JP2004204309A - Hydrogen storage material, and production method therefor - Google Patents

Hydrogen storage material, and production method therefor Download PDF

Info

Publication number
JP2004204309A
JP2004204309A JP2002375742A JP2002375742A JP2004204309A JP 2004204309 A JP2004204309 A JP 2004204309A JP 2002375742 A JP2002375742 A JP 2002375742A JP 2002375742 A JP2002375742 A JP 2002375742A JP 2004204309 A JP2004204309 A JP 2004204309A
Authority
JP
Japan
Prior art keywords
magnesium
chloride
hydrogen
hydride
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002375742A
Other languages
Japanese (ja)
Other versions
JP4280816B2 (en
Inventor
Hitoshi Hashimoto
等 橋本
Masaaki Son
正明 孫
Toshihiko Abe
利彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002375742A priority Critical patent/JP4280816B2/en
Publication of JP2004204309A publication Critical patent/JP2004204309A/en
Application granted granted Critical
Publication of JP4280816B2 publication Critical patent/JP4280816B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight hydrogen storage material which has a low hydrogen absorbing/discharging temperature and a high absorbing/discharging rate, thus can store a large quantity of hydrogen, and is particularly useful for a fuel battery by adding metal powder having hydrogen molecule dissociation catalytic capacity and a flocculation preventive agent to magnesium simple substance or magnesium-based alloy powder, and ball-milling them. <P>SOLUTION: The hydrogen storage material comprises magnesium or magnesium-based alloy powder as the main components, comprises metal powder having hydrogen molecule dissociation catalytic capacity such as nickel, titanium, palladium, vanadium and platinum, and further comprises metal chloride such as sodium chloride, potassium chloride, nickel chloride, magnesium chloride and iron chloride or metal hydride such as lithium hydride, calcium hydride and magnesium hydride present as solid at an ordinary temperature by 10 to 40 wt.%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
無公害の燃料電池自動車などに利用が期待されている水素ガスを高密度に安全に貯蔵可能な水素吸蔵材料及びその製造方法に関する。
【0002】
【従来の技術】
従来、大部分の水素吸蔵材料はマグネシウム、チタン、パラジウム、ジルコニウム、カルシウム、希土類(ランタン、ミッシュメタル)などの水素化物を作り易い金属とニッケル、鉄、クロムなどの水素化物を作りにくい金属の合金であり、代表的な水素吸蔵合金にはAB型合金(LaNi、CaNiなど)、AB型ラーベス相構造合金(MgCu、MgNi、TiCr合金など)、bcc構造合金(VTiNi0.56など)がある。これらは、主に溶解法あるいはメカニカルミリング法等により製造されている。
【0003】
従来は、出発原料としてMgNi(粗粉砕)を鋼製ボールとともに鋼製ボールミル容器に入れ、1MPaのアルゴンガスで置換する。そして、この容器を遊星型ボールミル装置にセットし、400rpmで20hrミリング処理を施し、MgNi結晶領域とMgNi塑性の非結晶領域(準安定相)とにナノメートル・スケールで微細構造化するマグネシウム系水素吸蔵複合材料が開示されている(例えば、特許文献1参照)。
また、マグネシウム、ニッケル及び下記の元素Mからなる混合物を予め溶製し(Ma=B、Al、Si、Ca、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Sr、Y、Zr、Nb、Mo、Pd、Ag、Sn、Ba、Hf、Ta、La、Ce、Pr、Nd、Smのうちから選ばれる一種以上の元素)、ついでこの溶製した合金をメカニカルアロイング処理して非晶質化させる非晶質マグネシウムニッケル系水素吸蔵合金の製造方法が開示されている(例えば、特許文献2参照)。
【0004】
水素化状態でボールミリングによりマグネシウム基合金の水素放出性が著しく向上することが開示されている(例えば、非特許文献1参照)。
ボールミリングの使用はMg、MgNiの水素化物及びこれらの混合物に変形と構造的変化をもたらし、水素放出を向上させるとともに放出温度を低下させ、さらにMgHとMgNiHの混合物のボールミリングは、操作温度220°C〜240°Cを可能とする高水素放出効果があり、水素のトータルキャパシティーが5wt.%を超えるという優れた水素吸放出を持つことが記載されている。
【0005】
また、水素吸蔵用Mg−Ni−La三元合金を製造するためにマグネシウム及びマグネシウム水素化物とLaNiをメカニカルミリングする技術が開示されている(例えば、非特許文献2参照)。
この文献には、MgH+LaNiのメカニカルミリング又は水素化を伴うMg+LaNiのメカニカルミリングによりMgH+LaH+MgNi複合体が得られること、Mg+LaH+MgNi相は水素吸放出サイクルの双方に効果が得られるが粉末のサイズが不揃いであること、ミリング工程においてMgの替わりにMgHを使用することによって粉末のサイズが大きく減少すること、粉末のサイズが減少すると水素の吸収速度を速め放出速度を遅延させる効果が得られること、Mg基合金にNiとLaを添加すると水素吸放出の共働効果を生ずること、Mg−Ni−La三元合金はMg−LaやMg−Niの二元合金よりも水素吸放出が優れていること、ランタン水素化物はMgの吸蔵に強い触媒効果があるが放出効果が弱いこと、MgNiは373K以上の温度でランタン水素化物よりも触媒効果が良好であることが記載されている。
【0006】
【特許文献1】
特開平11−61313号公報
【特許文献2】
特開平11−269572号公報
【非特許文献1】
「Synergy of hydrogen sorption in ball-milled hydride of Mg and Mg2Ni」 A. Zaluska et al. / Journal of Alloys and Compounds 289(1999) 197-206
【非特許文献2】
「Hydrogen storage in mechanically milled Mg-LaNi5 and MgH2-LaNi5 composites」G.Liang et al. / Journal of Alloys and Compounds 297(2000)261-265
【0007】
マグネシウム単体及びマグネシウムをベースとする合金は単位質量当たりの水素吸蔵量が多く、軽量で大量の水素を貯蔵できる材料を必要とする燃料電池自動車用の水素吸蔵材料として有望であり、上記のように実用化に向けて研究開発がなされている。しかし、依然として水素の吸放出温度が高いこと及び吸放出速度が遅いという問題が残っており、このことが実用化の障害となっている。
【0008】
【発明が解決しようとする課題】
マグネシウム単体又はマグネシウム基合金粉末に水素分子解離触媒能を有する金属粉末及び凝着防止剤を添加し、これらをボールミリングすることによって水素の吸放出温度が低く、吸放出速度が大きい水素吸蔵材料を作製するものであり、軽量でかつ大量の水素を貯蔵できる材料として、特に燃料電池に有用な水素吸蔵材料を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、上記課題の解決のために、
1.マグネシウム又はマグネシウム基合金粉末を主成分として、ニッケル、チタン、パラジウム、バナジウム、白金などの水素分子解離触媒能を有する金属粉末を含有し、さらに常温で固体である塩化ナトリウム、塩化カリウム、塩化ニッケル、塩化マグネシウム、塩化鉄などの金属塩化物又は水素化リチウム、水素化カルシウム、水素化マグネシウムなどの金属水素化物を10〜40重量%含有することを特徴とする水素吸蔵材料
2.マグネシウム又はマグネシウム基合金粉末を主成分として、ニッケル、チタン、パラジウム、バナジウム、白金などの水素分子解離触媒能を有する金属粉末を含有し、これらの粉末に常温で固体である塩化ナトリウム、塩化カリウム、塩化ニッケル、塩化マグネシウム、塩化鉄などの金属塩化物又は水素化リチウム、水素化カルシウム、水素化マグネシウムなどの金属水素化物が被覆されていることを特徴とする水素吸蔵材料
、を提供する。
【0010】
本発明は、また
3.一方でマグネシウム又はマグネシウム基合金粉末に凝着防止剤を添加した粉末をミル容器に封入し、ミル容器内雰囲気をアルゴン、ヘリウム等不活性ガス又は減圧に調整してボールミリング操作を行い、マグネシウムあるいはマグネシウムをベースとする合金粉末を微細に粉砕すると共に、他方でニッケル、チタン、パラジウム、バナジウム、白金などの水素分子解離触媒能を有する金属粉末に凝着防止剤を添加した粉末をミル容器に封入し、該ミル容器雰囲気内をアルゴン、ヘリウム等の不活性ガス又は減圧に調整してボールミリング操作を行い、次に上記ボールミリングした両粉末をミル容器に封入するとともに、ミル容器内雰囲気をアルゴン、ヘリウム等の不活性ガス又は減圧に調整してボールミリング操作を行うことを特徴とする水素吸蔵材料の製造方法
4.凝着防止剤を10〜40重量%添加することを特徴とする上記3記載の水素吸蔵材料の製造方法
5.凝着防止剤が常温で固体である塩化ナトリウム、塩化カリウム、塩化ニッケル、塩化マグネシウム、塩化鉄などの金属塩化物又は水素化リチウム、水素化カルシウム、水素化マグネシウムなどの金属水素化物であること特徴とする上記3又は4記載の水素吸蔵材料の製造方法
6.マグネシウム又はマグネシウム基合金粉末及びニッケル、チタン、パラジウム、バナジウム、白金などの水素分子解離触媒能を有する金属粉末に凝着防止剤を被覆することを特徴とする上記3〜5のいずれかに記載の水素吸蔵材料の製造方法
7.13Pa以下の減圧下でボールミリング操作を行うことを特徴とする上記3〜6のいずれかに記載の水素吸蔵材料の製造方法
8.上記3〜6記載の方法を用いて製造した水素吸蔵材料
、を提供するものである。
【0011】
【発明の実施の形態】
本発明は、マグネシウム単体又はマグネシウム基合金(マグネシウムをベースとする合金)粉末に凝着防止剤を添加して金属の凝着を防止しながら、酸化を防止するために不活性な雰囲気中、具体的にはミル容器内雰囲気をアルゴン、ヘリウム等不活性ガス又は減圧に調整してボールミリング操作を行う。減圧下の条件としては、13Pa以下が望ましい。
凝着防止剤の添加は10〜40重量%とする。10重量%未満では添加による凝着防止効果が少なく、40重量%を超えると添加効果が飽和し、無駄となるからである。
これによって、比表面積が大きい微細な粉末にすると同時に、金属結晶内に水素原子の拡散パスとなり得る格子欠陥や歪みを多量に導入することによって、水素の吸放出速度を増大させることができる。
【0012】
一方、ニッケル、チタン、パラジウム、白金などの水素分子解離触媒能を有する金属粉末についても同様に、凝着防止剤を添加して金属の凝着を防止しながら、上記と同様に、酸化を防止するために不活性な雰囲気中、具体的にはミル容器内雰囲気をアルゴン、ヘリウム等不活性ガス又は減圧に調整してボールミリング操作を行う。減圧下の条件としては、13Pa以下とする。
これによって、比表面積が大きくかつ水素分子解離の核となる格子欠陥を多量に含有させることができ、水素ガス解離温度を低下させることが可能となる。
前述の処理により水素の吸放出速度を増大させたマグネシウム単体又はマグネシウム基合金粉末に、前述の処理により水素分子解離温度を低下させた水素分子解離触媒能を有す金属粉末を添加し、不活性雰囲気中でボールミリングすることによって混合する。これによって、水素の吸放出温度を低下させ、吸放出速度を増大させた水素吸蔵材料を製造することができる。
本発明の水素吸蔵材料中の水素分子解離触媒能を有す金属の含有量は、0.5〜50wt%とする。0.5wt%未満であると水素分子解離触媒能の効果が低く、また50wt%を超えると触媒能が飽和するだけでなく、水素吸蔵材料に占める量が多すぎて逆に水素吸蔵材料としての能力を低下させるからである。より好ましくは1〜10wt%とするのが良い。
【0013】
不活性雰囲気中で酸化を防ぎながらボールミリングにより金属を微粉末に粉砕するためには、大量の凝着防止剤が必要である。凝着防止剤としては、一般にステアリン酸化合物や有機溶媒などの有機物質が用いられる。
しかし、これらを大量に加えると、摩擦の減少により粉砕速度が低下し、あるいはボールミリング中に分解し、分解産物である炭素が金属に固溶または金属と反応して炭化物を作るという問題がある。
特に、マグネシウムと炭素が反応すると、金属内に吸蔵されている水素原子の位置を炭素原子が占めるため、水素の吸蔵量が減少するおそれが強い。
【0014】
本発明は、常温で固体である塩化ナトリウム、塩化カリウム、塩化ニッケル、塩化マグネシウム、塩化鉄などの金属塩化物又は水素化リチウム、水素化カルシウム、水素化マグネシウムなどの金属水素化物を添加するものである。
これらは、ボールミリングにより微粉砕され、金属粒子表面を覆うことにより、著しい凝着防止効果がある。また、大量に加えても摩擦の減少がなく粉砕速度の低下を防止できる。また、マグネシウム炭化物の形成も防止できる効果がある。
この金属塩化物及び金属水素化物の添加は、本発明の大きな特徴の一つであり、水素の吸放出温度を低下させ、吸放出速度を増大させた水素吸蔵材料を製造することができる大きな役割を有する。
【0015】
以上の製造工程により、マグネシウム又はマグネシウム基合金粉末を主成分とし、かつニッケル、チタン、パラジウム、バナジウム、白金などの水素分子解離触媒能を有する金属粉末を含有するとともに、さらに常温で固体である塩化ナトリウム、塩化カリウム、塩化ニッケル、塩化マグネシウム、塩化鉄などの金属塩化物又は水素化リチウム、水素化カルシウム、水素化マグネシウムなどの金属水素化物を10〜40重量%含有する水素吸蔵材料が得られる。
また、塩化ナトリウム、塩化カリウム、塩化ニッケル、塩化マグネシウム、塩化鉄などの金属塩化物又は水素化リチウム、水素化カルシウム、水素化マグネシウムなどの金属水素化物は、上記ニッケル、チタン、パラジウム、バナジウム、白金などの水素分子解離触媒能を有する金属粉末を含有するマグネシウム又はマグネシウム基合金粉末を被覆する形態で含有されている水素吸蔵材料を得ることができる。
【0016】
【実施例及び比較例】
以下に、本発明の実施例を示すが、これらはあくまで本発明の一例に過ぎず、下記の実施例の条件に本発明が制限されることはない。すなはち、本発明は明細書に記載する技術思想の範囲で、構成上の変更、変形又は他の実施例は当然含まれるものである。
【0017】
(実施例1)
マグネシウム粉末(粒子径0.18mm以下、純度99.9%)に、水素化カルシウム粉末を30重量%添加し、アルゴンガス雰囲気中で遊星ボールミルを用いて20時間ボールミリングした。
これとは別に、ニッケル粉末(粒子径0.003mm以下、純度99.9%)に水素化カルシウム粉末を30重量%添加し、アルゴンガス雰囲気中で遊星ボールミルを用いて20時間ボールミリングした。
その後、これらの粉末をアルゴンガス雰囲気で1:1の重量比で混ぜ、30分間遊星ボールミルでボールミリングして十分に混合した。この粉末は、短時間であれば大気中でも安定であった。
このようにして得た粉末を1MPaの水素ガス中で加熱したところ、96°Cの温度から水素を吸蔵し始めた。
水素吸蔵後の粉末を室温まで冷却し、真空中で加熱したところ232°Cの温度から水素を放出し始めた。
【0018】
(実施例2)
マグネシウム粉末(粒子径0.18mm以下、純度99.9%)に塩化ナトリウム粉末を20重量%添加し、アルゴンガス雰囲気中で遊星ボールミルを用いて20時間ボールミリングした。
これとは別に、チタン粉末(粒子径0.15mm以下、純度99.9%)に塩化ナトリウム粉末を20重量%添加し、アルゴンガス雰囲気中で遊星ボールミルを用いて20時間ボールミリングした。
これらの粉末をアルゴンガス雰囲気中でマグネシウム粉末10:チタン粉末1の重量比でまぜ、20時間遊星ボールミルでボールミリングして十分に混合した。この粉末は大気中では直ちに燃焼し、きわめて活性であった。
これを、1MPaの水素ガス中で353°Cまで加熱後、真空中で400°Cに加熱することによって活性化した後、室温で0.1MPaの水素ガス中に放置した。室温で直ちに水素吸蔵し始めた。
水素を吸蔵した粉末を、真空中で加熱したところ、252°Cの温度から水素を放出し始めた。
【0019】
(比較例1)
市販マグネシウム粉末(削り状)を乳鉢で軽く粉砕後、1MPaの水素ガス中で400℃まで加熱したが、水素の吸蔵は生じなかった。
【0020】
(比較例2)
市販水素化マグネシウム粉末を真空中で熱分解して得た活性なマグネシウム粉末を1MPaの水素ガス中で加熱したところ、282°Cから水素を吸蔵し始めた。その後、室温まで冷却し、真空中で加熱したところ、353°Cの温度から水素を放出し始めた。この粉末は水素を吸蔵する温度が高すぎて実用的でないという問題がある。
【0021】
上記比較例に示すように、水素化マグネシウムの熱分解によって得た活性なマグネシウム粉末でも水素吸蔵温度は282°C、水素放出温度は355°Cと吸放出温度が極めて高い。
これに対して、本発明により得たマグネシウム及びマグネシウム基合金粉末は、水素吸蔵温度は室温であり、著しい吸蔵性能を有する。放出温度は232°Cであり、水素の吸放出温度も低いという優れた効果を有する。
なお、上記の実施例以外の水素分子解離触媒能を有する金属粉末を使用した場合及び常温で固体である塩化ナトリウム、塩化カリウム、塩化ニッケル、塩化マグネシウム、塩化鉄などの金属塩化物又は水素化リチウム、水素化カルシウム、水素化マグネシウムなどの金属水素化物を使用した場合及びそれらの組合せにおいても同様の効果を得ることができた。
【0022】
【発明の効果】
マグネシウム単体又はマグネシウム基合金粉末に水素分子解離触媒能を有する金属粉末及び凝着防止剤を添加し、これらをボールミリングすることによって水素の吸放出温度が低く、吸放出速度が大きい水素吸蔵材料を作製することができるという著しい効果を有する。特に、本発明の材料の選択によって、水素吸蔵温度が室温であるという劇的な効果を有する。
これによって、軽量でかつ大量の水素を貯蔵できる材料として、特に燃料電池に有用な水素吸蔵材料を提供することができるという優れた効果を有する。
[0001]
[Industrial applications]
The present invention relates to a hydrogen storage material capable of safely storing hydrogen gas at high density, which is expected to be used in pollution-free fuel cell vehicles and the like, and a method for producing the same.
[0002]
[Prior art]
Conventionally, most hydrogen storage materials are alloys of metals that easily produce hydrides, such as magnesium, titanium, palladium, zirconium, calcium, and rare earths (lanthanum, misch metal), and metals that are difficult to produce hydrides, such as nickel, iron, and chromium. Typical hydrogen storage alloys include AB type 5 alloy (LaNi 5 , CaNi 5 etc.), AB type 2 Laves phase structure alloy (MgCu 2 , MgNi 2 , TiCr alloy etc.), bcc structure alloy (V 3 TiNi 0.56 ). These are mainly produced by a dissolution method or a mechanical milling method.
[0003]
Conventionally, Mg 2 Ni (coarsely pulverized) as a starting material is placed in a steel ball mill container together with steel balls and replaced with argon gas at 1 MPa. Then, the container is set in a planetary ball mill and subjected to a milling process at 400 rpm for 20 hours to form a fine structure on a nanometer scale into a Mg 2 Ni crystalline region and a Mg 2 Ni plastic amorphous region (metastable phase). A magnesium-based hydrogen storage composite material is disclosed (for example, see Patent Document 1).
Further, a mixture of magnesium, nickel and the following element M is previously melted (Ma = B, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Sr, Y, Zr). , Nb, Mo, Pd, Ag, Sn, Ba, Hf, Ta, La, Ce, Pr, Nd, or Sm), and then subject the smelted alloy to mechanical alloying. A method for producing an amorphous magnesium nickel-based hydrogen storage alloy to be made amorphous is disclosed (for example, see Patent Document 2).
[0004]
It is disclosed that the hydrogen release of a magnesium-based alloy is significantly improved by ball milling in a hydrogenated state (for example, see Non-Patent Document 1).
The use of ball milling results in deformation and structural changes in hydrides of Mg, Mg 2 Ni and mixtures thereof, which enhances hydrogen release and lowers the release temperature, and furthermore, balls of a mixture of MgH 2 and Mg 2 NiH 4 The milling has a high hydrogen releasing effect that enables an operating temperature of 220 ° C. to 240 ° C., and the total capacity of hydrogen is 5 wt. % Of hydrogen.
[0005]
Also, a technique of mechanically milling LaNi 5 with magnesium and a magnesium hydride to produce a Mg—Ni—La ternary alloy for hydrogen storage has been disclosed (for example, see Non-Patent Document 2).
According to this document, a MgH 2 + LaH 3 + Mg 2 Ni composite is obtained by mechanical milling of MgH 2 + LaNi 5 or mechanical milling of Mg + LaNi accompanied by hydrogenation, and the Mg + LaH 3 + Mg 2 Ni phase is used for both the hydrogen absorption / desorption cycle. The effect is obtained, but the powder size is not uniform, the powder size is greatly reduced by using MgH 2 instead of Mg in the milling process, and the hydrogen absorption speed is accelerated and released when the powder size is reduced. The effect of retarding the speed is obtained, the addition of Ni and La to the Mg-based alloy produces a synergistic effect of hydrogen absorption and desorption, and the Mg-Ni-La ternary alloy is a binary of Mg-La or Mg-Ni. Hydrogen absorption and desorption is superior to alloys, and lanthanum hydride has a strong catalytic effect on occlusion of Mg Release effect is weak, Mg 2 Ni has catalytic effect than lanthanum hydride at temperatures above 373K has been described to be good.
[0006]
[Patent Document 1]
JP-A-11-61313 [Patent Document 2]
Japanese Patent Application Laid-Open No. 11-269572 [Non-Patent Document 1]
`` Synergy of hydrogen sorption in ball-milled hydride of Mg and Mg 2 Ni '' A. Zaluska et al. / Journal of Alloys and Compounds 289 (1999) 197-206
[Non-patent document 2]
`` Hydrogen storage in mechanically milled Mg-LaNi 5 and MgH 2 -LaNi 5 composites '' G. Liang et al. / Journal of Alloys and Compounds 297 (2000) 261-265
[0007]
Magnesium alone and alloys based on magnesium have a large hydrogen storage capacity per unit mass and are promising as hydrogen storage materials for fuel cell vehicles that require materials that are lightweight and can store large amounts of hydrogen, as described above. Research and development are underway for practical use. However, there still remains a problem that the temperature for absorbing and releasing hydrogen is high and the rate of absorbing and releasing hydrogen is slow, which is an obstacle to practical use.
[0008]
[Problems to be solved by the invention]
A hydrogen storage material having a low hydrogen absorption / desorption temperature and a high absorption / desorption speed is obtained by adding a metal powder having a hydrogen molecule dissociation catalytic activity and an anti-adhesion agent to magnesium simple substance or a magnesium-based alloy powder and ball milling them. It is an object of the present invention to provide a hydrogen storage material which is to be manufactured, is lightweight and can store a large amount of hydrogen, and is particularly useful for a fuel cell.
[0009]
[Means for Solving the Problems]
The present invention has been made in order to solve the above problems.
1. Magnesium or magnesium-based alloy powder as a main component, nickel, titanium, palladium, vanadium, contains a metal powder having a catalytic activity of hydrogen molecule dissociation such as platinum, further sodium chloride solid at room temperature, potassium chloride, nickel chloride, 1. A hydrogen storage material containing 10 to 40% by weight of a metal chloride such as magnesium chloride or iron chloride or a metal hydride such as lithium hydride, calcium hydride or magnesium hydride. Magnesium or magnesium-based alloy powder as a main component, nickel, titanium, palladium, vanadium, contains a metal powder having a catalytic activity of hydrogen molecule dissociation such as platinum, these powders are solid at room temperature sodium chloride, potassium chloride, Provided is a hydrogen storage material, which is coated with a metal chloride such as nickel chloride, magnesium chloride, and iron chloride, or a metal hydride such as lithium hydride, calcium hydride, and magnesium hydride.
[0010]
The present invention also relates to 3. On the other hand, a powder obtained by adding an anti-adhesion agent to magnesium or a magnesium-based alloy powder is sealed in a mill container, and the atmosphere in the mill container is adjusted to an inert gas such as argon or helium or reduced pressure to perform a ball milling operation. Finely pulverize magnesium-based alloy powder, while encapsulating a metal powder, such as nickel, titanium, palladium, vanadium, platinum, etc., which has the ability to dissociate hydrogen molecules with an anti-adhesion agent, in a mill container Then, the atmosphere in the mill container was adjusted to an inert gas such as argon or helium or a reduced pressure, and a ball milling operation was performed. Next, both the ball-milled powders were sealed in a mill container, and the atmosphere in the mill container was changed to argon. A ball milling operation performed by adjusting the pressure to a reduced pressure, an inert gas such as helium, or water. Method of manufacturing a storage material 4. 4. The method for producing a hydrogen storage material as described in 3 above, wherein an anti-adhesion agent is added in an amount of 10 to 40% by weight. The anti-adhesion agent is a metal chloride such as sodium chloride, potassium chloride, nickel chloride, magnesium chloride, iron chloride or a metal hydride such as lithium hydride, calcium hydride, magnesium hydride which is solid at room temperature. 5. The method for producing a hydrogen storage material as described in 3 or 4 above. The method according to any one of the above items 3 to 5, wherein an anti-adhesion agent is coated on a magnesium or magnesium-based alloy powder and a metal powder having a catalytic function of dissociating hydrogen molecules such as nickel, titanium, palladium, vanadium and platinum. 7. The method for producing a hydrogen storage material according to any one of the above items 3 to 6, wherein a ball milling operation is performed under a reduced pressure of 7.13 Pa or less. It is intended to provide a hydrogen storage material produced by the method according to any one of the above 3 to 6.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention relates to a method for preventing oxidation by adding an anti-adhesion agent to elemental magnesium or a magnesium-based alloy (magnesium-based alloy) powder in an inert atmosphere to prevent oxidation. Specifically, the ball milling operation is performed by adjusting the atmosphere in the mill container to an inert gas such as argon or helium or to a reduced pressure. The condition under reduced pressure is desirably 13 Pa or less.
The anti-adhesion agent is added in an amount of 10 to 40% by weight. If the amount is less than 10% by weight, the effect of preventing adhesion by addition is small, and if the amount exceeds 40% by weight, the effect of addition is saturated and wasteful.
This makes it possible to increase the rate of hydrogen absorption and desorption by introducing a large amount of lattice defects and strains that can serve as diffusion paths for hydrogen atoms in the metal crystal at the same time as forming a fine powder having a large specific surface area.
[0012]
On the other hand, for metal powders having a catalytic function of dissociating hydrogen molecules such as nickel, titanium, palladium and platinum, oxidation is similarly prevented by adding an anti-adhesion agent to prevent metal adhesion. For this purpose, the ball milling operation is performed by adjusting the atmosphere in an inert atmosphere, specifically, the atmosphere in the mill container to an inert gas such as argon or helium or a reduced pressure. The condition under reduced pressure is 13 Pa or less.
Accordingly, a large specific surface area and a large amount of lattice defects serving as nuclei for hydrogen molecule dissociation can be contained, and the hydrogen gas dissociation temperature can be lowered.
The metal powder having the hydrogen molecule dissociation catalytic ability whose hydrogen molecule dissociation temperature is lowered by the above-mentioned process is added to the magnesium simple substance or the magnesium-based alloy powder whose hydrogen absorption and desorption rate is increased by the above-mentioned process, and is inerted. Mix by ball milling in an atmosphere. This makes it possible to manufacture a hydrogen storage material in which the temperature of absorbing and releasing hydrogen is reduced and the rate of absorbing and releasing hydrogen is increased.
The content of the metal having the catalytic function of dissociating hydrogen molecules in the hydrogen storage material of the present invention is 0.5 to 50 wt%. If the amount is less than 0.5 wt%, the effect of the catalytic activity for dissociating hydrogen molecules is low. If the amount exceeds 50 wt%, not only the catalytic activity is saturated, but also the amount of the hydrogen absorbing material is too large, and conversely, This is because the ability is reduced. More preferably, the content is set to 1 to 10% by weight.
[0013]
In order to pulverize the metal into fine powder by ball milling while preventing oxidation in an inert atmosphere, a large amount of an anti-adhesion agent is required. As the anti-adhesion agent, an organic substance such as a stearic acid compound or an organic solvent is generally used.
However, when these are added in large amounts, there is a problem that the grinding speed is reduced due to a reduction in friction, or the powder is decomposed during ball milling, and the decomposition product carbon is dissolved in the metal or reacts with the metal to form a carbide. .
In particular, when magnesium reacts with carbon, the carbon atoms occupy the positions of the hydrogen atoms occluded in the metal, so that there is a strong possibility that the amount of occluded hydrogen decreases.
[0014]
The present invention comprises adding a metal chloride such as sodium chloride, potassium chloride, nickel chloride, magnesium chloride, and iron chloride or a metal hydride such as lithium hydride, calcium hydride, and magnesium hydride, which are solid at room temperature. is there.
These are finely pulverized by ball milling and have a remarkable anti-adhesion effect by covering the surface of the metal particles. In addition, even if a large amount is added, there is no decrease in friction, so that a reduction in grinding speed can be prevented. Further, there is an effect that formation of magnesium carbide can be prevented.
This addition of metal chlorides and metal hydrides is one of the major features of the present invention, and has a great role in lowering the hydrogen absorption / desorption temperature and producing a hydrogen storage material with an increased absorption / desorption rate. Having.
[0015]
According to the above-described production process, a metal powder having a catalytic activity of hydrogen molecule dissociation, such as nickel, titanium, palladium, vanadium, and platinum, which is mainly composed of magnesium or a magnesium-based alloy powder, and which is solid at room temperature A hydrogen storage material containing 10 to 40% by weight of a metal chloride such as sodium, potassium chloride, nickel chloride, magnesium chloride and iron chloride or a metal hydride such as lithium hydride, calcium hydride and magnesium hydride is obtained.
In addition, metal chlorides such as sodium chloride, potassium chloride, nickel chloride, magnesium chloride, and iron chloride or metal hydrides such as lithium hydride, calcium hydride, and magnesium hydride are nickel, titanium, palladium, vanadium, and platinum. Thus, it is possible to obtain a hydrogen storage material which is contained in a form of coating a magnesium or magnesium-based alloy powder containing a metal powder having a catalytic activity for dissociating hydrogen molecules.
[0016]
[Examples and Comparative Examples]
Examples of the present invention will be described below, but these are merely examples of the present invention, and the present invention is not limited to the conditions of the following examples. In other words, the present invention naturally includes structural changes, modifications, and other embodiments within the scope of the technical idea described in the specification.
[0017]
(Example 1)
30% by weight of calcium hydride powder was added to magnesium powder (particle size: 0.18 mm or less, purity: 99.9%), and ball milling was performed for 20 hours using a planetary ball mill in an argon gas atmosphere.
Separately, 30% by weight of calcium hydride powder was added to nickel powder (particle diameter: 0.003 mm or less, purity: 99.9%), and ball milling was performed for 20 hours using a planetary ball mill in an argon gas atmosphere.
Thereafter, these powders were mixed at a weight ratio of 1: 1 in an argon gas atmosphere, and ball-milled with a planetary ball mill for 30 minutes to mix thoroughly. This powder was stable in air for a short time.
When the powder thus obtained was heated in a hydrogen gas of 1 MPa, hydrogen absorption started from a temperature of 96 ° C.
The powder after absorbing the hydrogen was cooled to room temperature and heated in a vacuum. As a result, hydrogen began to be released from a temperature of 232 ° C.
[0018]
(Example 2)
20% by weight of sodium chloride powder was added to magnesium powder (particle diameter: 0.18 mm or less, purity: 99.9%), and ball milling was performed for 20 hours using a planetary ball mill in an argon gas atmosphere.
Separately, 20% by weight of sodium chloride powder was added to titanium powder (particle size: 0.15 mm or less, purity: 99.9%), and ball milling was performed for 20 hours using a planetary ball mill in an argon gas atmosphere.
These powders were mixed at a weight ratio of magnesium powder 10: titanium powder 1 in an argon gas atmosphere, and were ball-milled with a planetary ball mill for 20 hours to be sufficiently mixed. This powder burned immediately in the atmosphere and was very active.
This was heated to 353 ° C. in hydrogen gas of 1 MPa, activated by heating to 400 ° C. in vacuum, and then left at room temperature in hydrogen gas of 0.1 MPa. Immediately at room temperature, hydrogen storage began.
When the powder storing hydrogen was heated in a vacuum, hydrogen began to be released from a temperature of 252 ° C.
[0019]
(Comparative Example 1)
After a commercially available magnesium powder (shaved) was lightly ground in a mortar and heated to 400 ° C. in hydrogen gas at 1 MPa, no occlusion of hydrogen occurred.
[0020]
(Comparative Example 2)
When an active magnesium powder obtained by thermally decomposing a commercially available magnesium hydride powder in a vacuum was heated in hydrogen gas of 1 MPa, hydrogen absorption started at 282 ° C. Thereafter, when cooled to room temperature and heated in vacuum, hydrogen began to be released from a temperature of 353 ° C. This powder has a problem that the temperature for storing hydrogen is too high to be practical.
[0021]
As shown in the above comparative example, the active magnesium powder obtained by pyrolysis of magnesium hydride has a very high hydrogen storage temperature of 282 ° C. and a hydrogen release temperature of 355 ° C., which is extremely high.
On the other hand, the magnesium and magnesium-based alloy powders obtained by the present invention have a hydrogen storage temperature of room temperature and have remarkable storage performance. The desorption temperature is 232 ° C., which is an excellent effect that the hydrogen absorption and desorption temperature is low.
In the case where a metal powder having a hydrogen molecule dissociation catalytic activity other than the above examples is used, and a metal chloride or lithium hydride such as sodium chloride, potassium chloride, nickel chloride, magnesium chloride, and iron chloride which are solid at room temperature. The same effect could be obtained when metal hydrides such as calcium hydride, magnesium hydride and the like were used and in combinations thereof.
[0022]
【The invention's effect】
A hydrogen storage material having a low hydrogen absorption / desorption temperature and a high absorption / desorption speed is obtained by adding a metal powder having a hydrogen molecule dissociation catalytic activity and an anti-adhesion agent to magnesium simple substance or a magnesium-based alloy powder and ball milling them. It has a remarkable effect that it can be manufactured. In particular, the selection of the material of the present invention has a dramatic effect that the hydrogen storage temperature is room temperature.
This has an excellent effect that it is possible to provide a hydrogen storage material that is lightweight and can store a large amount of hydrogen, particularly useful for fuel cells.

Claims (8)

マグネシウム又はマグネシウム基合金粉末を主成分として、ニッケル、チタン、パラジウム、バナジウム、白金などの水素分子解離触媒能を有する金属粉末を含有し、さらに常温で固体である塩化ナトリウム、塩化カリウム、塩化ニッケル、塩化マグネシウム、塩化鉄などの金属塩化物又は水素化リチウム、水素化カルシウム、水素化マグネシウムなどの金属水素化物を10〜40重量%含有することを特徴とする水素吸蔵材料。Magnesium or magnesium-based alloy powder as a main component, nickel, titanium, palladium, vanadium, contains a metal powder having a catalytic activity of hydrogen molecule dissociation such as platinum, further sodium chloride solid at room temperature, potassium chloride, nickel chloride, A hydrogen storage material comprising 10 to 40% by weight of a metal chloride such as magnesium chloride or iron chloride or a metal hydride such as lithium hydride, calcium hydride or magnesium hydride. マグネシウム又はマグネシウム基合金粉末を主成分として、ニッケル、チタン、パラジウム、バナジウム、白金などの水素分子解離触媒能を有する金属粉末を含有し、これらの粉末に常温で固体である塩化ナトリウム、塩化カリウム、塩化ニッケル、塩化マグネシウム、塩化鉄などの金属塩化物又は水素化リチウム、水素化カルシウム、水素化マグネシウムなどの金属水素化物が被覆されていることを特徴とする水素吸蔵材料。Magnesium or magnesium-based alloy powder as a main component, nickel, titanium, palladium, vanadium, contains a metal powder having a catalytic activity of hydrogen molecule dissociation such as platinum, these powders are solid at room temperature sodium chloride, potassium chloride, A hydrogen storage material coated with a metal chloride such as nickel chloride, magnesium chloride, and iron chloride, or a metal hydride such as lithium hydride, calcium hydride, and magnesium hydride. 一方でマグネシウム又はマグネシウム基合金粉末に凝着防止剤を添加した粉末をミル容器に封入し、ミル容器内雰囲気をアルゴン、ヘリウム等不活性ガス又は減圧に調整してボールミリング操作を行い、マグネシウムあるいはマグネシウムをベースとする合金粉末を微細に粉砕すると共に、他方でニッケル、チタン、パラジウム、バナジウム、白金などの水素分子解離触媒能を有する金属粉末に凝着防止剤を添加した粉末をミル容器に封入し、該ミル容器雰囲気内をアルゴン、ヘリウム等の不活性ガス又は減圧に調整してボールミリング操作を行い、次に上記ボールミリングした両粉末をミル容器に封入するとともに、ミル容器内雰囲気をアルゴン、ヘリウム等の不活性ガス又は減圧に調整してボールミリング操作を行うことを特徴とする水素吸蔵材料の製造方法。On the other hand, a powder obtained by adding an anti-adhesion agent to magnesium or a magnesium-based alloy powder is sealed in a mill container, and the atmosphere in the mill container is adjusted to an inert gas such as argon or helium or reduced pressure to perform a ball milling operation. Finely pulverize magnesium-based alloy powder, while encapsulating a metal powder, such as nickel, titanium, palladium, vanadium, platinum, etc., which has the ability to dissociate hydrogen molecules with an anti-adhesion agent, in a mill container Then, the atmosphere in the mill container was adjusted to an inert gas such as argon or helium or a reduced pressure, and a ball milling operation was performed. Next, both the ball-milled powders were sealed in a mill container, and the atmosphere in the mill container was changed to argon. A ball milling operation performed by adjusting the pressure to a reduced pressure, an inert gas such as helium, or water Manufacturing method of storage material. 凝着防止剤を10〜40重量%添加することを特徴とする請求項3記載の水素吸蔵材料の製造方法。The method for producing a hydrogen storage material according to claim 3, wherein 10 to 40% by weight of an anti-adhesion agent is added. 凝着防止剤が常温で固体である塩化ナトリウム、塩化カリウム、塩化ニッケル、塩化マグネシウム、塩化鉄などの金属塩化物又は水素化リチウム、水素化カルシウム、水素化マグネシウムなどの金属水素化物であること特徴とする請求項3又は4記載の水素吸蔵材料の製造方法。The anti-adhesion agent is a metal chloride such as sodium chloride, potassium chloride, nickel chloride, magnesium chloride, iron chloride or a metal hydride such as lithium hydride, calcium hydride, magnesium hydride which is solid at room temperature. The method for producing a hydrogen storage material according to claim 3 or 4. マグネシウム又はマグネシウム基合金粉末及びニッケル、チタン、パラジウム、バナジウム、白金などの水素分子解離触媒能を有する金属粉末に凝着防止剤を被覆することを特徴とする請求項3〜5のいずれかに記載の水素吸蔵材料の製造方法。The anti-adhesion agent is coated on magnesium or a magnesium-based alloy powder and a metal powder having a catalytic function of dissociating hydrogen molecules such as nickel, titanium, palladium, vanadium, and platinum. Production method of hydrogen storage material. 13Pa以下の減圧下でボールミリング操作を行うことを特徴とする請求項3〜6のいずれかに記載の水素吸蔵材料の製造方法。The method for producing a hydrogen storage material according to any one of claims 3 to 6, wherein the ball milling operation is performed under a reduced pressure of 13 Pa or less. 請求項3項〜6項記載の方法を用いて製造した水素吸蔵材料。A hydrogen storage material produced by using the method according to claim 3.
JP2002375742A 2002-12-26 2002-12-26 Hydrogen storage material and manufacturing method thereof Expired - Lifetime JP4280816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375742A JP4280816B2 (en) 2002-12-26 2002-12-26 Hydrogen storage material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375742A JP4280816B2 (en) 2002-12-26 2002-12-26 Hydrogen storage material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004204309A true JP2004204309A (en) 2004-07-22
JP4280816B2 JP4280816B2 (en) 2009-06-17

Family

ID=32813380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375742A Expired - Lifetime JP4280816B2 (en) 2002-12-26 2002-12-26 Hydrogen storage material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4280816B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100811116B1 (en) 2006-11-14 2008-03-06 한국과학기술연구원 Fabrication method of magnesium based hydrogen storage metarial
JP2009534542A (en) * 2006-04-26 2009-09-24 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Nanocrystalline compounds for hydrogen storage
KR101062476B1 (en) 2009-10-28 2011-09-06 한국기계연구원 Magnesium-based hydrogen generating powder and preparation method thereof
US8522906B2 (en) 2007-12-11 2013-09-03 Nissan Motor Co., Ltd. Hydrogen storage material, production method of the hydrogen storage material, hydrogen supply system, fuel cell, internal combustion engine and vehicle
CN103658641A (en) * 2013-12-06 2014-03-26 上海交通大学 Magnesium base composite hydrogen storage material and preparation method thereof
US10364148B1 (en) 2019-02-11 2019-07-30 Kuwait Institute For Scientific Research Nanocomposite system for solid hydrogen storage
CN112981199A (en) * 2021-02-06 2021-06-18 陕西科技大学 Salt-made porous magnesium-nickel hydrolysis hydrogen production alloy and preparation method thereof
CN114367658A (en) * 2022-01-13 2022-04-19 鞍钢股份有限公司 Hollow iron powder fuel and preparation and use methods thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009534542A (en) * 2006-04-26 2009-09-24 セントレ・ナショナル・デ・ラ・レシェルシェ・サイエンティフィーク Nanocrystalline compounds for hydrogen storage
KR100811116B1 (en) 2006-11-14 2008-03-06 한국과학기술연구원 Fabrication method of magnesium based hydrogen storage metarial
US7871537B2 (en) 2006-11-14 2011-01-18 Korea Institute Of Science And Technology Method for fabricating magnesium-based hydrogen storage material
US8522906B2 (en) 2007-12-11 2013-09-03 Nissan Motor Co., Ltd. Hydrogen storage material, production method of the hydrogen storage material, hydrogen supply system, fuel cell, internal combustion engine and vehicle
KR101062476B1 (en) 2009-10-28 2011-09-06 한국기계연구원 Magnesium-based hydrogen generating powder and preparation method thereof
CN103658641A (en) * 2013-12-06 2014-03-26 上海交通大学 Magnesium base composite hydrogen storage material and preparation method thereof
US10364148B1 (en) 2019-02-11 2019-07-30 Kuwait Institute For Scientific Research Nanocomposite system for solid hydrogen storage
CN112981199A (en) * 2021-02-06 2021-06-18 陕西科技大学 Salt-made porous magnesium-nickel hydrolysis hydrogen production alloy and preparation method thereof
CN112981199B (en) * 2021-02-06 2022-05-13 陕西科技大学 Salt porous magnesium-nickel hydrolysis hydrogen production alloy and preparation method thereof
CN114367658A (en) * 2022-01-13 2022-04-19 鞍钢股份有限公司 Hollow iron powder fuel and preparation and use methods thereof
CN114367658B (en) * 2022-01-13 2022-08-16 鞍钢股份有限公司 Hollow iron powder fuel and preparation and use methods thereof

Also Published As

Publication number Publication date
JP4280816B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
Ouyang et al. Magnesium-based hydrogen storage compounds: A review
Liang et al. Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite
KR100567426B1 (en) Nanocomposites with activated interfaces prepared by mechanical grinding of magnesium hydrides and process for preparing the same
Sakintuna et al. Metal hydride materials for solid hydrogen storage: a review
Guoxian et al. Hydrogen absorption and desorption characteristics of mechanically milled Mg 35wt.% FeTi1. 2 powders
Fu et al. Effect of in-situ formed Mg2Ni/Mg2NiH4 compounds on hydrogen storage performance of MgH2
Bououdina et al. Comparative study of mechanical alloying of (Mg+ Al) and (Mg+ Al+ Ni) mixtures for hydrogen storage
US6514478B2 (en) Li-based hydrogen storage composition
JP2007119906A (en) Mg-Ni HYDROGEN STORAGE COMPOSITE HAVING HIGH STORAGE CAPACITY AND EXCELLENT ROOM TEMPERATURE KINETICS
Zhang et al. Dehydriding properties of ternary Mg2Ni1− xZrx hydrides synthesized by ball milling and annealing
Huang et al. Structural characterization and electrochemical hydrogen storage properties of Mg2Ni1− xMnx (x= 0, 0.125, 0.25, 0.375) alloys prepared by mechanical alloying
JP2006205148A (en) Hydrogen storage material and production method thereof, hydrogen storage material of alkali metal-aluminum nitride and production method thereof, and alkali metal-aluminum nitride
CN102634714A (en) Copper-added magnesium-aluminum hydrogen storage alloy and preparation method thereof
Denys et al. Phase equilibria in the Mg–Ti–Ni system at 500° C and hydrogenation properties of selected alloys
CN109175349B (en) High-performance double-rare-earth solid solution-based hydrogen storage material and preparation method thereof
JP4280816B2 (en) Hydrogen storage material and manufacturing method thereof
Zhong et al. Tuning the de/hydriding thermodynamics and kinetics of Mg by mechanical alloying with Sn and Zn
Jurczyk The progress of nanocrystalline hydride electrode materials
Srivastava et al. On the synthesis and characterization of some new AB5 type MmNi4. 3Al0. 3Mn0. 4, LaNi5-xSix (x= 0.1, 0.3, 0.5) and Mg− x wt% CFMmNi5− y wt% Si hydrogen storage materials
CN108588521A (en) A kind of high capacity Mg-Cu-Ni ternary hydrogen-storage alloys and preparation method thereof
Li et al. Hydrogen storage properties of mechanically alloyedMg–8 mol% LaNi0. 5 composite
JP2008013375A (en) Composite material of hydride, and hydrogen storage material
Dutta et al. Synthesis, structural characterization and hydrogenation behaviour of the new hydrogen storage composite alloy La 2 Mg 17-x wt% LaNi 5
JPS626739B2 (en)
US20080199395A1 (en) Reversible Hydrogen Storage Composition, Method of Making and Uses of Said Composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4280816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term