KR100876541B1 - PDMS Mixed Membrane Containing Porous Aluminum Silicate Nanoparticles - Google Patents

PDMS Mixed Membrane Containing Porous Aluminum Silicate Nanoparticles Download PDF

Info

Publication number
KR100876541B1
KR100876541B1 KR1020070025878A KR20070025878A KR100876541B1 KR 100876541 B1 KR100876541 B1 KR 100876541B1 KR 1020070025878 A KR1020070025878 A KR 1020070025878A KR 20070025878 A KR20070025878 A KR 20070025878A KR 100876541 B1 KR100876541 B1 KR 100876541B1
Authority
KR
South Korea
Prior art keywords
pdms
aluminum silicate
porous aluminum
nanoparticles
porous
Prior art date
Application number
KR1020070025878A
Other languages
Korean (ko)
Other versions
KR20080084324A (en
Inventor
정욱진
정범석
문형민
김구한
한만재
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Priority to KR1020070025878A priority Critical patent/KR100876541B1/en
Publication of KR20080084324A publication Critical patent/KR20080084324A/en
Application granted granted Critical
Publication of KR100876541B1 publication Critical patent/KR100876541B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • B01D71/701Polydimethylsiloxane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • B01D69/14111Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix with nanoscale dispersed material, e.g. nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/027Silicium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/216Surfactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/36Introduction of specific chemical groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 나노 다공성 무기물질을 포함하는 고분자분리막에 관한 것이다. The present invention relates to a polymer separation membrane comprising a nano-porous inorganic material.

고분자매트릭스로서 PDMS(Polydimethylsiloxane)를 사용하고, 다공성 나노크기 무기물질로는 다공성 알루미늄실리케이트 나노입자를 사용하는 것을 특징으로 하는 다공성 알루미늄실리케이트 나노입자을 함유하는 PDMS 혼합막을 제공한다. 본 발명의 PDMS혼합막은 순수한 PDMS 혼합막에 비하여 산소 및 질소의 투과도와, 산소/질소의 선택도에서 탁월한 효과를 나타내고 있어, 기체분리에 유용하게 사용될 수 있다.The present invention provides a PDMS mixed membrane containing porous aluminum silicate nanoparticles, wherein a polydimethylsiloxane (PDMS) is used as a polymer matrix, and porous aluminum silicate nanoparticles are used as a porous nano-size inorganic material. The PDMS mixed membrane of the present invention exhibits excellent effects in the permeability of oxygen and nitrogen and the selectivity of oxygen / nitrogen compared to the pure PDMS mixed membrane, and can be usefully used for gas separation.

Description

다공성 알루미늄실리케이트 나노입자를 함유하는 PDMS 혼합막 {Mixed matrix membranes using hollow aluminum silicate nanoparticles }Mixed matrix membranes using hollow aluminum silicate nanoparticles}

도 1은 다공성 알루미늄 실리케이트 나노입자(Al-Si HNPs)의 단면도이다.1 is a cross-sectional view of porous aluminum silicate nanoparticles (Al-Si HNPs).

도 2는 0, 2, 4, 6wt%의 다공성 알루미늄 실리케이트 나노입자(Al-Si HNPs)가 포함된 혼합막의 O2와 N2 가스 투과도(gas permeability)를 나타내는 결과그래프이다.FIG. 2 is a graph showing O 2 and N 2 gas permeability of a mixed membrane including 0, 2, 4, and 6 wt% porous aluminum silicate nanoparticles (Al-Si HNPs).

도 3은 0, 2, 4, 6wt%의 다공성 알루미늄 실리케이트 나노입자(Al-Si HNPs)가 포함된 혼합막의 CO2와 CH4 가스 투과도를 나타내는 결과 그래프이다.3 is a graph showing results of CO 2 and CH 4 gas permeability of a mixed membrane including 0, 2, 4, and 6 wt% of porous aluminum silicate nanoparticles (Al-Si HNPs).

도 4는 0, 2, 4, 6wt%의 다공성 알루미늄 실리케이트 나노입자(Al-Si HNPs)가 포함된 혼합막의 O2 /N2 및 CO2 /CH4 의 선택도(selectivity)를 나타내는 결과 그래프이다4 is a graph showing results of selectivity of O 2 / N 2 and CO 2 / CH 4 of a mixed membrane including 0, 2, 4, and 6 wt% porous aluminum silicate nanoparticles (Al-Si HNPs).

본 발명은 다공성 알루미늄실리케이트 나노입자를 함유하는 고분자분리막에 관한 것으로서, 구체적으로는 고분자 매트릭스 물질로서 폴리디메틸실록산(polydimethylsiloxane, 약칭 PDMS, 이하 PDMS라 칭함)과 다공성 나노 활성입자로서 알루미늄실리케이트(Al-Si HNPs라 약칭)를 함유하는 고분자분리막에 관한 것이다.The present invention relates to a polymer separation membrane containing porous aluminum silicate nanoparticles, specifically, polydimethylsiloxane (hereinafter referred to as PDMS) as a polymer matrix material and aluminum silicate (Al-Si) as porous nano active particles. It relates to a polymer separation membrane containing HNPs.

무기입자가 고분자 매트릭스에 분산되어 있는 유무기 고분자 나노복합체는 탁월한 전도성, 강인도, 투명성, 촉매작용을 나타내므로 차세대 복합재료로 주목받고 있다. 특히, 분자분리, 환경치유, 바닷물담수화 등의 분야에서 다양하게 활용될 수 있다. 이런 용도로 현재 선택투과분리막(selective permeation membrane)이 사용되고 있으나, 최적화된 선택성과 투과성을 동시에 만족하는 성능을 지닌 분리막을 제조하는 것이 문제점으로 남아있다. 마이크로미터 크기의 기공을 갖는 제올라이트 입자를 유기 고분자 매트릭스에 첨가하여 고분자의 가공성과 제올라이트입자의 선택투과 특성을 살리는 방법이 제안된 바 있으나, 고분자/입자 계면접착력이 나쁘고, 입자 분산이 용이하지 않기 때문에 상업적인 성공을 거두지 못하였다. Organic-inorganic polymer nanocomposites in which inorganic particles are dispersed in a polymer matrix are attracting attention as next-generation composite materials because they exhibit excellent conductivity, toughness, transparency, and catalysis. In particular, it can be used in various fields such as molecular separation, environmental healing, seawater desalination. Selective permeation membranes (selective permeation membrane) are currently used for this purpose, but it remains a problem to manufacture a separator having a performance that satisfies the optimized selectivity and permeability at the same time. A method of adding a micrometer-sized pore of zeolite particles to an organic polymer matrix to improve the processability of the polymer and the selective permeation characteristics of the zeolite particles has been proposed, but the polymer / particle interfacial adhesion is poor and particle dispersion is not easy. There was no commercial success.

한편, 본 발명에서는 무기입자가 고분자 매트릭스에 분산되어 있는 유무기 고분자 나노복합체 분리막으로, 고분자 매트릭스로서 PDMS를 사용하고, 다공성 무기 나노입자로서 알루미늄실리케이트입자를 사용한다.On the other hand, in the present invention, inorganic particles are dispersed in the polymer matrix, the organic-inorganic polymer nanocomposite membrane, PDMS is used as the polymer matrix, and aluminum silicate particles are used as the porous inorganic nanoparticles.

PDMS는 고분자 쇄간 인력이 작은 대표적인 고분자로서 높은 기체 투과도를 나타내고 있다. PDMS는 최근 휘발성유기화합물의 분리 목적으로 사용되고 있다. 예를 들어, 막에 의한 증기투과(vapor permeation, VP)로서, 기체와 증기의 혼합물 상태로 기체보다는 투과도가 상대적으로 큰 증기가 막을 통과하여 선택적으로 투과함으로써 분리가 일어나게 되므로 휘발성유기화합물의 분리에 매우 유리하다. PDMS has a high gas permeability as a representative polymer with a small polymer pull force. PDMS has recently been used for the purpose of separating volatile organic compounds. For example, as vapor permeation (VP) by a membrane, a separation of volatile organic compounds is caused by the selective permeation of vapors having a relatively higher permeability than gas in a mixture of gas and steam, through the membrane. Very advantageous.

이러한 PDMS 고분자 분리막의 선택도를 높이거나, 물리적인 강도를 높이기 위하여 다양한 시도가 이루어져 왔다. 예를 들어, PDMS에 4,4'-diphenylmethane diisocyante(MDI)를 하드 세그먼트로 하고, PDMS를 소프트 세그먼트로 하여 PU/PDMS를 합성하거나, 아크릴변성 Oligo-PDMS가 부가된 Oligo-PDMS막들이 있다.Various attempts have been made to increase the selectivity of the PDMS polymer membrane or to increase physical strength. For example, 4 / 4'-diphenylmethane diisocyante (MDI) is used as a hard segment in PDMS, and PDMS is used as a soft segment to synthesize PU / PDMS, or oligo-PDMS membranes to which acrylic modified Oligo-PDMS is added.

또한, 나노입자의 활성을 이용한 고분자분리막에 대한 연구도 활발히 이루어지고 있다. 예를 들어, 은나노입자를 첨가한 고분자분리막을 통하여 촉진수송이 가능하도록 하는 기술에 대하여도 개시된 바 있다.In addition, research on polymer membranes using the activity of nanoparticles has been actively conducted. For example, a technique for enabling accelerated transport through a polymer separation membrane to which silver nanoparticles are added has also been disclosed.

본 발명은 PDMS 고분자 분리막에 알루미늄실리케이트 다공성 나노입자를 첨가하여 분리막으로 제조함으로써, PDMS 고분자분리막의 투과도 및 선택도를 향상시키는 것을 목적으로 한다.The present invention aims to improve the permeability and selectivity of the PDMS polymer membrane by adding the aluminum silicate porous nanoparticles to the PDMS polymer membrane to prepare the membrane.

본 발명은 상기 목적을 달성하기 위하여, 고분자재료로서 PDMS (polydimethylsiloxane)를 사용하고, 다공성 나노입자로서 알루미늄실리케이트를 첨가하여 제조되는 것을 특징으로 하는 고분자분리막을 제공한다.In order to achieve the above object, the present invention provides a polymer separation membrane, which is prepared by using PDMS (polydimethylsiloxane) as a polymer material and adding aluminum silicate as porous nanoparticles.

이하 본 발명에 대하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 다공성 알루미늄실리케이트 나노입자를 함유하는 고분자분리막 및 그 제조방법에 관한 것으로서, 구체적으로는 고분자 매트릭스 물질로서 폴리디메틸실록산(polydimethylsiloxane, 약칭 PDMS, 이하 PDMS라 칭함)과 다공성 나노 활성입자로서 알루미늄실리케이트(Al-Si HNPs라 약칭)를 함유하는 고분자분리막 및 그 제조방법을 제공한다.The present invention relates to a polymer separation membrane containing porous aluminum silicate nanoparticles and a method for preparing the same, specifically, polydimethylsiloxane (hereinafter referred to as PDMS) as a polymer matrix material and aluminum silicate as porous nano active particles. A polymer separation membrane containing (abbreviated as Al-Si HNPs) and a method of manufacturing the same are provided.

나노 입자 물질은 그 물리 화학적인 특성으로 인하여 다양한 산업분야에 적용하려는 시도가 이루어지고 있으며, 몇몇 분야에서는 성공적으로 사업화가 이루어지기도 하였다. 이러한 나노입자를 분리막에 이용하려는 노력이 이루어져 왔으며, 종래 토르말린 나노입자, 티타니아 나노입자 등의 나노입자를 이용한 분리막에 대하여 개시된 바 있다.Due to its physicochemical properties, nanoparticle materials have been attempted to be applied to various industrial fields, and some of them have been successfully commercialized. Efforts have been made to use such nanoparticles in a separator, and conventionally, a separator using nanoparticles such as tourmaline nanoparticles and titania nanoparticles has been disclosed.

본 발명에서는 나노입자로서 알루미늄실리케이트 다공성 나노입자를 이용함 을 특징으로 한다. 도 1과 같이, 본 발명에서 사용한 알루미늄실리케이트 다공성 나노입자의 입자크기는 3 ~ 5 nm, 기공크기는 2 ~ 5 nm이고, 속이 빈 구 형태의 구조이다. 이러한 빈 구형태의 구조로 인하여 독특한 물질 분리능력을 갖고 있다.In the present invention, the aluminum silicate porous nanoparticles are used as nanoparticles. As shown in Figure 1, the particle size of the aluminum silicate porous nanoparticles used in the present invention is 3 ~ 5 nm, the pore size is 2 ~ 5 nm, a hollow sphere structure. Due to the hollow spherical structure, it has a unique material separation ability.

본 발명에서는 다공성 나노입자인 알루미늄실리케이트 (aluminum silicate)의 표면을 계면활성제를 통해 개질하여 사용함을 특징으로 한다. 이는 알루미늄실리케이트의 표면에 친수성기를 위치하도록 하여 후술하는 고분자사슬의 말단에 비닐기 또는 초산기를 갖는 PDMS와 상분리가 되지 않고 서로 혼합이 잘되도록 하기 위해서이다. In the present invention, it is characterized in that the surface of the aluminum silicate (aluminum silicate), which is a porous nanoparticle is used by modifying it through a surfactant. This is to place a hydrophilic group on the surface of the aluminum silicate so as to be well mixed with each other without phase separation with PDMS having a vinyl group or an acetic acid group at the end of the polymer chain described later.

또한, 전술한 바와 같이 계면활성제를 통하여 개질된 알루미늄실리케이트와 상분리가 이루어지지 않고 혼합이 잘되도록 PDMS는 고분자사슬의 말단기에 비닐기 (vinyl) 혹은 초산기 (acetic acid)를 갖는 PDMS를 사용한다.  In addition, as described above, PDMS uses a PDMS having a vinyl group or an acetic acid group at the end of the polymer chain so that the phase is not easily separated from the aluminum silicate modified through the surfactant. .

본 발명에서 PDMS혼합막 제조시 사용되는 용매는 계면활성제와 PDMS가 잘 녹는 톨루엔, 헥산을 비롯한 유기용제를 사용하였다. PDMS와 알루미늄실리케이트를 분산이 잘되는 유기용제에 5 ~ 20 wt% 정도 녹인 후 증발시켜 100 ~ 150 mm의 얇은 복합막을 제조할 수 있다. 막제조는 평막으로 지지체가 없이 또는 폴리에스터 부직포를 지지체로 사용하여 제조할 수 있다. 알루미늄실리케이트는 PDMS 1 중량부에 대하여 0.1 중량부 이하로 첨가하는 것이 바람직하다. 이는 알루미늄실리케이트의 양이 0.1 중량부 이상인 경우 상분리가 일어나서 고분자분리막으로 사용할 수 없기 때문이다.In the present invention, the solvent used in the preparation of the PDMS mixed membrane used an organic solvent including toluene, hexane, which is well dissolved in surfactant and PDMS. PDMS and aluminum silicate are dissolved in 5-20 wt% of a well-dispersed organic solvent and then evaporated to produce a thin composite film of 100 to 150 mm. Membrane preparation can be made without a support as a flat film or with a polyester nonwoven fabric as a support. The aluminum silicate is preferably added at 0.1 parts by weight or less based on 1 part by weight of PDMS. This is because when the amount of aluminum silicate is 0.1 parts by weight or more, phase separation occurs and thus it cannot be used as a polymer separation membrane.

먼저, 다공성 나노입자 알루미늄실리케이트를 만들기 위하여, 알루미늄나이트레이트(Aluminum nitrate)와 소디움오르토실리케이트(sodium orthosilicate)를 강력한 교반으로 섞는다. 교반을 완벽히 한 후 현탁액 안의 소디움오르토실리케이트 형태로 된 부유물을 제거할 때까지 원심 분리한다. 침전된 것은 증류수로 다시 분산시킨다. 이후 현탁액을 100°C 오븐에 5일간 넣어둔다. 최종적으로 현탁액을 증류수로 헹군다.  First, to make porous nanoparticle aluminum silicate, aluminum nitrate and sodium orthosilicate are mixed by vigorous stirring. After complete stirring, centrifuge until the suspension in the form of sodium orthosilicate in the suspension is removed. The precipitate is dispersed again with distilled water. The suspension is then placed in an oven at 100 ° C. for 5 days. Finally the suspension is rinsed with distilled water.

상기 방법으로 제조된 다공성 나노입자 알루미늄실리케이트(이하, Al-Si HNPs라 함)를 아세톤으로 헹군 후 톨루엔에 분산시킨다. 그리고 이 용액(Al-Si HNP/toluene)에 Undecylenic acid를 첨가한 다음 소니케이터를 사용하여 Al-Si HNP를 용매 내에 잘 분산시키면서 Undecylenic acid와 잘 반응하도록 한다. 이렇게 Al-Si HNP 표면 개질을 끝마친 후 메탄올을 이용하여 정제한 후 톨루엔에 다시 분산시켜 놓아둔다. Porous nanoparticle aluminum silicates (hereinafter referred to as Al-Si HNPs) prepared by the above method are rinsed with acetone and then dispersed in toluene. Undecylenic acid is added to this solution (Al-Si HNP / toluene) and then reacted well with Undecylenic acid by dispersing Al-Si HNP in a solvent using a sonicator. After finishing the surface modification of Al-Si HNP, purified using methanol and dispersed again in toluene.

상기에 표면 개질된 Al-Si HNP는 함량을 달리하여 PDMS에 적용되며, 먼저 Al-Si HNP와의 합성을 위한 PDMS를 미리 일정한 양의 톨루엔 용액에 녹여 준비해둔다. 이후 함량별로 준비해둔 Al-Si HNPs를 PDMS 폴리머 용액에 첨가한다. 최종 용 액을 소니케이터를 이용하여 2시간 동안 섞는다. 충분히 섞은 후 용액을 테플론디쉬에 붓고 용매가 증발하도록 오븐에서 24시간 동안 실온으로 건조시킨다. 최종적으로 진공오븐을 80℃로 하여 24시간 동안 가열한다.The surface-modified Al-Si HNP is applied to PDMS by varying the content, and first, PDMS for synthesis with Al-Si HNP is prepared by dissolving in a predetermined amount of toluene solution in advance. Thereafter, the prepared Al-Si HNPs are added to the PDMS polymer solution. Mix the final solution for 2 hours using a sonicator. After mixing well, the solution is poured into Teflon dish and dried in an oven at room temperature for 24 hours to allow the solvent to evaporate. Finally, the vacuum oven was heated at 80 ° C. for 24 hours.

상기 방법으로 제조된 PDMS 혼합막에 일정한 압력에서 가스 투과도를 측정한다. 이때 O2 , N2 , CH4 , CO2 가스를 사용한다. 정상 상태일 때, 투과도 안의 가스의 흐름 속도 (gas flow rate)를 소프버블플로우미터(soap bubble flow meter)을 이용하여 측정할 수 있다. Gas permeability is measured at a constant pressure on the PDMS mixed membrane prepared by the above method. At this time, O 2 , N 2 , CH 4 , CO 2 gas is used. In steady state, the gas flow rate in the permeability can be measured using a soap bubble flow meter.

알루미늄실리케이트Aluminum silicate 제조 Produce

알루미늄나이트레이트(Aluminum nitrate)와 소디움오르토실리케이트(sodium orthosilicate)를 각각 증류수에 용해시켰다. 이때 10mM의 소디움오르토실리케이트(sodium orthosilicate)용액 590ml와 10mM의 알루미늄나이트레이트(Aluminum nitrate)용액 797ml를 사용하였다. Aluminum nitrate and sodium orthosilicate were dissolved in distilled water, respectively. At this time, 590ml of sodium orthosilicate solution of 10mM and 797ml of aluminum nitrate solution of 10mM were used.

우선, 100ml의 증류수를 유리 반응기에 첨가시켰다. 이 다음 펌프(Peristaltic pumps)를 이용하여 소디움오토실리케이트(sodium orthosilicate)와 알루미늄나이트레이트(Aluminum nitrate)를 각각 3ml/min, 4ml/min 속도로 반응기에 투입하는 동시에 이를 424rpm으로 교반시켰다. 위에서 정해진 두 용액의 양이 다 혼합된 후에도, 1시간 정도 지속적으로 교반하였다. 실리콘(silicon) / 알루미 늄(aluminum)의 농도는 0.75였고 교반 과정에서 형성된 순수 알류미늄실리케이트의 프리커서(precursors)를 원심분리기(7000rpm, 30분)를 통하여 용액에서 분리해냈다. 이 원심분리 단계를 수차례 거친 후(용액 전도도 2 μs/cm이하를 나타내었음) 프리커서(precursors)를 증류수(1500ml)에 넣고 1시간 동안 울트라소닉웨이브(ultrasonic wave)에 넣어 분산시켰다. 분산된 부유물을 숙성단계를(aged)거치기 위하여 95°C에 5일간 넣어둔 후 다시 꺼내어 원심분리를 통해 증류수에 농축된 상태의 알루미늄실리케이트를 얻는다.First, 100 ml of distilled water was added to the glass reactor. Next, sodium orthosilicate and aluminum nitrate were added to the reactor at a rate of 3 ml / min and 4 ml / min using peristaltic pumps, and then stirred at 424 rpm. After mixing the amounts of the two solutions defined above, the stirring was continued for about 1 hour. The concentration of silicon / aluminum was 0.75 and the precursors of pure aluminum silicate formed during the stirring process were separated from the solution through a centrifuge (7000 rpm, 30 minutes). After several centrifugation steps (solution conductivity of 2 μs / cm or less), the precursors were placed in distilled water (1500 ml) and dispersed in an ultrasonic wave for 1 hour. The suspended solids are placed in 95 ° C. for 5 days to undergo the aging step, and then taken out again to obtain aluminum silicate concentrated in distilled water by centrifugation.

아세톤(acetone) 300ml와 Al-Si HNPs의 농축액를 원심 분리기 병에 넣고 7000rpm으로 30분간 원심 분리하였다. 이 후 상등액을 배출하고 흰색 침전물을 다시 500ml의 아세톤에 분산시키고 울트라소닉웨이브(ultrasonic wave)에 1시간 동안 두었다. 이 과정을 반복하여 Al-Si HNPs 내부의 물을 다 제거하도록 하였다. 이후 마찬가지로 아세톤에 농축된 Al-Si HNPs의 하얀색 젤을 300ml의 톨루엔에 분산시키고 울트라소닉웨이브를 1시간 거친 후 원심분리를 거치는 방법을 반복하여 농축액 내부의 아세톤을 제거해주어 순수 톨루엔에 농축된 Al-Si HNPs 을 얻고 이를 최종 20ml의 톨루엔에 분산시켰다. 300 ml of acetone and a concentrated solution of Al-Si HNPs were placed in a centrifuge bottle and centrifuged at 7000 rpm for 30 minutes. The supernatant was then drained and the white precipitate was again dispersed in 500 ml of acetone and placed in an ultrasonic wave for 1 hour. This process was repeated to remove all the water in the Al-Si HNPs. Afterwards, the white gel of Al-Si HNPs concentrated in acetone was dispersed in 300 ml of toluene, followed by ultrasonic wave for 1 hour, followed by centrifugation to remove acetone from the concentrated solution. Si HNPs were obtained and dispersed in the final 20 ml of toluene.

계면활성제로 Al-Si HNPs 표면을 개질하기 위하여, 4mg Al-Si HNPs을 포함한 20ml의 Al-Si HNPs/톨루엔 용액에 계면활성제인 5*10-5g 의 undecylenic acid를 첨 가하였다. 그리고 이 용액을 충분히 분산시켜 주기 위하여 1시간 동안 울트라소닉웨이브를 하였다. 이후 반응되지 않고 남은 undecylenic acid나 기타 불순물을 제거하고 개질된 Al-Si HNPs 용액만 분리해내기 위해 에탄올(16ml)을 첨가한 후 원심 분리(7000rpm, 30분)시켜 개질되어진 Al-Si HNPs 용액을 얻어내었고 이를 톨루엔(16ml)에 분산시키고 분산되지 않고 가라않는 침전물을 제거하기 위해 원심 분리를 거쳐 침전물을 제거해주었다(이때 잘 분산된 상등액의 Al-Si HNPs는 침전되지 않는다). 마지막으로 다시 에탄올(12ml)을 첨가하여 개질된 Al-Si HNPs 침전물을 생기게 한 후 이를 원심 분리한 후 사용 전까지 톨루엔에 분산시켜 놓는다.To modify the surface of Al-Si HNPs with a surfactant, 5 * 10 -5 g of undecylenic acid as a surfactant was added to 20 ml of Al-Si HNPs / toluene solution containing 4 mg Al-Si HNPs. In order to sufficiently disperse the solution, ultrasonic waves were performed for 1 hour. After removing undecylenic acid or other impurities left unreacted, ethanol (16ml) was added to separate only the modified Al-Si HNPs solution, followed by centrifugation (7000rpm, 30 minutes) to remove the modified Al-Si HNPs solution. The precipitate was dispersed in toluene (16 ml) and centrifuged to remove undispersed and undissolved precipitates (the Al-Si HNPs of the well dispersed supernatant were not precipitated). Finally, ethanol (12 ml) is added again to form a modified Al-Si HNPs precipitate, which is then centrifuged and dispersed in toluene until use.

다공성 Porosity 알루미늄실리케이트Aluminum silicate 나노입자를 포함하는  Containing nanoparticles PDMSPDMS 혼합막Mixed membrane 제조 Produce

순수PDMS막으로 0wt%의 AlSi HNPs와, 본 발명의 혼합막으로서 2wt%, 4wt%, 및 6wt%의 Al-Si HNPs을 혼합한 PDMS 혼합막을 제조하였다. A PDMS mixed film was prepared by mixing 0 wt% AlSi HNPs as a pure PDMS film and 2 wt%, 4 wt%, and 6 wt% Al-Si HNPs as a mixed film of the present invention.

PDMS/톨루엔 용액을 만들기 위해 0.6g, 0.588g, 0.576g, 0.564g PDMS을 각각 20ml의 vial에 넣고 10ml의 톨루엔을 각각 넣어주고 샘플 1, 2, 3, 4로 적어 놓았다.  0g, 0.012g, 0.024g and 0.036g의 Al-Si HNPs(개질된 Al-Si HNPs를 의미함)을 포함한 10ml의 Al-Si HNPs/톨루엔 용액을 샘플 1, 2, 3, 4에 각각 넣었다. PDMS/톨루엔 용액안의 Al-Si HNPs이 완전히 분산되게 하기 위해 울트라소닉웨이브에 2시간 동안 넣어두었다. 그 후, 샘플 1, 2, 3, 4의 용액을 조심히 테플론디쉬(D=6.3cm)에 각각 붓고 24시간 동안 실온에 놔두어, 용매를 증발시킨 후, 테플론디쉬를 진공 오븐(vacuum oven)에 80°C로 24시간 방치한 후, 다공성 알루미늄실리케이트 나노입자를 0wt%, 2wt%, 4wt%, 6wt% 포함하는 PDMS 혼합막을 제조하였다..To make the PDMS / toluene solution, 0.6g, 0.588g, 0.576g, and 0.564g PDMS were put in 20ml vial, and 10ml of toluene was added and recorded as samples 1, 2, 3, and 4, respectively. 10 ml of Al-Si HNPs / toluene solution containing 0g, 0.012g, 0.024g and 0.036g Al-Si HNPs (meaning modified Al-Si HNPs) were added to Samples 1, 2, 3 and 4, respectively. In order to allow the Al-Si HNPs in the PDMS / toluene solution to be completely dispersed, they were placed in an ultrasonic wave for 2 hours. Thereafter, the solutions of Samples 1, 2, 3, and 4 were carefully poured into Teflon dish (D = 6.3 cm), respectively, and left at room temperature for 24 hours to evaporate the solvent, and then the Teflon dish was placed in a vacuum oven. After standing for 24 hours at 80 ° C., a PDMS mixed membrane containing 0 wt%, 2 wt%, 4 wt%, 6 wt% of the porous aluminum silicate nanoparticles was prepared.

가스투과도 및 가스선택도 실험 Gas Permeability and Gas Selectivity Experiment

0wt%, 2wt%, 4wt% 및 6wt%의 개질된 Al-Si HNPs을 포함한 순수 PDMS 막 및 혼합막의 순수한 가스 투과도를 측정하기위해 constant volume varying pressure apparatus를 이용하여 2bar의 압력과 298K의 온도에서 측정하였다. 이때 O2 , N2 , CH4 , CO2 가스를 사용하였고, 각 가스의 순도는 99.99%로 하였다. 또한, 실험에 사용된 각 막의 표면적은 4.19cm2였다.To measure the net gas permeability of pure PDMS membranes and mixed membranes containing 0wt%, 2wt%, 4wt% and 6wt% modified Al-Si HNPs, measured at 2bar pressure and 298K temperature using a constant volume varying pressure apparatus. It was. At this time, O 2 , N 2 , CH 4 , CO 2 gas was used, and the purity of each gas was 99.99%. In addition, the surface area of each membrane used for the experiment was 4.19 cm 2 .

상기 결과는 도2 내지 도4에 나타내었다. 도2와 같이 산소투과도의 경우 순수PDMS에 비하여 2wt%, 4wt%, 6wt%의 다공성 알루미늄실리케이트 나노입자를 첨가한 본 발명의 PDMS막 모두에서 더 높은 투과도를 나타내었으며, 특히, 2wt%의 다공성 알루미늄실리케이트 나노입자를 첨가하여 제조된 PDMS 혼합막은 순수한 PDMS막에 비하여 약 2배의 투과도를 나타냈다. 또한, 질소의 투과도 역시 순수한 PDMS막보다 높게 나타났다. 도2를 참고하면, 산소의 투과도의 증가율이 질소의 투과도 증가율에 비하여 월등히 커지므로 본 발명의 혼합막의 경우 산소/질소의 선택도가 증가함을 알 수 있다(도4 참조).The results are shown in FIGS. 2 to 4. As shown in FIG. 2, the oxygen permeability showed higher permeability in all of the PDMS membranes of the present invention to which 2 wt%, 4 wt%, and 6 wt% of porous aluminum silicate nanoparticles were added, in particular, 2 wt% of porous aluminum. PDMS mixed membrane prepared by the addition of silicate nanoparticles showed about twice the transmittance of the pure PDMS membrane. Nitrogen permeability was also higher than that of pure PDMS membrane. Referring to FIG. 2, it can be seen that the selectivity of oxygen / nitrogen is increased in the mixed membrane of the present invention because the increase rate of oxygen permeability is significantly larger than that of nitrogen increase rate (see FIG. 4).

도3은 CO2와 CH4의 투과도에 대한 결과그래프로서, CO2 및 CH4는 전반적으로 순수한 PDMS막에 비하여 투과도가 감소하는 것을 알 수 있었다.Figure 3 it was found that the transmission rate is decreased as a result of comparison graph of the permeability of CO 2 and CH 4, CO 2 and CH 4 in an overall pure PDMS membrane.

도4는 선택도에 대한 결과그래프로서, 산소/질소에 대한 선택도에 있어서, 순수한 PDMS막에 비하여 본 발명의 혼합막의 경우 월등히 증가하고 있음을 알 수 있다. 특히, 다공성 알루미늄실리케이트 나노입자의 함량이 높을수록 선택도가 증가함을 알 수 있었다.4 is a graph showing the selectivity, it can be seen that in the selectivity for oxygen / nitrogen, the mixed membrane of the present invention is significantly increased compared to the pure PDMS membrane. In particular, the higher the content of the porous aluminum silicate nanoparticles was found to increase the selectivity.

본 발명은 상기 실시예에서 상세히 설명되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.While the invention has been described in detail in the foregoing embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the spirit of the invention, and such modifications and variations belong to the appended claims.

상기에서 살펴본 바와 같이, 본 발명과 같이 다공성 알루미늄실리케이트 나노입자를 PDMS와 혼합하여 제조한 PDMS 혼합막의 경우, 순수한 PDMS에 비하여 산소/질소의 선택도에서 탁월한 효과를 나타내고 있음을 알 수 있어, 가스분리에 유용하게 사용할 수 있다. 또한, 투과도에 있어서도, 산소와 질소 모두 순수 PDMS에 비하여 높게 나타나고 있는바, 본 발명의 PDMS혼합막의 경우 투과도 및 선택도 모두 만족한 결과를 얻을 수 있어, 기체분리에 유용하게 사용될 것으로 기대된다.As described above, in the case of the PDMS mixed membrane prepared by mixing porous aluminum silicate nanoparticles with PDMS as shown in the present invention, it can be seen that it shows an excellent effect on the selectivity of oxygen / nitrogen compared to pure PDMS. This can be useful for. In addition, both oxygen and nitrogen are higher in pure permeability than pure PDMS. In the case of the PDMS mixed membrane of the present invention, both the permeability and the selectivity can be obtained, which is expected to be useful for gas separation.

Claims (5)

나노 다공성 무기물질을 포함하는 고분자분리막에 있어서,In the polymer separation membrane comprising a nano-porous inorganic material, 고분자매트릭스로서 PDMS(polydimethylsiloxane)를 사용하고, 다공성 나노크기 무기물질로서 다공성 알루미늄실리케이트 나노입자를 사용하는 것을 특징으로 하는 다공성 알루미늄실리케이트 나노입자을 함유하는 PDMS 혼합막.A PDMS mixed membrane containing porous aluminum silicate nanoparticles, using PDMS (polydimethylsiloxane) as a polymer matrix, and porous aluminum silicate nanoparticles as a porous nano-size inorganic material. 제1항에 있어서,The method of claim 1, 상기 PDMS 100 중량부에 대하여, 상기 다공성 알루미늄실리케이트 나노입자를 0.1 내지 10 중량부 사용하는 것을 특징으로 하는 다공성 알루미늄실리케이트 나노입자를 함유하는 PDMS 혼합막.PDMS mixed membrane containing porous aluminum silicate nanoparticles, characterized in that 0.1 to 10 parts by weight of the porous aluminum silicate nanoparticles, based on 100 parts by weight of the PDMS. 제1항 또는 제2항에 있어서, 상기 다공성 알루미늄실리케이트 나노입자가 계면활성제로 개질된 것을 특징으로 하는 다공성 알루미늄실리케이트 나노입자를 함유하는 PDMS 혼합막.The PDMS mixed membrane according to claim 1 or 2, wherein the porous aluminum silicate nanoparticles are modified with a surfactant. 제3항에 있어서, 상기 계면활성제가 undecylenic acid인 것을 특징으로 하는 다공성 알루미늄실리케이트 나노입자를 함유하는 PDMS 혼합막.4. The PDMS mixed membrane containing porous aluminum silicate nanoparticles according to claim 3, wherein the surfactant is undecylenic acid. 제 1 항 또는 제 2 항에 있어서, 상기 PDMS는 말단기에 관능기로 비닐기 또는 초산기가 있는 것을 특징으로 하는 다공성 알루미늄실리케이트 나노입자를 함유하는 PDMS 혼합막.The PDMS mixed membrane according to claim 1 or 2, wherein the PDMS has a vinyl group or an acetic acid group as a functional group at the terminal group.
KR1020070025878A 2007-03-16 2007-03-16 PDMS Mixed Membrane Containing Porous Aluminum Silicate Nanoparticles KR100876541B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070025878A KR100876541B1 (en) 2007-03-16 2007-03-16 PDMS Mixed Membrane Containing Porous Aluminum Silicate Nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070025878A KR100876541B1 (en) 2007-03-16 2007-03-16 PDMS Mixed Membrane Containing Porous Aluminum Silicate Nanoparticles

Publications (2)

Publication Number Publication Date
KR20080084324A KR20080084324A (en) 2008-09-19
KR100876541B1 true KR100876541B1 (en) 2008-12-31

Family

ID=40024697

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070025878A KR100876541B1 (en) 2007-03-16 2007-03-16 PDMS Mixed Membrane Containing Porous Aluminum Silicate Nanoparticles

Country Status (1)

Country Link
KR (1) KR100876541B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220057264A (en) * 2020-10-29 2022-05-09 한양대학교 산학협력단 Porous ion exchange structure and method for manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100943885B1 (en) * 2007-11-13 2010-02-24 명지대학교 산학협력단 A modified Silica/Polydimethylsiloxane Nanocomposite Membrane
KR101348107B1 (en) * 2011-06-23 2014-01-07 명지대학교 산학협력단 Hybrid organic-inorganic membrane and the fabrication method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447932B1 (en) 2001-10-19 2004-09-08 한국화학연구원 Silicone-added polyamide composite nanofiltration membrane organic separation, and method for preparing them
US20050284294A1 (en) 2004-06-24 2005-12-29 Jianzhong Lou Ultrahigh-selectivity oxygen enrichment filled elastomeric silicone polymer membrane incorporating nanofillers
KR100637416B1 (en) * 2004-10-25 2006-10-23 주식회사 에코솔루션 Hybrid membrane for separating volatile organic compounds produced by using modified silica nanoparticles and PDMS, manufacturing method and use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447932B1 (en) 2001-10-19 2004-09-08 한국화학연구원 Silicone-added polyamide composite nanofiltration membrane organic separation, and method for preparing them
US20050284294A1 (en) 2004-06-24 2005-12-29 Jianzhong Lou Ultrahigh-selectivity oxygen enrichment filled elastomeric silicone polymer membrane incorporating nanofillers
KR100637416B1 (en) * 2004-10-25 2006-10-23 주식회사 에코솔루션 Hybrid membrane for separating volatile organic compounds produced by using modified silica nanoparticles and PDMS, manufacturing method and use thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220057264A (en) * 2020-10-29 2022-05-09 한양대학교 산학협력단 Porous ion exchange structure and method for manufacturing the same
KR102481639B1 (en) 2020-10-29 2022-12-27 한양대학교 산학협력단 Porous ion exchange structure and method for manufacturing the same

Also Published As

Publication number Publication date
KR20080084324A (en) 2008-09-19

Similar Documents

Publication Publication Date Title
Elma et al. Carbon templated strategies of mesoporous silica applied for water desalination: A review
Jin et al. Development of highly-efficient ZIF-8@ PDMS/PVDF nanofibrous composite membrane for phenol removal in aqueous-aqueous membrane extractive process
Sue et al. Synthesis of hierarchical micro/mesoporous structures via solid–aqueous interface growth: zeolitic imidazolate framework-8 on siliceous mesocellular foams for enhanced pervaporation of water/ethanol mixtures
Tingaut et al. Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials
Yi et al. Interconnectivity of macroporous hydrogels prepared via graphene oxide-stabilized pickering high internal phase emulsions
Karimi et al. Periodic mesoporous organosilicas (PMOs): From synthesis strategies to applications
Gomes et al. Membranes for gas separation based on poly (1-trimethylsilyl-1-propyne)–silica nanocomposites
Guo et al. PVA–GPTMS/TEOS hybrid pervaporation membrane for dehydration of ethylene glycol aqueous solution
CN109012199B (en) Anti-wetting super-hydrophobic membrane and preparation method thereof
Liu et al. Enhancing membrane performance by blending ATRP grafted PMMA–TiO2 or PMMA–PSBMA–TiO2 in PVDF
Sankaraiah et al. Preparation and characterization of surface-functionalized polysilsesquioxane hard spheres in aqueous medium
KR102225357B1 (en) Mixed Matrix Membrane and manufacturing method thereof
CN103450487B (en) Nano SiO with adjustable hydrophilicity and hydrophobicity2Powder body
CN106731886B (en) Preparation method of mesoporous composite membrane
CN102794116B (en) Mesoporous silicon dioxide sphere-polymer nano composite nano-filtration membrane and preparation method thereof
Jomekian et al. Fabrication or preparation and characterization of new modified MCM-41/PSf nanocomposite membrane coated by PDMS
Amirilargani et al. Effects of poly (allylamine hydrochloride) as a new functionalization agent for preparation of poly vinyl alcohol/multiwalled carbon nanotubes membranes
Wang et al. One-pot synthesis of polymer-reinforced silica aerogels from high internal phase emulsion templates
KR100876541B1 (en) PDMS Mixed Membrane Containing Porous Aluminum Silicate Nanoparticles
Zheng et al. Preparation and properties of gelatin-chitosan/montmorillonite drug-loaded microspheres
Kwon et al. Effect of PMMA-graft-silica nanoparticles on the gas permeation properties of hexafluoroisopropylidene-based polyimide membranes
Alosaimi et al. Towards superior permeability and antifouling performance of sulfonated polyethersulfone ultrafiltration membranes modified with sulfopropyl methacrylate functionalized SBA-15
CN114685907A (en) Preparation method and application of adjustable amphiphobic fluorescent polystyrene microsphere filler
RU2414953C1 (en) Method of producing composite membranes with fullerene-containing polymer selective layer
CN104226275B (en) Hollow microsphere based on methacryloxy cage-type silsesquioxane and its preparation method and application

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20080527

Effective date: 20080904

Free format text: TRIAL NUMBER: 2008101004787; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20080527

Effective date: 20080904

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131114

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141001

Year of fee payment: 19