KR100896454B1 - Method for manufacturing magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic and magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic made of the method - Google Patents

Method for manufacturing magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic and magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic made of the method Download PDF

Info

Publication number
KR100896454B1
KR100896454B1 KR1020070014020A KR20070014020A KR100896454B1 KR 100896454 B1 KR100896454 B1 KR 100896454B1 KR 1020070014020 A KR1020070014020 A KR 1020070014020A KR 20070014020 A KR20070014020 A KR 20070014020A KR 100896454 B1 KR100896454 B1 KR 100896454B1
Authority
KR
South Korea
Prior art keywords
hydrogen
magnesium
fine
powder
hydrogen storage
Prior art date
Application number
KR1020070014020A
Other languages
Korean (ko)
Other versions
KR20080074638A (en
Inventor
홍성현
임창동
배종수
나영상
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020070014020A priority Critical patent/KR100896454B1/en
Publication of KR20080074638A publication Critical patent/KR20080074638A/en
Application granted granted Critical
Publication of KR100896454B1 publication Critical patent/KR100896454B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 용융상태의 마그네슘계 합금을 급속 응고하는 단계, 응고된 마그네슘계 합금을 열처리하여 미세한 결정상을 갖는 마그네슘계 합금으로 제조하는 단계, 열처리된 미세한 결정상의 마그네슘계 합금을 볼밀링하여 미세한 분말로 분쇄하는 단계로 구성된 미세 결정상을 갖는 미세한 마그네슘 수소저장합금 분말을 제조하는 방법에 관한 것이다.The present invention is a step of rapidly solidifying the molten magnesium-based alloy, heat-treating the solidified magnesium-based alloy to produce a magnesium-based alloy having a fine crystal phase, ball milling the heat-treated fine crystalline magnesium-based alloy as a fine powder It relates to a method for producing a fine magnesium hydrogen storage alloy powder having a fine crystal phase composed of a grinding step.

본 발명에 의하면 저가의 마그네슘을 주원료로 사용하여 미세 결정상을 갖는 미세한 마그네슘계 수소저장합금 분말을 제조하여 300℃에서 탈수소화속도를 향상시킬 수 있다. According to the present invention, using a low-cost magnesium as a main raw material to produce a fine magnesium-based hydrogen storage alloy powder having a fine crystal phase can improve the dehydrogenation rate at 300 ℃.

수소저장합금, 마그네슘, 수소흡수속도, 급속응고, 활성화 Hydrogen storage alloy, magnesium, hydrogen absorption rate, rapid solidification, activation

Description

수소방출속도가 빠른 미세 결정상을 갖는 마그네슘계 수소저장합금분말의 제조방법 및 동 제조방법에 의해 제조된 마그네슘계 수소저장합금분말 {METHOD FOR MANUFACTURING MAGNESIUM BASED HYDROGEN STORAGE ALLOY POWDER WITH FINE-CRYSTALLINE PHASE SHOWING FAST DEHYDRIDING KINETIC AND MAGNESIUM BASED HYDROGEN STORAGE ALLOY POWDER WITH FINE-CRYSTALLINE PHASE SHOWING FAST DEHYDRIDING KINETIC MADE OF THE METHOD}METHOD FOR MANUFACTURING MAGNESIUM BASED HYDROGEN STORAGE ALLOY POWDER WITH FINE-CRYSTALLINE PHASE SHOWING FAST DEHYDRIDING KINETIC AND MAGNESIUM BASED HYDROGEN STORAGE ALLOY POWDER WITH FINE-CRYSTALLINE PHASE SHOWING FAST DEHYDRIDING KINETIC MADE OF THE METHOD}

도 1은 급속 응고후 열처리된 76.5중량%Mg~23.5중량%Ni합금의 투과전자현미경 미세조직 사진이다.1 is a transmission electron microscope microstructure photograph of 76.5% by weight Mg ~ 23.5% by weight Ni alloy heat-treated after rapid solidification.

본 발명은 300℃ 이하에서 탈수소화속도가 향상된 마그네슘계 수소저장합금 분말을 제조하는 방법에 관한 것으로서, 더욱 상세하게는 용융상태의 마그네슘계 합금을 급속 응고하는 단계, 응고된 마그네슘계 분말을 열처리하여 미세한 결정상을 갖는 마그네슘계 합금으로 제조하는 단계, 열처리된 마그네슘계 합금을 볼밀링 하여 미세한 분말로 분쇄하는 단계로 구성된 미세한 결정상을 갖는 미세한 마그네슘 수소저장합금 분말을 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing magnesium-based hydrogen storage alloy powder having an improved dehydrogenation rate at 300 ° C. or lower, more specifically, rapidly solidifying a magnesium-based alloy in a molten state and heat-treating the solidified magnesium-based powder. The present invention relates to a method for producing a fine magnesium hydrogen storage alloy powder having a fine crystal phase consisting of a step of manufacturing a magnesium-based alloy having a fine crystal phase, and milling the heat-treated magnesium-based alloy into a fine powder.

수소의 저장기술 방법으로는 압축기체저장법, 액체수소저장법 및 수소저장합금을 이용한 저장법 등이 있다. 압축기체저장법은 상대적으로 체적당 저장밀도가 낮고 고압의 가스용기를 사용하여야 하는 위험이 있으며, 액체수소저장법의 경우 체적당 저장밀도는 압축기체저장법보다 크지만 수소의 액화점인 영하 235℃ 이하로 유지해야 하기 때문에 특수 단열 시스템이 요구되고 장시간의 저장에 부적합하다. 이에 비해 수소저장합금을 이용하는 저장법은 체적당 저장밀도가 크고 장시간 저장이 용이하며 고압 저장이 필요하지 않아 안전한 저장법이라는 장점들을 가지고 있다. 수소저장합금은 FeTi, LaNi, V-Ti-Cr계, 마그네슘계 등이 있으나 이론적 수소저장용량이 마그네슘계가 제일 높고 가볍고 원료가 풍부한 장점이 있다. 그러나 마그네슘계 수소저장합금의 이러한 장점에도 불구하고 마그네슘은 수소와 강한 이온결합을 이룸으로써 수소화물의 안정성이 높고 수소확산속도가 느리기 때문에 수소의 흡수-방출이 어려운 단점을 가지고 있으며 또한 수소저장용 소재로서 마그네슘계 합금의 생산에 적용할 최적의 생산공정에 대한 연구가 미흡한 실정이다. Hydrogen storage techniques include compressed gas storage, liquid hydrogen storage, and hydrogen storage alloys. Compressor storage method has a relatively low storage density per volume and there is a risk of using a high pressure gas container.In the case of liquid hydrogen storage method, the storage density per volume is larger than the compressor storage method, but it is below the liquefaction point of hydrogen below minus 235 ℃. Special insulation systems are required because of the need to maintain and are unsuitable for long term storage. On the other hand, the storage method using the hydrogen storage alloy has the advantages of high storage density per volume, easy storage for a long time, and high pressure storage, which is a safe storage method. Hydrogen storage alloys include FeTi, LaNi, V-Ti-Cr, magnesium, etc., but the theoretical hydrogen storage capacity is the highest magnesium-based, light and rich raw materials. Despite the advantages of magnesium-based hydrogen storage alloys, however, magnesium has strong ionic bonds with hydrogen, which makes it difficult to absorb and release hydrogen because of its high hydride stability and low hydrogen diffusion rate. As a result, research on the optimal production process to be applied to the production of magnesium-based alloys is insufficient.

마그네슘에 수소화 반응속도를 높이기 위한 연구로서, 산화물을 첨가함으로써 수소흡수속도를 높이고자 하는 연구가 있었다. 그러나, 이 시도에서는 320℃~350℃ 범위의 온도에서 흡수속도가 증가하나 300℃ 이하에서 수소방출속도가 낮은 단점이 있고, 합금분말이 아니므로 미분화(微粉化)에 따른 산화 및 발화 위험성이 크며, 긴 밀링시간이 필요하여 비경제적이다.As a study for increasing the hydrogenation reaction rate to magnesium, there has been a study to increase the hydrogen absorption rate by adding an oxide. However, in this trial, the absorption rate increases at a temperature in the range of 320 ° C. to 350 ° C., but the hydrogen release rate is low at 300 ° C. or lower. This is uneconomical due to the long milling time required.

한편, 마그네슘-니켈계 합금을 주조한 후 분쇄하여 수소저장합금 분말을 제조할 수 있으나, 주조시 편석, 조대한 상들이 존재하여 수소흡수속도 및 방출속도를 높이는 데는 한계가 있다. 편석을 억제할 목적으로 용융상태의 마그네슘-니켈계 합금을 급속 응고하여 제조된 비정질합금은 수소확산에 용이한 상들 간의 계면적(界面積)이 없거나 적으므로 수소방출속도가 낮은 단점이 있다.On the other hand, the hydrogen-sintered alloy powder may be prepared by casting and grinding a magnesium-nickel-based alloy, but there are limitations in increasing hydrogen absorption rate and release rate due to segregation and coarse phases during casting. Amorphous alloys prepared by rapid solidification of a molten magnesium-nickel-based alloy for the purpose of suppressing segregation have a disadvantage in that the hydrogen release rate is low because there is little or no interfacial interface between phases that are easy for hydrogen diffusion.

본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 마그네슘계 합금분말로서 300℃에서도 수소방출속도가 높은 미세 결정상을 갖는 미세한 마그네슘 수소저장합금 분말을 제조하는 방법을 제공하는 데 그 목적이 있다.The present invention has been made to solve the above problems, an object of the present invention is to provide a fine magnesium hydrogen storage alloy powder having a fine crystal phase with a high hydrogen release rate even at 300 ℃ as magnesium-based alloy powder.

상기한 목적을 달성하기 위하여 안출된 본 발명에 따른 수소흡수속도가 높은 마그네슘 합금분말의 제조방법은, 용융상태의 마그네슘계 합금을 급속응고하는 단계, 응고된 마그네슘계 분말을 열처리하여 미세한 결정상을 갖는 마그네슘계 합금으로 제조하는 단계, 열처리된 마그네슘계 합금을 볼밀링하여 미세한 분말로 분쇄하는 단계를 포함하여 구성되는 것을 특징으로 한다.In order to achieve the above object, a method for preparing a magnesium alloy powder having a high hydrogen absorption rate according to the present invention includes the steps of rapidly solidifying a magnesium alloy in a molten state, and heat treating the solid magnesium powder to have a fine crystal phase. Manufacturing a magnesium-based alloy, characterized in that it comprises a step of milling the heat-treated magnesium-based alloy into a fine powder.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

우선, 마그네슘계 합금을 주조하여 마그네슘합금을 도가니에 장입하고 비산화성 분위기에서 용해한 후 이를 급속응고한다. 일반적으로 마그네슘합금은 마그네 슘성분이 66.5중량% 이상이고 나머지는 니켈, 구리, 철, 알루미늄, 아연 중 1종 이상의 성분으로 구성된다. 나머지 성분인 니켈, 구리, 철, 알루미늄, 아연 중 1종 이상은 마그네슘과 공정조직(共晶組織)을 형성하고 마그네슘상 외에 제2상을 형성하는 작용을 하며, 수소저장합금의 경우 수소의 분해 또는 확산속도를 높이는 작용을 할 수 있다. 주성분인 마그네슘이 수소와 화합물 형태로 결합하여 수소를 저장하고 방출시 수소화 화합물이 방출되므로, 합금 중 마그네슘함량이 적어도 66.5중량% 이상이어야 많은 양의 수소를 저장할 수 있다.First, a magnesium alloy is cast, charged into a crucible, dissolved in a non-oxidizing atmosphere, and then rapidly solidified. In general, magnesium alloy is more than 66.5% by weight of magnesium component, the remainder is composed of one or more components of nickel, copper, iron, aluminum, zinc. At least one of the remaining components of nickel, copper, iron, aluminum, and zinc forms a process structure with magnesium and forms a second phase in addition to the magnesium phase. In the case of a hydrogen storage alloy, hydrogen decomposition is performed. Or it can act to increase the diffusion rate. Since magnesium, the main component, combines with hydrogen in the form of a compound to store hydrogen and is released when the hydrogenated compound is released, the magnesium content in the alloy can be stored at least 66.5% by weight or more to store a large amount of hydrogen.

급속응고방법은 용해된 용탕을 노즐을 통하여 고속으로 회전하는 휠 위로 떨어뜨려 급속냉각함으로써 리본 형태의 시편을 제조하는 멜트스피닝(melt spinning)법, 용해된 용탕을 노즐을 통하여 분사하면서 질소나 아르곤과 같은 불활성분위기 가스로 냉각하여 급속 응고된 분말을 제조하는 가스분무법(gas atomization), 용해된 용탕을 고속으로 회전하는 디스크 위에 낙하시켜서 원심력에 의하여 급속응고분말을 제조하는 원심가스분무법(centrifugal gas atomization) 등이 있다. 합금성분들이 용해온도에서 잘 고용된 상태에서 전술한 급속응고방법을 사용하면 급속한 냉각속도로 인하여 합금성분의 편석이 억제되고 비정질상이 형성되며, 결정질상이 형성되더라도 형성된 상들이 조대화(粗大化)되는 것을 방지하는 효과가 있다. The rapid solidification method is a melt spinning method in which a molten molten metal is dropped onto a wheel that rotates at high speed through a nozzle and rapidly cooled to prepare a ribbon-shaped specimen. The molten molten metal is sprayed through a nozzle to form nitrogen and argon. Gas atomization to produce rapidly solidified powder by cooling with the same inert atmosphere gas, or centrifugal gas atomization to prepare rapid solidified powder by centrifugal force by dropping dissolved molten metal on a rotating disk at high speed. Etc. If the above-mentioned rapid solidification method is used while the alloying components are well dissolved at the melting temperature, the rapid cooling rate suppresses segregation of the alloying components, forms an amorphous phase, and coarsens the formed phases even when the crystalline phase is formed. It is effective to prevent that.

급속응고 후 저온에서 열처리하여 석출되는 결정상 크기는 약 500nm 이하로 되어야 한다. 결정상 크기가 약 500nm 이하로 되면 상간계면적(相間界面積)이 크므로 금속수화물이 분해되어 상간계면을 따른 수소의 확산이 촉진되어 수소방출속도가 높아지게 된다. 열처리온도는 약 150℃ 내지 400℃의 온도에서 20분 내지 5시간 동안 수행하는 것이 적당하며, 온도가 낮거나 시간이 짧으면 비정질상의 결정화가 이루어지지 않고 온도가 너무 높거나 시간이 길면 결정립이 성장하여 상간 계면이 줄어들므로 수소방출속도 증가효과가 적다.After rapid solidification, the precipitated crystal phase size should be about 500nm or less. If the crystal phase size is about 500 nm or less, the interphase interfacial area is large, and the metal hydrate is decomposed to promote diffusion of hydrogen along the interphase interface, thereby increasing the rate of hydrogen release. The heat treatment temperature is appropriately performed for about 20 minutes to 5 hours at a temperature of about 150 ℃ to 400 ℃, if the temperature is low or short time, the amorphous phase of crystallization does not occur, if the temperature is too high or long time, the grains grow As the interface between phases decreases, the effect of increasing the rate of hydrogen release is small.

열처리된 합금은 볼밀링에 의하여 분말 크기를 45μm 이하로 작게 하는 것이 필요하다. 분쇄를 안하거나 분쇄된 분말크기가 46μm를 초과하면 수소흡수시 분말중심부까지 수소원자가 확산하거나 확산해야 될 거리가 증가하고 수소방출시 금속수소화물이 분해하여 분말 표면까지 확산되어야 할 거리가 증가하여 수소흡수 및 방출 속도를 감소시키게 된다. 바람직하게는 325메쉬 체를 통과할 수 있는 45μm 이하로 제어해야 한다. The heat treated alloy needs to have a powder size smaller than 45 m by ball milling. If pulverized or pulverized powder size exceeds 46μm, the distance of hydrogen atom to diffuse or diffuse to the center of powder increases when hydrogen is absorbed, and the distance to spread to the surface of powder is decomposed when hydrogen hydride is decomposed. Reduce the rate of absorption and release. Preferably it should be controlled to 45 μm or less which can pass through a 325 mesh sieve.

밀링된 합금분말을 적당한 온도에서 수소분위기에서 수소를 흡수시켜 분말 표면에 금속수소화물을 형성하면서 부피팽창에 의하여 국부적으로 산화막을 깨고 수소가 내부로 쉽게 확산되도록 활성화처리를 해야 한다. The milled alloy powder should be absorbed in a hydrogen atmosphere at an appropriate temperature to form metal hydrides on the surface of the powder, and the activation process is performed to break the oxide film locally by volume expansion and to easily diffuse hydrogen into the interior.

밀링된 합금분말에 대한 활성화처리는 260℃-400℃, 5기압 내지 30기압 사이의 압력하에서 수소와 충분히 반응시켜 금속수소화물을 형성시킨 다음 이 금속수소화물을 300℃~400℃에서 진공분위기 또는 1기압 이하의 수소 분위기나 불활성 분위기에서 탈수소화시키는 공정을 1회 이상 행하는 것을 말한다. 수소화 반응온도가 260℃ 미만이면 수소압을 가압하여 수소화되는데 시간이 너무 장시간 소요되며 온도가 400℃를 초과하면 결정성장이 발생하거나 수소저장합금을 담고 있는 금속용기가 산화되어 좋지 않다. 또한, 수소화 반응시 가압력이 5기압 미만이면 반응시간이 오래 걸리고 30기압을 넘으면 용접된 스테인레스 용기를 사용하기가 곤란하여 좋지 않다. The activation treatment for the milled alloy powder is sufficiently reacted with hydrogen at a pressure between 260 ° C. and 400 ° C. and between 5 and 30 atm to form a metal hydride, and then the metal hydride is vacuumed at 300 ° C. to 400 ° C. It means performing one or more times of the process of dehydrogenating in hydrogen atmosphere or inert atmosphere of 1 atmosphere or less. If the hydrogenation reaction temperature is less than 260 ℃ it takes a long time to hydrogenate by pressurizing the hydrogen pressure, if the temperature exceeds 400 ℃ crystal growth occurs or the metal container containing the hydrogen storage alloy is not good to oxidize. In addition, if the pressing pressure is less than 5 atm during the hydrogenation reaction, the reaction time is long, and if the pressure exceeds 30 atm, it is difficult to use a welded stainless container.

이렇게 제조된 마그네슘계 합금분말은 미세 결정상을 갖는 미세한 분말로서 300℃에서도 수소방출속도가 높은 장점을 보유하고 있다. The magnesium alloy powder thus prepared is a fine powder having a fine crystal phase and has a high hydrogen release rate even at 300 ℃.

이하, 본 발명을 비교예 및 실시예를 통하여 구체적으로 설명한다. 그러나 아래의 실시예는 오로지 본 발명을 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 아래의 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in detail through comparative examples and examples. However, the following examples are only intended to illustrate the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not limited to the following examples in accordance with the gist of the present invention.

비교예Comparative example 1 One

76.5중량%Mg~23.5중량%Ni합금을 주조법으로 제조한다. 이 조성이 되도록 순수한 Mg과 Ni을 스테인레스강 도가니에 장입하고 CO2 와 SF6의 혼합가스를 용탕 표면에 고르게 유동시키면서 900℃까지 승온하여 용해하였다. 용해된 Mg-Ni계 합금을 드릴링하여 발생하는 칩을 15분간 스펙스밀링(SPEX milling)장치에서 볼밀링하여 76.5중량%Mg~23.5중량%Ni합금 분말을 얻었다. 분쇄한 후 분급하여 200메쉬 체(구멍크기 75㎛)를 통과하고 325메쉬 체(구멍크기 45㎛)를 통과하지 못한 분말을 채취하여 46㎛ 이상 75㎛ 이하의 분말만을 얻었다. 76.5 wt% Mg to 23.5 wt% Ni alloy is prepared by casting method. Pure Mg and Ni were charged into a stainless steel crucible so as to have this composition, and the mixed gas of CO 2 and SF 6 was heated up to 900 ° C. while being evenly flowed to the molten surface to dissolve it. Chips produced by drilling the molten Mg-Ni-based alloy were ball milled in a SPEX milling device for 15 minutes to obtain 76.5 wt% Mg-23.5 wt% Ni alloy powder. After pulverization, the powder was classified and passed through a 200 mesh sieve (75 mu m pore size) and failed to pass through the 325 mesh sieve (45 mu m pore size) to obtain only 46 mu m or more and 75 mu m or less powder.

분말을 반응관 내에 장입한 후 씨에베트형(Sievert's type)의 수소흡수/방출 측정장치를 이용하였다. 300℃ 및 20기압에서 20시간 동안 수소와 반응시킨 후, 350℃ 및 진공분위기에서 2시간 동안 탈수소화시킨 후, 다시 300℃에서 10기압의 수소압력에서 2시간 동안 수소와 반응시킨 후, 350℃ 및진공분위기에서 2시간 동안 탈수소화시키고, 다시 300℃ 및 10기압의 수소압력에서 2시간 동안 수소와 반응시킨 후, 350℃ 및 진공분위기에서 2시간 동안 탈수소화시켜 활성화처리를 완료하였다. 활성화처리된 이러한 분말을 다시 300℃ 및 10기압의 수소압력에서 2시간 동안 수소와 반응시킨 후 300℃ 및 진공분위기에서 35분간 탈수소화처리시 방출된 분말중 수소의 중량을 측정하였고, 방출된 분말중 수소의 중량%는 방출된 수소무게을 장입된 분말무게로 나누고 100을 곱하여 구하였다. 또한, 300℃에서 분당 수소방출속도(%/분)는 35분간 탈수소화처리시 방출된 분말 중 수소중량%를 35분으로 나누어서 구하였다.After the powder was charged in a reaction tube, a Sievet's type hydrogen absorption / release measurement apparatus was used. After reacting with hydrogen at 300 ° C. and 20 atm for 20 hours, dehydrogenating at 350 ° C. and vacuum for 2 hours, and then reacting with hydrogen for 2 hours at 10 atm of hydrogen pressure at 350 ° C., and then at 350 ° C. And dehydrogenation for 2 hours in a vacuum atmosphere, followed by reaction with hydrogen for 2 hours at hydrogen pressure of 300 ° C. and 10 atm, and then dehydrogenation for 2 hours at 350 ° C. and vacuum atmosphere to complete the activation treatment. The activated powder was reacted with hydrogen at 300 ° C. and 10 atm for 2 hours, and then the weight of hydrogen in the powder released during 35 minutes of dehydrogenation at 300 ° C. and vacuum atmosphere was measured. The weight percent of heavy hydrogen was obtained by dividing the released hydrogen weight by the charged powder weight and multiplying by 100. In addition, the hydrogen release rate (% / min) per minute at 300 ℃ was calculated by dividing the weight of hydrogen in the powder released during 35 minutes dehydrogenation by 35 minutes.

비교예Comparative example 2 2

76.5중량%Mg~23.5중량%Ni합금을 주조법으로 제조한다. 이 조성이 되도록 순수한 Mg과 Ni을 스테인레스강 도가니에 장입하고 CO2 와 SF6의 혼합가스를 용탕 표면에 고르게 유동시키면서 900℃까지 승온하여 용해하였다. 용해된 76.5중량%Mg~23.5중량%Ni합금을 드릴링하여 발생하는 칩을 36시간 동안 볼밀링하여 76.5중량%Mg~23.5중량%Ni합금 분말을 얻었다. 볼밀링된 분말을 325메쉬 체로 분급하여 45㎛ 이하의 분말만을 채취하였다. 76.5 wt% Mg to 23.5 wt% Ni alloy is prepared by casting method. Pure Mg and Ni were charged into a stainless steel crucible so as to have this composition, and the mixed gas of CO 2 and SF 6 was heated up to 900 ° C. while being evenly flowed to the molten surface to dissolve it. Chips produced by drilling the dissolved 76.5 wt% Mg-23.5 wt% Ni alloy were ball milled for 36 hours to obtain 76.5 wt% Mg-23.5 wt% Ni alloy powder. The ball milled powder was classified into a 325 mesh sieve to extract only powders of 45 µm or smaller.

비교예 1과 동일한 방법으로 활성화처리를 하였고 이러한 분말을 다시 300℃에서 10기압의 수소압력에서 2시간 동안 수소와 반응시킨 후 300℃에서 진공분위기에서 35분간 탈수소화처리시 방출된 분말 중 수소의 중량% 및 300℃에서 분당 수소 방출속도(%/분)를 측정하였다. The powder was activated in the same manner as in Comparative Example 1, and the powder was reacted with hydrogen for 2 hours at a hydrogen pressure of 10 atm at 300 ° C., and then dehydrogenated for 35 minutes in a vacuum atmosphere at 300 ° C. The hydrogen release rate (% / min) per minute at weight% and 300 ° C. was measured.

비교예Comparative example 3 3

주조법으로 제조된 76.5중량%Mg~23.5중량%Ni합금을 고주파 유도로 내에 장입하고 Ar 분위기에서 용해한 후 멜트스피닝(melt-spinning)법으로 회전하는 구리 휠에 압력 0.5kg/cm2로 분사하여 급속응고된 리본을 제조하였다. 이 리본을 15분간 스펙스밀링장치에서 볼밀링하여 76.5중량%Mg~23.5중량%Ni합금 분말을 얻었다. 밀링 후 분급하여 200메쉬 체(구멍크기 75㎛)를 통과하고 325메쉬 체(구멍크기 45㎛)를 통과하지 못한 분말을 채취하여 46㎛ 이상 75㎛ 이하의 분말만을 얻었다. 비교예 1과 동일한 방법으로 활성화처리를 하였고 이러한 분말을 다시 300℃에서 10기압의 수소압력에서 2시간 동안 수소와 반응시킨 후 300℃에서 진공분위기에서 35분간 탈수소화처리시 방출된 분말 중 수소의 중량% 및 300℃에서 분당 수소방출속도(%/분)를 측정하였다. 76.5 wt% Mg ~ 23.5 wt% Ni alloy prepared by casting method was charged into a high frequency induction furnace, dissolved in Ar atmosphere, and then sprayed at a pressure of 0.5kg / cm 2 on a rotating copper wheel by melt-spinning method. A solidified ribbon was produced. The ribbon was ball milled for 15 minutes in a spec mill to obtain 76.5 weight% Mg-23.5 weight% Ni alloy powder. After milling, the powder was separated and passed through a 200 mesh sieve (pore size 75 μm) and failed to pass through the 325 mesh sieve (pore size 45 μm). The powder was activated in the same manner as in Comparative Example 1, and the powder was reacted with hydrogen for 2 hours at a hydrogen pressure of 10 atm at 300 ° C., and then dehydrogenated for 35 minutes in a vacuum atmosphere at 300 ° C. The hydrogen release rate (% / min) per minute at weight% and 300 ° C. was measured.

비교예Comparative example 4 4

주조법으로 제조된 86.5중량%Mg~13.5중량%Ni합금을 고주파 유도로 내에 장입하고 Ar 분위기에서 용해한 후 멜트스피닝(melt-spinning)법으로 회전하는 구리 휠에 압력 0.5kg/cm2로 분사하여 급속응고된 리본을 제조하였다. 이 리본을 15분간 스펙스밀링장치에서 볼밀링하여 86.5중량%Mg~13.5중량%Ni합금 분말을 얻었다. 밀링 후 분급하여 200메쉬 체(구멍크기 75㎛)를 통과하고 325메쉬 체(구멍크기 45㎛)를 통과하지 못한 분말을 채취하여 46㎛ 이상 75㎛ 이하의 분말만을 얻었다. 86.5% by weight Mg ~ 13.5% by weight Ni alloy manufactured by the casting method was charged into a high frequency induction furnace, dissolved in Ar atmosphere, and then sprayed at a pressure of 0.5kg / cm 2 on a rotating copper wheel by melt-spinning method. A solidified ribbon was produced. The ribbon was ball milled for 15 minutes in a spec mill, thereby obtaining 86.5 wt% Mg-13.5 wt% Ni alloy powder. After milling, the powder was separated and passed through a 200 mesh sieve (pore size 75 μm) and failed to pass through the 325 mesh sieve (pore size 45 μm).

비교예 1과 동일한 방법으로 활성화처리를 하였고 이러한 분말을 다시 300℃에서 10기압의 수소압력에서 2시간 동안 수소와 반응시킨 후 300℃에서 진공분위기에서 35분간 탈수소화처리시 방출된 분말 중 수소의 중량% 및 300℃에서 분당 수소방출속도(%/분)를 측정하였다. The powder was activated in the same manner as in Comparative Example 1, and the powder was reacted with hydrogen for 2 hours at a hydrogen pressure of 10 atm at 300 ° C. The hydrogen release rate (% / min) per minute at weight% and 300 ° C. was measured.

비교예Comparative example 5 5

주조법으로 제조된 76.5중량%Mg-23.5중량%Ni합금을 고주파 유도로 내에 장입하고 Ar 분위기에서 용해한 후 멜트스피닝(melt-spinning)법으로 회전하는 구리 휠에 압력 0.5kg/cm2로 분사하여 급속응고된 리본을 제조하였다. 이 리본을 250℃에서 1시간 동안 등온 열처리한 뒤, 15분간 스펙스밀링장치에서 볼밀링하여 76.5중량%Mg-23.5중량%Ni합금분말을 얻었다. 밀링후 분급하여 200메쉬채(구멍크기 75㎛)를 통과하고 325메쉬체(구멍크기 45㎛)를 통과하지 못한 분말을 채취하여 46㎛이상 75㎛ 이하의 분말만을 얻었다. 76.5 wt% Mg-23.5 wt% Ni alloy prepared by casting method was charged into a high frequency induction furnace, dissolved in Ar atmosphere, and then sprayed at a pressure of 0.5 kg / cm 2 on a rotating copper wheel by melt-spinning method. A solidified ribbon was produced. The ribbon was subjected to isothermal heat treatment at 250 ° C. for 1 hour and then ball milled in a spec mill for 15 minutes to obtain 76.5 wt% Mg-23.5 wt% Ni alloy powder. After milling, the powder was passed through a 200 mesh (pore size 75 μm) and not passed through a 325 mesh body (pore size 45 μm) to obtain a powder of 46 μm or more and 75 μm or less.

비교예 1과 동일한 방법으로 활성화처리를 하였고 이러한 분말을 다시 300℃에서 10기압의 수소압력에서 2시간 동안 수소와 반응시킨 후 300℃에서 진공분위기에서 35분간 탈수소화처리시 방출된 분말중 수소의 중량% 및 300℃에서 분당 수소방출속도(%/분)를 측정하였다. The activation was performed in the same manner as in Comparative Example 1, and the powder was reacted with hydrogen for 2 hours at a hydrogen pressure of 10 atm at 300 ° C. The hydrogen release rate (% / min) per minute at weight% and 300 ° C. was measured.

실시예Example 1 One

주조법으로 제조된 76.5중량%Mg-23.5중량%Ni합금을 고주파 유도로 내에 장입하고 Ar 분위기에서 용해한 후 멜트스피닝(melt-spinning)법으로 회전하는 구리 휠에 압력 0.5kg/cm2로 분사하여 급속응고된 리본을 제조하였다. 이 리본을 250℃에서 1시간 동안 등온 열처리한 뒤, 유성볼밀(planetary ball mill)로 2시간동안 수소분위기에서 볼밀링한 후 325메쉬 체(구멍크기 45㎛)를 통과한 분말을 채취하여 45㎛ 이하의 분말만을 얻었다. 도 1에 제시된 바와 같이 급속응고 후 열처리된 76.5중량% Mg~23.5중량%Ni합금의 미세 조직은 500nm 이하의 미세한 Mg와 Mg2Ni상으로 구성되어 있다. 76.5 wt% Mg-23.5 wt% Ni alloy prepared by casting method was charged into a high frequency induction furnace, dissolved in Ar atmosphere, and then sprayed at a pressure of 0.5 kg / cm 2 on a rotating copper wheel by melt-spinning method. A solidified ribbon was produced. The ribbon was isothermally treated at 250 ° C. for 1 hour, and then ball milled in a hydrogen atmosphere with a planetary ball mill for 2 hours, and then powder was passed through a 325 mesh sieve (hole size 45 μm) to obtain 45 μm. Only the following powders were obtained. As shown in FIG. 1, the microstructure of 76.5 wt% Mg to 23.5 wt% Ni alloy heat treated after rapid solidification is composed of fine Mg and Mg 2 Ni phases of 500 nm or less.

비교예 1과 동일한 방법으로 활성화처리를 하였고 활성화처리된 분말을 다시 300℃에서 10기압의 수소압력에서 2시간 동안 수소와 반응시킨 후 300℃에서 진공분위기에서 35분간 탈수소화처리시 방출된 분말 중 수소의 중량% 및 300℃에서 분당 수소방출속도(%/분)를 측정하였다. The activated powder was treated in the same manner as in Comparative Example 1, and the activated powder was reacted with hydrogen for 2 hours at a hydrogen pressure of 10 atm at 300 ° C. The hydrogen release rate (% / min) per minute at weight percent of hydrogen and 300 ° C. was measured.

실시예 2Example 2

주조법으로 제조된 71.5중량%Mg~5.0중량%Cu-23.5중량%Ni합금을 고주파 유도로 내에 장입하고 Ar 분위기에서 용해한 후 멜트스피닝(melt-spinning)법으로 회전하는 구리 휠에 압력 0.5kg/cm2로 분사하여 급속응고된 리본을 제조하였다. 이 리본을 250℃에서 1시간 동안 등온 열처리한 뒤, 유성볼밀(planetary ball mill)로 2시간동안 수소분위기에서 볼밀링한 후 325메쉬 체(구멍크기 45㎛)를 통과한 분말을 채취하여 45㎛ 이하의 분말만을 얻었다. A pressure of 0.5kg / cm is applied to a copper wheel which is prepared by casting, 71.5% by weight Mg to 5.0% by weight Cu-23.5% by weight Ni alloy is charged into a high frequency induction furnace, dissolved in an Ar atmosphere, and then rotated by a melt-spinning method. Sprayed to 2 to produce a ribbon quickly solidified. The ribbon was isothermally treated at 250 ° C. for 1 hour, and then ball milled in a hydrogen atmosphere with a planetary ball mill for 2 hours, and then powder was passed through a 325 mesh sieve (hole size 45 μm) to obtain 45 μm. Only the following powders were obtained.

비교예 1과 동일한 방법으로 활성화처리를 하였고 이러한 분말을 다시 300℃에서 10기압의 수소압력에서 2시간 동안 수소와 반응시킨 후 300℃에서 진공분위기에서 35분간 탈수소화처리시 방출된 분말 중 수소의 중량% 및 300℃에서 분당 수소방출속도(%/분)를 측정하였다.The powder was activated in the same manner as in Comparative Example 1, and the powder was reacted with hydrogen for 2 hours at a hydrogen pressure of 10 atm at 300 ° C. The hydrogen release rate (% / min) per minute at weight% and 300 ° C. was measured.

아래의 표 1은 상기한 비교예와 실시예들에 따라 300℃에서 35분 동안 방출된 수소의 중량% 및 분당 수소방출속도(%/분)를 제시한 도표이다.Table 1 below is a chart showing the weight percent hydrogen released per minute (300 minutes) and hydrogen release rate per minute at 300 ℃ according to the comparative examples and examples described above.

구분division 주요조건 (조성, 제조법, 분말특성)Main conditions (composition, manufacturing method, powder characteristics) 300℃에서 35분동안 방출된 수소의 중량%Weight percentage of hydrogen released for 35 minutes at 300 ° C 300℃에서 분당 수소방출속도(%/분)Hydrogen release rate per minute at 300 ° C (% / min) 비교예 1Comparative Example 1 Mg-23.5%Ni, 주조, 75㎛ 이하Mg-23.5% Ni, casting, 75 μm or less 1.00%1.00% 0.02860.0286 비교예 2Comparative Example 2 Mg-23.5%Ni, 주조, 45㎛ 이하Mg-23.5% Ni, casting, 45 μm or less 1.24%1.24% 0.04130.0413 비교예 3Comparative Example 3 Mg-23.5%Ni, 급속응고, 75㎛ 이하Mg-23.5% Ni, rapid solidification, 75㎛ or less 1.4%1.4% 0.0400.040 비교예 4Comparative Example 4 Mg-13.5%Ni, 급속응고, 75㎛ 이하Mg-13.5% Ni, rapid solidification, 75㎛ or less 1.4%1.4% 0.0400.040 비교예 5Comparative Example 5 Mg-23.5%Ni, 급속응고+열처리+밀링, 75㎛ 이하Mg-23.5% Ni, rapid solidification + heat treatment + milling, 75 μm or less 1.4%1.4% 0.0400.040 실시예 1Example 1 Mg-23.5%Ni, 급속응고+열처리+밀링, 45㎛ 이하Mg-23.5% Ni, rapid solidification + heat treatment + milling, 45 μm or less 4.3%4.3% 0.1230.123 실시예 2Example 2 Mg-5%Cu-23.5%Ni, 급속응고+ 열처리+밀링, 45㎛ 이하Mg-5% Cu-23.5% Ni, Rapid Solidification + Heat Treatment + Milling, 45㎛ or less 4.8%4.8% 0.1370.137

상기 비교예 1~5와 실시예 1~2에서 확인할 수 있듯이, 전술한 본 발명에 따른 제법에 의해 얻어진 마그네슘 합금분말들의 수소방출속도가 높다는 것을 알 수 있다. 급속응고 후 결정화 열처리를 하여 미세한 결정상을 형성시키고 밀링하여 분말을 미세화시키면 마그네슘계 수소저장합금분말의 수소방출속도가 우수하다는 이점이 있다.As can be seen in Comparative Examples 1 to 5 and Examples 1 to 2, it can be seen that the hydrogen release rate of the magnesium alloy powders obtained by the method according to the present invention is high. If the crystallization heat treatment after the rapid solidification to form a fine crystal phase and milling the powder to be fine, there is an advantage that the hydrogen release rate of the magnesium-based hydrogen storage alloy powder is excellent.

이상에서는 본 발명의 바람직한 실시예를 설명하였으나, 본 발명의 범위는 이 같은 특정 실시예의 조건들로 한정되지 않으며, 해당분야에서 통상의 지식을 가진 자라면 본 발명의 특허청구범위 내에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.In the above description of the preferred embodiment of the present invention, the scope of the present invention is not limited to the conditions of the specific embodiment, and those skilled in the art within the scope of the claims of the present invention Changes may be made as appropriate.

이상에서 설명한 바와 같이 본 발명에 의하면 저가의 마그네슘을 주원료로 사용하여 미세 결정상을 갖는 미세한 마그네슘계 수소저장합금분말을 제조하여 300℃에서 탈수소화속도를 향상시킬 수 있다.As described above, according to the present invention, using a low-cost magnesium as a main raw material, a fine magnesium-based hydrogen storage alloy powder having a fine crystal phase can be prepared to improve the dehydrogenation rate at 300 ° C.

Claims (6)

마그네슘성분이 66.5중량% 이상이고 나머지는 니켈, 구리, 철, 알루미늄, 아연 중 1종 이상의 성분으로 구성되는 용융상태의 마그네슘계 합금을 멜트스피닝법으로 급속응고하여 마그네슘계 합금 리본을 제조하는 단계와,Preparing a magnesium alloy ribbon by rapidly solidifying a molten magnesium alloy composed of at least 66.5% by weight of magnesium and the remainder of the nickel, copper, iron, aluminum, and zinc by melt spinning method; , 응고된 마그네슘계 합금 리본을 500nm 이하의 미세한 결정상을 갖도록 150℃내지 400℃의 온도에서 20분 내지 5시간 동안 열처리하는 단계와, Heat-treating the solidified magnesium alloy ribbon at a temperature of 150 ° C. to 400 ° C. for 20 minutes to 5 hours to have a fine crystal phase of 500 nm or less, 열처리된 마그네슘계 합금 리본을 볼밀링하여 45μm 이하의 미세한 분말로 분쇄하는 단계와, 그리고Ball milling the heat-treated magnesium alloy ribbon into fine powder of 45 μm or less, and 상기 볼밀링으로 제조된 분말을 300℃~400℃에서 5기압 내지 20기압 사이의 압력에서 수소와 반응시킨 후 300℃~400℃에서 진공분위기 또는 1기압 이하의 수소 분위기나 불활성 분위기에서 탈수소화시키는 활성화공정을 1회 이상 더 시행하는 단계로 이루어진 것을 특징으로 하는, 수소방출속도가 빠른 미세 결정상을 갖는 마그네슘 수소저장합금 분말의 제조방법.The ball milling powder is reacted with hydrogen at a pressure between 5 and 20 atmospheres at 300 ° C. to 400 ° C. and then dehydrogenated at 300 ° C. to 400 ° C. in a vacuum atmosphere or under 1 atm hydrogen atmosphere or an inert atmosphere. Method for producing a magnesium hydrogen-storage alloy powder having a fine crystal phase with a fast hydrogen release rate, characterized in that the step consisting of one or more steps. 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020070014020A 2007-02-09 2007-02-09 Method for manufacturing magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic and magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic made of the method KR100896454B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070014020A KR100896454B1 (en) 2007-02-09 2007-02-09 Method for manufacturing magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic and magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic made of the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070014020A KR100896454B1 (en) 2007-02-09 2007-02-09 Method for manufacturing magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic and magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic made of the method

Publications (2)

Publication Number Publication Date
KR20080074638A KR20080074638A (en) 2008-08-13
KR100896454B1 true KR100896454B1 (en) 2009-05-12

Family

ID=39883936

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070014020A KR100896454B1 (en) 2007-02-09 2007-02-09 Method for manufacturing magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic and magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic made of the method

Country Status (1)

Country Link
KR (1) KR100896454B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102295736B1 (en) * 2020-02-18 2021-09-01 한국재료연구원 Method for improving the flow characteristic of powder and the method for preparing the powder with improved flow characteristic
CN114226735B (en) * 2021-11-23 2024-03-26 成都先进金属材料产业技术研究院股份有限公司 Powdery titanium-based brazing filler metal and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060125795A (en) * 2003-12-11 2006-12-06 텍사코 오보닉 하이드로젠 시스템즈 엘엘씨 Mg-ni hydrogen storage composite having high storage capacity and excellent room temperature kinetics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060125795A (en) * 2003-12-11 2006-12-06 텍사코 오보닉 하이드로젠 시스템즈 엘엘씨 Mg-ni hydrogen storage composite having high storage capacity and excellent room temperature kinetics

Also Published As

Publication number Publication date
KR20080074638A (en) 2008-08-13

Similar Documents

Publication Publication Date Title
Spassov et al. Hydrogenation of amorphous and nanocrystalline Mg-based alloys
JP6242828B2 (en) Method of manufacturing magnetocaloric element and magnetocaloric element obtained thereby
Spassov et al. Nanocrystallization and hydrogen storage in rapidly solidified Mg–Ni–RE alloys
CN109972010B (en) Nano magnesium-based composite hydrogen storage material and preparation method thereof
CN100431945C (en) Method for preparing magnesium based hydrogen storage material
Ali et al. Effects of Cu and Y substitution on hydrogen storage performance of TiFe0. 86Mn0. 1Y0. 1− xCux
KR20040077467A (en) Aluminum Base Alloys
CN101849305A (en) Nickel-metal hydride battery and method for producing hydrogen storage alloy
JP3737163B2 (en) Rare earth metal-nickel hydrogen storage alloy and negative electrode for nickel metal hydride secondary battery
Bendersky et al. Effect of rapid solidification on hydrogen solubility in Mg-rich Mg–Ni alloys
Huang et al. Low temperature de/hydrogenation in the partially crystallized Mg60Ce10Ni20Cu10 metallic glasses induced by milling with process control agents
KR100896454B1 (en) Method for manufacturing magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic and magnesium based hydrogen storage alloy powder with fine-crystalline phase showing fast dehydriding kinetic made of the method
CN111101041A (en) Magnesium-yttrium-zinc hydrogen storage magnesium alloy and preparation method thereof
Huang et al. Nanocrystallization and hydriding properties of amorphous melt-spun Mg65Cu25Nd10 alloy
TW201231681A (en) Method of synthesizing magnesium-cobalt pentahydride
CN116555653A (en) K-bubble and nano-oxide composite reinforced W-based material and preparation method thereof
CN114561580B (en) RE 4 TCd magnetic refrigeration material
JP3397979B2 (en) Hydrogen storage alloy
JP2004204309A (en) Hydrogen storage material, and production method therefor
JP3775639B2 (en) Method for producing hydrogen storage alloy
CN112387976A (en) Easily-activated RE-Ti-Fe alloy for fuel cell and preparation method thereof
CN106636824B (en) CeO2+MoS2Fuel cell high capacity hydrogen storage alloy of composite catalyzing and preparation method thereof
JP2003147472A (en) Hydrogen storage magnesium alloy
JPH10158755A (en) Production of bcc type hydrogen storage alloy
CN117089749A (en) Nanometer K 2 MgF 4 Catalytic high-capacity Mg-Cu-Sr-based hydrogen storage alloy and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120405

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130325

Year of fee payment: 5