KR100892175B1 - Porous oxidation-promoting materials for saving fuel - Google Patents

Porous oxidation-promoting materials for saving fuel Download PDF

Info

Publication number
KR100892175B1
KR100892175B1 KR1020080039000A KR20080039000A KR100892175B1 KR 100892175 B1 KR100892175 B1 KR 100892175B1 KR 1020080039000 A KR1020080039000 A KR 1020080039000A KR 20080039000 A KR20080039000 A KR 20080039000A KR 100892175 B1 KR100892175 B1 KR 100892175B1
Authority
KR
South Korea
Prior art keywords
fuel
oxidation reaction
porous oxidation
parts
weight
Prior art date
Application number
KR1020080039000A
Other languages
Korean (ko)
Inventor
정영훈
Original Assignee
정영훈
이창엽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정영훈, 이창엽 filed Critical 정영훈
Priority to KR1020080039000A priority Critical patent/KR100892175B1/en
Priority to CN200810210143XA priority patent/CN101564700B/en
Priority to JP2008226818A priority patent/JP2009263202A/en
Application granted granted Critical
Publication of KR100892175B1 publication Critical patent/KR100892175B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Porous oxidation-promoting materials are provided to reduce fuel by promoting an oxidation reaction in combustion of the fuel and activating an analysis of the fuel at the same time. A manufacturing method of porous oxidation-promoting materials for fuel reduction includes the following steps of: manufacturing a mixture by mixing milled powders after pulverizing aluminium carbide, tridymite, tantalum, zirconium oxide yttrium oxide lineage ceramics, calcium oxide, lithium, potassium feldspar and palladium to 300~350 mesh; plasticizing the mixture in temperature of 800~1200°C; molding the kneaded mixture after kneading the milled mixture with water; and obtaining a porosity oxidation reaction promoter by plasticizing the molding in 1600~2000°C.

Description

연료절감을 위한 다공성 산화반응 촉진재{Porous Oxidation-Promoting Materials for Saving Fuel}Porous Oxidation-Promoting Materials for Saving Fuel

본 발명은 연료절감을 위한 다공성 산화반응 촉진재에 관한 것으로, 보다 상세하게는, 연료의 연소시 산화반응을 촉진하는 동시에 연료의 분해를 활성화하여 연료의 완전연소를 촉진시킴으로써 연료절감을 도모할 수 있는 다공성 산화반응 촉진볼에 관한 것이다.The present invention relates to a porous oxidation reaction accelerator for fuel reduction, and more particularly, it is possible to promote fuel reduction by promoting the complete combustion of the fuel by activating the decomposition of the fuel while promoting the oxidation reaction during combustion of the fuel. The present invention relates to a porous oxidation promoting ball.

국제유가가 지속적으로 상승함에 따라, 산업용 및 가정용으로 사용되는 각종 연료를 클러스터(cluster)화하여 연소효율을 높임으로써 공해를 감소시키고 연료가 절감되도록 하는 구조 및 장치가 다양하게 제안되어 왔다.As international oil prices continue to rise, various structures and devices have been proposed to reduce pollution and reduce fuel by clustering various fuels used for industrial and domestic purposes, thereby increasing combustion efficiency.

연료를 절감한다는 것은 다른 의미로 연료의 효율을 높이는 것으로 이해될 수도 있다. 즉, 연료의 완전연소를 유도하거나 불완전 연소된 연료를 재사용하는 등의 조치를 통해 연소효율을 높임으로써 상대적으로 연소의 소모를 줄일 수 있는 것이다.Saving fuel may be understood in other ways to increase fuel efficiency. That is, it is possible to relatively reduce the consumption of combustion by increasing combustion efficiency by inducing complete combustion of fuel or reusing incompletely burned fuel.

연료절감장치의 일예로는 자화원리를 이용한 절감장치를 들 수 있다. 자화원리를 이용한 장치는 연료계통에 자계를 형성하여 연료분자를 정렬 및 이온화시킴으로써 연료가 보다 미세화될 수 있도록 하고 동시에 산소와의 혼합을 효과적으로 이룰 수 있게 하여 완전연소를 유도하는 방식을 이용하고 있다. An example of a fuel saving device is a saving device using the principle of magnetization. The device using the principle of magnetization uses a method of inducing complete combustion by forming a magnetic field in the fuel system to align and ionize fuel molecules so that the fuel can be further refined and at the same time effectively mix with oxygen.

그러나, 이와 같은 자화원리를 이용하는 연료 절감장치는 효율은 비교적 높으나 사용수명이 짧아 잦은 교체가 필요하다는 문제가 있다. 즉, 자화원리는 영구자석을 배치하여 사용시에 발견할 수 있는 것으로 장기간 사용시 자력이 저하되는 것은 물론 연료 내의 자성이물질 등이 자력에 의해 장치 내에 누적되어 기능이 급격하게 저하되는 문제를 갖고 있는 것이다.However, the fuel saving device using the magnetization principle has a problem in that the efficiency is relatively high but the service life is short and frequent replacement is required. In other words, the magnetization principle can be found in the use of a permanent magnet is placed in use, the magnetic force is deteriorated during long-term use, as well as the magnetic material in the fuel accumulates in the device by the magnetic force, the function is suddenly degraded.

한편, 본 발명자는 연료절감을 위한 기술로서 연료절감용 세라믹볼을 개발한 바 있다 (한국등록특허 629,090). 상기 연료절감용 세라믹볼은 불석, 산화철, 바륨, 장석, 네프린 사이나이트, 지르코팩스, 백운석, 벤토나이트 및 콘월석을 원료로 하여 제조된 것이며, 연료절감 효과를 나타내게 되는 주요 원리는 연료의 완전연소를 촉진하는데 있다. 구체적으로, 상기 연료절감용 세라믹볼은 원적외선을 방출하는데, 원적선의 적색 끝파장(0.7~2.5㎛)이 근적외석에서 발생하는 파장에서는 스펙트럼상 색과 색 사이의 경계가 되는 부분의 파장에서 색간의 경쟁으로 인해 진동이 일어나게 되고, 그러한 진동이 연료분자를 분해하는 원리를 이용하여 완전연소를 촉진한다.On the other hand, the present inventors have developed a ceramic ball for reducing fuel as a technology for reducing fuel (Korean Patent 629,090). The fuel-saving ceramic ball is manufactured from fluorite, iron oxide, barium, feldspar, nephrin sineite, zircofax, dolomite, bentonite and cornwallite as a raw material, and the main principle of showing fuel saving effect is complete fuel. To promote combustion. Specifically, the fuel-saving ceramic ball emits far infrared rays, the color at the wavelength of the portion that is the boundary between the spectral color and the color at the wavelength that the red end wavelength (0.7 ~ 2.5㎛) of the far infrared rays occurs in the near infrared Vibration occurs due to competition, and the vibration promotes complete combustion using the principle of decomposing fuel molecules.

또한, 본 발명자는 장파인 음파를 방출하는 파장볼(한국특허출원 2007-0006342) 및 단파인 광파를 방출하는 파기볼(한국특허출원 2007-0006344)을 개발하 여, 상기 파장볼과 파기볼의 연료장치에 동시에 충진한 다음, 상기 파장볼 및 파기볼에서 각각 방출되는 음파와 광파의 충돌력에 의해 연료분자를 파기하여 미세화함으로써, 연료의 완전연소를 촉진시켜 연료를 절감시킬 수 있는 기술을 개발한 바 있다.In addition, the present inventors have developed a wave ball (Korean patent application 2007-0006342) that emits long-wave sound waves and a wave ball (Korean patent application 2007-0006344) that emits short-wave light waves, After filling the fuel device at the same time, by destroying the fuel molecules by the impact force of the sound waves and light waves emitted from the wavelength ball and the excavation ball, respectively, by miniaturizing, to promote the complete combustion of the fuel to reduce the fuel development I've done it.

이와 같이, 연료절감을 위한 장치에 관한 여러 가지 시도가 있으나, 주로 하드웨어 장치를 추가하는 방식이어서 비용이 많이 소요되고, 공간사용 측면에서도 효율적이지 못할 뿐만 아니라, 그 연구가 주로 연료의 완전연소를 통한 연료절감을 달성하기 위하여 연료입자의 미립화를 중점적으로 수행되고 있는데, 이러한 연료입자의 미립화를 위하여 자기장을 이용하는 방법 외에는 별다른 성과가 없는 실정이다.As described above, various attempts have been made on fuel-saving devices, but they are expensive because they add hardware devices, and they are not efficient in terms of space use. In order to achieve fuel savings, atomization of fuel particles is mainly performed. However, there is no performance other than the method of using a magnetic field for atomization of such fuel particles.

또한 상술한 바와 같이, 본 발명자의 연료절감용 세라믹볼, 파장볼 및 파기볼은 모두 파장의 물리적인 힘으로만 연료를 분해하여 완전연소를 촉진하는 원리를 이용하고 있는 바, 이로 인하여 연료절감 효과는 있으나, 연료절감 효율을 증가시키는데 한계가 있었다.In addition, as described above, the present inventors use the principle of promoting the complete combustion by dissolving the fuel only by the physical force of the wavelength, the ceramic ball, the wavelength ball and the discard ball of the present invention, thereby reducing fuel effect However, there was a limit to increasing fuel saving efficiency.

이에 본 발명자들은 종래 기술들의 문제점을 해결하고자 예의 노력한 결과, 탄화알루미늄, 인규석, 탄탈, 산화지르코늄, 산화칼슘, 리튬, 칼륨장석 등과 같은 원료가 산소를 방출하는 특성을 가지고 있어 산화반응을 유도할 수 있으므로, 이들 원료를 이용하여 제조한 다공성 산화반응 촉진재가 연료와 접촉시 연료의 산화반응을 유도함으로써 연료의 완전연소를 촉진시킨다는 것을 확인하고 본 발명을 완성하게 되었다. Accordingly, the present inventors have made efforts to solve the problems of the prior art, and as a result, raw materials such as aluminum carbide, phosphorus quartz, tantalum, zirconium oxide, calcium oxide, lithium, potassium feldspar, and the like have oxygen-inducing properties to induce oxidation reactions. Accordingly, the present invention has been completed by confirming that the porous oxidation reaction accelerator prepared using these raw materials promotes the complete combustion of the fuel by inducing the oxidation reaction of the fuel upon contact with the fuel.

본 발명의 목적은 연료절감을 위한 다공성 산화반응 촉진재를 제공하는데 있다.An object of the present invention is to provide a porous oxidation reaction accelerator for fuel saving.

상기 목적을 달성하기 위하여 본 발명은 탄화알루미늄, 인규석, 탄탈, 산화지르코늄, 산화칼슘, 리튬, 칼륨장석 및 팔라듐을 함유하는 연료절감을 위한 다공성 산화반응 촉진재를 제공한다.In order to achieve the above object, the present invention provides a porous oxidation reaction accelerator for fuel reduction containing aluminum carbide, phosphite, tantalum, zirconium oxide, calcium oxide, lithium, potassium feldspar and palladium.

본 발명은 또한, 다음의 단계를 포함하는, 연료절감을 위한 다공성 산화반응 촉진재의 제조방법을 제공한다:The present invention also provides a method for producing a porous oxidation reaction accelerator for fuel reduction, comprising the following steps:

(a) 탄화알루미늄, 인규석, 탄탈, 산화지르코늄, 산화칼슘, 리튬, 칼륨장석 및 팔라듐을 각각 300~350mesh로 분쇄 및 혼합하여 혼합물을 제조하는 단계;(a) pulverizing and mixing aluminum carbide, phosphite, tantalum, zirconium oxide, calcium oxide, lithium, potassium feldspar and palladium to 300 to 350 mesh, respectively, to prepare a mixture;

(b) 상기 혼합물을 800~1200℃의 온도에서 소성하는 단계;(b) calcining the mixture at a temperature of 800-1200 ° C .;

(c) 상기 (b)단계에서 소성된 혼합물을 300~350mesh로 분쇄한 후, 물을 넣고 반죽하여 볼 형태로 성형하는 단계; 및(c) pulverizing the mixture fired in step (b) to 300 to 350mesh, and then kneading with water to form a ball shape; And

(d) 상기 (c)단계의 성형물을 1600~2000℃의 온도로 소성하여 다공성 산화반응 촉진재를 수득하는 단계.(d) calcining the molded product of step (c) at a temperature of 1600 ~ 2000 ℃ to obtain a porous oxidation reaction promoting material.

본 발명에 따르면, 연료의 연소시 화학적 반응인 산화반응을 촉진시켜 연료절감을 도모할 수 있어 연료절감을 위한 별도의 장비가 필요없어 경제적이고, 물리적 힘으로 연료의 완전연소를 촉진시키는 방법에 비해 연료절감 효율을 높일 수 있다.According to the present invention, it is possible to promote fuel reduction by promoting an oxidation reaction, which is a chemical reaction during combustion of fuel, and thus does not require a separate equipment for fuel reduction, and is economical, compared to a method of promoting complete combustion of fuel with physical force. Fuel efficiency can be improved.

본 발명은 일 관점에서, 탄화알루미늄, 인규석, 탄탈, 산화지르코늄, 산화칼슘, 리튬, 칼륨장석 및 팔라듐을 함유하는 연료절감을 위한 다공성 산화반응 촉진재에 관한 것이다.In one aspect, the present invention relates to a porous oxidation reaction accelerator for fuel reduction containing aluminum carbide, phosphate, tantalum, zirconium oxide, calcium oxide, lithium, potassium feldspar and palladium.

탄화알루미늄(aluminium carbide)은 화학식 Al4C3으로 표시되는 알루미늄의 탄화물로서, 물에 의해 분해되어 60~300℃의 온도에서 메탄을 발생시키는 반응(Al4C3+12H2O → 4Al(OH)3+3CH4)을 일으키므로 일반적으로 환원제로서 많이 쓰인다. 본 발명에서도 역시 탄화알루미늄은 환원반응을 유발하는 역할을 수행한다.Aluminum carbide is a carbide of aluminum represented by the formula Al 4 C 3 , which is decomposed by water to generate methane at a temperature of 60 to 300 ° C. (Al 4 C 3 + 12H 2 O → 4Al (OH)) 3 + 3CH 4 ) is generally used as a reducing agent. In the present invention, aluminum carbide also plays a role of inducing a reduction reaction.

인규석(tridymite)은 이산화규소(SiO2)의 일종인 광물로서, 60~300℃의 온도에서 탄화알루미늄과 혼합시켜 반응을 진행할 경우 탄화알루미늄의 작용을 30~150% 상승시킨다. 따라서, 본 발명에서는 상기 탄화알루미늄의 환원반응을 유발시키는 역할을 수행한다.Phosphoritem (tridymite) is a kind of silicon dioxide (SiO 2 ), and when mixed with aluminum carbide at a temperature of 60 ~ 300 ℃ to increase the action of aluminum carbide 30 ~ 150%. Therefore, the present invention serves to cause a reduction reaction of the aluminum carbide.

탄탈(tantalum)은 주기율표 5족에 속하는 전이원소로서 물이 분해반응을 일 으켜 수소와 산소가 발생할 때(2H2O → 4H + O2), 수소와 결합함으로써 산소에 의한 산화반응을 촉진시키고, 산화반응이 끝나는 동시에 수소와 분리되는 특성이 있다. 본 발명에서는 이와 같은 탄탈의 특성을 적용하고자, 즉, 산화반응을 촉진시켜 연료의 완전연소를 활성화시키도록 탄탈을 주요 원료로서 사용한다. Tantalum is a transition element belonging to group 5 of the periodic table. When water causes decomposition reactions and hydrogen and oxygen are generated (2H 2 O → 4H + O 2 ), tantalum promotes oxidation reaction by oxygen by combining with hydrogen. At the same time the oxidation reaction is finished, it is separated from hydrogen. In the present invention, tantalum is used as a main raw material in order to apply such characteristics of tantalum, that is, to promote the oxidation reaction to activate the complete combustion of the fuel.

산화지르코늄(ZrO2, zirconium oxide)은 60~100℃의 온도로 가열시에 산소를 발생시키는 특성이 있어, 본 발명에서 산화지르코늄은 연료의 연소시에 산화반응을 촉진시키기 위하여 사용된다.Zirconium oxide (ZrO 2 , zirconium oxide) has the property of generating oxygen when heated to a temperature of 60 ~ 100 ℃, in the present invention, zirconium oxide is used to promote the oxidation reaction during combustion of the fuel.

산화칼슘(CaO, calcium oxide)은 이산화황과 결합하는 특성이 있다 (SO2 + CaO → CaSO3). 따라서, 본 발명에서 산화칼슘은 연소시 발생하는 이산화황을 제거하는 역할 뿐만 아니라, 연료 속에 함유되어 있는 암모니아 가스, 알콜, 메탄, 수소 등을 흡수하여 산화반응을 촉진하는 역할을 수행한다.Calcium oxide (CaO, calcium oxide) has the property of binding to sulfur dioxide (SO 2 + CaO → CaSO 3 ). Therefore, calcium oxide in the present invention not only removes sulfur dioxide generated during combustion, but also serves to promote oxidation reaction by absorbing ammonia gas, alcohol, methane, hydrogen, etc. contained in the fuel.

리튬은 주기율표 IA족에 속하는 알칼리금속의 하나로서, 실온에서도 물을 분해하여 수소를 발생시키는 특성이 있어(2Li + 2H2O → 2LiOH + H2), 본 발명에서도 연소시에 수소의 양을 증폭시켜 환원반응을 유발하여, 연료의 과열현상을 방지하기 위하여 사용된다.Lithium is one of the alkali metals belonging to group IA of the periodic table, and has a characteristic of generating hydrogen by decomposing water even at room temperature (2Li + 2H 2 O → 2LiOH + H 2 ). It is used to prevent overheating of fuel by causing reduction reaction.

칼륨장석(AlSi3O8)은 지각을 구성하는 가장 중요한 조암광물의 하나로서, Al과 Si가 규칙적으로 배열된 칼륨장석일수록 고온에 안정한 특성을 나타내므로, 본 발명에서 칼륨장석은 연료가 고온에서 연소시에 연소반응을 안정시키기 위하여 사 용된다. Potassium feldspar (AlSi 3 O 8 ) is one of the most important coarse minerals constituting the earth's crust, and since potassium and feldspars in which Al and Si are regularly arranged show higher stability at high temperatures, potassium feldspar in the present invention is a fuel burned at a high temperature. It is used to stabilize the combustion reaction.

팔라듐(Pd)은 주기율표 8족에 속하는 금속원소로서, 수소를 흡수하고 투과시키는 특성이 있어 수소의 정제에 많이 사용되며, 구체적으로 실온에서 팔라듐 자체의 부피 대비 350~850배에 달하는 수소를 흡수하는 특성이 있다. 따라서, 본 발명에서 팔라듐은 수소를 흡수하여 연료의 환원반응을 유발하기 위해 사용된다. 또한, 팔라듐을 다른 원료들과 혼합하고 성형하여 소성시에 고온에서 수소를 주입시키면 성형체가 다량의 수소를 흡수하여 팽창된 상태가 되고 소성이 끝난 후 수소가 빠져나가면 기공이 형성된다.Palladium (Pd) is a metal element belonging to group 8 of the periodic table. It has a property of absorbing and permeating hydrogen, and is widely used for purification of hydrogen. Specifically, palladium (Pd) absorbs 350 to 850 times the volume of palladium itself at room temperature. There is a characteristic. Therefore, in the present invention, palladium is used to absorb hydrogen and cause a reduction reaction of the fuel. In addition, when palladium is mixed with other raw materials and molded to inject hydrogen at a high temperature during firing, the molded body absorbs a large amount of hydrogen into an expanded state and pores are formed when hydrogen is released after the firing is completed.

본 발명에 있어서, 상기 다공성 산화반응 촉진재의 조성비는 탄화알루미늄 100 중량부에 대하여, 인규석 110~130 중량부, 탄탈 40~60 중량부, 산화지르코늄 15~35 중량부, 산화칼슘 15~35 중량부, 리튬 15~35 중량부, 칼륨장석 15~35 중량부 및 팔라듐 10~30 중량부인 것을 특징으로 할 수 있다.In the present invention, the composition ratio of the porous oxidation reaction accelerator is 110 to 130 parts by weight of phosphite, 40 to 60 parts by weight of tantalum, 15 to 35 parts by weight of zirconium oxide, 15 to 35 parts by weight of calcium oxide, based on 100 parts by weight of aluminum carbide. 15 to 35 parts by weight of lithium, 15 to 35 parts by weight of potassium feldspar, and 10 to 30 parts by weight of palladium.

상기 탄화알루미늄 100 중량부에 대하여 인규석이 110 중량부 미만으로 첨가되면 탄화알루미늄의 작용을 촉진시키는 기능을 제대로 수행하지 못하는 문제점이 있고, 인규석이 130 중량부를 초과하여 첨가되면 첨가량 대비 인규석에 의한 효과에 따른 실익이 없으므로, 탄화알루미늄 100 중량부에 대한 인규석의 첨가량은 110~130 중량부인 것이 바람직하다.If phosphorus stone is added less than 110 parts by weight based on 100 parts by weight of aluminum carbide, there is a problem in that it does not properly perform the function of promoting the action of aluminum carbide, and when phosphorus is added in excess of 130 parts by weight, the effect of phosphorus stone relative to the amount added Since there is no profit in accordance with, it is preferable that the amount of phosphorus silica added to 100 parts by weight of aluminum carbide is 110 to 130 parts by weight.

상기 탄화알루미늄 100 중량부에 대하여 탄탈이 40 중량부 미만으로 첨가되면 연료의 연소촉진 효과가 저하되고, 탄탈이 60 중량부를 초과하여 첨가되면 연료 연소의 과열현상이 일어날 수 있는 문제점이 있으므로, 탄화알루미늄 100 중량부에 대한 탄탈의 첨가량은 40~60 중량부인 것이 바람직하다.When tantalum is added below 40 parts by weight based on 100 parts by weight of aluminum carbide, the combustion promoting effect of the fuel is lowered. When tantalum is added by more than 60 parts by weight, there is a problem that overheating of fuel combustion may occur. The amount of tantalum added to 100 parts by weight is preferably 40 to 60 parts by weight.

상기 탄화알루미늄 100 중량부에 대하여 산화지르코늄이 15 중량부 미만으로 첨가되면 연료의 연소촉진 효과가 저하되고, 산화지르코늄이 35 중량부를 초과하여 첨가되면 연료 연소의 과열현상이 일어날 수 있는 문제점이 있으므로, 탄화알루미늄 100 중량부에 대한 탄탈의 첨가량은 15~35 중량부인 것이 바람직하다.When the zirconium oxide is added less than 15 parts by weight based on 100 parts by weight of aluminum carbide, the combustion promoting effect of the fuel is lowered, and when the zirconium oxide is added in excess of 35 parts by weight, there is a problem that overheating of fuel combustion may occur. The amount of tantalum added to 100 parts by weight of aluminum carbide is preferably 15 to 35 parts by weight.

상기 탄화알루미늄 100 중량부에 대하여 산화칼슘이 15 중량부 미만으로 첨가되면 연료의 연소촉진 효과가 저하되고 연소시 배출되는 이산화황 제거효율도 저하되며, 산화칼슘이 35 중량부를 초과하여 첨가되면 연료 연소의 과열현상이 일어날 수 있고, 산화칼슘 첨가량의 증가에 따른 이산화항 제거효율도 큰 차이가 없기 때문에, 탄화알루미늄 100 중량부에 대한 탄탈의 첨가량은 15~35 중량부인 것이 바람직하다.When calcium oxide is added to less than 15 parts by weight based on 100 parts by weight of aluminum carbide, the combustion promoting effect of the fuel is lowered, and the sulfur dioxide removal efficiency discharged during combustion is also lowered. Since overheating may occur and there is no significant difference in the removal efficiency of the term ethanol according to the increase in the amount of calcium oxide added, the amount of tantalum added to 100 parts by weight of aluminum carbide is preferably 15 to 35 parts by weight.

상기 탄화알루미늄 100 중량부에 대하여 리튬이 15 중량부 미만으로 첨가되면 연료의 연소가 과열되는 문제점이 있고, 35 중량부를 초과하여 첨가되면 첨가량 추가에 따른 실익이없으므로, 탄화알루미늄 100 중량부에 대한 리튬의 첨가량은 15~35 중량부인 것이 바람직하다.When lithium is added less than 15 parts by weight with respect to 100 parts by weight of aluminum carbide, there is a problem in that the combustion of the fuel is overheated. It is preferable that the addition amount of is 15-35 weight part.

상기 탄화알루미늄 100 중량부에 대하여 칼륨장석이 15 중량부 미만으로 첨가되면 연료의 연소가 과열되는 문제점이 있고, 칼륨장석이 35 중량부를 초과하여 첨가되면 첨가량 추가에 따른 실익이없으므로, 탄화알루미늄 100 중량부에 대한 칼륨장석의 첨가량은 15~35 중량부인 것이 바람직하다.When potassium feldspar is added in an amount less than 15 parts by weight based on 100 parts by weight of aluminum carbide, there is a problem in that the combustion of fuel is overheated. The amount of potassium feldspar added to the portion is preferably 15 to 35 parts by weight.

상기 탄화알루미늄 100 중량부에 대하여 팔라듐이 10 중량부 미만으로 첨가 되면 최종 제조되는 연료절감을 위한 다공성 산화반응 촉진볼에서 기공형성이 원활하게 이루어지지 않아 상기 연료절감을 위한 다공성 산화반응 촉진볼의 연료절감 효과가 저하되고, 30 중량부를 초과하게 되면 기공이 과다하게 형성되는 문제점이 있으므로, 탄화알루미늄 100 중량부에 대한 팔라듐의 첨가량은 10~30 중량부인 것이 바람직하다.When palladium is added in an amount less than 10 parts by weight based on 100 parts by weight of the aluminum carbide, the pores are not smoothly formed in the porous oxidation-promoting ball for fuel reduction. If the reduction effect is lowered, and if the amount exceeds 30 parts by weight, the pores are excessively formed, and the amount of palladium added to 100 parts by weight of aluminum carbide is preferably 10 to 30 parts by weight.

본 발명에 있어서, 상기 다공성 산화반응 촉진재는 다공성 산화반응 촉진볼 또는 다공성 산화반응 촉진 타공판인 것을 특징으로 할 수 있다.In the present invention, the porous oxidation reaction promoting material may be characterized in that the porous oxidation reaction promoting ball or porous oxidation reaction promoting perforated plate.

본 발명에 있어서, 상기 다공성 산화반응 촉진볼의 직경은 2~5cm인 것을 특징으로 할 수 있고, 상기 다공성 산화반응 촉진 타공판은 1~2mm인 기공이 형성되어 있는 것을 특징으로 할 수 있다.In the present invention, the diameter of the porous oxidation reaction promoting ball may be characterized in that 2 ~ 5cm, the porous oxidation reaction promoting perforated plate may be characterized in that the pores of 1 ~ 2mm is formed.

본 발명에 따른 다공성 산화반응 촉진볼은 일반적인 연료탱크에 충진시켜 사용할 수 있고, 다공성 산화반응 촉진 타공판은 일반적인 연료탱크에 하나 이상을 내부에 장착하여 사용할 수 있으나, 이에 제한되는 것은 아니다.Porous oxidation reaction promoting ball according to the present invention can be used by filling in a general fuel tank, porous oxidation reaction promoting perforated plate may be used by mounting one or more inside the general fuel tank, but is not limited thereto.

본 발명에 따른 다공성 산화반응 촉진재는 성형 방법에 따라, 볼의 형태 또는 타공판의 형태로 제조할 수 있다. 여기서, 상기 볼의 형상은 직경이 2~5cm인 구 형상인 것이 바람직하나, 용이하게 성형 가능한 형상이라면, 반드시 구형으로 한정되는 것은 아니다.Porous oxidation reaction accelerator according to the invention can be produced in the form of a ball or a perforated plate, depending on the molding method. Here, the ball is preferably a spherical shape having a diameter of 2 to 5 cm, but is not necessarily limited to a spherical shape as long as the shape can be easily formed.

또한, 타공판은 직사각형 모양이며 두께가 5~10cm인 평평한 플레이트(plate)에 직경 1~2mm의 기공이 다수 개 형성되어 있는 형태를 가지는 것이 바람직하나, 상기 타공판을 장착하고자 하는 장치의 크기, 형태 등에 따라 성형시에 상기 타공 판의 크기, 형태 등을 조절할 수 있다.In addition, the perforated plate is preferably rectangular in shape and has a form in which a plurality of pores having a diameter of 1 to 2 mm is formed on a flat plate having a thickness of 5 to 10 cm, but the size, shape, etc. of the device to be mounted on the perforated plate Accordingly, the size, shape, etc. of the perforated plate can be adjusted during molding.

본 발명은 다른 관점에서, 다음의 단계를 포함하는, 연료절감을 위한 다공성 산화반응 촉진재의 제조방법에 관한 것이다:In another aspect, the present invention relates to a method for producing a porous oxidation reaction accelerator for fuel reduction, comprising the following steps:

(a) 탄화알루미늄, 인규석, 탄탈, 산화지르코늄, 산화칼슘, 리튬, 칼륨장석 및 팔라듐을 각각 300~350mesh로 분쇄 및 혼합하여 혼합물을 제조하는 단계;(a) pulverizing and mixing aluminum carbide, phosphite, tantalum, zirconium oxide, calcium oxide, lithium, potassium feldspar and palladium to 300 to 350 mesh, respectively, to prepare a mixture;

(b) 상기 혼합물을 800~1200℃의 온도에서 소성하는 단계;(b) calcining the mixture at a temperature of 800-1200 ° C .;

(c) 상기 (b)단계에서 소성된 혼합물을 300~350mesh로 분쇄한 후, 물을 넣고 반죽하여 볼 형태로 성형하는 단계; 및(c) pulverizing the mixture fired in step (b) to 300 to 350mesh, and then kneading with water to form a ball shape; And

(d) 상기 (c)단계의 성형물을 1600~2000℃의 온도로 소성하여 연료절감을 위한 다공성 산화반응 촉진재를 수득하는 단계.(d) calcining the molded product of step (c) at a temperature of 1600 to 2000 ° C. to obtain a porous oxidation reaction accelerator for fuel reduction.

본 발명은 연료의 완전연소를 촉진시키 위한 산화반응을 활성화할 수 있는 볼을 제조할 수 있다는 사실을 기초로 한 연구에 의해 완성된 것으로, 본 발명에 따른 연료절감을 위한 다공성 산화반응 촉진재는 탄화알루미늄, 인규석, 탄탈, 산화지르코늄, 산화칼슘, 리튬, 칼륨장석 및 팔라듐 등의 원료를 하여 제조된 것으로, 각각의 원료들이 산소 또는 수소를 발생시키거나 흡수하는 성질을 가지고 있고, 소성 및 성형 공정을 통하여 산화반응을 촉진시킬 수 있는 연료절감을 위한 다공성 산화반응 촉진볼 또는 타공판으로 제조되며, 이로 인하여 연료의 산화반응을 유발시키는 특성이 있다. 따라서, 연료의 완전연소가 가속화되어 연료절감의 효과를 확인할 수 있다.The present invention has been completed by a study based on the fact that it is possible to produce a ball capable of activating an oxidation reaction for promoting complete combustion of fuel, and the porous oxidation reaction accelerator for fuel reduction according to the present invention is carbonized. Manufactured from raw materials such as aluminum, phosphite, tantalum, zirconium oxide, calcium oxide, lithium, potassium feldspar and palladium, each of which has the property of generating or absorbing oxygen or hydrogen, and firing and molding process It is made of a porous oxidation reaction promoting ball or perforated plate for fuel reduction that can promote the oxidation reaction through, thereby causing the oxidation reaction of the fuel. Therefore, the complete combustion of the fuel is accelerated to confirm the effect of fuel savings.

본 발명에 따른 연료절감을 위한 다공성 산화반응 촉진볼은 연료탱크, 연료 연소장치와 같이, 연료가 통과하는 장치에 충진시켜 사용될 수 있다. 즉, 연료연소장치에 상기 연료의 연소반응 촉진용 다공성 볼을 충진시킨 후, 여기에 연료를 흘려보내 연료의 연소를 시작하면 상기 연료절감을 위한 다공성 산화반응 촉진볼로부터 산소가 발생되어 연료의 완전연소가 활성화된다. 이때, 표면의 다수의 기공이 형성된 상기 연료절감을 위한 다공성 산화반응 촉진볼은 연료와의 접촉면적인 넓으므로 연료의 완전연소를 더욱 가속화할 수 있다.Porous oxidation reaction promoting ball for reducing fuel according to the present invention can be used to fill the fuel passing device, such as fuel tank, fuel combustion device. That is, after filling the fuel combustion device with the porous balls for promoting the combustion reaction of the fuel, and then flowing fuel therein to start the combustion of the fuel, oxygen is generated from the porous oxidation reaction promoting balls for the fuel reduction to complete the fuel. Combustion is activated. In this case, the porous oxidation reaction promoting ball for reducing fuel, in which a plurality of pores on the surface is formed, may further accelerate the complete combustion of the fuel since the contact area with the fuel is wide.

또한, 본 발명에 따른 연료절감을 위한 다공성 산화반응 촉진 타공판은 연료탱크, 연료연소장치와 같이, 연료가 통과하는 장치의 내부에 장착하여 사용할 수 있다. 이때 타공판을 장착하는 방법은 타공판을 장착하고자 하는 장치의 크기, 형태에 맞추어 타공판을 제조한 뒤, 상기 장치의 내부에 맞게 고정되도록 하는 방법으로서, 당업계에서 통상적으로 사용되는 장치의 고정화 방법이라면 특별히 제한되지 않고 사용할 수 있다.In addition, the porous oxidation reaction perforated plate for fuel reduction according to the present invention can be used in the interior of the fuel passing device, such as fuel tank, fuel combustion device. In this case, the mounting of the perforated plate is a method of manufacturing the perforated plate according to the size and shape of the device to which the perforated plate is to be mounted and then fixed to the inside of the device. Can be used without limitation.

결국, 본 발명에 따른 연료절감을 위한 다공성 산화반응 촉진재로 인하여 산업용 및 가정용으로 사용되는 휘발유, 경우, 등유, 벙커씨유 등과 같은 각종 연료의 절감효과를 기대할 수 있다.After all, due to the porous oxidation reaction promoting material for fuel reduction according to the present invention can be expected to reduce the various fuels, such as gasoline, case, kerosene, bunker seed oil used for industrial and domestic use.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있 어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예Example 1: 연료절감을 위한 다공성 산화반응  1: Porous Oxidation for Fuel Reduction 촉진볼의Promotion ball 제조 Produce

탄화알루미늄 21g, 인규석 35g, 탄탈 10g, 산화지르코늄 5g, 산화칼슘 5g, 리튬 5g, 칼륨장석 15g 및 팔라듐 4g을 325mesh의 분말로 분쇄하고, 이를 혼합하여 혼합물을 제조하였다. 상기 혼합물을 950~1050℃의 가마에서 소성하였다. 소성된 혼합물을 325mesh의 분말로 다시 한 번 분쇄하고, 50g의 물을 넣고 반죽을 만든 후, 볼 형태로 성형하였다. 이때, 성형되는 볼의 직경은 3~4cm의 범위로 성형하였고, 상기 볼의 직경은 볼이 충진되는 장치에 따라 변화될 수 있는 것이므로 상기 범위에 국한되는 것은 아니다. 또한, 볼의 표면에는 미세한 다공이 형성되어 있다.21 g of aluminum carbide, 35 g of phosphite, 10 g of tantalum, 5 g of zirconium oxide, 5 g of calcium oxide, 5 g of lithium, 15 g of potassium feldspar, and 4 g of palladium were ground to a powder of 325mesh and mixed to prepare a mixture. The mixture was calcined in a kiln at 950-1050 ° C. The calcined mixture was once again ground to a powder of 325mesh, 50 g of water was added to form a dough, and then formed into a ball shape. At this time, the diameter of the ball is molded in the range of 3 ~ 4cm, the diameter of the ball is not limited to the above range because it can be changed according to the device in which the ball is filled. In addition, fine pores are formed on the surface of the ball.

상기 성형물을 1750~1850℃의 가마에서 소성하였고, 소성시간은 15분을 넘지 않도록 하여, 연료절감을 위한 다공성 산화반응 촉진볼을 제조하였다 (도 1).The molded product was fired in a kiln at 1750-1850 ° C., and the firing time was no longer than 15 minutes, thereby preparing a porous oxidation reaction promoting ball for reducing fuel (FIG. 1).

실시예Example 2: 연료절감을 위한 다공성 산화반응 촉진  2: Promote porous oxidation reaction for fuel saving 타공판의Perforated 제조 Produce

탄화알루미늄 21g, 인규석 35g, 탄탈 10g, 산화지르코늄 5g, 산화칼슘 5g, 리튬 5g, 칼륨장석 15g 및 팔라듐 4g을 325mesh의 분말로 분쇄하고, 이를 혼합하여 혼합물을 제조하였다. 상기 혼합물을 950~1050℃의 가마에서 소성하였다. 소성된 혼합물을 325mesh의 분말로 다시 한 번 분쇄하고, 50g의 물을 넣고 반죽을 만든 후, 타공판 형태로 압출성형하였다. 이때, 성형되는 타공판은 가로 120cm, 세로 100cm, 두께 7cm 이며, 1~2mm의 기공이 타공판에 형성되어 있다. 또한, 타공판의 표면에는 미세한 다공이 형성되어 있다.21 g of aluminum carbide, 35 g of phosphite, 10 g of tantalum, 5 g of zirconium oxide, 5 g of calcium oxide, 5 g of lithium, 15 g of potassium feldspar, and 4 g of palladium were ground to a powder of 325mesh and mixed to prepare a mixture. The mixture was calcined in a kiln at 950-1050 ° C. The calcined mixture was once again ground to a powder of 325mesh, 50g of water was added to make a dough, and then extruded into a perforated plate. At this time, the perforated plate to be molded is 120cm wide, 100cm long, 7cm thick, the pores of 1-2mm are formed in the perforated plate. In addition, fine pores are formed on the surface of the perforated plate.

상기 성형물을 1750~1850℃의 가마에서 소성하였고, 소성시간은 15분을 넘지 않도록 하여, 연료절감을 위한 다공성 산화반응 촉진 타공판을 제조하였다.The molded product was fired in a kiln at 1750-1850 ° C., and the firing time was not more than 15 minutes, thereby preparing a porous oxidation reaction-promoting perforated plate for fuel reduction.

실시예Example 3: 다공성 산화반응  3: porous oxidation reaction 촉진볼을Promotion ball 이용한 선박엔진의 연료소비량 측정 Fuel consumption measurement of used ship engine

선박의 연료탱크에 실시예 1에서 제조한 다공성 산화반응 촉진볼을 충진시킨 후, 상기 연료탱크와 연결되어 있는 선박엔진을 작동시켰다.After filling the porous oxidation reaction promotion ball prepared in Example 1 to the fuel tank of the vessel, the vessel engine connected to the fuel tank was operated.

그 결과, 표 1에 나타난 바와 같이, 선박의 연료소비량은 57.1~75.8ℓ/h임을 알 수 있었다.As a result, as shown in Table 1, the fuel consumption of the ship was found to be 57.1 ~ 75.8 l / h.

경과된시간Elapsed time 1시간 (ℓ/h)1 hour (ℓ / h) 2시간 (ℓ/h)2 hours (ℓ / h) 3시간 (ℓ/h)3 hours (ℓ / h) 4시간 (ℓ/h)4 hours (ℓ / h) 5시간 (ℓ/h)5 hours (ℓ / h) 6시간 (ℓ/h)6 hours (ℓ / h) 7시간 (ℓ/h)7 hours (ℓ / h) 8시간 (ℓ/h)8 hours (ℓ / h) 9시간 (ℓ/h)9 hours (ℓ / h) 10시간 (ℓ/h)10 hours (ℓ / h) 소비된연료량Amount of fuel consumed 57.157.1 59.059.0 63.463.4 68.168.1 71.571.5 72.072.0 73.173.1 74.374.3 74.974.9 75.875.8

실시예Example 4: 다공성 산화반응 촉진  4: Promote porous oxidation reaction 타공판을Perforated plate 이용한 선박엔진의 연료소비량 측정 Fuel consumption measurement of used ship engine

선박의 연료탱크에 실시예 2에서 제조한 다공성 산화반응 촉진 타공판을 장착시킨 후, 상기 연료탱크와 연결되어 있는 선박엔진을 작동시켰다.After attaching the porous oxidation reaction promoting perforated plate prepared in Example 2 to the fuel tank of the vessel, the vessel engine connected to the fuel tank was operated.

그 결과, 표 2에 나타난 바와 같이, 선박엔진의 연료소비량은 59.8~77.0ℓ/h임을 알 수 있었다.As a result, as shown in Table 2, the fuel consumption of the ship engine was found to be 59.8 ~ 77.0 l / h.

경과된시간Elapsed time 1시간 (ℓ/h)1 hour (ℓ / h) 2시간 (ℓ/h)2 hours (ℓ / h) 3시간 (ℓ/h)3 hours (ℓ / h) 4시간 (ℓ/h)4 hours (ℓ / h) 5시간 (ℓ/h)5 hours (ℓ / h) 6시간 (ℓ/h)6 hours (ℓ / h) 7시간 (ℓ/h)7 hours (ℓ / h) 8시간 (ℓ/h)8 hours (ℓ / h) 9시간 (ℓ/h)9 hours (ℓ / h) 10시간 (ℓ/h)10 hours (ℓ / h) 소비된연료량Amount of fuel consumed 59.859.8 68.468.4 69.869.8 70.870.8 72.472.4 73.973.9 72.572.5 74.174.1 76.176.1 77.077.0

비교예Comparative example 1:  One: 연료절감재를Fuel savings 이용하지 않은 선박엔진의 연료소비량 측정 Measurement of fuel consumption of unused ship engine

연료탱크와 연결된 선박엔진을 가동시켜 상기 선박엔진의 연료소비량을 측정한 결과, 표 3에 나타난 바와 같이, 선박엔진의 연료소비량은 80.5~92.6ℓ/h임을 알 수 있었다.As a result of measuring the fuel consumption of the ship engine by operating the ship engine connected to the fuel tank, it was found that the fuel consumption of the ship engine was 80.5-92.6 l / h.

경과된시간Elapsed time 1시간 (ℓ/h)1 hour (ℓ / h) 2시간 (ℓ/h)2 hours (ℓ / h) 3시간 (ℓ/h)3 hours (ℓ / h) 4시간 (ℓ/h)4 hours (ℓ / h) 5시간 (ℓ/h)5 hours (ℓ / h) 6시간 (ℓ/h)6 hours (ℓ / h) 7시간 (ℓ/h)7 hours (ℓ / h) 8시간 (ℓ/h)8 hours (ℓ / h) 9시간 (ℓ/h)9 hours (ℓ / h) 10시간 (ℓ/h)10 hours (ℓ / h) 소비된연료량Amount of fuel consumed 80.580.5 82.082.0 82.082.0 84.984.9 86.886.8 86.586.5 87.387.3 88.088.0 92.692.6 91.091.0

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is obvious to those skilled in the art that such a specific description is only a preferred embodiment, thereby not limiting the scope of the present invention. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 본 발명에 따른 연료절감장치의 사용 배치도를 도시한 것이다. 1 shows a use layout of a fuel saving device according to the present invention.

Claims (6)

탄화알루미늄, 인규석, 탄탈, 산화지르코늄, 산화칼슘, 리튬, 칼륨장석 및 팔라듐을 함유하는 연료절감을 위한 다공성 산화반응 촉진재.Porous oxidation reaction accelerator for fuel reduction containing aluminum carbide, phosphite, tantalum, zirconium oxide, calcium oxide, lithium, potassium feldspar and palladium. 제1항에 있어서, 상기 다공성 산화반응 촉진재의 조성비는 탄화알루미늄 100 중량부에 대하여, 인규석 110~130 중량부, 탄탈 40~60 중량부, 산화지르코늄 15~35 중량부, 산화칼슘 15~35 중량부, 리튬 15~35 중량부, 칼륨장석 15~35 중량부 및 팔라듐 10~30 중량부인 것을 특징으로 하는 다공성 산화반응 촉진재.According to claim 1, wherein the composition ratio of the porous oxidation promoter is based on 100 parts by weight of aluminum carbide, 110 to 130 parts by weight of phosphite, 40 to 60 parts by weight of tantalum, 15 to 35 parts by weight of zirconium oxide, 15 to 35 calcium oxide Porous oxidation reaction, characterized in that 15 parts by weight to 35 parts by weight, 15 to 35 parts by weight of potassium feldspar and 10 to 30 parts by weight of palladium. 제1항에 있어서, 다공성 산화반응 촉진볼 또는 다공성 산화반응 촉진 타공판인 것을 특징으로 하는 다공성 산화반응 촉진재.According to claim 1, Porous oxidation reaction promoting ball or porous oxidation reaction promoting material, characterized in that the porous oxidation reaction perforated plate. 제3항에 있어서, 상기 다공성 산화반응 촉진볼의 직경은 2~5cm인 것을 특징으로 하는 다공성 산화반응 촉진재.The porous oxidation reaction promoter according to claim 3, wherein the porous oxidation reaction promotion ball has a diameter of 2 to 5 cm. 제3항에 있어서, 상기 다공성 산화반응 촉진 타공판은 직경 1~2mm인 기공이 형성되어 있는 것을 특징으로 하는 다공성 산화반응 촉진재.The porous oxidation reaction promoting material according to claim 3, wherein the porous oxidation-promoting perforated plate has pores having a diameter of 1 to 2 mm. 다음의 단계를 포함하는, 연료절감을 위한 다공성 산화반응 촉진재의 제조방법:A method for preparing a porous oxidation reaction accelerator for fuel saving, comprising the following steps: (a) 탄화알루미늄, 인규석, 탄탈, 산화지르코늄, 산화칼슘, 리튬, 칼륨장석 및 팔라듐을 각각 300~350mesh로 분쇄 및 혼합하여 혼합물을 제조하는 단계;(a) pulverizing and mixing aluminum carbide, phosphite, tantalum, zirconium oxide, calcium oxide, lithium, potassium feldspar and palladium to 300 to 350 mesh, respectively, to prepare a mixture; (b) 상기 혼합물을 800~1200℃의 온도에서 소성하는 단계;(b) calcining the mixture at a temperature of 800-1200 ° C .; (c) 상기 (b)단계에서 소성된 혼합물을 300~350mesh로 분쇄한 후, 물을 넣고 반죽하여 성형하는 단계; 및(c) pulverizing the mixture fired in step (b) to 300 to 350mesh, and then molding by kneading water; And (d) 상기 (c)단계의 성형물을 1600~2000℃의 온도로 소성하여 다공성 산화반응 촉진재를 수득하는 단계.(d) calcining the molded product of step (c) at a temperature of 1600 ~ 2000 ℃ to obtain a porous oxidation reaction promoting material.
KR1020080039000A 2008-04-25 2008-04-25 Porous oxidation-promoting materials for saving fuel KR100892175B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020080039000A KR100892175B1 (en) 2008-04-25 2008-04-25 Porous oxidation-promoting materials for saving fuel
CN200810210143XA CN101564700B (en) 2008-04-25 2008-08-29 Fuel-saving porous oxidation reaction catalysis material fuel and preparation method thereof
JP2008226818A JP2009263202A (en) 2008-04-25 2008-09-04 Porous oxidization-promoting material for saving fuel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080039000A KR100892175B1 (en) 2008-04-25 2008-04-25 Porous oxidation-promoting materials for saving fuel

Publications (1)

Publication Number Publication Date
KR100892175B1 true KR100892175B1 (en) 2009-04-10

Family

ID=40757372

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080039000A KR100892175B1 (en) 2008-04-25 2008-04-25 Porous oxidation-promoting materials for saving fuel

Country Status (3)

Country Link
JP (1) JP2009263202A (en)
KR (1) KR100892175B1 (en)
CN (1) CN101564700B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101623311B1 (en) 2015-06-19 2016-05-20 김태호 Method for manufacturing car air purification material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000015054A (en) * 1998-08-27 2000-03-15 정두진 Catalysis for ionization of liquid fuel and preparing ceramics bar and ball for far-infrared radiation
KR20060019281A (en) * 2004-08-27 2006-03-03 정영훈 Ceramic ball for economical fule comsumption and preparing method thereof
KR20070115204A (en) * 2006-06-01 2007-12-05 채재우 Hydro reactive propellant for underwater vehicle
KR20070117902A (en) * 2006-06-09 2007-12-13 주식회사 티케이엘뉴텍 A mixed tourmaline ceramic catalyst for decrease of consumption of liquid fuel and its production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061956C (en) * 1997-11-04 2001-02-14 胡勇波 Zirconium magnesium tempering porcelain
CN1089319C (en) * 1998-12-16 2002-08-21 中国科学院新疆化学研究所 Method for copper-contg. ceramic coating of wall of catalytic reactor
US6472972B1 (en) * 2000-02-03 2002-10-29 Ngk Insulators, Ltd. PTC composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000015054A (en) * 1998-08-27 2000-03-15 정두진 Catalysis for ionization of liquid fuel and preparing ceramics bar and ball for far-infrared radiation
KR20060019281A (en) * 2004-08-27 2006-03-03 정영훈 Ceramic ball for economical fule comsumption and preparing method thereof
KR20070115204A (en) * 2006-06-01 2007-12-05 채재우 Hydro reactive propellant for underwater vehicle
KR20070117902A (en) * 2006-06-09 2007-12-13 주식회사 티케이엘뉴텍 A mixed tourmaline ceramic catalyst for decrease of consumption of liquid fuel and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101623311B1 (en) 2015-06-19 2016-05-20 김태호 Method for manufacturing car air purification material

Also Published As

Publication number Publication date
CN101564700A (en) 2009-10-28
JP2009263202A (en) 2009-11-12
CN101564700B (en) 2012-02-01

Similar Documents

Publication Publication Date Title
CN105753505B (en) A kind of porous ceramic grain carrier and preparation method thereof
JP5504000B2 (en) CO2 absorbing precast concrete and method for producing the same
CN101492276B (en) Novel clay soil polyporous materials and method of producing the same
US8871676B2 (en) Method for making porous acicular mullite-containing composites
CN102180699B (en) Porous cordierite ceramic material and preparation method thereof
JP2766459B2 (en) Adsorbent manufacturing method
CN101091925A (en) Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof
CN109053150A (en) A kind of production method of lithium slag light ceramic plate
KR100892175B1 (en) Porous oxidation-promoting materials for saving fuel
KR100866108B1 (en) Porous economical fuel consumption material with short wavelength-emitting and oxidation-promoting ability
KR100866107B1 (en) Porous economical fuel consumption material with long wavelength-emitting and oxidation-promoting ability
KR100629090B1 (en) Ceramic Ball for Economical Fule Comsumption and Preparing Method Thereof
KR100866109B1 (en) Porous economical fuel consumption material with far infrared rays-emitting and oxidation-promoting ability
KR100892173B1 (en) Economical liquid fuel consumption apparatus using porous oxidation-promoting materials
KR20200071177A (en) Porous Water Purification Structure And Method for Manufacturing the Same
KR100921649B1 (en) Method for Manufacturing Artificial Aggregate Having Lightweight and Optimized Blackcore Formation
JP4129695B2 (en) Method for producing porous water-absorbing ceramics
KR100864575B1 (en) Prous oxidation-promoting materials and a method for preparing thereof
CN101348383B (en) Ceramic particle for water treatment and preparation thereof
CN110342864A (en) A kind of coal ash for manufacturing for the carrier of oxygen method
KR100892172B1 (en) Economical liquid fuel radiate apparatus using a long wavelength
KR20080068496A (en) Destruction-ball for fuel reduction
KR101751334B1 (en) Water purification ball and method for manufacturing water purification ball
RU2403220C1 (en) Clay-phosphate material
JP2002226248A (en) Cement mixture containing porous fired body and method for improving strength of cement mixture by addition of the porous fired body

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120517

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130328

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150529

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee