrier film.

도 3a를 참조하면, 실리콘 기판(102)상에 금속물질인 4.0eV이상의 일함수가 높은 쇼트키 베리어막(104)을 형성하여 전자가 이동할 수 있도록 채널을 오픈(open)하기 위해 산화막(108)의 상부에 형성되는 게이트 전극(미도시)에 양전압 이 인가되면 반도체와 금속 접합시 자연적으로 형성되는 쇼트키 터널 장벽(schottky tunnel barrier)을 터널 장벽으로 이용하여 전자는 가속화되어서 핫 캐리어 접합(hot carrier injection)으로 질화막(106)에 전자(116)가 트랩(trap)되어 프로그램 상태가 된다.Referring to FIG. 3A, the oxide film 108 is formed on the silicon substrate 102 to form a Schottky barrier film 104 having a work function of 4.0 eV or more, which is a metal material, to open a channel to move electrons. When a positive voltage is applied to a gate electrode (not shown) formed on the top of the gate, electrons are accelerated by using a schottky tunnel barrier, which is formed naturally during semiconductor and metal junctions, as a tunnel barrier. In the carrier injection, electrons 116 are trapped in the nitride film 106 to be in a program state.

또한, 도 3b를 참조하면, 산화막(108)의 상부에 형성되는 게이트 전극(미도시)에 음전압이 인가되면 질화막(106)에 트랩된 전자(116)가 쇼트키 베리어막(104)에 의해 형성된 쇼트키 터널 장벽(schottky tunnel barrier)을 통해 기판(102)으로 전자가 이동하는 소거 상태가 된다.Referring to FIG. 3B, when a negative voltage is applied to a gate electrode (not shown) formed on the oxide film 108, electrons 116 trapped in the nitride film 106 are formed by the Schottky barrier film 104. An electron is moved to the substrate 102 through the formed Schottky tunnel barrier.

이러한, 비휘발성 메모리의 하부 베리어층을 일함수가 높은 백금 및 팔라듐으로 형성하여 금속과 반도체가 접합시 자연적으로 형성되는 쇼트키 터널 장벽(Schottky tunnel barrier)을 터널 장벽으로 이용함으로써, 재현성 및 균일성 구현이 쉬워 고집적화가 가능하다. 또한, 제조 공정 중 하부 산화막에 이온들이 외부확산되어 발생되는 오염을 방지할 수 있다.The lower barrier layer of the nonvolatile memory is formed of platinum and palladium having a high work function to use a Schottky tunnel barrier, which is formed naturally when the metal and the semiconductor are bonded, as a tunnel barrier, thereby providing reproducibility and uniformity. Easy to implement, high integration is possible. In addition, it is possible to prevent contamination caused by ions diffused into the lower oxide film during the manufacturing process.

이상에서 설명한 본 발명은 상술한 실시 예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 종래의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

도 1은 종래의 비휘발성 메모리의 단면도.1 is a cross-sectional view of a conventional nonvolatile memory.

도 2a 내지 도 2b는 본 발명의 실시 예에 따른 비휘발성 메모리의 제조과정을 나타낸 단면도.2A to 2B are cross-sectional views illustrating a manufacturing process of a nonvolatile memory according to an embodiment of the present invention.

도 3a 내지 도 3b는 쇼키트 베리어막을 통해 전자가 이동되는 것을 나타낸 도면.3A to 3B are diagrams showing electrons moving through the schottky barrier film.

Claims (7)

기판과;A substrate; 상기 기판의 활성화 영역에 형성된 쇼트키 베리어막, 질화막, 산화막, 및 게이트 전극이 순차적으로 적층된 게이트 패턴;A gate pattern in which a schottky barrier film, a nitride film, an oxide film, and a gate electrode are sequentially formed in an active region of the substrate; 상기 기판에 불순물 이온이 선택적으로 주입되어 형성된 소스 영역 및 드레인 영역을 포함하며, A source region and a drain region formed by selectively implanting impurity ions into the substrate, 상기 쇼트키 베리어막은 상기 소스 및 드레인 영역 사이의 반도체 기판 상에 형성되고, 일함수가 4.0eV이상인 금속 물질로 형성되는 것을 특징으로 하는 비휘발성 메모리.And the schottky barrier film is formed on the semiconductor substrate between the source and drain regions, and formed of a metal material having a work function of 4.0 eV or more. 삭제delete 제 1 항에 있어서,The method of claim 1, 상기 금속 물질은 플래티늄(platinum) 및 팔라듐(palladium) 중에서 선택된 어느 하나 또는 이들의 합금으로 구성되는 것을 특징으로 하는 비휘발성 메모리.The metal material is non-volatile memory, characterized in that composed of any one or alloys thereof selected from platinum (platinum) and palladium (palladium). 기판 상에 일함수가 4.0eV이상인 금속물질 또는 비금속 물질을 이용하여 쇼트키 베리어막을 형성하는 단계와;Forming a schottky barrier film using a metal material or a non-metal material having a work function of 4.0 eV or more on the substrate; 상기 쇼트키 베리어막 상에 질화막 및 산화막을 형성하는 단계와;Forming a nitride film and an oxide film on the Schottky barrier film; 상기 산화막, 질화막 및 쇼트키 베리어막을 식각하여 활성화 영역을 형성하는 단계와;Etching the oxide film, nitride film, and schottky barrier film to form an active region; 상기 기판에 불순물 이온을 선택적으로 주입하여 상기 기판 내의 비활성화 영역에 소스 및 드레인 영역을 형성하는 단계를 포함하여 구성하는 것을 특징으로 하는 비휘발성 메모리의 제조방법.Selectively implanting impurity ions into the substrate to form a source and a drain region in an inactive region in the substrate. 제 4 항에 있어서,The method of claim 4, wherein 상기 쇼트키 베리어 막은 CVD로 형성되는 것을 특징으로 하는 비휘발성 메모리의 제조방법.And the schottky barrier film is formed by CVD. 삭제delete 제 4 항에 있어서,The method of claim 4, wherein 상기 금속 물질은 플래티늄(platinum) 및 팔라듐(palladium) 중에서 선택된 어느 하나 또는 이들의 합금으로 구성되는 것을 특징으로 하는 비휘발성 메모리의 제조방법.The metal material is a method of manufacturing a non-volatile memory, characterized in that consisting of any one or alloys thereof selected from platinum and palladium (palladium).
KR1020070088250A 2007-08-31 2007-08-31 Non-volatile memory and method of manufacturing the same KR100897825B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070088250A KR100897825B1 (en) 2007-08-31 2007-08-31 Non-volatile memory and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070088250A KR100897825B1 (en) 2007-08-31 2007-08-31 Non-volatile memory and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20090022688A KR20090022688A (en) 2009-03-04
KR100897825B1 true KR100897825B1 (en) 2009-05-15

Family

ID=40692526

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070088250A KR100897825B1 (en) 2007-08-31 2007-08-31 Non-volatile memory and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR100897825B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817946A (en) * 1994-06-28 1996-01-19 Nec Corp Semiconductor device and its manufacture
KR20000025576A (en) * 1998-10-13 2000-05-06 윤종용 Single electron transistor using schottky tunnel barrier and method for fabricating the same
KR20040107967A (en) * 2003-06-16 2004-12-23 삼성전자주식회사 Silicon/Oxide/Nitride/Oxided /Silicon memory device and Data erasing method of the same
KR20070041374A (en) * 2005-10-14 2007-04-18 가부시끼가이샤 도시바 Nonvolatile semiconductor memory device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817946A (en) * 1994-06-28 1996-01-19 Nec Corp Semiconductor device and its manufacture
KR20000025576A (en) * 1998-10-13 2000-05-06 윤종용 Single electron transistor using schottky tunnel barrier and method for fabricating the same
KR20040107967A (en) * 2003-06-16 2004-12-23 삼성전자주식회사 Silicon/Oxide/Nitride/Oxided /Silicon memory device and Data erasing method of the same
KR20070041374A (en) * 2005-10-14 2007-04-18 가부시끼가이샤 도시바 Nonvolatile semiconductor memory device

Also Published As

Publication number Publication date
KR20090022688A (en) 2009-03-04

Similar Documents

Publication Publication Date Title
US7688626B2 (en) Depletion mode bandgap engineered memory
US8264028B2 (en) Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays
US7642585B2 (en) Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays
JP4885420B2 (en) Source / drain implantation during ONO formation to improve isolation of SONOS type devices
EP1677311B1 (en) Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays
JP5376414B2 (en) Memory array operation method
KR100771808B1 (en) Flash memory device having sonos structure and method for fabrication thereof
JP4907173B2 (en) Nonvolatile memory cell, memory array having the same, and cell and array operating method
US7586137B2 (en) Non-volatile memory device and method of fabricating the same
KR20050116976A (en) Flash memory device and method for programming/erasing the same
US7692196B2 (en) Memory devices and methods of manufacturing the same
KR100452037B1 (en) Method for manufacturing semiconductor device and the device
KR100897825B1 (en) Non-volatile memory and method of manufacturing the same
KR100604189B1 (en) Memory device with one poly split gate structure and fabricating method thereof
KR100609067B1 (en) Non-volatile memory device and method for fabricating the same
KR100811272B1 (en) Non-volatile memory device having charge trapping layer and method of fabricating the same
KR20080041478A (en) Non-volatile memory device having charge trapping layer and method for fabricating the same
KR100869745B1 (en) Semi-conductor device, and method for fabricating thereof
KR100509809B1 (en) Method for manufacturing sonos type non-volatile memory device
KR20090070468A (en) Semiconductor device and method of manufacturing the semiconductor device
KR100594384B1 (en) Non-volatile memory device
KR100657151B1 (en) Non-volatile memory device and method of manufacturing thereof
KR100859488B1 (en) Nonvolatile semiconductor memory device and fabricating method thereof
JP2011139081A (en) Nonvolatile memory cell, memory array having the same, and method of operating the cell and the array
KR20090107750A (en) Method of fabricating a semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120417

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee