KR100877177B1 - 아세틸렌기가 치환된 안트라센 구조의 유기반도체 화합물및 이를 이용한 유기박막트랜지스터 - Google Patents

아세틸렌기가 치환된 안트라센 구조의 유기반도체 화합물및 이를 이용한 유기박막트랜지스터 Download PDF

Info

Publication number
KR100877177B1
KR100877177B1 KR1020070031253A KR20070031253A KR100877177B1 KR 100877177 B1 KR100877177 B1 KR 100877177B1 KR 1020070031253 A KR1020070031253 A KR 1020070031253A KR 20070031253 A KR20070031253 A KR 20070031253A KR 100877177 B1 KR100877177 B1 KR 100877177B1
Authority
KR
South Korea
Prior art keywords
thin film
film transistor
group
organic
formula
Prior art date
Application number
KR1020070031253A
Other languages
English (en)
Other versions
KR20080088699A (ko
Inventor
권순기
김윤희
박종원
강동민
정성욱
백장열
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020070031253A priority Critical patent/KR100877177B1/ko
Priority to PCT/KR2007/003326 priority patent/WO2008120839A1/en
Publication of KR20080088699A publication Critical patent/KR20080088699A/ko
Application granted granted Critical
Publication of KR100877177B1 publication Critical patent/KR100877177B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/573Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with three six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/573Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings with three six-membered rings
    • C07C13/58Completely or partially hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D499/00Heterocyclic compounds containing 4-thia-1-azabicyclo [3.2.0] heptane ring systems, i.e. compounds containing a ring system of the formula:, e.g. penicillins, penems; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Abstract

본 발명은 유기 반도체로서 유용한 안트라센에 9- 및/또는 10-위치에 아세틸 기로 개질된 화합물과 이를 포함하는 유기박막트랜지스터에 관한 것으로서, 상세하게는 본 발명에 따른 유기반도체 화합물은 하기 화학식 1로 표시되는 안트라센 유도체인 것을 특징으로 한다.
[화학식 1]
Figure 112007024864713-pat00001
상기 화합물은 유기박막트랜지스터에서 활성층(active layer)으로 사용될 때, 진공증착공정(vacuum deposition precess)에 의해 박막을 형성과 상온 습식공정(wet process)에 의해 코팅이 가능하며, 높은 전하이동도와 낮은 차단누설전류를 동시에 만족하는 유기박막 트랜지스터를 제조할 수 있는 장점이 있으며, 우수한 액정성으로 인하여 분자간 배열이 용이하게 되어 뛰어난 결정성을 가지게 되며, 본 발명에 따른 유기반도체 화합물을 적용하여 제조되는 유기박막트랜지스터는 다양한 치환체 및 치환체 그룹의 도입에 의한 분자내 혹은 분자간 전하의 이동을 용이하게 할 수 있음은 물론이고, 우수한 결정성 및 강한 파이-스태킹으로 인해 정공 및 전자의 이동도가 개선됨은 물론 우수한 점멸비를 가진다.
유기박막트랜지스터, 액정성, 전하 이동도, 점멸비, 안트라센

Description

아세틸렌기가 치환된 안트라센 구조의 유기반도체 화합물 및 이를 이용한 유기박막트랜지스터{Organic semiconductor containing acetylenic anthracene, and Organic thin film transistor using the same}
도 1은 기판/게이트/절연층(소스, 드레인)/반도체 층으로 제조되는 일반적인 유기박막트랜지스터의 구조를 보여주는 단면도이고,
도 2는 화학식 2 내지 4로 표시되는 유기반도체 화합물의 시차열량분석 곡선을 나타내는 도면이며,
도 3은 화학식 2 내지 4로 표시되는 유기반도체 화합물의 열 중량분석 곡선을 나타내는 도면이고,
도 4는 화학식 2로 표시되는 유기반도체 층으로 채용한 유기박막트랜지스터의 transfer curve를 도시한 도면((a) source-drain voltage; (b) square root current-drain voltage)이며,
도 5는 화학식 2로 표시되는 유기반도체 층으로 채용한 유기박막트랜지스터의 output curve(current-voltage)를 도시한 도면이다.
<도면의 주요 부분에 대한 부호의 설명>
11 : 기판 12 : 게이트 절연층(insulator)
13 : 유기 활성층(channel material) 14 : 소스(source)
15 : 드레인(drain) 16 : 게이트(gate) 전극
본 발명은 아세틸렌기가 치환된 안트라센 유도체 및 이를 이용한 유기박막 트랜지스터에 관한 것으로, 보다 상세하게는 p-형 특성을 지닌 안트라센에 9- 및/또는 10-위치에, 이의 제조 방법 및 유기 반도체로서 이들의 용도에 관한 것이다.
유기 도체성 화합물 및 반도체성 화합물의 발견으로 분자전자학 분야는 지난 20여년 동안 빠르게 발달하였다. 이 기간 동안에, 반도체성 또는 전기-광학적 특성을 나타내는 수많은 화합물이 발견되었다. 분자전자학은 통상적인, 실리콘-기초 반도체 디바이스를 대신할 수 없을 것으로 일반적으로 이해되었다. 대신에, 분자 전자 성분은 넓은 영역을 코팅하는데 있어서의 적합성, 구조적 유연성, 저온에서의 가공성 및 낮은 비용이 요구되는 새로운 분야의 영역을 열 것이라고 예상되었다. 반도체성 유기화합물은 현재 유기박막트랜지스터(OTFT), 유기발광다이오드(OLED), 센서 및 광전지 소자와 같은 분야의 영역에서 개발되고 있다.
유기박막 트랜지스터(Organic Thin Film Transistor; OTFT)는 일반적으로 기판, 게이트전극, 절연층, 소스/드레인 전극, 채널층을 포함하여 구성되고, 소스와 드레인 전극상에 채널층이 형성되는 바텀 콘택트(BC)형과 채널층 상에 금속전극이 위에서 형성되는 탑 콘택트(TC)형으로 나눌 수 있다.
직접 유기 반도체 회로 내에 OTFT의 단순한 구조화 및 집적에 의해서, 실리콘 성분의 유연성의 부족 및 가격으로 인해 실리콘 기술을 사용하여 이전에 달성할 수 없었던 스마트 카드 또는 가격표를 위한 저렴한 방법이 가능해졌다. OTFT는 또한 넓은 면적의, 유연한 매드릭스 디스플레이에서 회로 소자로서 사용될 수 있다.
최근, 유기박막 트랜지스터(OTFT)의 채널층용 유기반도체물질이 많이 연구되고, 그 트랜지스터 특성이 보고되어 지고 있다. 많이 연구되는 저분자계 또는 올리고머 유기반도체 물질로는 멜로시아닌, 프탈로시아닌, 페리렌, 펜타센, C60, 티오펜 올리고머 등이 있고 루슨트테크놀로지나 3M 등에서는 펜타센 단결정을 사용하여 3.2 ~ 5.0 cm2/Vs 이상의 높은 전하이동도를 보고하고 있다(Mat. Res. Soc. Symp. Proc. 2003, Vol. 771, L6.5.1 ~ L66.5.11). 프랑스의 CNRS도 올리고티오펜 유도체를 이용하여 0.01 ~ 0.1 cm2/Vs의 비교적 높은 전하이동도와 전류점멸비를 보고하고 있다. 그러나, 상기의 종래기술은 박막형성을 주로 진공프로세스에 의존하고 있기 때문에 제조비용이 상승하는 문제점을 가지고 있다.
한편 고분자계 재료로는 F8T2라는 폴리티오펜계 재료를 채용한 고분자계 OTFT 소자를 시험제작하여 전하이동도 0.01 ~ 0.02 cm2/Vs를 보고하고 있다(국제공개 WO 00/7961호, Science, 2000, vol. 290, pp. 2132~2126). 또한, 미국 특허 제6, 107, 117호는 위치규칙적(regioregular)인 폴리티오펜 P3HT를 이용하여 전하이 동도 0.01 ~ 0.04 cm2/Vs의 OTFT소자를 제조하는 방법을 개시하고 있다. 그러나, 상기의 기술은 상온 습식공정에 의해 제조공정 및 비용, 대량 생상에는 유리하나 고순도의 정제가 어려워 낮은 전하이동도와 높은 차단 누설전류를 나타내는 문제점은 지니고 있다.
이와 같이, 용해성이 우수하여 상온 습식공정(wet process)으로 코팅 공정이 가능할 뿐만 아니라, 높은 전하이동도와 낮은 차단 누설전류를 동시에 충분히 만족하는 유기박막 트랜지스터용 유기 올리고머 반도체 물질의 개발이 이루어져야 한다.
따라서 본 발명은 상기와 같은 본 발명이 속하는 기술분야의 요구에 부응하기 위한 것으로, 상온 스핀 코팅 공정이 가능할 뿐만 아니라, p-형 반도체 특성을 지닌 안트라센에 용해도를 확보하기 위해 아세틸렌 유도체를 도입하였으며, 높은 파이전자 겹칩과 분자간 결정성을 증가시키기 위하여 아릴 유도체를 도입하여, 이로 인해 전하이동도가 우수하면서 전류점별비가 높은 유기반도체 화합물 및 이를 이용한 유기박막트랜지스터를 제공하는 것을 목적으로 한다.
본 발명은 아세틸렌기가 치환된 안트라센 유도체를 특징으로 하는 유기반도 체 화합물 및 이를 이용한 유기박막 트랜지스터에 관한 것으로, 본 발명에 따른 유기반도체 화합물은 하기 화학식 1로 표시되는 아세틸렌기가 치횐된 안트라센 구조를 갖는 것을 특징으로 한다.
[화학식 1]
Figure 112007024864713-pat00002
상기 화학식 1에서, A1 A2는 독립적으로 C, Si 또는 Ge으로부터 선택되며; R1, R2, R3와 R4는 독립적으로 수소; 선형, 분지형 또는 환형 (C1-C30)알킬기; 선형, 분지형 또는 환형 (C2-C40)알케닐기; 선형, 분지형 또는 환형 (C3-C40)알키닐기; 선형, 분지형 또는 환형 (C1-C30)알콕시기; (C6-C40)아릴기; (C4-C30)헤테로아릴기, (C6-C30)아르(C1-C30)알킬기; (C1-C30)알콕시(C1-C30)알킬기; (C1-C30)알콕시(C2-C30)알케닐기; (C6-C50)헤테로아릴(C1-C30)알킬기; (C1-C40)카빌; 하이드로(C1-C40)카빌기; (C6-C40)아릴옥시기; (C1-C40)알콕시카보닐기; (C6-C40)아릴옥시카보닐기; 사이아노기; 카 바모일기(-C(=O)NH2); 할로포밀일기(-C(=O)-X, 여기서 X는 할로겐 원자를 나타낸다); 포밀기(-C(=O)-H); 아이소사이아노기; 아이소사이아네이트기; 티오사이아네이트기; 티오아이소사이아네트기; 모노- 또는 디(C1-C30)알킬아미노기; 모노- 또는 디(C6-C30)아릴아미노기; 하이드록시기; 할로겐기; 나이트로기; 또는 실릴기로부터 선택되거나, R1, R2, R3와 R4는 독립적으로 인접한 안트라센 고리의 탄소와 알킬렌 또는 알케닐렌으로 서로 가교결합되어 (C4-C30)의 포화 또는 불포화 고리를 형성할 수 있으며, 상기 형성된 포화 또는 불포화 고리의 탄소는 산소 원자, 황원자 또는 화학식 -N(Ra)- (여기서 Ra는 수소원자 또는 (C1-C30)알킬기이다)로 치환될 수 있으며, 상기 R1, R2, R3와 R4의 알킬, 알케닐, 알키닐, 알콕시, 알릴, 헤테로아릴기는 (C1-C30)알킬; (C2-C30)알케닐; (C3-C30)알키닐; (C1-C30)알콕시; (C6-C40)아릴옥시기; (C6-C30)아릴; (C4-C30)헤테로아릴; 포밀기; 아미노기; 하이드록시기; 나이트로기; 할로겐기 또는 실릴기로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있고;
R5, R6, R7, R8, R9와 R10은 독립적으로 수소; 선형, 분지형 또는 환형 (C1-C30)알킬기; 선형, 분지형 또는 환형 (C2-C40)알케닐기; 선형, 분지형 또는 환형 (C3-C40)알키닐기; 선형, 분지형 또는 환형 (C1-C30)알콕시기, (C6-C40)아릴기, (C4-C30)헤테로아릴기, (C6-C30)아르(C1-C30)알킬기, (C1-C30)알콕시(C1-C30)알킬기, (C1-C30)알콕 시(C2-C30)알케닐기, (C6-C50)헤테로아릴(C1-C30)알킬기; (C1-C40)카빌; 하이드로(C1-C40)카빌기; (C6-C40)아릴옥시기; (C1-C40)알콕시카보닐기; (C6-C40)아릴옥시카보닐기; 사이아노기; 카바모일기(-C(=O)NH2); 할로포밀일기(-C(=O)-X, 여기서 X는 할로겐 원자를 나타낸다); 포밀기(-C(=O)-H); 아이소사이아노기; 아이소사이아네이트기; 티오사이아네이트기; 티오아이소사이아네트기; 모노- 또는 디(C1-C30)알킬아미노기; 모노- 또는 디(C6-C30)아릴아미노기; 하이드록시기; 할로겐기; 나이트로기; 또는 실릴기로부터 선택되며, 상기 R5, R6, R7, R8, R9와 R10의 알킬, 알케닐, 알키닐, 알콕시, 알릴, 헤테로아릴기는 (C1-C30)알킬; (C2-C30)알케닐; (C3-C30)알키닐; (C1-C30)알콕시; (C6-C40)아릴옥시기; (C6-C30)아릴; (C4-C30)헤테로아릴; 포밀기; 아미노기; 하이드록시기; 나이트로기; 할로겐기; 또는 실릴기로부터 선택되는 하나 이상의 치환기로 더 치환될 수 있다.
R5, R6, R7, R8, R9와 R10은 독립적으로 (C1-C10)알킬기, 트리(C1-C10)알킬실릴기; 트리(C1-C10)알콕시실릴기; 또는 트리(C6-C10)아릴실릴기로부터 선택되며, 상기 실릴기는 트리메틸실릴, 트리에틸실릴, 트리프로필실릴, 디메틸에틸실릴, 디에틸메틸실릴, 디메틸프로필실릴, 디메틸아이소프로필실릴, 디프로필메틸실릴, 디아이소프로필메틸실릴, 디프로필에틸실릴, 디아이소프로필에틸실릴, 디에틸아이소프로필실릴, 트리아이소프로필실릴, 트리메톡시실릴, 트리에톡시실릴 또는 트리페닐실릴 로 예시된다.
R1 내지 R10의 치환체로서 선택되는 아릴 또는 헤테로아릴은 하기 구조의 치환체로서 예시될 수 있다.
Figure 112007024864713-pat00003
Figure 112007024864713-pat00004
Figure 112007024864713-pat00005
Figure 112007024864713-pat00006
Figure 112007024864713-pat00007
Figure 112007024864713-pat00008
상기 여기서 R11, R12, R13, R14, R15 및 R16의 아릴 또는 헤테로 아릴은 독립적으로 수소, (C1-C30)알킬기, (C6-C30)아릴기, (C1-C30)알콕시(C6-C30)아릴기로 이루어진 군으로부터 선택되며, 상기 R11, R12, R13, R14, R15 및 R16의 알킬과 아릴은 (C1-C30)알콕시, 할로겐으로부터 선택된 하나 이상의 치환기로 더 치환될 수 있으며, 치환체가 결합되는 결합위치는 상기 치환체 고리의 탄소로부터 선택된다.
본 발명에 따른 화학식 1의 유기반도체 화합물은 분자간 팩킹 및 파이-스태킹이 잘 형성되며 결정성이 우수하다. 지방족 그룹들 또한 이들 분자들의 용해도 및 유동성을 증가시켜 이들 분자들이 결정성을 갖는데 도움을 준다.
본 발명에 따른 화학식 1의 유기반도체 화합물은 다음의 화합물로 예시할 수 있으나, 예시되는 화합물이 본 발명의 화합물을 한정하는 것은 아니다.
[화학식 2]
Figure 112007024864713-pat00009
[화학식 3]
Figure 112007024864713-pat00010
[화학식 4]
Figure 112007024864713-pat00011
[화학식 5]
Figure 112007024864713-pat00012
[화학식 6]
Figure 112007024864713-pat00013
본 발명에 따른 화학식 1의 유기반도체 화합물은 제 1 전극과 제 2 전극사이에 개재되어 유기박막트랜지스터로서 구현되며, 특히 게이트 전극, 게이트 절연층, 유기 활성층, 및 소스/드레인 전극을 포함하여 형성된 유기박막 트랜지스터에 있어서, 상기 유기 활성층이 본 발명에 따른 화학식 1의 유기반도체 화합물로 형성된다. 본 발명에 의한 유기박막트랜지스터 소자는, 기판/게이트 전극/게이트 절연층/유기 활성층/소스-드레인 전극이 차례로 형성된 탑 컨택트 구조(미도시)를 형성할 수도 있고, 도 1에 도시된 바와 같이 기판(11)/게이트 전극(16)/게이트 절연층(12)/소스-드레인 전극(14, 15)/유기 활성층(13)이 차례로 형성된 바텀 컨택트 구조로 형성될 수 있으나, 이에 한정되지 않는다.
본 발명의 유기반도체는 상온에서 종래에 알려진 코팅방법으로 코팅할 수 있으며, 코팅방법은 스크린 인쇄법, 프린팅법, 스핀코팅법, 딥핑법(dipping) 또는 잉크분사법 등을 통하여 박막으로 형성될 수 있다.
상기 기판 (11)은 유리, 폴리에틸렌나프탈레이트(polyethylenenaphthalate : PEN), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate : PET), 폴리카보네이트 (polycarbonete), 폴리비닐알콜(polyvinylalcohol), 폴리아크릴레이트(polyacrylate), 폴리이미드(polyimide), 폴리노르보넨(polynorbornene), 및 폴리에테르설폰 (polyethersulfone : PES) 등으로 형성될 수 있으나, 이에 한정되지 않는다.
상기 게이트 전극(16)으로는 통상적으로 사용되는 금속이 사용될 수 있으며, 구체적으로 금(Au), 은(Ag), 알루미늄(Al), 니켈(Ni), 크롬(Cr) 및 인듐틴산화물(ITO) 등을 사용할 수 있으나, 이에 한정되지 않는다.
상기 OTFT 소자를 구성하는 게이트 절연층(12)으로서는 통상적으로 사용되는 유전율이 큰 절연체를 사용할 수 있으며, 구체적으로 Ba0.33Sr0.66TiO3(BST), Al2O3, Ta2O5, La2O5, Y2O3 및 TiO2로 이루어진 군으로부터 선택된 강유전성 절연체, PdZr0.33Ti0.66O3(PZT), Bi4Ti3O12, BaMgF4, SrBi2(TaNb)2O9, Ba(ZrTi)O3(BZT), BaTiO3, SrTiO3, Bi4Ti3O12, SiO2, SiNx 및 AlON로 이루어진 군으로부터 선택된 무기 절연체, 또는 폴리이미드(polyimide), BCB(benzocyclobutene), 파릴렌(parylene), 폴리아크릴레이트(polyacrylate), 폴리비닐알콜(polyvinylalcohol) 및 폴리비닐페놀(polyvinylphenol) 등의 유기 전연체를 사용할 수 있다.
상기 소스 및 드레인 전극 (14 및 15)으로는 통상적으로 사용되는 금속이 사용될 수 있으며, 구체적으로는 금(Au), 은(Ag), 알루미늄(Al), 니켈(Ni), 크롬(Cr) 및 인듐틴산화물(ITO) 등이 예시된다.
이하에서, 실시예를 통하여 본 발명을 보다 상세하게 설명하고자 하나, 하기의 실시예는 설명의 목적을 위한 것으로 본 발명을 제한하고자 하는 것은 아니다.
[실시예]
[제조예 1] 2.6-Dibromoanthraquinone 의 제조
Figure 112007024864713-pat00014
100 mL 2-neck flask 에 t-BuONO (1.95 g, 18.88 mmol), CH3CN (300 mL), CuBr2 (4.22 g, 18.88 mmol)을 넣고 65 ℃로 가열한다. 2,6-diaminoanthraquinone (20 g, 83.9 mmol)을 4회에 걸쳐 적하시킨다. 6시간이 지난후 20 % HCl 용액에 반응종결한 후, 생성된 고체를 여과한다. 1,4-Dioxane에 재결정한다.
Yield: 24 g (80 %)
m.p: 194 ℃
1H-NMR (300 MHz, CDCl3, ppm): 8.46 (d, 1H), 8.20 (d, 1H), 7.97 (m, 2H)
[제조예 2] 2,6-Dibromo-9,10-bis(triisopropyl silyl)acetyl anthracene의 제조
Figure 112007024864713-pat00015
100 mL 3-neck flask 에 triisopropyl acetylene (1.8 g, 9.87 mmol)을 무수THF (10 mL)에 녹인 후 isopropyl magnesium chloride (4.9 mL, 19.74 mmol)을 넣고 60 ℃에서 15분간 교반한다. 상온으로 식힌 후 제조예 1에서 제조된 2.6-Dibromoanthraquinone (0.59 g, 1.62 mmol)를 무수 THF(10 mL)에 녹인 용액을 천천히 적하시킨다. 30분동안 60 ℃에서 교반 후 상온으로 식힌다. 10 % HCl에 포화된 SnCl2 용액 (200 mL)에 넣어 60 ℃에서 15분간 교반한다. MC로 추출한후 MgSO4로 수분을 제거한 후 회전증발기로 용매를 제거한다. Hexane을 전개용매로 사용하여 column chromatography로 분리한다.
Yield: 0.46 g (41 %)
m.p: 168 ℃
1H-NMR (300 MHz, CDCl3, ppm): 8.94 (d, 1H), 8.82 (d, 1H), 7.69 (m, 1H), 1.38-1.23 (m, 21H)
[제조예 3] 2,2'-Bithiophene 의 제조
Figure 112007024864713-pat00016
500 mL 3-neck round flask에 9.7 g의 magnesium을 넣고 flask를 건조시킨다. 5 mL의 ether을 넣고 약간 가열한 후 60 g의 2-bromothiophene과 ether (300 mL)를 천천히 적하시킨다. Grignard reagent를 50 mL의 ether와 2-bromothiophene, Ni(dppp)Cl2가 혼합된 용액속에 천천히 적하시킨다. 20시간이 지난 후 2N-HCl 에 2시간 교반시킨다. Ether로 추출한 후 MgSO4로 수분을 제거한 후 회전증발기로 용매를 제거한 후 vacuum distillation으로 분리한다.
Yield: 44 g (88 %)
m.p: 32-33 ℃
1H-NMR (300 MHz, CDCl3, ppm): 7.12-7.24 (dd, 4H), 7.04 (t, 2H)
[제조예 4] 2-([2,2']Bithiophenyl-5-yl)-4,4,5,5-tetramethyl-1,3,2 dioxaborolane의 제조
Figure 112007024864713-pat00017
500 mL 3-neck round flask에 THF (300 mL)와 30 g의 제조예 3에서 제조된 2,2'-Bithiophene (0.12 mol)을 넣고 액체질소로 -78 ℃로 냉각한다. 36.03 g의 n-BuLi(0.13 mol)을 천천히 적하시킨다. 1시간 상온에서 교반후 -78 ℃에서 22.3 g의 2-Isopropoxy-4,4,5,5-tetramethyl-[1,3,2] dioxaborolane을 천천히 적하시킨다. 12시간 후 물어 부어 반응을 종결시킨다. Ether로 추출한 후 MgSO4로 수분을 제거한 후 회전증발기로 용매를 제거한다. Hexane : EA (10 : 1) 용액을 사용하여 column chromatography로 분리한다.
Yield: 18 g (52 %)
1H-NMR (300 MHz, CDCl3, ppm): 7.18 (d, 1H), 7.02 (m, 4H), 1.31 (m, 12H)
[제조예 5] 2-Anthracene-2-yl-4,4,5,5-tetramethyl-1,3,2 dioxaborolane의 제조
Figure 112007024864713-pat00018
500 mL 3-neck round flask에 THF (300 mL)와 10 g의 2-bromoanthracene (38.9 mmol)을 넣고 액체질소로 -78 ℃로 냉각한다. 11.86 g의 n-BuLi(42.8 mmol)을 천천히 적하시킨다. 1시간 상온에서 교반후 -78 ℃에서 7.96 g의 2-Isopropoxy-4,4,5,5-tetramethyl-[1,3,2] dioxaborolane을 천천히 적하시킨다. 12 시간 후 물어 부어 반응을 종결시킨다. Ether로 추출한 후 MgSO4로 수분을 제거한 후 회전증발기로 용매를 제거한다. Hexane : EA (5 : 1) 용액을 사용하여 column chromatography로 분리한다.
Yield: 3.42 g (29 %)
m.p: 71 ℃
1H-NMR (300 MHz, CDCl3, ppm): 8.32 (s, 2H), 7.91 (d, 4H), 7.32 (m, 3H), 1.29 (m, 12H)
[제조예 6] 2-Naphthalene-2-yl-4,4,5,5-tetramethyl-1,3,2 dioxaborolane의 제조
Figure 112007024864713-pat00019
500 mL 3-neck round flask에 THF (300 mL)와 10 g의 2-bromonaphthalene (48.3 mmol)을 넣고 액체질소로 -78 ℃로 냉각한다. 14.73 g의 n-BuLi(53.1 mmol)을 천천히 적하시킨다. 1시간 상온에서 교반후 -78 ℃에서 9.87 g의 2-Isopropoxy-4,4,5,5-tetramethyl-[1,3,2] dioxaborolane을 천천히 적하시킨다. 12시간 후 물어 부어 반응을 종결시킨다. Ether로 추출한 후 MgSO4로 수분을 제거한 후 회전증발기로 용매를 제거한다. Hexane : EA (5 : 1) 용액을 사용하여 column chromatography로 분리한다.
Yield: 4.05 g (41 %)
mp: 93 ℃
1H-NMR (300 MHz, CDCl3, ppm): 7.81(d, 4H), 7.29 (t, 3H), 1.26 (m, 12H)
[제조예 7] 2,6-Di(bithiophenyl)-9,10-bis(triisopropyl silyl)acetyl anthracene 의 제조
Figure 112007024864713-pat00020
100 mL 2-neck round flask에 1 g (1.43 mmol)의 제조예 2에서 제조된 2,6-Dibromo-9,10-bis(triisopropyl silyl)acetyl anthracene와 1.04 g (3.57 mmol)의 제조예 4에서 제조된 2-([2,2']Bithiophenyl-5-yl)-4,4,5,5-tetramethyl-1,3,2 dioxaborolane, 5 mL의 THF와 30 mL의 toluene, 50 mL의 2 M-K2CO3를 넣고 질소로 bubbling한다. 질소기류 하에서 0.1 g의 Pd(PPh3)4 촉매를 넣어준 다음, 90 ℃에서 24 시간 동안 반응시킨다. 2N-HCl에 부어 반응을 종결한 후 생성된 고체를 필터한다. Methanol과 toluene로 soxlet을 하여 CHCl3에 재결정 한다.
Yield: 1.23 g (83 %)
mp: 289 ℃
1H-NMR (300 MHz, CDCl3, ppm): 8.85 (s, 1H), 8.63 (d, 1H), 7.92 (d, 1H), 7.47 (d, 1H), 7.29-7.26 (m, 2H), 7.10 (m, 1H), 1.41-1.28 (m, 21H)
[제조예 8] 2,6-Di(2-naphthyl)-9,10-bis(triisopropyl silyl)acetyl anthracene의 제조
Figure 112007024864713-pat00021
100 mL 2-neck round flask에 1 g (1.43 mmol)의 제조예 2에서 제조된 2,6-Dibromo-9,10-bis(triisopropyl silyl)acetyl anthracene와 0.90 g (3.57 mmol)의 제조예 5에서 제조된 2-Anthracene-2-yl-4,4,5,5-tetramethyl-1,3,2 dioxaborolane, 5 mL의 THF와 30 mL의 toluene, 50 mL의 2 M-K2CO3를 넣고 질소로 bubbling한다. 질소기류 하에서 0.1 g의 Pd(PPh3)4 촉매를 넣어준 다음, 90 ℃에서 24 시간 동안 반응시킨다. 2N-HCl에 부어 반응을 종결한 후 생성된 고체를 필터한다. Methanol과 toluene로 soxlet을 하여 CHCl3에 재결정 한다.
Yield: 0.97 g (86 %)
1H-NMR (300 MHz, CDCl3, ppm): 8.93 (s, 1H), 8.67 (d, 1H), 8.21 (d, 1H), 7.81-7.98 (m, 5H), 7.41-7.50 (m, 2H), 1.38-1.10 (m, 21H)
[제조예 9] 2,6-Di(2-anthracenyl)-9,10-bis(triisopropyl silyl)acetyl anthracene의 제조
Figure 112007024864713-pat00022
100 mL 2-neck round flask에 1 g (1.43 mmol)의 제조예 2에서 제조된 2,6-Dibromo-9,10-bis(triisopropyl silyl)acetyl anthracene와 1.08 g (3.57 mmol)의 제조예 6에서 제조된 2-Naphthalene-2-yl-4,4,5,5-tetramethyl-1,3,2 dioxaborolane, 5 mL의 THF와 30 mL의 toluene, 50 mL의 2 M-K2CO3를 넣고 질소로 bubbling한다. 질소기류 하에서 0.1 g의 Pd(PPh3)4 촉매를 넣어준 다음, 90 ℃에서 24 시간 동안 반응시킨다. 2N-HCl에 부어 반응을 종결한 후 생성된 고체를 필터한다. Methanol과 toluene로 soxlet을 하여 CHCl3에 재결정 한다.
Yield: 1.01 g (80 %)
1H-NMR (300 MHz, CDCl3, ppm): 9.14 (s, 1H) 8.92 (s, 1H), 8.81 (d, 1H), 8.58-8.45 (m, 3H), 8.19-8.06 (m, 4H), 7.67-7.50 (m, 2H), 1.36-1.27 (m, 21H)
[제조예10] 2,6-Distyryl-9,10-bis-[(triisopropylsilanyl)-ethynyl]-anthracene의 제조
Figure 112007024864713-pat00023
100 mL 2-neck round flask에 4 g (5.72 mmol)의 제조예 2에서 제조된 2,6-Dibromo-9,10-bis(triisopropyl silyl)acetyl anthracene와 3.5 g (35.7 mmol)의 stylene, 20 mL의 THF와 40 mL의 trietylamine, 0.08 g의 tri-o-tilylphospine, 0.16 g의 Pd(OAc)2를 넣고 교반시킨다. 70 ℃에서 6 시간 동안 반응시킨다. 2N-HCl에 부어 반응을 종결한 후 dichloromethan으로 추출한 후 MgSO4로 수분을 제거한 후 회전증발기로 용매를 제거한다. Hexane : MC (10 : 1) 용액을 사용하여 column chromatography로 분리한다.
Yield: 3.1 g (73 %)
1H-NMR (300 MHz, CDCl3, ppm): 8.69 (s, 1H), 8.60 (d, 1H), 7.85 (d, 1H), 7.60 (d, 2H), 7.43 (t, 2H), 7.34 (t, 3H), 1.34-1.28 (m, 21H)
[제조예 11] 2,6-Bis-phenylethynyl-9,10-bis-[(triisopropylsilanyl)- ethynyl]anthracene의 제조
Figure 112007024864713-pat00024
100 mL 2-neck round flask에 4 g (5.72 mmol)의 제조예 2에서 제조된 2,6-Dibromo-9,10-bis(triisopropyl silyl)acetyl anthracene와 4.6 g (45.7 mmol)의 phenylactylene, 20 mL의 toluene와 40 mL의 트리에틸아민, 0.2 g의 카파아이오다이드, 0.24 g의 Pd(pph3)2Cl2를 넣고 교반시킨다. 100 ℃에서 24 시간 동안 반응시킨다. 2N-HCl에 부어 반응을 종결한 후 클로로포름으로 추출한 후 MgSO4로 수분을 제거한 후 회전증발기로 용매를 제거한다. Hexane : MC (8 : 1) 용액을 사용하여 column chromatography로 분리한다.
Yield: 2.8 g (66 %)
1H-NMR (300 MHz, CDCl3, ppm): 8.88 (s, 1H) 8.59 (d, 1H), 7.71 (d, 1H), 7.61 (d, 2H), 7.40 (t, 3H), 1.36-1.27 (m, 21H)
[실시예 1] 올리고안트라센 유도체를 사용한 유기박막트랜지스터의 제작
세정된 유리기판(11)에 게이트 전극(16)으로 사용되는 크롬을 스퍼터링법으로 1000Å 증착한 후 게이트 절연층(12)으로 사용되는 SiO2를 CVD법으로 1000Å 증착하였다. 그 위에 소스-드레인 전극(14 및 15)으로 사용되는 ITO를 스퍼터링버으로 1200 Å 증착하였다. 기판은 유기반도체재료를 증착하기 전 이소프로필알콜을 이용해서 10분간 세척하여 건조하고 사용하였다. 시료는 헥산에 10 mM 농도로 희석시킨 옥타데실트리클로로실란 용액에 30초간 담구었다가 아세톤으로 세척 후 건조시킨 다음, 상기 제조예 7에서 제조된 올리고안트라센유도체(화학식 2)를 용해시켜 700 Å 두께로 스핀코팅하여 바텀-컨택트 방식의 OTFT소자를 제작하였다
전하이동도는 상기 전류전달곡선을 사용하여 하기의 포화영역(saturation region)의 전류식으로부터 계산하였다.
즉, 전하이동도는 하기 포화영역(saturation region) 전류식으로부터 (ISD)1/2 과 VG를 변수로 한 그래프를 얻고 그 기울기로부터 구하였다.
Figure 112007024864713-pat00025
Figure 112007024864713-pat00026
Figure 112007024864713-pat00027
Figure 112007024864713-pat00028
상기 식에서, ISD는 소스-드레인 전류이고, u 또는 uFET는 전하 이동이이며, C0는 산화막 정전용략이고, W는 채널 폭이며, L은 채널 길이이고, VG는 게이트 전압이며, VT는 문턱전압이다.
차단 누설전류(Ioff)는 오프 상태일 때 흐르는 전류로서, 전류비에서 오프 상태에서 최소전류로 구하였다.
본 발명의 올리고안트라센 유도체는 OTFT에 적용 시켰을 경우 전하이동도가 2.3 x 10-2 cm2/Vs의 높은 전하이동도를 나타나는 것으로 측정되었다.
이상에서 구체적인 실시예를 들어 본 발명을 상세하게 설명하였으나 본 발명이 속하는 기술 분야의 당업자에 의해 많은 변형이 가능함은 자명할 것이다.
이와 같이 본 발명의 유기 반도체 화합물은 유기박막트랜지스터에서 활성층(active layer)으로 사용될 때, 진공증착공정(vacuum deposition precess)에 의해 박막을 형성과 상온 습식공정(wet process)에 의해 코팅이 가능하며, 높은 전하이동도와 낮은 차단누설전류를 동시에 만족하는 유기박막 트랜지스터를 제조할 수 있는 장점이 있으며, 우수한 액정성으로 인하여 분자간 배열이 용이하게 되어 뛰어난 결정성을 가지게 되며, 본 발명에 따른 유기반도체 화합물을 적용하여 제조되는 유기박막트랜지스터는 다양한 치환체 및 치환체 그룹의 도입에 의한 분자내 혹은 분자간 전하의 이동을 용이하게 할 수 있음은 물론이고, 우수한 결정성 및 강한 파이-스태킹으로 인해 정공 및 전자의 이동도가 개선됨은 물론 우수한 점멸비를 가진다.

Claims (12)

  1. 하기 화학식 1로 표시되는 유기반도체 화합물.
    [화학식 1]
    Figure 112008053780757-pat00029
    상기 화학식 1에서, A1 A2는 Si 이며; R1 및 R3 는 수소이고; R2 및 R4는 독립적으로 선형, 분지형 또는 환형 (C2-C40)알케닐기, 선형, 분지형 또는 환형(C3-C40 )알키닐기, 및 (C6-C40)아릴기로부터 선택되며, 상기 R2 및 R4의 알케닐, 알키닐기는 (C6-C30)아릴로 더 치환될 수 있고;
    R5, R6, R7, R8, R9와 R10은 독립적으로 선형, 분지형 또는 환형 (C1-C30)알킬기로부터 선택된다.
  2. 제 1 항에 있어서,
    R2 및 R4의 아릴은 하기 구조의 치환체로부터 선택되는 것을 특징으로 하는 유기반도체 화합물.
    Figure 112008053780757-pat00041
    상기 R11 및 R12는 독립적으로 수소, (C1-C30)알킬기, (C6-C30 )아릴기, (C1-C30)알콕시(C6-C30)아릴기로 이루어진 군으로부터 선택되며, 상기 R11 및 R12의 알킬과 아릴은 (C1-C30)알콕시, 할로겐으로부터 선택된 하나 이상의 치환기로 더 치환될 수 있으며, 치환체가 결합되는 결합위치는 상기 치환체 고리의 탄소로부터 선택된다.
  3. 제 1 항에 있어서,
    R5, R6, R7, R8, R9와 R 10은 독립적으로 (C1-C10)알킬기로부터 선택되는 것을 특징으로 하는 유기반도체 화합물.
  4. 제 2 항 또는 제 3 항에 있어서,
    상기 화학식 1의 화합물은 하기 화학식 3 내지 화학식 6의 화합물로부터 선택되는 것을 특징으로 하는 유기반도체 화합물.
    [화학식 3]
    Figure 112008053780757-pat00042
    [화학식 4]
    Figure 112008053780757-pat00043
    [화학식 5]
    Figure 112008053780757-pat00044
    [화학식 6]
    Figure 112008053780757-pat00045
  5. 제 1 전극;
    제 2 전극;
    상기 제 1 전극과 제 2 전극 사이에 상기 제 1 항에 따른 화학식 1의 유기반도체 화합물; 을 포함하는 것을 특징으로 하는 유기박막트랜지스터.
  6. 제 5 항에 있어서,
    상기 유기반도체 화합물이 진공 증착법, 스크린 인쇄법, 프린팅법, 스핀코팅법, 딥핑법 또는 잉크분사법을 통하여 박막으로 형성되는 것을 특징으로 하는 유기박막트랜지스터.
  7. 기판(11), 게이트 전극(16), 게이트 절연층(12), 유기 활성층(13), 및 소스/드레인 전극(14 및 15)을 포함하여 형성된 유기박막 트랜지스터에 있어서,
    상기 유기 활성층이 상기 제 1항에 따른 화학식 1의 유기반도체 화합물로 형성된 것을 특징으로 하는 유기박막트랜지스터.
  8. 제 7 항에 있어서,
    상기 유기박막트랜지스터의 구조가 탑-컨택트 또는 바텀-컨택트를 특징으로 하는 유기박막트랜지스터.
  9. 제 7 항에 있어서,
    상기 게이트 전극(16) 및 소스-드레인 전극(14 및 15)이 금(Au), 은(Ag), 알 루미늄(Al), 니켈(Ni), 크롬(Cr) 및 인듐틴산화물(ITO)로 이루어진 군으로부터 선택된 물질로 형성되는 것을 특징으로 하는 유기박막트랜지스터.
  10. 제 7 항에 있어서,
    상기 유기 활성층(13)이 진공 증착법, 스크린 인쇄법, 프린팅법, 스핀코팅법, 딥핑법 또는 잉크분사법을 통하여 박막으로 형성되는 것을 특징으로 하는 유기박막트랜지스터.
  11. 제 7 항에 있어서,
    상기 기판(11)이 유리, 폴리에틸렌나프탈레이트(Polyethylenenaphthalate:PEN), 폴리에틸렌테레프탈레이트(Polyethylterephthalate:PET), 폴리카보네이트(Polycarbonate:PC), 폴리비닐알콜(Polyvinylalcohol:PVP), 폴리아크릴레이트(Polyacrylate), 폴리이미드(Polyimide), 폴리노르보넨(Polynorbornene) 및 폴리에테르설폰(Polyethersulfone: PES)로 이루어진 군으로부터 선택된 물질로 형성되는 것을 특징으로 하는 유기박막트랜지스터.
  12. 제 7 항에 있어서,
    상기 게이트 절연층 (12)은 Ba0.33Sr0.66TiO3(BST), Al2O3, Ta2O5, La2O5, Y2O3 및 TiO2로 이루어진 군으로부터 선택된 강유전성 절연체, PdZr0.33Ti0.66O3(PZT), Bi4Ti3O12, BaMgF4, SrBi2(TaNb)2O9, Ba(ZrTi)O3(BZT), BaTiO3, SrTiO3, Bi4Ti3O12, SiO2, SiNx 및 AlON로 이루어진 군으로부터 선택된 무기 절연체, 또는 폴리이미드(polyimide), BCB(benzocyclobutene), 파릴렌(parylene), 폴리아크릴레이트(polyacrylate), 폴리비닐알콜(poluvinylalcohol) 및 폴리비닐페놀(polyvinylphenol) 로부터 선택된 것을 특징으로 하는 유기박막트랜지스터.
KR1020070031253A 2007-03-30 2007-03-30 아세틸렌기가 치환된 안트라센 구조의 유기반도체 화합물및 이를 이용한 유기박막트랜지스터 KR100877177B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020070031253A KR100877177B1 (ko) 2007-03-30 2007-03-30 아세틸렌기가 치환된 안트라센 구조의 유기반도체 화합물및 이를 이용한 유기박막트랜지스터
PCT/KR2007/003326 WO2008120839A1 (en) 2007-03-30 2007-07-09 Novel organic semiconductor compound, and organic thin film transistor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070031253A KR100877177B1 (ko) 2007-03-30 2007-03-30 아세틸렌기가 치환된 안트라센 구조의 유기반도체 화합물및 이를 이용한 유기박막트랜지스터

Publications (2)

Publication Number Publication Date
KR20080088699A KR20080088699A (ko) 2008-10-06
KR100877177B1 true KR100877177B1 (ko) 2009-01-09

Family

ID=40150693

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070031253A KR100877177B1 (ko) 2007-03-30 2007-03-30 아세틸렌기가 치환된 안트라센 구조의 유기반도체 화합물및 이를 이용한 유기박막트랜지스터

Country Status (1)

Country Link
KR (1) KR100877177B1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340750B1 (en) 1998-12-18 2002-01-22 The Texas A&M University System Through bond energy transfer in fluorescent dyes for labelling biological molecules
US6395907B1 (en) 1999-11-18 2002-05-28 Virginia Commonwealth University Preparation of polyaromatic-ethynyl thermal setting agents
JP2005120296A (ja) 2003-10-20 2005-05-12 Toray Ind Inc 発光素子材料およびこれを用いた発光素子
US20060131570A1 (en) 2004-11-02 2006-06-22 Hong Meng Substituted anthracenes and electronic devices containing the substituted anthracenes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340750B1 (en) 1998-12-18 2002-01-22 The Texas A&M University System Through bond energy transfer in fluorescent dyes for labelling biological molecules
US6395907B1 (en) 1999-11-18 2002-05-28 Virginia Commonwealth University Preparation of polyaromatic-ethynyl thermal setting agents
JP2005120296A (ja) 2003-10-20 2005-05-12 Toray Ind Inc 発光素子材料およびこれを用いた発光素子
US20060131570A1 (en) 2004-11-02 2006-06-22 Hong Meng Substituted anthracenes and electronic devices containing the substituted anthracenes

Also Published As

Publication number Publication date
KR20080088699A (ko) 2008-10-06

Similar Documents

Publication Publication Date Title
KR101591101B1 (ko) 실릴에티닐화 헤테로아센 및 이로 제조된 전자 장치
US7385221B1 (en) Silylethynylated heteroacenes and electronic devices made therewith
KR101224708B1 (ko) (올리고티오펜-아릴렌) 유도체 및 이를 이용한유기박막트랜지스터
US7731796B2 (en) Nitrogen semiconductor compound and device fabricated using the same
WO2013089444A2 (ko) 신규한 다이케토피롤로피롤 중합체 및 이를 이용한 유기 전자 소자
JP2008537330A (ja) 薄膜トランジスタのための半導体材料
Kawabata et al. Synthesis of soluble dinaphtho [2, 3-b: 2′, 3′-f] thieno [3, 2-b] thiophene (DNTT) derivatives: One-step functionalization of 2-bromo-DNTT
JP5367953B2 (ja) ポリ(アルキニルチオフェン)類およびそれから作製された電子デバイス
KR101151082B1 (ko) 스타형 (올리고티오펜-아릴렌) 유도체 및 이를 이용한유기박막 트랜지스터
EP2474551B1 (en) Organic semiconductor compound, and transistor and electronic device including the same
WO2014181910A1 (ko) 다이케토피롤로피롤 중합체 및 이를 함유하는 유기 전자 소자
WO2008120839A1 (en) Novel organic semiconductor compound, and organic thin film transistor using the same
KR101139055B1 (ko) 신규한 방향족 엔다이인 유도체, 이를 이용한 유기 반도체및 전자소자
KR100877177B1 (ko) 아세틸렌기가 치환된 안트라센 구조의 유기반도체 화합물및 이를 이용한 유기박막트랜지스터
JP4891618B2 (ja) チオフェン−チアゾール誘導体およびこれらを用いた有機薄膜トランジスタ
KR101072477B1 (ko) 고분자 곁사슬에 알킬티오펜 기가 치환된 유기 반도체 화합물 및 이를 이용한 유기 박막 트랜지스터
KR100865703B1 (ko) 아릴아세틸렌 구조의 유기반도체 화합물 및 이를 이용한유기박막트랜지스터
KR100901856B1 (ko) 전자주게 치환기를 갖는 나프탈렌으로 말단 기능화된새로운 올리고머 반도체 화합물과 이를 이용한유기박막트랜지스터
KR101736920B1 (ko) 아릴기가 치환된 안트라센 화합물, 그 제조 방법 및 이를 이용한 유기 박막 트랜지스터
KR101238183B1 (ko) 알킬티오펜을 포함하는 교대 공중합체와 이를 이용한 유기 박막 트랜지스터
KR100901885B1 (ko) 전자주게 치환기를 갖는 나프탈렌으로 말단 기능화된새로운 올리고머 반도체 화합물과 이를 이용한유기박막트랜지스터
KR101600031B1 (ko) 비대칭 다이케토피롤로피롤 중합체 및 이를 함유하는 유기 전자 소자
WO2012091233A1 (ko) 신규한 유기 반도체 화합물 및 이를 구동층으로 채용하고 있는 유기 박막 트렌지스터
US20120168729A1 (en) Organic Semiconductor Compound, And Transistor And Electronic Device Including The Same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121203

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131001

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140929

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee