KR100873271B1 - Method of producing unsaturated aldehyde and/or unsaturatede fatty acid in fixed-bed catalytic partial oxidation reactor with high efficiency - Google Patents

Method of producing unsaturated aldehyde and/or unsaturatede fatty acid in fixed-bed catalytic partial oxidation reactor with high efficiency Download PDF

Info

Publication number
KR100873271B1
KR100873271B1 KR1020060105592A KR20060105592A KR100873271B1 KR 100873271 B1 KR100873271 B1 KR 100873271B1 KR 1020060105592 A KR1020060105592 A KR 1020060105592A KR 20060105592 A KR20060105592 A KR 20060105592A KR 100873271 B1 KR100873271 B1 KR 100873271B1
Authority
KR
South Korea
Prior art keywords
time interval
time
olefin
volume ratio
temperature
Prior art date
Application number
KR1020060105592A
Other languages
Korean (ko)
Other versions
KR20070093316A (en
Inventor
고준석
하경수
박성수
강성필
백세원
김은주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of KR20070093316A publication Critical patent/KR20070093316A/en
Application granted granted Critical
Publication of KR100873271B1 publication Critical patent/KR100873271B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/067Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/20Unsaturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/203Unsaturated compounds containing keto groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C49/205Methyl-vinyl ketone
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • C07C57/04Acrylic acid; Methacrylic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • B01J2531/54Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • B01J2531/56Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/64Molybdenum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 쉘-앤드-튜브 열교환식 반응기에서 고정층 촉매 부분 산화반응에 의하여 올레핀으로부터 불포화 알데히드 및/또는 불포화 지방산을 제조하는 공정에 있어서, 촉매 충전하고 반응개시 후 시간 구간을 순차적으로 제1시간구간, 제2시간구간, …, 제n시간구간(n은 2이상의 자연수임)으로 나누고, 제1시간구간에서의 운전조건은 제n시간구간에서의 운전조건을 기준으로 올레핀의 공간속도는 낮게, 쉘에 충진된 열전달매체의 온도는 높게, 분자 산소와 올레핀의 비율(분자산소의 부피비/올레핀의 부피비)은 낮게, 반응기로 유입되는 수분의 양은 높게 설정하여 운전하고, 제1시간구간 이후 제n시간구간 이전에 시간구간이 존재하는 경우 제1시간구간 이후 제n시간구간 이전의 시간구간에서는 제1구간의 운전조건 기준으로부터 제n시간구간의 운전조건 기준으로 순차적으로 운전조건을 변화시키는 것이 특징인 제조 공정을 제공한다.The present invention provides a process for preparing unsaturated aldehydes and / or unsaturated fatty acids from olefins by fixed-bed catalytic partial oxidation in a shell-and-tube heat exchange reactor. , Second time period,. , Divided by the nth time interval (n is a natural number of 2 or more), and the operating conditions in the first time interval are lower than the space velocity of the olefin based on the operating conditions in the nth time interval. The temperature is set high, the ratio of molecular oxygen and olefin (volume ratio of fractional element / volume of olefin) is low, and the amount of water flowing into the reactor is set high, and the time period is changed before the nth time period after the first time period. If present, the manufacturing process is characterized in that in the time interval after the first time interval and before the nth time interval, the operating conditions are sequentially changed from the operating condition criterion of the first section to the operating condition criterion of the nth time section.

쉘-앤드-튜브 열교환식 반응기, 불포화 알데히드, 불포화 지방산 Shell-and-Tube Heat Exchanger, Unsaturated Aldehydes, Unsaturated Fatty Acids

Description

고정층 촉매 부분산화 반응기에서 고효율의 불포화 알데히드 및/또는 불포화 지방산의 제조방법{METHOD OF PRODUCING UNSATURATED ALDEHYDE AND/OR UNSATURATEDE FATTY ACID IN FIXED-BED CATALYTIC PARTIAL OXIDATION REACTOR WITH HIGH EFFICIENCY}METHODS OF PRODUCING UNSATURATED ALDEHYDE AND / OR UNSATURATEDE FATTY ACID IN FIXED-BED CATALYTIC PARTIAL OXIDATION REACTOR WITH HIGH EFFICIENCY}

도 1은 실시예 1 및 비교예 1이 수행되는 쉘-앤드-튜브형 다관반응기 구조를 보여주는 모식도이다.1 is a schematic diagram showing the structure of a shell-and-tube type multi-tube reactor in which Example 1 and Comparative Example 1 are performed.

도 2는 도 1의 반응기중 반응관 하나에 대하여 촉매충전 구조를 나타낸 모식도 이다. Figure 2 is a schematic diagram showing a catalyst charging structure for one reaction tube in the reactor of FIG.

본 발명은 쉘-앤드-튜브 열교환식 반응기(shell-and-tube heat exchanger type reactor)에서 촉매로 금속 산화물을 이용하여 올레핀으로부터 불포화 알데히드 및/또는 불포화 지방산을 제조하는 공정에 관한 것으로서, 보다 상세하게는 반응기에 촉매를 충전한 후 스타트업 및 최초 운전에 관한 것이다.The present invention relates to a process for producing unsaturated aldehydes and / or unsaturated fatty acids from olefins using metal oxides as catalysts in shell-and-tube heat exchanger type reactors, in more detail. Relates to startup and initial operation after charging the catalyst to the reactor.

촉매를 이용하여 기상의 올레핀으로부터 불포화 알데히드 및/또는 불포화산을 제조하는 공정은 대표적인 접촉기상 산화반응(catalytic vapor phase oxidation)에 해당한다.The process for producing unsaturated aldehydes and / or unsaturated acids from olefins in the gas phase using a catalyst corresponds to representative catalytic vapor phase oxidation.

접촉기상 산화반응의 구체적인 예로, 프로필렌 또는 프로판을 산화시켜 아크롤레인 및/또는 아크릴산을 제조하는 공정, 이소부틸렌, t-부틸알콜 또는 메틸-t-부틸에테르를 산화시켜 메타아크롤레인 및/또는 메타아크릴산을 제조하는 공정 등이 있다.As a specific example of the catalytic phase oxidation reaction, a process of oxidizing propylene or propane to produce acrolein and / or acrylic acid, and isobutylene, t-butyl alcohol or methyl-t-butyl ether to oxidize methacrolein and / or methacrylic acid Manufacturing process;

일반적으로, 접촉기상 산화반응은, 1종 이상의 촉매가 과립의 형태로 반응관에 충진되고, 공급 가스가 반응관을 통해 반응기에 공급되고, 공급 가스가 반응관에서 촉매와 접촉하여 기상 산화 반응을 수행한다. 반응 도중 발생하는 반응 열은 열전달 매체와 열전달하여 제거되며, 열전달 매체의 온도는 예정된 온도로 유지된다. 이때, 열교환을 위한 열전달 매체는 반응관의 외부면에 제공되어 열전달한다. 원하는 생성물을 함유하는 반응 혼합물은 관을 통해 수집 회수 및 정제 단계로 보내진다. 접촉기상 산화반응은 통상 높은 발열 반응이므로 특정 범위 내에서 반응 온도를 조절하고 반응영역 내 열점의 크기를 줄이는 것이 매우 중요하다. In general, a catalytic gas phase oxidation reaction includes one or more catalysts filled in a reaction tube in the form of granules, a feed gas is supplied to the reactor through the reaction tube, and the feed gas is brought into contact with the catalyst in the reaction tube to perform a gas phase oxidation reaction. To perform. The heat of reaction generated during the reaction is removed by heat transfer with the heat transfer medium, and the temperature of the heat transfer medium is maintained at a predetermined temperature. At this time, the heat transfer medium for heat exchange is provided on the outer surface of the reaction tube to transfer heat. The reaction mixture containing the desired product is sent through tubes to the collection recovery and purification steps. Since the catalytic phase oxidation reaction is usually a high exothermic reaction, it is very important to control the reaction temperature within a specific range and to reduce the size of the hot spot in the reaction zone.

올레핀의 부분 산화 반응에는 몰리브덴과 비스무스 또는 몰리브덴과 바나듐 함유 복합 산화물 또는 이들의 혼합물이 촉매로 사용된다.In the partial oxidation reaction of olefins, molybdenum and bismuth or molybdenum and vanadium-containing complex oxides or mixtures thereof are used as catalysts.

일반적으로, 프로필렌, 이소부틸렌, t-부틸알콜 또는 메틸-t-부틸에테르(이하 '프로필렌 등'으로 지칭함)로부터 두 단계의 접촉 기상 부분 산화 반응에 의하여 최종 생산물인 (메타)아크릴산이 생성된다. 즉, 제1단계에서는 산소, 희석 불활성 기체, 수증기 및 임의량의 촉매에 의해 프로필렌 등이 산화되어 주로 (메타)아크롤레인이 제조되고, 제2단계에서는 산소, 희석 불활성 기체, 수증기 및 임의량의 촉매에 의해 상기 (메타)아크롤레인이 산화되어 (메타)아크릴산이 제조된다. 제1단계 촉매는 Mo-Bi를 기본으로 하는 산화촉매로서 프로필렌 등을 산화하여 주로 (메타)아크롤레인을 생성한다. 또한 일부 (메타)아크롤레인은 이 촉매상에서 계속 산화가 진행되어 (메타)아크릴산이 일부 생성된다. 제2단계 촉매는 Mo-V을 기본으로 하는 산화촉매로서 제1단계에서 생성된 (메타)아크롤레인 함유 혼합 기체 중 주로 (메타)아크롤레인을 산화하여 주로 (메타)아크릴산을 생성한다.In general, the final product (meth) acrylic acid is produced by two stages of catalytic gas phase partial oxidation reaction from propylene, isobutylene, t-butylalcohol or methyl-t-butylether (hereinafter referred to as propylene). . That is, in the first step, propylene or the like is oxidized by oxygen, dilute inert gas, water vapor, and any amount of catalyst to produce (meth) acrolein, and in the second step, oxygen, dilute inert gas, water vapor, and any amount of catalyst The (meth) acrolein is oxidized to produce (meth) acrylic acid. The first stage catalyst is an oxidation catalyst based on Mo-Bi, and mainly oxidizes propylene to produce (meth) acrolein. In addition, some (meth) acrolein continues to oxidize on this catalyst to produce some (meth) acrylic acid. The second stage catalyst is an oxidation catalyst based on Mo-V, and mainly (meth) acrolein is oxidized in the (meth) acrolein-containing mixed gas produced in the first stage to mainly produce (meth) acrylic acid.

이러한 공정을 수행하는 반응기는 하나의 장치에서 상기한 두 단계의 공정을 모두 실행할 수 있도록 구비되거나 또는 상기 두 단계의 공정을 각각 다른 장치에서 실행할 수 있도록 구비될 수 있다.The reactor for performing such a process may be provided to perform the above two steps in one apparatus, or may be provided to perform the two steps of processes in different devices.

제1단계는 한국특허 2002-0040043에 기재된 바와 같이 두 개 이상의 반응영역으로 나뉠 수 있다. 제1단계의 첫번째 반응영역에서는 반응기 전체적으로 볼 때 상대적으로 프로필렌 등의 농도가 높고 산소의 양이 충분하여 반응이 격렬하게 이루어지며, 촉매층의 열점이 형성되기 쉽다. The first step may be divided into two or more reaction zones as described in Korean Patent 2002-0040043. In the first reaction zone of the first stage, the reaction is violently performed due to the relatively high concentration of propylene and the amount of oxygen in the entire reactor, and hot spots of the catalyst layer are easily formed.

더욱이, 프로필렌 등의 높은공간속도 및 고농도를 이용하여 (메타)아크롤레인 및/또는 (메타)아크릴산을 제조하는 경우, 비이상적인 온도 상승이 반응기에서 발생됨에 따라, 촉매 층으로부터의 유효 성분 이탈, 금속 성분의 소결로 인한 활성점 개수 감소 등과같은 문제가 유발되어 그 기능이 저하되기도 한다.Furthermore, when producing (meth) acrolein and / or (meth) acrylic acid using high space velocities and high concentrations of propylene or the like, as non-ideal temperature rises occur in the reactor, active component release from the catalyst bed, metal components Problems such as a decrease in the number of active sites due to the sintering of the sintering may be caused and the function may be degraded.

이제까지 공장에서는 스타트업이 약 24시간에 거쳐 이루어지고 있으며, 이 시간에 희망하는 최종 프로필렌 등의 공간속도와 반응물의 조성으로 생산을 할 경 우에는 제1단계에서 열점의 온도가 과도하게 높아져 촉매가 손상되어 있는 접촉관이 다수 있음을 관찰할 수 있었으며, 제2단계에서는 부반응이 활발히 진행되어 일산화탄소, 이산화탄소 및 초산 등의 부산물이 더욱 많이 생성되어 (메타)아크릴산과 같은 불포화 지방산의 수율이 낮아지는 문제가 있었다.Up to now, the plant has been started for about 24 hours. At this time, when producing at the desired space velocity such as the final propylene and the composition of the reactants, the temperature of the hot spot is excessively high in the first stage, so that the catalyst It was observed that there are many damaged contact tubes, and in the second stage, side reactions are actively progressed, and more by-products such as carbon monoxide, carbon dioxide, and acetic acid are generated, which lowers the yield of unsaturated fatty acids such as (meth) acrylic acid. There was.

올레핀으로부터 불포화 알데히드 및/또는 불포화산을 제조하는 공정, 예컨대 프로필렌 등으로부터 (메타)아크롤레인 또는 (메타)아크릴산을 제조하는 공정에 사용되는 촉매는 금속 산화물이고, 촉매의 특성이 스타트업 초기에 활성이 대단히 높기 때문에 부반응을 상대적으로 많이 진행시켜, (메타)아크롤레인 또는 (메타)아크릴산의 수율을 저하시키고, 촉매층의 온도를 상승시켜 촉매를 손상시킨다. The catalyst used in the production of unsaturated aldehydes and / or unsaturated acids from olefins, such as the production of (meth) acrolein or (meth) acrylic acid from propylene, etc., is a metal oxide, and the characteristics of the catalyst are active at the start-up. Since it is very high, the side reaction proceeds relatively much, lowering the yield of (meth) acrolein or (meth) acrylic acid, and raising the temperature of the catalyst layer to damage the catalyst.

상기 문제를 해결하기 위해, 본 발명은 촉매를 충전한 후 일정시간(예, 약 120시간)동안 반응기로 유입되는 혼합가스의 조성과 반응온도를 단계적으로 조정함으로써, 촉매를 충전한 후 스타트업 및 최초 운전에 대한최적화된 방법을 제공하고자 한다. In order to solve the above problem, the present invention is to start up and charge the catalyst by gradually adjusting the composition and reaction temperature of the mixed gas flowing into the reactor for a predetermined time (for example about 120 hours) after charging the catalyst It is intended to provide an optimized method for initial operation.

본 발명은 쉘-앤드-튜브 열교환식 반응기에서 고정층 촉매 부분 산화반응에 의하여 올레핀으로부터 불포화 알데히드 및/또는 불포화 지방산을 제조하는 공정에 있어서, 촉매 충전하고 반응개시 후 시간 구간을 순차적으로 제1시간구간, 제2시간구간, …, 제n시간구간(n은 2이상의 자연수임)으로 나누고, 제1시간구간에서의 운전조건은 제n시간구간에서의 운전조건을 기준으로 올레핀의 공간속도는 낮게, 쉘에 충진된 열전달매체의 온도는 높게, 분자 산소와 올레핀의 비율(분자산소의 부피비/ 올레핀의 부피비)은 낮게, 반응기로 유입되는 수분의 양은 높게 설정하여 운전하고, 제1시간구간 이후 제n시간구간 이전에 시간구간이 존재하는 경우 제1시간구간 이후 제n시간구간 이전의 시간구간에서는 제1시간구간의 운전조건 기준으로부터 제n시간구간의 운전조건 기준으로 순차적으로 운전조건을 변화시키는 것이 특징인 제조 공정을 제공한다.The present invention provides a process for preparing unsaturated aldehydes and / or unsaturated fatty acids from olefins by fixed-bed catalytic partial oxidation in a shell-and-tube heat exchange reactor. , Second time period,. , Divided by the nth time interval (n is a natural number of 2 or more), and the operating conditions in the first time interval are lower than the space velocity of the olefin based on the operating conditions in the nth time interval. The temperature is set high, the ratio of molecular oxygen and olefin (volume ratio of fractional assets / volume ratio of olefin) is low, and the amount of water flowing into the reactor is set high, and the time interval is changed before the nth time interval after the first time interval. If present, a manufacturing process characterized in that the operating conditions are sequentially changed from the operating condition criterion of the first time interval to the operating condition criterion of the nth time interval in the time interval after the first time interval and before the nth time interval. .

이하 본 발명을 자세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 촉매를 충전한 후 일정시간 동안 반응기로 유입되는 올레핀 공간속도, 열전달매체 온도, 전체 혼합가스 중 수분의 부피비, 분자 산소의 부피비/올레핀의 부피비를 단계적으로 조정하는 것을 특징으로 한다.The present invention is characterized by stepwise adjusting the olefin space velocity, the heat transfer medium temperature, the volume ratio of water in the total mixed gas, the volume ratio of molecular oxygen / olefin volume flows into the reactor for a predetermined time after the catalyst is charged.

반응기로 유입되는 혼합가스 중 프로필렌 등의 농도를 단계적으로 증가와 열전달 매체의 온도를 상대적으로 높은 온도에서 낮은 온도로 단계적으로 감소시킴으로써 반응초기에 과도한 반응을 억제하여 부반응을 줄일 수 있으며, 촉매층 내의 온도가 급격히 올라가는 것을 막을 수 있다. 스타트업 초기에 쉘에 충진된 열전달 매체의 온도를 정상 조업시의 온도보다 높게 설정하고, (분자산소의 부피비)/(프로필렌 등의 부피비)를 정상 조업시보다 낮은상태에서 운전함으로써 반응 초기에 촉매에 함유되어 있는 과량의 분자산소를 제거하여 부반응을 줄이는데 기여할 수 있다. 수분의 양을 높였다가 단계적으로 감소시킴으로써 반응 초기에 과다하게 발생하는 발열량을 제거하여, 촉매층 내의 열점의 온도를 낮출 수 있다.By increasing the concentration of propylene and the like in the mixed gas flowing into the reactor step by step and by decreasing the temperature of the heat transfer medium step by step from a relatively high temperature to a low temperature, it is possible to reduce the side reaction by suppressing excessive reaction at the beginning of the reaction, the temperature in the catalyst bed Can prevent a sharp rise. At the initial stage of startup, the temperature of the heat transfer medium filled in the shell is set higher than the temperature of the normal operation, and the (volume ratio of powdered fraction) / (volume ratio such as propylene) is operated at a lower state than in the normal operation, so that the catalyst It may contribute to reducing side reactions by removing excess molecular oxygen contained in. By increasing the amount of water and decreasing it step by step, the amount of heat generated excessively at the beginning of the reaction can be removed, and the temperature of the hot spot in the catalyst layer can be lowered.

본 발명의일구체예는 촉매 충진 이후 제1시간구간에서는 제n시간구간에서의 목표 올레핀 공간속도의 40~80%수준의 공간속도, 쉘에 충진된 열전달매체 온도를 320~340℃, 반응기 내로 유입되는 전체 혼합가스 중 수분의 부피비를 10~15%, 분자 산소의 부피비/올레핀의 부피비를 1.65~1.75로 설정하고, 제n시간구간에서는 희망하는 최종 올레핀의 공간속도를 110~185hr-1, 열전달매체 온도를 300~320℃, 반응기 내로 유입되는 전체 혼합가스 중 수분의 부피비를 5.0~8.0%, 분자 산소의 부피비/올레핀의 부피비를 1.8~1.9로 설정하여 운전할 수 있다.In one embodiment of the present invention, a space velocity of 40 to 80% of the target olefin space velocity in the nth time interval after the catalyst filling, the temperature of the heat transfer medium filled in the shell is 320 ~ 340 ℃, into the reactor The volume ratio of water in the inlet mixed gas is set to 10 to 15%, the volume ratio of molecular oxygen / olefin to 1.65 to 1.75, and the space velocity of the desired final olefin is 110 to 185 hr-1, in the nth period. The temperature of the heat transfer medium may be operated by setting the volume ratio of water to 5.0 to 8.0% and the volume ratio of molecular oxygen / olefin to 1.8 to 1.9 in the total mixed gas flowing into the reactor at 300 to 320 ° C.

본 발명에서 제1시간 구간에서 제n-1시간구간까지는 스타트-업(start-up) 시간에 대응되고, 제n시간구간은 최종정상운전시간에 대응될 수 있다.In the present invention, the first time period to the n-th time period may correspond to a start-up time, and the nth time period may correspond to a final normal operation time.

촉매 충전하고 반응 개시 후 시간 구간을 순차적으로 2개 구간 이상으로 나누고, 마지막 시간구간인 제n시간구간에서 희망하는 최종 프로필렌과 같은 올레핀의 공간속도는 100 hr-1이상 ~ 200 hr-1미만, 바람직하게는 110~185hr-1인 것이 좋다. 올레핀의 공간속도가 100 hr-1 미만이면 생산성이 감소하며, 200 hr-1이상에서는 촉매의 수명단축 및 과도한 발열로 인한 열점온도의 상승으로 촉매의 소손이 있을 수 있다.After filling the catalyst and starting the reaction, the time interval is divided into two or more sections, and the space velocity of the desired propylene such as the final propylene in the last time section, nth, is 100 hr −1 or more and less than 200 hr −1 , Preferably it is 110-185hr -1 . If the space velocity of the olefin is less than 100 hr -1, the productivity decreases. At 200 hr -1 or more, the catalyst may be burned out due to the increase in hot spot temperature due to shortening of the catalyst life and excessive exotherm.

제1시간구간 이후 제n시간구간 이전에 시간구간이 존재하는 경우 상기 각 시간구간에서는 인접한 이전 시간구간을 기준으로 할 때, 올레핀의 공간속도는 0~30hr-1씩 높이고, 열전달매체의 온도는 0~15℃씩 낮추며, 분자 산소와 올레핀의 비율(분자산소의 부피비/올레핀의 부피비)은 0~0.1씩 높이고, 반응기로 유입되는 수분의 양은 0~5%씩 감소시키는 것이 바람직하다. 제1시간구간에서부터 제 n시간구간인 정상 조업시까지 촉매층내의 열점의 온도에 급격한 영향을 미치지 않도록 올레핀 공간속도, 열전달매체 온도, 수분의 부피비, 분자 산소의 부피비/올레핀의 부 피비를 순차적으로 변화시키는 것이 본 발명의 핵심이며, 급격한 변화를 주지 않는 범위는 상기와 같다.If there is a time interval after the first time interval and before the nth time interval, the space velocity of the olefin is increased by 0 to 30hr -1 and the temperature of the heat transfer medium is increased based on the adjacent previous time interval in each time interval. Lowering by 0 ~ 15 ℃, it is preferable to increase the ratio of molecular oxygen and olefin (volume ratio of fractional assets / volume ratio of olefin) by 0 ~ 0.1, and the amount of water introduced into the reactor is reduced by 0 ~ 5%. The olefin space velocity, heat transfer medium temperature, moisture volume ratio, molecular oxygen volume ratio, and olefin volume ratio were sequentially changed so as not to affect the temperature of the hot spot in the catalyst bed from the first time period to the nth normal operation. It is the core of the present invention, and the range that does not give a sudden change is as mentioned above.

본 발명에서 '제1시간구간의 운전조건 기준으로부터 제n시간구간의 운전조건 기준으로 순차적으로 운전조건을 변화시킨다'는 의미에는, 올레핀 공간속도, 열전달매체 온도, 수분의 부피비, 분자 산소의 부피비/올레핀의 부피비 중 적어도 하나가 이전 시간구간과 동일한 것, 즉 변화량=0인 것도 포함한다.In the present invention, 'the operating conditions are sequentially changed from the operating condition criterion of the first time period to the operating condition of the nth time period', the olefin space velocity, heat transfer medium temperature, moisture volume ratio, molecular oxygen volume ratio At least one of the volume ratios of the / olefin is the same as the previous time interval, that is, the amount of change = 0.

제1시간구간은 반응 개시 후 12~48시간인 것이 바람직하다. 시간 구간 개수(n)가 3개 이상인 경우, 제2시간구간은 36~72시간인 것이 바람직하다. 시간 구간 개수(n)가 4개 이상인 경우, 제3시간구간은 60~96시간인 것이 바람직하다. 시간 구간 개수(n)가 5개 이상인 경우, 제4시간구간은 84~120시간인 것이 바람직하다. 시간 구간 개수(n)가 6개 이상인 경우, 제5시간구간은 108~144시간인 것이 바람직하다. 상기 시간 범위는 오랜실험 결과에 기초한 것이다.The first time period is preferably 12 to 48 hours after the start of the reaction. When the number of time sections n is three or more, the second time section is preferably 36 to 72 hours. When the number of time sections n is four or more, the third time section is preferably 60 to 96 hours. When the number of time intervals n is five or more, the fourth time interval is preferably 84 to 120 hours. When the number of time intervals n is six or more, it is preferable that the fifth time interval is 108 to 144 hours. The time range is based on long experimental results.

상기 제1시간구간부터 제n-1시간 구간(start-up)까지 총 시간 범위는 48 내지 120 시간인 것이 바람직하다. 스타트업 시간이 48시간 이내이면 부반응을 줄이고 촉매층내의 열점의 온도를 낮추는 효과를 발휘하기 어려우며, 120시간 이상일 경우에는 정상조업 시간이 줄어들기 때문에 단위시간당 생산성이 줄어든다.The total time range from the first time interval to the n-th time interval (start-up) is preferably 48 to 120 hours. If the start-up time is within 48 hours, it is difficult to exert an effect of reducing side reactions and lowering the temperature of the hot spot in the catalyst bed, and if it is more than 120 hours, the productivity per unit time is reduced because the normal operation time is reduced.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일뿐 본 발명의 범위가 하기 실시예에 한정되는 것은아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.

<반응기 설치><Reactor Installation>

도 1에 도시된 바와 같은 반응기를 사용하였으며, 반응기내 접촉관의 내경은 26mm, wall의 두께는 2mm이며, 접촉관 내에 열전대 보호관이 접촉관 중간에 설치되어 있으며, 열전대 보호관의 외경은 1/8 inch로 열전대 보호관내에 열전대를 이용하여 반응기 전체영역의 온도를 측정할 수 있도록 구성하였다. 접촉관의 외벽은 용융염이 순환하여 접촉관의 온도를 일정하게 유지하여 주었으며, 아랫쪽으로부터 접촉관 내로 원료물질을 유입시켰다. 접촉관내 촉매 충전은, 도 2에 도시된 바와 같이, 아래로부터 250mm의 비활성 물질층(알루미나), 1550mm의 LGC1, 150mm의 비활성 물질층, 1450mm의 LGC2를 순차적으로 충전하였다. 상기 LGC1과 LGC2는 제1단계 촉매물질로써 몰리브덴(Mo)과 비스무스(Bi)를 기본으로 하는 제1단계산화촉매층이고, 그 촉매의 제법은 한국특허 제0349602호(출원번호 10-1997-0045132)에 기재되어 있다. 접촉관 외벽에 순환되는 용융염은 아래로부터 1800mm까지(제1단계 첫번째 반응영역) 같은 온도로 제어가 되며, 그 위쪽(제1단계 두번째 반응영역)은 아랫쪽의 용융염의 온도와 독립적으로 제어가 되어 LGC1층의 온도와 LGC2층의 온도를 다르게 설정할 수 있으며, 접촉관으로 들어가는 원료물질의 혼합가스는 반응기 내로 유입되기 전에 예열장치를 통과하여 충분히 높은 온도로 반응기내에 유입될 수 있도록 구성하였다. LGC2층 이후로는 700mm의 비활성 물질과 중량비 15%의 LGC4를 혼합하여 충전하였다. 이 다음으로 800mm의 LGC3와 1900mm의 LGC4를 순차적으로 충전하였으며, 상기 LGC3과 LGC4는 제2단계 촉매물질로써 몰리브덴(Mo)과 바나듐(V)를 기본으로 하는 제2단계 산화촉매층이고, 그 촉매의 제법은 한국특허 제0378018호(출원번호 10-1998-0054814)에 기재되어 있다. LGC3와 LGC4가 충전된 접촉관(제2단계 반 응영역)의 외벽의 용융염은 제 1단계 촉매물질이 충전된 접촉관의 외벽의 용융염과 독립적으로 온도가 제어가 될 수 있다. The reactor as shown in Figure 1 was used, the inner diameter of the contact tube in the reactor is 26mm, the thickness of the wall is 2mm, the thermocouple protective tube is installed in the middle of the contact tube in the contact tube, the outer diameter of the thermocouple protective tube is 1/8 It is configured to measure the temperature of the entire region of the reactor using a thermocouple in the thermocouple protective tube in inches. In the outer wall of the contact tube, molten salt circulated to maintain a constant temperature of the contact tube, and raw materials were introduced into the contact tube from the bottom. In the contact tube catalyst filling, as shown in Fig. 2, sequentially filled a 250 mm inert material layer (alumina), 1550 mm LGC1, 150 mm inert material layer, 1450 mm LGC2. The LGC1 and LGC2 are the first stage oxidation catalyst layer based on molybdenum (Mo) and bismuth (Bi) as the first stage catalyst material, and the preparation method of the catalyst is Korean Patent No. 0349602 (Application No. 10-1997-0045132) It is described in. The molten salt circulated on the outer wall of the contact tube is controlled at the same temperature from below to 1800mm (first reaction zone in the first stage), and the upper part (second reaction zone in the first stage) is controlled independently of the temperature of the molten salt at the bottom. The temperature of the LGC1 layer and the temperature of the LGC2 layer can be set differently, and the mixed gas of the raw materials entering the contact tube can be introduced into the reactor at a sufficiently high temperature through the preheating device before entering the reactor. After the LGC2 layer was filled with a mixture of 700mm inert material and 15% by weight of LGC4. Next, 800mm LGC3 and 1900mm LGC4 were sequentially charged, and the LGC3 and LGC4 are second stage oxidation catalyst layers based on molybdenum (Mo) and vanadium (V) as second stage catalyst materials. The preparation method is described in Korean Patent No. 0378018 (Application No. 10-1998-0054814). The molten salt of the outer wall of the contact tube (second stage reaction zone) filled with LGC3 and LGC4 may be temperature controlled independently of the molten salt of the outer wall of the contact tube filled with the first stage catalyst material.

[실시예 1] Example 1

촉매를 충전한 후 제1단계 첫번째 반응영역에서의 용융염의 온도를 330도, 제 1단계 두번째 반응영역에서의 용융염의 온도를 340도, 제2단계 반응영역에서의 용융염의 온도를 290도로 설정하고, 프로필렌의 공간속도를 75 hr-1, 반응기내로 유입되는 혼합가스 중 수분의 부피비를 혼합가스 전체 중 13.0%, 분자 산소와 프로필렌의 비율(분자산소의 부피비/프로필렌의 부피비)을 1.70으로 유입되도록 로드업하여 24시간이 지난 후 반응물의 조성을 분석하고, 촉매층내의 온도의 분포를 측정하였다. 매 24시간마다 표 1과 같이 반응온도 및 원료물질의 조성을 단계적으로 변화시켜 120시간이후의 반응물의 조성과 촉매층내의 온도를 측정하여 비교하였다. 본 실시예에서는 5단계로 나누어 스타트업 하였으며, 마지막구간(제5시간구간)의 제1단계 첫번째 반응영역에서의 용융염의 온도를 305도, 제 1단계 두번째 반응영역에서의 용융염의 온도를 315도, 제2단계 반응영역에서의 용융염의 온도를 270도로 설정하고, 프로필렌의 공간속도를 75 hr-1, 반응기내로 유입되는 혼합가스 중 수분의 부피비를 혼합가스 전체 중 7.5%, 분자 산소와 프로필렌의 비율(분자산소의 부피비/프로필렌의 부피비)을 1.85으로 유입되도록 하였다.After charging the catalyst, the temperature of the molten salt in the first reaction zone of the first stage was 330 degrees, the temperature of the molten salt in the second reaction zone of the first stage was 340 degrees, and the temperature of the molten salt in the second stage of the reaction zone was 290 degrees. , The space velocity of propylene is 75 hr -1 , the volume ratio of water in the mixed gas flowing into the reactor is 13.0% of the total mixed gas, and the ratio of molecular oxygen and propylene (volume ratio of powdered assets / volume ratio of propylene) to 1.70 After 24 hours, the composition of the reactants was analyzed and the distribution of temperature in the catalyst layer was measured. Every 24 hours, the reaction temperature and the composition of the raw materials were gradually changed as shown in Table 1, and the composition of the reactants after 120 hours and the temperature in the catalyst layer were measured and compared. In this example, start-up was divided into five stages. The temperature of the molten salt in the first reaction zone of the first stage of the last section (the fifth time section) was 305 degrees and the temperature of the molten salt in the second reaction zone of the first stage was 315 degrees. , The temperature of the molten salt in the second reaction zone is set to 270 degrees, the space velocity of propylene is 75 hr -1 , the volume ratio of water in the mixed gas flowing into the reactor is 7.5% of the total mixed gas, molecular oxygen and propylene The ratio of (volume ratio of minute assets / volume ratio of propylene) was introduced to 1.85.

반응시간(Hr)Reaction time (Hr) 24 (제1시간구간)24 (hour 1 section) 48 (제2시간구간)48 (Second Hour) 72 (제3시간구간)72 (3rd hour interval) 96 (제4시간구간)96 (4 hours) 120 (제5시간구간)120 (5th hour interval) C3H6 (Volume %)C 3 H 6 (Volume%) 5.05.0 6.06.0 7.07.0 7.57.5 7.57.5 C3H6.SV (hr-1)C 3 H 6 .SV (hr -1 ) 75.075.0 90.090.0 105.0105.0 112.5112.5 112.5112.5 O2/C3H6 O 2 / C 3 H 6 1.701.70 1.751.75 1.801.80 1.851.85 1.851.85 HTS1/HTS2 (℃)HTS1 / HTS2 (℃) 330/340330/340 320/333320/333 312/328312/328 308/325308/325 305/315305/315 HTS3 (℃)HTS3 (℃) 290290 275275 273273 272272 270270 수분율 (%)Moisture content (%) 13.013.0 10.510.5 9.09.0 7.57.5 7.57.5

S.V (space velocity) : hr-1(Standard Temperature and Pressure, STP)SV (space velocity): hr -1 (Standard Temperature and Pressure, STP)

O2/C3H6 : 분자 산소의 부피비/프로필렌의 부피비.O 2 / C 3 H 6 : volume ratio of molecular oxygen / volume ratio of propylene.

HTS(Heat Transfer Salt) : 반응기 외벽에 순환하는 용융염.HTS (Heat Transfer Salt): Molten salt circulating on the outer wall of the reactor.

전환율(%) : [반응에 참여한 프로필렌의 몰수/들어간 전체 프로필렌의 몰수]*100% Conversion: [moles of propylene participating in the reaction / moles of total propylene entered] * 100

표 2는 분석결과와 열점의 온도를 나타낸 것이다.Table 2 shows the analysis results and the temperature of the hot spots.

반응시간(Hr)Reaction time (Hr) 24 (제1시간구간)24 (hour 1 section) 48 (제2시간구간)48 (Second Hour) 72 (제3시간구간)72 (3rd hour interval) 96 (제4시간구간)96 (4 hours) 120 (제5시간구간)120 (5th hour interval) 전환율Conversion rate 98.44%98.44% 98.39%98.39% 98.27%98.27% 97.97%97.97% 97.41%97.41% AA 수율AA yield 83.65%83.65% 84.13%84.13% 84.45%84.45% 84.70%84.70% 84.34%84.34% COx 수율 COx yield 10.50%10.50% 10.00%10.00% 9.62%9.62% 9.15%9.15% 8.60%8.60% Hot Spot Temp.(LGC1)Hot Spot Temp. (LGC1) 379.1℃379.1 ℃ 379.2℃379.2 ℃ 378.8℃378.8 ℃ 378.4℃378.4 ℃ 374.5℃374.5 ℃ Hot Spot와 HTS1의 ΔTΔT of Hot Spot and HTS1 49.1℃49.1 ℃ 59℃59 ℃ 59.5℃59.5 ℃ 70.4℃70.4 ℃ 69.5℃69.5 ℃ Hot Spot Temp.(LGC3)Hot Spot Temp. (LGC3) 333.1℃333.1 ℃ 322.3℃322.3 ℃ 333.4℃333.4 ℃ 328.8℃328.8 ℃ 319.8℃319.8 ℃ Hot Spot와 HTS3의 ΔTΔT on Hot Spots and HTS3 41.7℃41.7 ℃ 47.3℃47.3 ℃ 60.4 ℃60.4 ℃ 56.8℃56.8 ℃ 49.8℃49.8 ℃

[비교예 1]Comparative Example 1

촉매를 충전한 후 제1단계 첫번째 반응영역에서의 용융염의 온도를 305℃, 제1단계 두번째 반응영역에서의 용융염의 온도를 315℃, 제2단계 반응영역에서의 용융염의 온도를 270℃로 설정하고, 프로필렌의 공간속도를 112.5 hr-1, 반응기내로 유입되는 혼합가스 중 수분의 부피비를 혼합가스 전체 중 7.5%, 분자 산소와 프로필렌의 비율(분자산소의 부피비/프로필렌의 부피비)을 1.85으로 유입되도록 로드업하여 반응물의 조성을 매 24시간마다 분석하고, 촉매층 내의 온도를 측정하였다. 표 3는 분석결과와 열점의 온도를 나타낸 것이다. After the catalyst was charged, the temperature of the molten salt in the first reaction zone of the first stage was 305 ° C, the temperature of the molten salt in the second reaction zone of the first stage was 315 ° C, and the temperature of the molten salt in the second stage of the reaction zone was 270 ° C. The space velocity of propylene is 112.5 hr -1 , the volume ratio of water in the mixed gas flowing into the reactor is 7.5% of the total mixed gas, and the ratio of molecular oxygen and propylene (volume ratio of powdered assets / volume ratio of propylene) is 1.85. The composition of the reactants was analyzed every 24 hours by loading up the feed, and the temperature in the catalyst bed was measured. Table 3 shows the analysis results and the temperature of the hot spots.

반응시간(Hr)Reaction time (Hr) 24 (제1시간구간)24 (hour 1 section) 48 (제2시간구간)48 (Second Hour) 72 (제3시간구간)72 (3rd hour interval) 96 (제4시간구간)96 (4 hours) 120 (제5시간구간)120 (5th hour interval) 전환율Conversion rate 97.36%97.36% 97.42%97.42% 97.46%97.46% 97.21%97.21% 97.37%97.37% AA 수율AA yield 82.84%82.84% 83.09%83.09% 83.19%83.19% 83.08%83.08% 83.20%83.20% COx 수율 COx yield 10.29%10.29% 10.13%10.13% 9.75%9.75% 9.63%9.63% 9.61%9.61% Hot Spot Temp.(LGC1)Hot Spot Temp. (LGC1) 377.0℃377.0 ℃ 379.2℃379.2 ℃ 378.8℃378.8 ℃ 383.2℃383.2 ℃ 383.2℃383.2 ℃ Hot Spot와 HTS1의 ΔTΔT of Hot Spot and HTS1 72.0℃72.0 ℃ 74.2℃74.2 ℃ 73.8℃73.8 ℃ 78.2℃78.2 ℃ 78.2℃78.2 ℃ Hot Spot Temp.(LGC3)Hot Spot Temp. (LGC3) 334.9℃334.9 ℃ 328.7℃328.7 ℃ 327.8℃327.8 ℃ 326.0℃326.0 ℃ 323.3℃323.3 ℃ Hot Spot와 HTS3의 ΔTΔT on Hot Spots and HTS3 64.9℃64.9 ℃ 58.7℃58.7 ℃ 57.8℃57.8 ℃ 56.0℃56.0 ℃ 53.3℃53.3 ℃

[비교예 2]Comparative Example 2

촉매를 충전한 후 제1단계 첫번째 반응영역에서의 용융염의 온도를 305℃, 제1단계 두번째 반응영역에서의 용융염의 온도를 315℃, 제2단계 반응영역에서의 용융염의 온도를 270℃로 설정하고, 프로필렌의 공간속도를 75 hr-1, 반응기내로 유입되는 혼합가스 중 수분의 부피비를 혼합가스 전체 중 7.5%, 분자 산소와 프로필렌의 비율(분자산소의 부피비/프로필렌의 부피비)을 1.85으로 유입되도록 로드업하였다. 매 24시간마다 프로필렌의 공간속도는 실시예 1과 같이 증가시켰으며, 반응온도 및 원료물질의 조성은 비교예 1과 같이 시간에 관계없이 일정하게 유지시켰다. 표 4는 분석결과와 열점의 온도를 나타낸 것이다.After the catalyst was charged, the temperature of the molten salt in the first reaction zone of the first stage was 305 ° C, the temperature of the molten salt in the second reaction zone of the first stage was 315 ° C, and the temperature of the molten salt in the second stage of the reaction zone was 270 ° C. The volume velocity of propylene is 75 hr -1 , the volume ratio of water in the mixed gas flowing into the reactor is 7.5% of the total mixed gas, and the ratio of molecular oxygen and propylene (volume ratio of powdered assets / volume ratio of propylene) is 1.85. Loaded up to flow. Every 24 hours, the space velocity of propylene was increased as in Example 1, and the reaction temperature and the composition of the raw materials were kept constant regardless of time as in Comparative Example 1. Table 4 shows the analysis results and the temperature of the hot spots.

반응시간(Hr)Reaction time (Hr) 24 (제1시간구간)24 (hour 1 section) 48 (제2시간구간)48 (Second Hour) 72 (제3시간구간)72 (3rd hour interval) 96 (제4시간구간)96 (4 hours) 120 (제5시간구간)120 (5th hour interval) 전환율Conversion rate 97.17%97.17% 97.63%97.63% 97.46%97.46% 97.53%97.53% 97.43%97.43% AA 수율AA yield 82.21%82.21% 83.12%83.12% 83.22%83.22% 83.38%83.38% 83.40%83.40% COx 수율 COx yield 10.57%10.57% 10.37%10.37% 10.18 %10.18% 10.04%10.04% 9.88%9.88% Hot Spot Temp.(LGC1)Hot Spot Temp. (LGC1) 348.0℃348.0 ℃ 359.3℃359.3 ℃ 359.9℃359.9 ℃ 384.5℃384.5 ℃ 385.0℃385.0 ℃ Hot Spot와 HTS1의 ΔTΔT of Hot Spot and HTS1 43℃43 ℃ 54.3℃54.3 ℃ 54.9℃54.9 ℃ 79.5℃79.5 ℃ 80.0℃80.0 ℃ Hot Spot Temp.(LGC3)Hot Spot Temp. (LGC3) 311.7℃311.7 ℃ 321.8℃321.8 ℃ 322.7℃322.7 ℃ 325.3℃325.3 ℃ 327.5℃327.5 ℃ Hot Spot와 HTS3의 ΔTΔT on Hot Spots and HTS3 41.7℃41.7 ℃ 51.8℃51.8 ℃ 52.7℃52.7 ℃ 55.3℃55.3 ℃ 57.5℃57.5 ℃

표 5는 실시예 1와 비교예 1, 실시예 1과 비교예 2의 분석결과와 열점의 온도차를 비교한 것이다. 표 5에서 나타나듯이, 실시예 1이 비교예 1 및 2에 비해 AA수율은 향상되고 부반응인 COx수율은 저감되었으며, 열점의 온도도 낮아져 공정이 안정화 되었음을 알 수 있다.Table 5 compares the temperature difference of the hot spot with the analysis result of Example 1, Comparative Example 1, Example 1, and Comparative Example 2. As shown in Table 5, compared with Comparative Examples 1 and 2 in Example 1, the AA yield was improved, the COx yield as a side reaction was reduced, and the temperature of the hot spot was lowered, indicating that the process was stabilized.

120시간이후 비교Comparison after 120 hours 비교예1Comparative Example 1 실시예 1Example 1 △1△ 1 비교예2Comparative Example 2 실시예1Example 1 △2△ 2 전환율Conversion rate 97.37%97.37% 97.41%97.41% 0.04%0.04% 97.43%97.43% 97.41%97.41% -0.02%-0.02% AA 수율AA yield 83.20%83.20% 84.34%84.34% 1.14%1.14% 83.40%83.40% 84.34%84.34% 0.95%0.95% COx 수율 COx yield 9.61%9.61% 8.60%8.60% -1.01%-1.01% 9.88%9.88% 8.60%8.60% -1.28%-1.28% Hot Spot Temp.(LGC1)Hot Spot Temp. (LGC1) 383.2℃383.2 ℃ 374.5℃374.5 ℃ -8.7℃-8.7 ℃ 385℃385 ℃ 374.5℃374.5 ℃ -10.5-10.5 Hot Spot Temp.(LGC3)Hot Spot Temp. (LGC3) 323.3℃323.3 ℃ 319.8℃319.8 ℃ -3.5℃-3.5 ℃ 327.5℃327.5 ℃ 319.8℃319.8 ℃ -7.7-7.7

촉매를 충전한 후 스타트업할 때 본 발명의 방법과 같이 단계적으로 반응물의 조성과 반응온도를 조정함으로써 제1단계 첫번째 반응영역에서의 전환율은 낮아지지 않으면서 열점의 온도를 크게 낮추어 촉매층으로부터의 유효성분 이탈, 금속 성분의 소결로 인한 활성점 개수 감소 등과 같은 문제를 줄여 안정적인 생산을 할 수 있으며, 생성물 중 COx(일산화탄소와 이산화탄소)의 양을 줄이고, 고효율의 (메타)아크릴산을 생산할 수 있다.When starting up after filling the catalyst, by adjusting the composition and reaction temperature of the reactants step by step as in the method of the present invention, the conversion temperature in the first reaction zone of the first stage is not lowered, and the temperature of the hot spot is significantly lowered, thereby reducing the active ingredient from the catalyst layer. Stable production can be achieved by reducing problems such as desorption and reduction of the number of active sites due to sintering of metal components, reducing the amount of COx (carbon monoxide and carbon dioxide) in the product, and producing highly efficient (meth) acrylic acid.

Claims (13)

쉘-앤드-튜브 열교환식 반응기에서 고정층 촉매 부분 산화반응에 의하여 올레핀으로부터 불포화 알데히드 및/또는 불포화 지방산을 제조하는 공정에 있어서, A process for producing unsaturated aldehydes and / or unsaturated fatty acids from olefins by fixed bed catalytic partial oxidation in a shell-and-tube heat exchange reactor, 촉매 충전하고 반응 개시후 시간 구간을 순차적으로 제1시간구간, 제2시간구간, …, 제n시간구간(n은 2이상의 자연수임)으로 나누고, After the catalyst is charged and the reaction is started, the time intervals are sequentially selected from the first time interval, the second time interval,. , Divide by the nth time interval (n is a natural number of 2 or more), 제1시간구간에서의 운전조건은 최종 제n시간구간에서의 운전조건을 기준으로 올레핀의 공간속도는 낮게, 쉘에 충진된 열전달매체의 온도는 높게, 분자 산소와 올레핀의 비율(분자산소의 부피비/올레핀의 부피비)은 낮게, 반응기로 유입되는 수분의 양은 높게 설정하여 운전하고, The operating conditions in the first time period were low in the space velocity of olefin based on the operating conditions in the last n time period, the temperature of the heat transfer medium filled in the shell was high, and the ratio of molecular oxygen and olefins (volume ratio of minute assets). / Olefin volume ratio) is low, the amount of water flowing into the reactor is set to operate, 제1시간구간 이후 제n시간구간 이전에 시간구간이 존재하는 경우에는 제1시간구간 이후 제n시간구간 이전의 시간구간에서는 제1구간의 운전조건 기준으로부터 제n시간구간의 운전조건 기준까지 순차적으로 운전조건을 변화시키는 것이 특징인 제조 공정.If there is a time interval after the first time interval but before the nth time interval, in the time interval after the first time interval and before the nth time interval, the operation conditions of the first period to the operating condition criteria of the nth time interval are sequentially Manufacturing process characterized by changing the operating conditions. 제1항에 있어서, 제n시간구간에서 최종 올레핀의 공간속도는 100 hr-1이상 ~ 200 hr-1미만인 것이 특징인 제조 공정. The process of claim 1, wherein the space velocity of the final olefin in the nth time period is 100 hr −1 or more but less than 200 hr −1 . 제1항에 있어서, 촉매 충진 이후 제1시간구간에서는 제n시간구간에서의 올레 핀 공간속도의 40~80%수준의 공간속도, 쉘에 충진된 열전달매체 온도를 320~340℃, 반응기 내로 유입되는 전체 혼합가스 중 수분의 부피비를 10~15%, 분자 산소의 부피비/올레핀의 부피비를 1.65~1.75로 설정하여 운전하는 것이 특징인 제조 공정.The method of claim 1, wherein in the first time period after the catalyst filling, the space velocity of 40-80% of the olefin fin space velocity in the n-th time interval, the temperature of the heat transfer medium filled in the shell is 320-340 ° C, and introduced into the reactor. The manufacturing process characterized in that the operation by setting the volume ratio of water in the total mixed gas to 10 to 15%, the volume ratio of molecular oxygen / olefin to 1.65 ~ 1.75. 제1항에 있어서, 제n시간구간에서는 올레핀의 공간속도를 110~185hr-1, 열전달매체 온도를 300~320℃, 반응기 내로 유입되는 전체 혼합가스 중 수분의 부피비를 5.0~8.0%, 분자 산소의 부피비/올레핀의 부피비를 1.8~1.9로 설정하여 운전하는 것이 특징인 제조 공정.The method of claim 1, wherein in the n-th time interval, the space velocity of the olefin is 110 ~ 185hr -1 , the heat transfer medium temperature is 300 ~ 320 ℃, the volume ratio of water in the total mixed gas flowing into the reactor 5.0 ~ 8.0%, molecular oxygen Production process characterized in that the operation by setting the volume ratio of / olefin volume ratio of 1.8 ~ 1.9. 제1항에 있어서, 제1시간구간 이후 제n시간구간 이전에 시간구간이 존재하는 경우 상기 각 시간구간에서는 인접한 이전 시간구간을 기준으로 할 때, 올레핀의 공간속도는 0~30hr-1씩 높이고, 열전달매체의 온도는 0~15℃씩 낮추며, 분자 산소와 올레핀의 비율(분자산소의 부피비/올레핀의 부피비)은 0~0.1씩 높이고, 반응기로 유입되는 수분의 양은 0~5%씩 감소시키는 것이 특징인 제조 공정.The method of claim 1, wherein if there is a time interval after the first time interval before the nth time interval, the space velocity of the olefin is increased by 0 ~ 30hr -1 in each of the time intervals based on the adjacent previous time intervals The temperature of the heat transfer medium is lowered by 0 ~ 15 ℃, and the ratio of molecular oxygen and olefin (volume ratio of fractional element / volume of olefin) is increased by 0 ~ 0.1, and the amount of water flowing into the reactor is reduced by 0 ~ 5%. Characterized in that the manufacturing process. 제1항에 있어서, 제1시간구간은 반응 개시 후 12~48시간인 것이 특징인 제조 공정.The process according to claim 1, wherein the first time period is 12 to 48 hours after the start of the reaction. 제1항에 있어서, 시간 구간 개수(n)가 3개 이상인 경우, 제2시간구간은 반응개시후 36~72시간인 것이 특징인 제조 공정.The process according to claim 1, wherein when the number of time sections n is three or more, the second time section is 36 to 72 hours after the start of the reaction. 제1항에 있어서, 시간 구간 개수(n)가 4개 이상인 경우, 제3시간구간은 반응개시후 60~96시간인 것이 특징인 제조 공정.The process according to claim 1, wherein when the number of time sections n is four or more, the third time section is 60 to 96 hours after the start of the reaction. 제1항에 있어서, 시간 구간 개수(n)가 5개 이상인 경우, 제4시간구간은 반응개시후 84~120시간인 것이 특징인 제조 공정.The process according to claim 1, wherein when the number of time sections n is 5 or more, the fourth time section is 84 to 120 hours after the start of the reaction. 제1항에 있어서, 시간 구간 개수(n)가 6개 이상인 경우, 제5시간구간은반응개시후 108~144시간인 것이 특징인 제조 공정.The process according to claim 1, wherein when the number of time sections n is 6 or more, the fifth time section is 108 to 144 hours after the start of the reaction. 제1항에 있어서, 제1시간구간부터 제n-1시간 구간까지 총 시간 범위는 48 내지 120 시간인 것이 특징인 제조 공정.The process of claim 1, wherein the total time range from the first time period to the n-th time period is 48 to 120 hours. 제1항 내지 제11항 중 어느 한 항에 있어서, 올레핀은 프로필렌, 이소부틸렌, t-부틸알콜 또는 메틸-t-부틸에테르로 구성된 군에서 1종 이상 선택된 것이 특징인 제조 공정.The process according to any one of claims 1 to 11, wherein the olefin is at least one selected from the group consisting of propylene, isobutylene, t-butyl alcohol or methyl t-butyl ether. 삭제delete
KR1020060105592A 2006-03-13 2006-10-30 Method of producing unsaturated aldehyde and/or unsaturatede fatty acid in fixed-bed catalytic partial oxidation reactor with high efficiency KR100873271B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20060023143 2006-03-13
KR1020060023143 2006-03-13

Publications (2)

Publication Number Publication Date
KR20070093316A KR20070093316A (en) 2007-09-18
KR100873271B1 true KR100873271B1 (en) 2008-12-11

Family

ID=38687644

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060105592A KR100873271B1 (en) 2006-03-13 2006-10-30 Method of producing unsaturated aldehyde and/or unsaturatede fatty acid in fixed-bed catalytic partial oxidation reactor with high efficiency

Country Status (1)

Country Link
KR (1) KR100873271B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100942648B1 (en) 2007-04-03 2010-02-17 주식회사 엘지화학 Method for preparing unsaturated aldehyde and/or unsaturated fatty acid using fixed-bed catalytic partial oxidation reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010112617A (en) * 2000-06-12 2001-12-20 아이다 겐지 A process for producing acrylic acid
KR100407030B1 (en) 1997-10-27 2004-03-22 니폰 쇼쿠바이 컴파니 리미티드 Method for producing acrylic acid
KR20050065425A (en) * 2003-12-24 2005-06-29 주식회사 엘지화학 Method of producing unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system
KR100553825B1 (en) * 2003-09-01 2006-02-21 주식회사 엘지화학 Method of producing unsaturated aldehyde and unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100407030B1 (en) 1997-10-27 2004-03-22 니폰 쇼쿠바이 컴파니 리미티드 Method for producing acrylic acid
KR20010112617A (en) * 2000-06-12 2001-12-20 아이다 겐지 A process for producing acrylic acid
KR100553825B1 (en) * 2003-09-01 2006-02-21 주식회사 엘지화학 Method of producing unsaturated aldehyde and unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system
KR20050065425A (en) * 2003-12-24 2005-06-29 주식회사 엘지화학 Method of producing unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system

Also Published As

Publication number Publication date
KR20070093316A (en) 2007-09-18

Similar Documents

Publication Publication Date Title
JP4838585B2 (en) Fixed-bed multitubular reactor
RU2429219C2 (en) Method of conducting continuous process of producing acrolein, acrylic acid or mixture thereof from propane in stable operating mode
CN1871201B (en) Method of producing unsaturated aldehyde and/or unsaturated fatty acid
JP4401644B2 (en) Plate type catalytic reactor and method for producing (meth) acrylic acid, etc.
KR100553825B1 (en) Method of producing unsaturated aldehyde and unsaturated acid in fixed-bed catalytic partial oxidation reactor with enhanced heat control system
JP4477640B2 (en) Process for producing unsaturated acids with improved thermal control system in fixed bed catalytic oxidation reactor
KR100868454B1 (en) Method of producing unsaturated acid in fixed-bed catalytic partial oxidation reactor with high efficiency
WO2003055835A1 (en) Process for vapor-phase catalytic oxidation and process for production of (meth)acrolein or (meth)acrylic acid
KR100677051B1 (en) Method of producing unsaturated acid from olefin
KR100942648B1 (en) Method for preparing unsaturated aldehyde and/or unsaturated fatty acid using fixed-bed catalytic partial oxidation reactor
US20080021238A1 (en) Apparatus For (Meth) Acrylic Acid Production And Process For Producing (Meth) Acrylic Acid
KR100873271B1 (en) Method of producing unsaturated aldehyde and/or unsaturatede fatty acid in fixed-bed catalytic partial oxidation reactor with high efficiency
WO2005100293A1 (en) Process for producing (meth)acrylic acid or (meth)acrolein
JP3804875B2 (en) Method for producing methacrolein
JP5607865B2 (en) Method for producing methacrylic acid
JP4163895B2 (en) Method for producing (meth) acrolein and (meth) acrylic acid
JP5479803B2 (en) Method for producing (meth) acrolein or (meth) acrylic acid
KR100975493B1 (en) Method of producing unsaturated acid in fixed-bed catalytic partial oxidation reactor with high efficiency
JP2008272637A (en) Manufacturing method of catalyst for manufacturing methacrylic acid, catalyst for manufacturing methacrylic acid and method of manufacturing methacrylic acid
JP5433321B2 (en) Method for producing (meth) acrylic acid

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20131018

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20141017

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150923

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170919

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181016

Year of fee payment: 11