KR100861585B1 - Thermostable Pyrophosphatase from Picrophilus torridus - Google Patents

Thermostable Pyrophosphatase from Picrophilus torridus Download PDF

Info

Publication number
KR100861585B1
KR100861585B1 KR1020060117610A KR20060117610A KR100861585B1 KR 100861585 B1 KR100861585 B1 KR 100861585B1 KR 1020060117610 A KR1020060117610 A KR 1020060117610A KR 20060117610 A KR20060117610 A KR 20060117610A KR 100861585 B1 KR100861585 B1 KR 100861585B1
Authority
KR
South Korea
Prior art keywords
ppase
derived
dna
primer
gene
Prior art date
Application number
KR1020060117610A
Other languages
Korean (ko)
Other versions
KR20080047754A (en
Inventor
김현철
박해준
박한오
Original Assignee
(주)바이오니아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)바이오니아 filed Critical (주)바이오니아
Priority to KR1020060117610A priority Critical patent/KR100861585B1/en
Publication of KR20080047754A publication Critical patent/KR20080047754A/en
Application granted granted Critical
Publication of KR100861585B1 publication Critical patent/KR100861585B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2521/00Reaction characterised by the enzymatic activity
    • C12Q2521/50Other enzymatic activities
    • C12Q2521/525Phosphatase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/01Hydrolases acting on acid anhydrides (3.6) in phosphorus-containing anhydrides (3.6.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 피크로필러스 토리두스(Picrophilus torridus) 유래의 내열성 피로포스파타아제(pyrophosphatase), 이를 코딩하는 유전자 및 이를 포함하는 재조합 벡터 등에 관한 것으로서, 보다 상세하게는 피크로필러스 토리두스 유래로서 서열번호 2로 기재되는 아미노산 서열을 갖는 내열성 피로포스파타제와 이를 코딩하는 유전자, 상기 유전자를 포함하는 재조합 벡터, 상기 재조합 벡터로 형질전환된 형질전환체에 관한 것이다. 본 발명의 피크로필러스 토리두스 유래 피로포스파타제는 PCR 반응 동안 발생되는 비특이적인 증폭 및 프라이머-다이머(primer-dimer)의 형성을 억제하기 위한 핫 스타트(hot start) PCR 반응혼합물 및 DNA 시퀀싱(sequencing)의 효율 증진 등의 분자생물학적 방법에 유용하게 이용될 수 있다.The present invention relates to a heat-resistant pyrophosphatase derived from Picrophilus torridus, a gene encoding the same, and a recombinant vector including the same. It relates to a heat-resistant pyrophosphatase having an amino acid sequence set forth in SEQ ID NO: 2, a gene encoding the same, a recombinant vector comprising the gene, and a transformant transformed with the recombinant vector. Pyrophyllus toridus-derived pyrophosphatase of the present invention is a hot start PCR reaction mixture and DNA sequencing for inhibiting nonspecific amplification and primer-dimer formation that occur during PCR reactions. It can be usefully used for molecular biological methods such as enhancing the efficiency of the).

피로포스파타제, 피크로필러스 토리두스, 피로포스페이트 Pyrophosphatase, Pyrophyllus torridus, Pyrophosphate

Description

피크로필러스 토리두스 유래의 내열성 피로포스파타제{Thermostable Pyrophosphatase from Picrophilus torridus}Heat-resistant pyrophosphatase derived from Pyrophyllus torsidus {Thermostable Pyrophosphatase from Picrophilus torridus}

도 1은 피크로필러스 토리두스(Picrophilus torridus) 유래 피로포스파타제(이하, "PPase"라 약칭함)의 아미노산 서열을 다른 종 유래 PPase의 아미노산 서열과 비교한 것이다.FIG. 1 compares the amino acid sequence of Pyrophilus torridus-derived pyrophosphatase (hereinafter abbreviated as "PPase") with that of other species-derived PPases.

Pto; 피크로필러스 토리두스 유래 PPase(서열번호 2),Pto; Pyrophyllus tordus derived PPase (SEQ ID NO: 2),

Tae; 써모플라즈마 애시도필리움 유래 PPase(서열번호 4),Tae; Thermoplasma ashdophylium-derived PPase (SEQ ID NO: 4),

Mth; 메타노피루스 칸들레리 유래 PPase(서열번호 5),Mth; PPase (SEQ ID NO: 5) derived from Metanopyrus candelli,

Pho; 파이로코쿠스 호리코시 유래 PPase(서열번호 6),Pho; Pyrococcus horikoshi derived PPase (SEQ ID NO: 6),

Tli; 써모코쿠스 리토랄리스 유래 PPase(서열번호 7),Tli; Thermococcus littoralis-derived PPase (SEQ ID NO: 7),

Tth; 써머스 써머필러스 유래 PPase(서열번호 8),Tth; PPase from Thermos Thermophilus (SEQ ID NO: 8),

*; 아미노산 서열 보존 부위*; Amino acid sequence conservation site

도 2는 5'-말단 및 3'-말단에 각각 EcoRⅠ과 XhoⅠ 제한효소 인식부위를 갖는 피크로필러스 토리두스 유래 PPase 유전자의 ORF(open reading frame) 염기서열(서열번호 3)을 나타낸 것이다.Figure 2 shows the ORF (open reading frame) sequence (SEQ ID NO: 3) of the Pyclophilus toridus-derived PPase gene having EcoRI and XhoI restriction enzyme recognition sites at the 5'-end and 3'-end, respectively.

도 3은 유전자 합성을 통해 얻은 피크로필러스 토리두스 유래 PPase 유전자 DNA를 전기 영동한 결과이다.Figure 3 is the result of electrophoresis of the Pyclophilus toridus derived PPase gene DNA obtained through gene synthesis.

도 4는 피크로필러스 토리두스 유래 PPase 유전자를 발현 벡터에 라이게이션(ligation)하여 대장균에서 피크로필러스 토리두스 유래 PPase를 생산하기 위한 재조합 플라스미드 pPROP의 개략도이다.FIG. 4 is a schematic diagram of the recombinant plasmid pPROP for producing Pyclophilus torridus-derived PPase in Escherichia coli by ligation of the Pyclophilus torridus-derived PPase gene into an expression vector.

도 5는 피크로필러스 토리두스 유래 PPase를 정제 단계별로 SDS-PAGE 전기영동한 결과를 보여주는 사진이다.Figure 5 is a photograph showing the results of the SDS-PAGE electrophoresis step of purification of Pyclophilus toridus-derived PPase.

레인 1; 단백질 분자량 마커,Lane 1; Protein molecular weight markers,

레인 2; 대장균에서 Pto PPase 유전자를 발현시키지 않은 샘플을 고주파음 분해로 파쇄시킨 시료,Lane 2; A sample in which E. coli was not pulverized by a sample that did not express the Pto PPase gene,

레인 3; 대장균에서 Pto PPase 유전자를 발현시킨 샘플을 고주파음 분해로 파쇄시킨 시료,Lane 3; A sample in which the sample expressing the Pto PPase gene in Escherichia coli was disrupted by high frequency sonication,

레인 4; 레인 3의 시료를 75℃에서 30분간 열처리하여 대장균 유래의 단백질을 원심분리에 의해 제거한 시료,Lane 4; A sample of lane 3 was heat-treated at 75 ° C. for 30 minutes to remove E. coli-derived protein by centrifugation,

레인 5; 레인 4의 샘플을 Ni-NTA 컬럼 크로마토그래피로 정제한 시료Lane 5; Sample of lane 4 purified by Ni-NTA column chromatography

도 6은 정제된 피크로필러스 토리두스 유래 PPase의 온도에 따른 상대적인 활성을 보여주는 그래프이다.Figure 6 is a graph showing the relative activity according to the temperature of the purified Pyrophyllus toridus-derived PPase.

도 7은 정제된 피크로필러스 토리두스 유래 PPase의 pH에 따른 상대적인 활성을 보여주는 그래프이다.7 is a graph showing the relative activity according to the pH of the purified Pyrophyllus toridus-derived PPase.

●; 시트르산염 완충액, △; Tris-HCl 완충액, ■; 글리신-NaOH 완충액●; Citrate buffer, Δ; Tris-HCl buffer, ■; Glycine-NaOH Buffer

도 8은 정제된 피크로필러스 토리두스 유래 PPase의 2가 양이온들에 따른 상대적인 활성을 보여주는 그래프이다.FIG. 8 is a graph showing the relative activity of the divalent cations of purified Pyrophyllus toryose derived PPase.

본 발명은 내열성 PPase 및 이를 이용한 피로포스페이트(pyrophosphate)의 분해 방법에 관한 것이다.The present invention relates to a heat-resistant PPase and a decomposition method of pyrophosphate using the same.

PPase는 피로포스페이트가 포스페이트로 가수분해되는 반응을 촉매하며, 세포의 에너지 대사와 관련하여 매우 중요한 역할을 하는 효소이다(Lahti, R., Microbiol. Rev. 47: 169-179, 1983). PPase는 박테리아, 효모, 식물 등에 널리 분포하며, 활성을 나타내기 위해서는 Mg2 + 등과 같은 2가의 양이온이 필요하다. PPase의 활성부위(active site) 구조나 촉매 기작은 여러 종에서 매우 잘 보존되어 있고, 촉매 작용은 인산화된 효소(phosphorylated enzyme)의 생성없이 진행된다.PPase catalyzes the reaction of pyrophosphate to hydrolyze into phosphates and is an enzyme that plays a very important role in the energy metabolism of cells (Lahti, R., Microbiol. Rev. 47: 169-179, 1983). PPase is a divalent cation, such as Mg 2 + is needed to indicate a bacterial, yeast, widely distributed and active like plant. The active site structure or catalytic mechanism of PPase is well preserved in many species, and catalysis proceeds without the production of phosphorylated enzymes.

PPase 중에서 고온에서도 활성을 유지하는 내열성 PPase는 PCR(polymerase chain reaction) 반응 과정에서 발생하는 비특이적 증폭 및 프라이머-다이머(primer-dimer)의 형성을 억제하기 위한 핫 스타트(hot start) PCR 반응혼합물에 이용가능하고, 염기서열을 결정하는 DNA 시퀀싱(sequencing)에도 적용 가능하며, 아울러 PCR에 의한 DNA 증폭시 DNA 중합효소와 함께 사용함으로써 DNA 중합반응에 의해 생성되는 피로포스페이트를 쉽게 제거하여 반응 효율을 높일 수 있다. 실제로 피로포스페이트와 PPase를 포함하는 핫 스타트 PCR 반응 혼합물은 비특이적 증폭산물의 생성이 억제되어 특이적 증폭산물만을 효과적으로 생성할 수 있으므로, 적은 사본(copy)의 DNA를 증폭시키거나, 여러 서열의 프라이머를 사용한 증폭, 또는 다수회 PCR 반응시 발생하는 비특이적 증폭산물의 억제에 유용하게 사용될 수 있다는 보고가 있다(대한민국 특허출원 제1999-0004361호). 이러한 내열성 PPase에 대한 연구는 주로 써모플라즈마(Thermoplasma), 써머스(Thermus), 써모코쿠스(Thermococcus) 속의 균주에서 수행되어 왔다.Heat-resistant PPase, which maintains its activity even at high temperatures, is used in hot start PCR reaction mixtures to suppress non-specific amplification and primer-dimer formation that occur during polymerase chain reaction (PCR) reactions. It can be applied to DNA sequencing to determine sequencing, and can be used together with DNA polymerase when amplifying DNA by PCR to easily remove pyrophosphate generated by DNA polymerization reaction to increase reaction efficiency. have. In fact, hot-start PCR reaction mixtures containing pyrophosphate and PPase can inhibit the production of non-specific amplification products, which can effectively produce only specific amplification products, thereby amplifying small copies of DNA, There is a report that it can be usefully used for the amplification used, or for suppressing non-specific amplification products generated during multiple PCR reactions (Korean Patent Application No. 1999-0004361). Studies on these heat-resistant PPases have been mainly carried out in strains of the genus Thermoplasma, Thermos, and Thermococcus.

그러나, 종래의 PPase들은 대부분 중온균 유래의 효소이므로 고온에서 반응시키는 핫 스타트 PCR 이나 DNA 시퀀싱 과정에서 쉽게 활성을 잃어버리게 되는 단점이 있다. 따라서, 고온에서도 안정적으로 활성을 유지하는 새로운 내열성 PPase의 개발이 요구되고 있으나, 중온균들로부터 생성되는 PPase의 연구에 비해 내열성 미생물 유래의 PPase에 관한 연구는 미미할 정도이다.However, the conventional PPases are mostly enzymes derived from mesophilic bacteria, so they have a disadvantage in that activity is easily lost during hot start PCR or DNA sequencing. Therefore, the development of a new heat-resistant PPase that is stable at high temperatures is required, but research on PPase derived from heat-resistant microorganisms is insignificant compared to the study of PPase produced from mesophilic bacteria.

한편, 피크로필러스 토리두스는 내열성 호산성 미생물(thermoacidophile)의 일종으로서, 전체 게놈(genome) 시퀀싱이 완료됨에 따라 PPase로 추정되는 유전자를 갖고 있음은 알려져 있지만(Fuetterer,O., et al., Proc. Natl. Acad. Sci. U.S.A. 101, 9091~9096, 2004; GenBank accession numbers AE017261), 아직 그 효소적 특성은 전혀 보고되어 있지 않다. 이에, 본 발명자들은 종래 PPase보다 더 높은 내열성을 갖는 PPase를 개발하기 위해 노력한 결과, 피크로필러스 토리두스 유래의 PPase가 종래의 다른 내열성 균주 유래의 PPase보다 더 높은 내열성을 갖는다는 것을 확인하고, 상기 효소를 다양한 분자생물학적 실험에 적용할 수 있음을 밝힘으로써 본 발명을 완성하였다.On the other hand, Pyclophilus toridus is a type of heat-resistant acidophilic microorganism (thermoacidophile), which is known to have a gene that is assumed to be PPase as the entire genome sequencing is completed (Fuetterer, O., et al. , Proc. Natl. Acad. Sci. USA 101, 9091-9096, 2004; GenBank accession numbers AE017261), yet no enzymatic properties have been reported. Accordingly, the present inventors have tried to develop a PPase having a higher heat resistance than the conventional PPase, and as a result, it was confirmed that the PPase derived from Pyclophilus toridus has a higher heat resistance than the PPase derived from other conventional heat resistant strains, The present invention has been completed by revealing that the enzyme can be applied to various molecular biological experiments.

본 발명의 목적은 피크로필러스 토리두스로부터 유래하며 고온에서 안정적인 활성을 갖는 PPase, 상기 효소를 코딩하는 유전자, 상기 유전자가 융합되어 있는 재조합 벡터 및 상기 재조합 벡터로 형질전환된 형질전환체를 제공하는 것이다.An object of the present invention is to provide a PPase, a gene encoding the enzyme, a recombinant vector to which the gene is fused, and a transformant transformed from the pyrophyllus torridus and having a stable activity at a high temperature. It is.

본 발명은 피크로필러스 토리두스로부터 유래하며 고온에서 안정적인 활성을 갖는 PPase를 제공한다.The present invention provides a PPase derived from Pyclophilus torridus and having stable activity at high temperatures.

본 발명의 내열성 PPase는 이미 내열성 PPase의 효소적 특성이 공지되어 있는 미생물, 바람직하게는 써모코쿠스 리토랄리스(PCT 출원번호 제PCT/US95/13662호) 유래의 내열성 PPase를 코딩하는 유전자 서열과 그 서열로부터 유추되는 아미노산 서열을 기초로 하여 여러 내열성 균주 유래의 서열에서 내열성 PPase로 추정되는 서열을 비교-검색함으로써 확보될 수 있다. 본 발명의 바람직한 실시예에 따르면, 피크로필러스 토리두스 유래로서 상기 써모코쿠스 리토랄리스 유래 내열성 PPase와 아미노산 서열 상동성 48.8%를 갖는 PPase를 특정 서열로 결정하였다(도 1 참조). 상기 PPase는 177개의 아미노산으로 이루어진 서열번호 2로 기재되는 아미노산 서열을 갖는다.The heat resistant PPase of the present invention comprises a gene sequence encoding a heat resistant PPase derived from a microorganism, preferably thermococcus littoralis (PCT Application No. PCT / US95 / 13662), in which the enzymatic properties of the heat resistant PPase are known. Based on the amino acid sequence inferred from the sequence, it can be secured by comparing and retrieving sequences presumed to be heat-resistant PPase in sequences from various heat-resistant strains. According to a preferred embodiment of the present invention, a thermophilic PPase derived from Pyclophilus torridus and a PPase having an amino acid sequence homology of 48.8% as a specific sequence was determined (see FIG. 1). The PPase has an amino acid sequence set forth in SEQ ID NO: 2 consisting of 177 amino acids.

본 발명의 바람직한 실시예에 따르면, 상기 피크로필러스 토리두스로부터 유래 PPase는 약 23,900 Da의 분자량을 가지고(도 5 참조), 65℃ 내지 85℃의 온도 범위에서 효소 활성을 나타내며, 80℃에서 가장 최적의 활성을 보인다(도 6 참조). 또한, pH 7.0 내지 9.0의 넓은 범위에서 활성을 보이고, pH 7.5에서 최적의 활성을 나타낸다(도 7 참조). 아울러, 최적의 활성을 나타내기 위해서는 2가 양이온이 반드시 필요하며, 그 중 마그네슘이 가장 최적 활성을 보인다(도 8 참조).According to a preferred embodiment of the present invention, the PPase derived from the Pyclophilus torridus has a molecular weight of about 23,900 Da (see Fig. 5), exhibits enzymatic activity in the temperature range of 65 ℃ to 85 ℃, at 80 ℃ Show the most optimal activity (see FIG. 6). In addition, it shows activity in a wide range of pH 7.0 to 9.0, and shows optimal activity at pH 7.5 (see FIG. 7). In addition, divalent cations are necessary to exhibit optimal activity, of which magnesium exhibits the most optimal activity (see FIG. 8).

또한, 본 발명은 상기 피크로필러스 토리두스로부터 유래 PPase를 코딩하는 유전자를 제공한다.The present invention also provides a gene encoding a PPase derived from the Pyclophilus torridus.

본 발명의 유전자는 서열번호 2로 기재되는 피크로필러스 토리두스로부터 유래 PPase를 코딩할 수 있는 모든 염기서열을 포함하며, 이 중에서 서열번호 1로 기재되는 염기서열을 갖는 것이 바람직하다. 상기 유전자는 이후의 클로닝 및 형질전환을 용이하게 하기 위하여, 그 5'-말단 및/또는 3'-말단에 특정한 제한효소 인식부위를 포함할 수도 있다. 본 발명의 바람직한 실시예에 따르면, 상기 유전자의 5'-말단 및 3'-말단에 각각 제한효소 EcoRI과 XhoI 부위를 갖는 서열번호 3으로 기재되는 염기서열을 갖는 549 bp 길이의 유전자를 합성하였다. 상기 유전자를 제조하기 위해서는 통상의 분자생물학적 방법이 제한없이 사용될 수 있으며, 본 발명의 바람직한 실시예에서는 LCR(ligase chain reaction) 방법에 의해 상기 유전자를 합성하였다(도 2 및 도 3 참조).The gene of the present invention includes all nucleotide sequences capable of encoding a PPase derived from Pyrophyllus torridus as described in SEQ ID NO: 2, and preferably has a nucleotide sequence shown in SEQ ID NO: 1. The gene may comprise restriction enzyme recognition sites specific for its 5'- and / or 3'-ends to facilitate subsequent cloning and transformation. According to a preferred embodiment of the present invention, a gene having a length of 549 bp having a nucleotide sequence described in SEQ ID NO: 3 having restriction enzymes EcoRI and XhoI sites at the 5'-end and 3'-end of the gene, respectively, was synthesized. Conventional molecular biology methods can be used to prepare the gene without limitation, and in a preferred embodiment of the present invention, the gene was synthesized by a ligase chain reaction method (see FIGS. 2 and 3).

또한, 본 발명은 상기 유전자를 포함하는 재조합 벡터를 제공한다.The present invention also provides a recombinant vector comprising the gene.

본 발명의 재조합 벡터는 일반적인 발현용 벡터, 바람직하게는 대장균 균주 발현용 벡터에 상기 서열번호 2로 기재되는 펩타이드를 코딩하는 유전자를 삽입함으로써 제조될 수 있다. 본 발명의 바람직한 실시예에서는 대장균 발현용 벡터로 pET22b를 사용하였지만 반드시 이에 한정되는 것은 아니며, 일반적으로 사용할 수 있는 모든 종류의 발현용 벡터가 제한없이 사용될 수 있다. 본 발명의 바람직한 실시예에서는 대장균 균주 발현용 벡터인 pET22b 벡터를 사용하여 서열번호 3으로 기재되는 피크로필러스 토리두스로부터 유래 PPase를 코딩하는 유전자를 포함하는 DNA 절편을 삽입하여 재조합 벡터를 제조하였으며, 이를 "pPROP"라 명명하였다(도 4 참조).The recombinant vector of the present invention can be prepared by inserting a gene encoding the peptide described in SEQ ID NO: 2 in a general expression vector, preferably E. coli strain expression vector. In a preferred embodiment of the present invention, pET22b is used as an E. coli expression vector, but is not necessarily limited thereto, and all kinds of expression vectors that can be generally used may be used without limitation. In a preferred embodiment of the present invention, a recombinant vector was prepared by inserting a DNA fragment containing a gene encoding a PPase derived from Pyrophyllus tordus as set forth in SEQ ID NO: 3 using the pET22b vector, which is an E. coli strain expression vector. This was named "pPROP" (see Figure 4).

또한, 본 발명은 상기 재조합 벡터로 형질전환된 형질전환체를 제공한다.The present invention also provides a transformant transformed with the recombinant vector.

상기 형질전환체는 상기 제조합 벡터를 임의의 숙주 세포, 바람직하게는 대장균 세포에 도입함으로써 용이하게 제조될 수 있다. 본 발명의 바람직한 실시예에서는 pPROP 벡터를 대장균 균주 DH5α 및 BL21(DE3)에 도입한 형질전환체를 제조하였다. 본 발명자들은 PPase 활성이 높은 재조합 대장균 균주를 "BL21(DE3)/pPROP"라 명명하고, 2006년 10월 18일자로 한국생명공학연구원 생물자원센터에 기탁하였다(기탁번호: KCTC 11003BP).The transformant can be readily prepared by introducing the preparation vector into any host cell, preferably E. coli cells. In a preferred embodiment of the present invention, a transformant having a pPROP vector introduced into E. coli strains DH5α and BL21 (DE3) was prepared. The inventors named the recombinant Escherichia coli strain having high PPase activity as "BL21 (DE3) / pPROP", and deposited it on October 18, 2006 to the Korea Institute of Bioscience and Biotechnology Resource Center (Accession Number: KCTC 11003BP).

또한, 본 발명은 상기 형질전환 세포를 이용하여 피크로필러스 토리두스로부터 유래 PPase를 생산하는 방법을 제공한다.In addition, the present invention provides a method for producing PPase derived from Pyrophyllus toryose using the transformed cells.

상기 피크로필러스 토리두스로부터 유래 PPase는 상기 형질전환 세포를 적절한 배지에서 배양하거나, 또는 상기 형질전환 세포를 임의의 동물에 도입한 후 생체내에서 배양하는 등의 방법으로 용이하게 발현 및 대량 생산할 수 있다. 본 발명의 바람직한 실시예에서는 pET22b 벡터에 피크로필러스 토리두스로부터 유래 PPase 유전자를 삽입시킨 재조합 발현벡터 pPROP를 대장균 균주 BL21(DE3)에 도입하여 형질전환체를 만들고, 이를 적절한 배지에서 배양함으로서 피크로필러스 토리두스로부터 유래 PPase를 발현 및 정제하였다(도 5 참조).PPase derived from the Pyclophilus toridus can be easily expressed and mass-produced by culturing the transformed cells in an appropriate medium, or introducing the transformed cells into any animal and then culturing in vivo. Can be. In a preferred embodiment of the present invention, the recombinant expression vector pPROP, in which the PPase gene derived from Pyrophyllus tordus is inserted into the pET22b vector, is introduced into Escherichia coli strain BL21 (DE3) to make a transformant, and the resulting peak is cultured in an appropriate medium. PPase derived from Rophyllus torytus was expressed and purified (see FIG. 5).

본 발명의 피크로필러스 토리두스 유래 PPase는 고온, 바람직하게는 80℃ 이상의 온도에서도 안정적으로 활성을 유지할 수 있으므로, 다양한 분자생물학적 실험 과정, 예컨대 핫 스타트 PCR 반응시 비특이적 증폭산물을 억제하기 위한 용도 등에 유용하게 사용될 수 있다. 아울러, 상기 유전자 조작, 형질전환 등과 관련되는 일반적인 분자생물학적 실험 방법은 공지의 방법, 예를 들면 샘브룩 등의 "분자 클로닝"(Sambrook, J. 등 (1989) Molecular Cloning. A laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory. Cold Spring Harbor. New York), 오스벨 등의 "분자생물학에서의 간단한 프로토콜"(Ausubel, F. 등 (1995) Short Protocols in Molecular Biology. 3rd. John &Wiley Sons, Inc.) 등의 방법에 따라 용이하게 수행될 수 있다.Pyclophilus torridus-derived PPase of the present invention can stably maintain activity even at a high temperature, preferably at a temperature of 80 ° C. or higher, and thus is used for inhibiting non-specific amplification products in various molecular biological experiments, such as a hot start PCR reaction. It can be usefully used. In addition, general molecular biological experimental methods related to the genetic manipulation, transformation, etc. are known methods, for example, "molecular cloning" of Sambrook et al. (Sambrook, J. et al. (1989) Molecular Cloning. A laboratory Manual. Cold Spring Harbor Laboratory.Cold Spring Harbor.New York), Osbel et al., "Simple Protocols in Molecular Biology" (Ausubel, F. et al. (1995) Short Protocols in Molecular Biology.3rd.John & Wiley Sons, Inc.). It can be performed easily according to the method such as).

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 하기 실시예에 의해 본 발명의 범위가 한정되지 않는다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.However, the following examples are only for explaining the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by the following examples. .

<실시예 1> 새로운 내열성 PPase 유전자의 선별Example 1 Selection of New Heat-Resistant PPase Gene

이미 내열성 PPase의 효소적 특성이 공지되어 있는 써모코쿠스 리토랄리스 유래의 PPase를 코딩하는 유전자 서열과 그 서열로부터 유추되는 아미노산 서열을 기준으로, 미국 국립 생명공학정보센터 홈페이지(http://www.ncbi.nlm.nih.gov/)의 인터넷 프로그램인 블라스트 서치(blast search)를 이용하여 여러 균주 유래의 전체 게놈 서열에서 PPase로 추정되는 서열들을 확보하였다. 그 중에서 내열성이 높 은 균주 유래로서, 이미 효소적 특성이 밝혀져 있는 PPase와 상이한 서열을 갖는 유전자들을 선별하였다.The US National Biotechnology Information Center homepage (http: // www) is based on the gene sequence encoding the PPase derived from Thermococcus litoralis and the amino acid sequence deduced from the sequence. blast search, an Internet program of .ncbi.nlm.nih.gov /), was used to obtain sequences presumed to be PPase in the entire genome sequence from various strains. Among them, genes having a sequence different from that of PPase, which had already been identified as an enzyme having high heat resistance, were selected.

그 결과, 상기 써모코쿠스 리토랄리스 유래 PPase와 유전자 서열 상동성 0%, 아미노산 서열 상동성 48.8%를 갖는 피크로필러스 토리두스 유래 PPase를 특정 서열로 결정하였다. 추정된 유전자는 종지코돈을 포함하여 총 534 bp로서 서열번호 1로 기재되는 염기서열을 가지며, 서열번호 2로 기재되는 177개의 아미노산으로 구성된 단백질을 코딩한다. 또한, 도 1에 나타난 바와 같이, 아미노산 서열 비교 결과 피크로필러스 토리두스 유래 PPase는 고온균에 속하는 써머플라즈마 액시도필리움 유래 PPase와는 53%, 써머스 써머필러스 유래 PPase와는 37%의 아미노산 상동성을 갖는다.As a result, the Pyclophyllus toricose-derived PPase having 0% gene sequence homology and 48.8% amino acid sequence homology with the thermococcus littoralis-derived PPase was determined as a specific sequence. The putative gene has a nucleotide sequence as set out in SEQ ID NO: 1 with a total of 534 bp including the stop codon, and encodes a protein consisting of 177 amino acids set forth in SEQ ID NO: 2. In addition, as shown in FIG. 1, as a result of comparing the amino acid sequences, the Pyclophilus torridus-derived PPase is 53% of the thermoplasma axidophylium-derived PPase belonging to the high temperature bacteria and 37% of the amino acid thermophilus-derived PPase Have the same sex.

<실시예 2> 피크로필러스 토리두스 유래 PPase 유전자의 분리<Example 2> Isolation of Pyclophilus torilose-derived PPase gene

상기 실시예 1에서 확정한 피크로필러스 토리두스 유래 PPase 유전자의 5'-말단 및 3'-말단에 각각 제한효소 EcoRI과 XhoI 부위를 갖는 서열번호 3으로 기재되는 염기서열을 갖는 549 bp 길이의 유전자를 합성하기 위하여, 로리랄드와 리의 LCR 방법(Rouillard, J. M., and Lee, W., Nucleic Acids Research, 2004, Vol.32, 176-180)을 약간 변형하여 다음과 같이 실시하였다. 상기 서열번호 3으로 기재되는 유전자는 서열번호 1의 5' 말단에 EcoRI 인식 부위를 추가하고, 3' 말단에 존재하는 종결코돈인 tga 염기서열을 제거한 후 XhoI 인식 부위를 추가함으로써 제조된다. 이때, 상기에서 제거된 tga 종결코돈은 벡터내에 존재하는 것을 사용하게 된다. 상기 LCR 방법은 주형(template) 유전자 없이 유전자를 합성해 낼 수 있는 기 술로서, 코돈(codon) 최적화를 통한 효율적인 발현을 얻을 수 있다.549 bp in length having the nucleotide sequence described in SEQ ID NO: 3 having the restriction enzymes EcoRI and XhoI sites at the 5'- and 3'-terminals of the Pyclophilus torridus-derived PPase gene, as confirmed in Example 1, respectively. In order to synthesize the gene, the LCR method of Lauricard and Lee (Rouillard, JM, and Lee, W., Nucleic Acids Research, 2004, Vol. 32, 176-180) was modified as follows. The gene described in SEQ ID NO: 3 is prepared by adding an EcoRI recognition site to the 5 'end of SEQ ID NO: 1, removing the tga base sequence which is a stop codon present at the 3' end, and then adding the XhoI recognition site. At this time, the tga stop codon removed above will be used in the vector. The LCR method is a technology capable of synthesizing a gene without a template gene, and thus, efficient expression may be obtained through codon optimization.

이를 위하여, 목적 유전자인 서열번호 3으로 기재되는 염기서열을 제조하기 위하여, 인터넷 프로그램인 진2올리고(http://berry.engin.umich.edu/ gene2oligo/, Rouillard, J. M., and Lee, W., Nucleic Acids Res., 2004, Vol.32, 176-180)를 이용하여 Tm 값이 57℃로 동일하게 되도록 5'-말단에 포스페이트(5'-phosphate)로 수식한 41개의 올리고머를 설계하였다(도 2, 서열번호 9 내지 서열번호 49). 상기 올리고머들을 각각 5 pmole씩 희석하고 Tfi 리가아제(ligase, bioneer사 제품, 한국)를 이용하여 94℃에서 2분(1 cycle), 94℃에서 30초, 57℃에서 4분(40 cycles)의 조건으로 LCR을 수행하였다.To this end, in order to prepare the nucleotide sequence described in SEQ ID NO: 3 of the target gene, the Internet program Jin 2 oligo (http://berry.engin.umich.edu/gene2oligo/, Rouillard, JM, and Lee, W. , Nucleic Acids Res., 2004, Vol. 32, 176-180), designed 41 oligomers modified with 5'-phosphate at the 5'-end so that the Tm value was the same at 57 ° C. 2, SEQ ID NO: 9 to SEQ ID NO: 49). Dilute the oligomers by 5 pmole each and use Tfi ligase (ligase, manufactured by Bioneer, Korea) for 2 minutes at 94 ° C, 30 seconds at 94 ° C, and 4 minutes (40 cycles) at 57 ° C. LCR was performed under conditions.

다음으로, LCR 생성물을 주형 DNA로 하고 서열번호 9 및 서열번호 49로 기재되는 올리고머를 각각 전방 및 후방 프라이머로 사용하여 PCR을 수행하였다. 실험 방법은 94℃에서 5분간 주형 DNA를 변성시킨 후, Tag 폴리머라제 2.5 유니트를 첨가하여 94℃에서 40초, 57℃에서 40초, 72℃에서 40초의 순서로 30회 반복 수행한 후, 72℃에서 5분 동안 중합 반응을 길게 수행하였다. 반응이 끝난 후 0.6% 아가로즈(agarose) 젤에 전기영동하여 전개된 젤상에서 원하는 크기의 DNA에 해당하는 부분을 추출하고(도 3), 젤 정제 키트(gel purification kit, bioneer사 제품, 한국)를 이용하여 피크로필러스 토리두스 유래 PPase 유전자를 정제하였다.Next, PCR was performed using the LCR product as template DNA and the oligomers set forth in SEQ ID NO: 9 and SEQ ID NO: 49 as the front and back primers, respectively. Experimental method was denatured template DNA for 5 minutes at 94 ℃, and then repeated 30 times in the order of 40 seconds at 94 ℃, 40 seconds at 57 ℃, 40 seconds at 72 ℃ by adding 2.5 units of Tag polymerase 72 The polymerization was carried out for a long time at 5 ° C. After completion of the reaction by electrophoresis on a 0.6% agarose (agarose) gel to extract the portion corresponding to the DNA of the desired size on the developed gel (Fig. 3), gel purification kit (gel purification kit, bioneer, Korea) Pyrophyllus toryose-derived PPase gene was purified using.

<실시예 3> 피크로필러스 토리두스 유래 PPase 유전자의 클로닝<Example 3> Cloning of Pyclophilus torilose PPase Gene

상기 실시예 2에서 정제된 목적 DNA 단편을 EcoRI 및 XhoI 제한효소로 절단하였다. 절단된 DNA 단편을 EcoRI 및 XhoI으로 절단한 플라스미드 pET22b(Novagen 사 제품, 독일)와 연결하여 플라스미드 "pPROP"(5.9 kb)를 제조하였다. 플라스미드 pPROP는 차례대로 T7-Lac 융합 프로모터, 피크로필러스 토리두스 유래 PPase 구조유전자 및 T7 전사종결자로 이루어져 있다. 재조합 발현 벡터인 pPROP의 염색지도를 도 4에 나타내었다.The target DNA fragment purified in Example 2 was digested with EcoRI and XhoI restriction enzymes. The cleaved DNA fragment was ligated with plasmid pET22b (Novagen, Germany) digested with EcoRI and XhoI to prepare plasmid "pPROP" (5.9 kb). Plasmid pPROP, in turn, consists of a T7-Lac fusion promoter, a Pyclophilus toricose-derived PPase structural gene, and a T7 transcription terminator. 4 shows a staining map of the recombinant expression vector pPROP.

<실시예 4> 형질전환체의 제조Example 4 Preparation of Transformant

CaCl2 방법에 따라 상기 실시예 3에서 제조한 플라스미드 pPROP를 대장균 DH5α(recA1 endA1 gyrA96 thi1 hsdR17 supE44 relA1 lacZ M15, invitrogen사 제품, 미국)에 형질전환시켰다. 이를 위하여, 먼저 LB 배지(0.5% 효모추출물, 1% 박토-트립톤, 0.5% 염화나트륨) 3 ㎖에 대장균 DH5α를 접종하고 37℃에서 12시간 동안 진탕배양하였다. 상기 배양액 200 ㎕를 다시 새로운 LB 배지 20 ㎖에 접종한 후 600 nm에서 배양액의 흡광도(OD600)가 0.5가 될 때까지 37℃에서 2~3시간 동안 진탕배양하였다. 그 후, 20 ㎖의 상기 배양액을 4℃에서 8,000 rpm으로 10분간 원심분리하여 세포 침전물을 얻은 후, 여기에 4℃로 미리 냉각한 50 mM CaCl2 용액을 5 ㎖ 첨가하여 4℃에서 10분간 방치하였다. 4℃에서 8,000 rpm으로 10분간 원심분리하여 CaCl2 용액을 제거한 후, CaCl2 용액 5 ㎖을 다시 넣고 상기와 같은 방법으로 한번 더 CaCl2 용액을 제거하였다. 여기에 50 mM CaCl2 2 ㎖과 45% 글리세롤 용액 1 ㎖을 첨가하여 4℃에서 30분 이상 방치하였고, 이를 에펜도르프(Eppendorf) 튜브에 100 ㎕씩 분주하여 형질전환을 위한 균주로 사용하였다. 상기 형질전환용 균주는 -70℃에 보관하여 사용하였다.The plasmid pPROP prepared in Example 3 was transformed into Escherichia coli DH5α (recA1 endA1 gyrA96 thi1 hsdR17 supE44 relA1 lacZ M15, manufactured by invitrogen, USA) according to the CaCl 2 method. To this end, first, E. coli DH5α was inoculated in 3 ml of LB medium (0.5% yeast extract, 1% bacto-tryptone, 0.5% sodium chloride) and shaken at 37 ° C for 12 hours. 200 μl of the culture was inoculated again in 20 ml of fresh LB medium, followed by shaking culture at 37 ° C. for 2-3 hours until the absorbance (OD 600 ) of the culture solution became 600 at 600 nm. Thereafter, 20 ml of the culture solution was centrifuged at 4 ° C. at 8,000 rpm for 10 minutes to obtain a cell precipitate, and then, 5 ml of a 50 mM CaCl 2 solution pre-cooled at 4 ° C. was added thereto and left at 4 ° C. for 10 minutes. It was. Separating 10 minutes and centrifuged at 8,000 rpm in 4 ℃ After removal of the CaCl 2 solution, the CaCl 2 solution put back 5 ㎖ was removed once more CaCl 2 solution in the same manner as described above. 2 ml of 50 mM CaCl 2 and 1 ml of 45% glycerol solution were added thereto, and left at 4 ° C. for at least 30 minutes, and 100 µl of this was dispensed into an Eppendorf tube and used as a strain for transformation. The transformation strain was stored and used at -70 ℃.

형질전환을 위한 균주가 들어 있는 에펜도르프 튜브에 상기 실시예 3에서 제조한 플라스미드 pPROP를 넣어 대장균 DH5α에 1차 형질전환을 하였고, 형질전환된 대장균 DH5α/pPROP를 액체 배양하여 플라스미드 pPROP를 증폭하였다. 증폭한 플라스미드 pPROP를 피크로필러스 토리두스 유래 PPase를 안정적으로 대량 발현할 수 있는 균주인 대장균 BL21(DE3)에 상기와 동일한 CaCl2 방법으로 2차 형질전환을 수행하였다.The plasmid pPROP prepared in Example 3 was put into an Eppendorf tube containing a strain for transformation, and the first transformed to E. coli DH5α. The amplified plasmid pPROP was subjected to secondary transformation by Escherichia coli BL21 (DE3), a strain capable of stably mass-expressing Pyclophilus torydus-derived PPase, by the same CaCl 2 method.

<실시예 5> 형질전환된 균주의 선별Example 5 Selection of Transformed Strains

상기 실시예 4에서 형질전환된 균주 중 높은 PPase 활성을 갖는 균주를 선별하기 위하여, 균주들을 3 ㎖의 LBA 배지(LB + ampicillin 50 ㎕/㎖)에 각각 접종하여 전배양한 후, 상기 균주 배양액을 새로운 10 ㎖의 LBA 배지가 포함된 실험관에 5%의 농도로 접종하였다. 배양액의 흡광도(OD600)가 0.5일 때, 즉 균주가 대수기(exponential phase)에 있을 때 0.5 mM의 IPTG(isopropyl-D-thio-galactopyranoside)를 첨가하여 각 균주별로 시간별 균주의 생장(세포 회수)과 PPase 활성을 측정하였다.In order to select strains having high PPase activity among the strains transformed in Example 4, the strains were inoculated in 3 ml LBA medium (LB + ampicillin 50 μl / ml), respectively, and then pre-incubated, and the strain culture solution was The test tube containing fresh 10 ml of LBA medium was inoculated at a concentration of 5%. When the absorbance (OD 600 ) of the culture medium is 0.5, that is, when the strain is in the exponential phase, 0.5 mM IPTG (isopropyl-D-thio-galactopyranoside) is added, and the growth of the strain for each strain (cell recovery) ) And PPase activity were measured.

회수한 세포를 완충용액(50 mM Tris-HCl, pH 8.0/5 mM MgCl2)에 현탁한 후 고주파음 분해기(Ultrasonicator)를 이용하여 세포를 파쇄하였다. 파쇄된 세포를 원심분리(13,000 rpm, 20분)하여 상층액을 회수하고, 대장균 유래의 단백질을 제거하기 위해 75℃에서 30분간 열처리하였다. 열처리한 샘플을 원심분리(13,000 rpm, 20분)하여 회수된 상층액을 조효소액으로 이용하였다.The recovered cells were suspended in a buffer solution (50 mM Tris-HCl, pH 8.0 / 5 mM MgCl 2 ), and then the cells were disrupted by using an ultrasonicator. The crushed cells were centrifuged (13,000 rpm, 20 minutes) to recover the supernatant, and heat-treated at 75 ° C. for 30 minutes to remove E. coli-derived proteins. The heat-treated sample was centrifuged (13,000 rpm, 20 minutes), and the supernatant recovered was used as a crude enzyme solution.

상기 조효소액 100 ㎕에 기질인 피로포스페이트 용액을 400 ㎕ 첨가하여 (최종 기질농도: 0.32 mM) 65℃에서 10분간 반응시킨 후, 발색반응에 의한 포스페이트 함량을 측정하기 위해 포스페이트 반응용액(1% (NH4)6Mo7O24· 4H2O (w/v), 8% FeSO4· 7H2O(w/v), 0.83 M H2SO4)을 1 ㎖ 첨가하여 충분히 혼합하였고, 660 nm에서 흡광도를 측정하여 그 중 활성이 높은 균주를 선별하였다. 균주의 생장은 배양액을 기준으로 흡광도(OD600)에서 비교하여 측정하였다. 이때, PPase 효소 활성을 유니트(unit/㎖)로 표시하고, 1 유니트는 65℃에서 1분간 피로포스페이트로부터 40 nmole의 포스페이트로 생성하는 효소의 양으로 정의하였다.400 μl of a pyrophosphate solution as a substrate was added to 100 μl of the coenzyme solution (final substrate concentration: 0.32 mM) for 10 minutes at 65 ° C., and then a phosphate reaction solution (1% NH 4 ) 6 Mo 7 O 24 4H 2 O (w / v), 8% FeSO 4 · 7H 2 O (w / v), 0.83 MH 2 SO 4 ) was added 1 ml and mixed well, at 660 nm The absorbance was measured to select strains with high activity. Growth of the strain was measured by comparing the absorbance (OD 600 ) based on the culture. At this time, the PPase enzyme activity was expressed in units (unit / ㎖), 1 unit was defined as the amount of enzyme to produce 40 nmole of phosphate from pyrophosphate for 1 minute at 65 ℃.

본 발명자들은 상기에서 선별한 PPase 활성이 높은 재조합 대장균 균주를 "BL21(DE3)/pPROP"라 명명하고, 2006년 10월 18일자로 한국생명공학연구원 생물자원센터에 기탁하였다(기탁번호: KCTC 11003BP).The present inventors named the recombinant Escherichia coli strain having high PPase activity selected above as "BL21 (DE3) / pPROP" and deposited it at the Korea Research Institute of Bioscience and Biotechnology, October 18, 2006 (Accession No .: KCTC 11003BP). ).

<실시예 6> 피크로필러스 토리두스 유래 PPase 유전자의 최적발현 및 정제Example 6 Optimal Expression and Purification of Pyclophilus torridus-derived PPase Gene

상기 실시예 5에서 선별한 재조합 균주 BL21(DE3)/pPROP를 LBA 배지(ampicillin, 50 ㎍/㎖) 20 ㎖에 접종하여 37℃, 180 rpm으로 9시간 정도 전배양한 후, 500 ㎖의 LBA 배지(ampicillin, 50 ㎍/㎖)에 각각 1, 3, 5% 접종하여 본 배양을 수행하였다. 본 배양 중, 배양액의 흡광도(OD600)가 각각 0.2, 0.6, 0.8일 때 최종 농도 0.1, 0.5, 1.0 mM의 IPTG를 첨가하여 시간별 배양하면서 PPase 유전자를 발현시켰다. 그 결과, 본 배양시 1% 접종, 배양액의 흡광도가 0.6일 때, 최종 농 도 0.1 mM의 IPTG를 첨가하였을 때 가장 최적의 발현을 나타내었다.The recombinant strain BL21 (DE3) / pPROP selected in Example 5 was inoculated into 20 ml of LBA medium (ampicillin, 50 μg / ml), preincubated at 37 ° C. and 180 rpm for about 9 hours, and then 500 ml of LBA medium. (ampicillin, 50 ㎍ / ㎖) was inoculated 1, 3, 5% respectively to perform the main culture. During the main culture, when the absorbance (OD 600 ) of the culture solution was 0.2, 0.6, and 0.8, respectively, the PPase gene was expressed while culturing with time by adding IPTG with final concentrations of 0.1, 0.5, and 1.0 mM. As a result, when the 1% inoculation of the culture, the absorbance of the culture was 0.6, the most optimal expression was obtained when IPTG of 0.1 mM final concentration was added.

PPase를 정제하기 위하여, 1 mM PMSF를 포함한 완충액(50 mM Tris-HCl, pH 8.0/5 mM MgCl2)으로 세포를 현탁시켜 고주파음 분해로 세포를 파쇄하고 원심분리하여 상층액을 회수하였다. 회수한 상층액을 75℃에서 30분간 열처리한 후, 또 다시 원심분리하여 대장균 유래 단백질을 제거하였다. 상층액을 용해용액(lysis buffer; 50 mM NaH2PO4, 300 mM NaCl, 10 mM C3H4N2(imidazole), pH 8.0)으로 평형화시킨 Ni-NTA 컬럼에 로딩한 후, 세척용액(washing buffer; 50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8.0)으로 결합하지 않은 단백질들을 충분히 세척하였다. 그런 다음, 이미다졸 농도를 50~300 mM까지 점차적으로 변화시키면서(gradient) 결합된 피크로필러스 토리두스 유래 PPase를 분리 및 정제하였다. 상기 실시예 5의 PPase 활성 측정 방법으로 용출된 분획들을 확인하여 24시간 정도 투석시킨 후 SDS-PAGE 전기영동을 수행하였다.In order to purify the PPase, the cells were suspended in a buffer containing 1 mM PMSF (50 mM Tris-HCl, pH 8.0 / 5 mM MgCl 2 ), the cells were disrupted by amplification and centrifuged to recover the supernatant. The recovered supernatant was heat-treated at 75 ° C. for 30 minutes, and then centrifuged again to remove E. coli-derived protein. The supernatant was loaded onto a Ni-NTA column equilibrated with lysis buffer (50 mM NaH 2 PO 4 , 300 mM NaCl, 10 mM C 3 H 4 N 2 (imidazole), pH 8.0), followed by washing ( washing unbound protein with washing buffer; 50 mM NaH 2 PO 4 , 300 mM NaCl, 20 mM imidazole, pH 8.0). Then, the bound Pyrophyllus toryose-derived PPase was isolated and purified while gradually changing the imidazole concentration to 50-300 mM. After confirming the fractions eluted by the method of measuring the PPase activity of Example 5 and dialyzed for about 24 hours, SDS-PAGE electrophoresis was performed.

그 결과, 도 5에 나타난 바와 같이, 피크로필러스 토리두스 유래 PPase는 분자량 약 23,900 Da의 서브유니트(subunit)를 갖는 것으로 나타났다.As a result, as shown in FIG. 5, the Pyclophilus torilus-derived PPase was found to have a subunit having a molecular weight of about 23,900 Da.

<실시예 7> 피크로필러스 토리두스 유래 PPase의 특성 조사<Example 7> Characterization of Pyclophilus torridus-derived PPase

<7-1> 최적 활성 온도<7-1> optimum active temperature

상기 실시예 6에서 정제한 피크로필러스 토리두스 유래 PPase를 이용하여 효소의 특성을 조사하였으며, 이때 효소의 활성은 상기 실시예 5의 방법에 따라 측정하였다. 정제된 피크로필러스 토리두스 유래 PPase의 최적 활성 온도를 측정하기 위하여, 온도범위를 40℃에서 99℃까지 5~10℃ 간격으로 조사하였다.The properties of the enzyme were examined using the Pyclophilus torridus-derived PPase purified in Example 6, wherein the activity of the enzyme was measured according to the method of Example 5. In order to determine the optimal activity temperature of the purified Pyclophilus torridus-derived PPase, the temperature range was investigated at intervals of 5 to 10 ° C. from 40 ° C. to 99 ° C.

그 결과, 도 6에 나타난 바와 같이, 65℃ 내지 85℃까지 다양한 효소 활성을 나타내었으며, 그 중 80℃에서 가장 최적의 활성을 보였다.As a result, as shown in Figure 6, it showed a variety of enzyme activity from 65 ℃ to 85 ℃, of which showed the most optimal activity at 80 ℃.

<7-2> 최적 활성 pH<7-2> optimum active pH

피크로필러스 토리두스 유래 PPase의 최적 활성 pH를 측정하기 위하여, pH 3.0~11.0 범위에서 0.4~1.0 간격으로 정제된 PPase 100 ㎕에 각각의 pH별 완충액을 50 mM 농도로 하여 섞은 후, 기질인 피로포스페이트 용액을 넣고 65℃에서 10분간 반응시켜 상기 실시예 5에 개시된 PPase 활성측정 방법으로 효소활성을 측정하였다. 이때 pH 3.0~6.0은 50 mM 시트르산염 완충액(citrate buffer)을, pH 6.0~8.0은 50 mM Tris-HCl 완충액을, pH 8.0~11.0은 글리신(glycine)-NaOH 완충액을 각각 이용하였다.In order to determine the optimal active pH of the Pyclophyllus todoridus-derived PPase, a buffer of each pH was mixed at 100 μl of PPase purified at an interval of 0.4 to 1.0 at a pH of 3.0 to 11.0 at a concentration of 50 mM, followed by The pyrophosphate solution was added and reacted at 65 ° C. for 10 minutes to measure enzymatic activity by the PPase activity measurement method described in Example 5. In this case, pH 3.0-6.0 was used as 50 mM citrate buffer, pH 6.0-8.0 was used as 50 mM Tris-HCl buffer, and pH 8.0-11.0 was used as glycine-NaOH buffer.

그 결과, 도 7에 나타난 바와 같이, 피크로필러스 토리두스 유래 PPase는 Tris-HCl 완충용액에서 높은 활성을 보였고, pH 7.0에서 9.0에 이르는 넓은 범위에서 활성을 나타내었으며, 그 중 pH 7.5에서 최적 활성을 나타내었다.As a result, as shown in Fig. 7, Pyclophilus torridus-derived PPase showed high activity in Tris-HCl buffer solution, and showed activity in a wide range ranging from pH 7.0 to 9.0, among which the optimum at pH 7.5 Activity was shown.

<7-3> 2가 양이온이 미치는 영향 측정<7-3> Measurement of the Effect of Divalent Cations

피크로필러스 토리두스 유래 PPase의 활성에 2가 양이온(MgCl2, ZnCl2, CoCl2, MnCl2, CuCl2, DTT, CaCl2, EDTA)이 미치는 영향을 조사하기 위하여 다음과 같은 실험을 수행하였다. 정제된 피크로필러스 토리두스 유래 PPase 효소액 100 ㎕와 50 mM Tris-HCl 완충액(pH 7.5) 혼합액에 최종 농도가 1~5 mM이 되도록 2가 양이온을 첨가하여 실온에서 1시간동안 방치한 후, 각각의 시료에 기질인 피로포스페이트 용액을 넣고 65℃에서 10분간 반응시켰다. 이후, 상기 실시예 5와 동일한 방법으로 PPase 활성을 측정하였다.In order to investigate the effects of divalent cations (MgCl 2 , ZnCl 2 , CoCl 2 , MnCl 2 , CuCl 2 , DTT, CaCl 2 , EDTA) on the activity of Pyclophilus torsidose-derived PPase, the following experiments were carried out: It was. After dilution cation was added to 100 μl of purified Pyrophyllus toridus-derived PPase enzyme solution and 50 mM Tris-HCl buffer (pH 7.5) such that the final concentration was 1-5 mM, and the mixture was left at room temperature for 1 hour. Pyrophosphate solution as a substrate was added to each sample and reacted at 65 ° C for 10 minutes. Thereafter, PPase activity was measured in the same manner as in Example 5.

그 결과, 도 8에 나타난 바와 같이, MgCl2, ZnCl2, CoCl2, MnCl2 및 CuCl2를 첨가한 경우에는 2가 양이온을 넣지 않고 효소반응을 진행한 대조군보다 높은 활성을 나타내었으며, 그 중 MgCl2를 사용한 경우 가장 높은 활성을 나타내었다.As a result, as shown in FIG. 8, when MgCl 2 , ZnCl 2 , CoCl 2 , MnCl 2 and CuCl 2 were added, the activity was higher than that of the control group without enzymatic reaction without divalent cation. The highest activity was obtained when MgCl 2 was used.

상기에서 살펴본 바와 같이, 본 발명의 피크로필러스 토리두스 유래 내열성 PPase는 종래 내열성 PPase보다 더 높은 온도에서 안정적으로 활성을 나타낼 수 있으므로, PCR 반응동안 발생되는 비특이적 증폭 및 프라이머-다이머 형성을 억제하기 위한 핫 스타트 PCR 반응혼합물에 이용 가능하고, 고온에서 반응하는 시퀀싱의 효율 증진에도 유용하게 사용될 수 있다.As described above, the pyrophyllus torridus-derived heat-resistant PPase of the present invention can stably exhibit activity at a higher temperature than the conventional heat-resistant PPase, thereby inhibiting non-specific amplification and primer-dimer formation generated during PCR reaction. It can be used for hot start PCR reaction mixtures, and can be usefully used to improve the efficiency of sequencing reacting at high temperature.

<110> Bioneer Corporation <120> Thermostable Pyrophosphatase from Picrophilus torridus <130> 2006DPA120 <160> 49 <170> KopatentIn 1.71 <210> 1 <211> 534 <212> DNA <213> Picrophilus torridus <400> 1 atggaaaaga atatgagcta ctggcaccag gtacctccag gcccaaaccc gcctgatgag 60 gtctatgttg tcgtggagat accaaaaggt gagaggaaca aatatgagat agcaaaggag 120 tttcccggca taaagcttga tagaataata tactcatcat atgtttatcc tcttgagtac 180 ggtttgatac cgcagaccta ttactctgat ggggatccaa tagatgcaat ggtctttatg 240 tcacagagca cctatccggg cgttatatta agggcaaaac cggtcggcat gatgaacatg 300 gttgattccg gggacgtcga taataaaatt atatgtgtgt gccttgatga ccctgtttat 360 tccaagataa ataactacag ggaaatacct gagcatgtat taaaggaaac cgagaacttc 420 tttgaaacat acaaaaaact gcaaaataaa gaggtaaagg ttaccggctg ggaaggccct 480 gataaggcca agcaggagat aaaaaaggca atagaagatt ataaaaaact atga 534 <210> 2 <211> 177 <212> PRT <213> Picrophilus torridus <400> 2 Met Glu Lys Asn Met Ser Tyr Trp His Gln Val Pro Pro Gly Pro Asn 1 5 10 15 Pro Pro Asp Glu Val Tyr Val Val Val Glu Ile Pro Lys Gly Glu Arg 20 25 30 Asn Lys Tyr Glu Ile Ala Lys Glu Phe Pro Gly Ile Lys Leu Asp Arg 35 40 45 Ile Ile Tyr Ser Ser Tyr Val Tyr Pro Leu Glu Tyr Gly Leu Ile Pro 50 55 60 Gln Thr Tyr Tyr Ser Asp Gly Asp Pro Ile Asp Ala Met Val Phe Met 65 70 75 80 Ser Gln Ser Thr Tyr Pro Gly Val Ile Leu Arg Ala Lys Pro Val Gly 85 90 95 Met Met Asn Met Val Asp Ser Gly Asp Val Asp Asn Lys Ile Ile Cys 100 105 110 Val Cys Leu Asp Asp Pro Val Tyr Ser Lys Ile Asn Asn Tyr Arg Glu 115 120 125 Ile Pro Glu His Val Leu Lys Glu Thr Glu Asn Phe Phe Glu Thr Tyr 130 135 140 Lys Lys Leu Gln Asn Lys Glu Val Lys Val Thr Gly Trp Glu Gly Pro 145 150 155 160 Asp Lys Ala Lys Gln Glu Ile Lys Lys Ala Ile Glu Asp Tyr Lys Lys 165 170 175 Leu <210> 3 <211> 549 <212> DNA <213> Picrophilus torridus <220> <221> misc_feature <222> (4)..(9) <223> EcoRI recognition site <220> <221> misc_feature <222> (542)..(547) <223> XhoI recognition site <400> 3 ccggaattcg atggaaaaga atatgagcta ctggcaccag gtacctccag gcccaaaccc 60 gcctgatgag gtctatgttg tcgtggagat accaaaaggt gagaggaaca aatatgagat 120 agcaaaggag tttcccggca taaagcttga tagaataata tactcatcat atgtttatcc 180 tcttgagtac ggtttgatac cgcagaccta ttactctgat ggggatccaa tagatgcaat 240 ggtctttatg tcacagagca cctatccggg cgttatatta agggcaaaac cggtcggcat 300 gatgaacatg gttgattccg gggacgtcga taataaaatt atatgtgtgt gccttgatga 360 ccctgtttat tccaagataa ataactacag ggaaatacct gagcatgtat taaaggaaac 420 cgagaacttc tttgaaacat acaaaaaact gcaaaataaa gaggtaaagg ttaccggctg 480 ggaaggccct gataaggcca agcaggagat aaaaaaggca atagaagatt ataaaaaact 540 actcgagcg 549 <210> 4 <211> 540 <212> DNA <213> Thermoplasma acidophilum DSM 1728 <400> 4 atggagagct tttatcattc ggttccagtt ggcccaaagc cgccagagga ggtctacgtc 60 atcgtagaga tcccaagggg aagcagggtg aagtacgaga tagccaagga ctttccgggc 120 atgctagttg acagggtgct ctattcatcc gttgtttatc ctgttgatta cggtctcatt 180 cccagaacgc tttattatga tggagatccc atggacgtga tggttctcat atcgcagccg 240 actttccccg gagccatcat gaaggtcagg cccatcggca tgatgaagat ggtggatcag 300 ggtgaaacgg acaataagat actcgcagtt ttcgacaagg atcccaatgt cagctacata 360 aaggatctga aggatgtcaa tgcccatctg cttgatgaga tagcaaactt cttctcaacg 420 tacaagatcc tggagaagaa ggagacaaag gttcttggat gggagggcaa ggaggctgcc 480 ctaaaggaga tagaagtgtc tattaagatg tatgaggaga aatacggaaa gaagaactag 540 540 <210> 5 <211> 531 <212> DNA <213> Methanopyrus kandleri AV19 <400> 5 atgatgaacc tctggaaaga cctggaaccg ggcccgaatc cacccgacgt agtgtacgcg 60 gtgatagaaa tcccacgtgg ctcgaggaac aagtacgagt acgacgaaga gcgtgggttc 120 ttcaagctgg accgagtact ctactcgccg ttccactatc cactggacta cgggtttatc 180 ccccgaacgc tgtacgacga cggtgacccc ctcgacatcc tggtgatcat gcaggacccc 240 acgttccccg gctgcgtgat cgaggcacga ccgatcggtc tgatgaagat gttggacgac 300 agcgaccagg acgacaaggt tctggcggtg cccactgagg acccccggtt caaggacgtt 360 aaggacctgg atgacgttcc caagcacctg ctcgacgaga tcgcccacat gttctccgag 420 tacaagcgac tggaaggcaa ggagaccgaa gtcctagggt gggaaggtgc ggacgccgct 480 aaggaagcca tagttcacgc gatagagctg tacgaggagg agcacgggtg a 531 <210> 6 <211> 537 <212> DNA <213> Pyrococcus horikoshii OT3 <400> 6 atgaacccat tccacgacct tgaacccgga ccaaacgttc cagaagttgt ttacgccctg 60 atagagatac cgaagggaag tagaaacaag tacgagctag ataaggaaac gggattgttg 120 aaattagata gggttctcta cacaccgttt cactacccag tagactacgg gataatacca 180 aggacatggt atgaagatgg agatcccttt gacatcatgg taattatgag ggaaccaacg 240 tatccactaa cgataataga ggccaggccg atcggactat ttaaaatgat agacagcgga 300 gataaggatt ataaggtact tgcagttcca gtcgaagatc catactttaa agactggaag 360 gatataagcg atgttcccaa ggcattctta gacgagatag cccacttctt caagaggtat 420 aaggaactcg aaggtaaaga gataatcgta gaaggatggg aaggggcaga agctgctaag 480 agggaaattt taagggctat agagatgtat aaggagaaat tcggcaagaa ggagtga 537 <210> 7 <211> 531 <212> DNA <213> Thermococcus litoralis <400> 7 atgaatccat tccacgattt agagcctgga ccggaagtac cggaagttgt ttacgcctta 60 atagagattc caaaggggag cagaaacaag tatgagcttg acaaaaagac cggccttata 120 aagctcgata gagttcttta cagcccattc cactacccgg tcgactatgg aatcatccca 180 caaacatggt acgatgatga cgacccgttt gacatcatgg tcataatgag ggagccaaca 240 tatccgggag ttcttattga ggcaagacca ataggcctct tcaagatgat agacagcggc 300 gacaaggact acaaggtatt ggcagttcca gtggaagatc cctactttaa tgactggaag 360 gacataagcg acgttccgaa ggctttcctt gacgagattg cgcacttctt ccagagatac 420 aaagagctcc aaggtaagga aatcattgtt gagggctggg aaaacgcaga gaaggcaaag 480 caagaaatac ttagggcaat agaactttac aaggagaaat tcaagaagtg a 531 <210> 8 <211> 528 <212> DNA <213> Thermus thermophilus <400> 8 atggcgaacc tgaagagcct tcccgtgggc gacaaggcgc ccgaggtggt ccacatggtc 60 attgaggtcc cccgcggctc gggcaacaag tacgagtacg acccggacct cggggcgatc 120 aagctggacc gggtcctgcc gggagcccag ttctaccccg gggactacgg cttcatcccc 180 tccaccctgg ccgaggacgg ggaccccttg gacggcctcg tcctctccac ctaccccctc 240 ctccccgggg tggtggtgga ggtccgggtg gtgggcctcc tcctcatgga ggacgagaag 300 ggcggggatg ccaaggtcat cggggtggtg gccgaggacc agcgcctgga ccacatccag 360 gacatcgggg acgtccccga gggcgtgaag caagagatcc agcacttctt tgagacctac 420 aaggccctcg aggccaagaa ggggaagtgg gtcaaggtca cgggctggcg ggaccggaag 480 gcggccttgg aggaggtccg ggcctgcatc gcccgctaca agggctag 528 <210> 9 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> primer R1 <400> 9 catcgaattc cgg 13 <210> 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer F1 <400> 10 ccggaattcg atggaaaaga atatgagc 28 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer R2 <400> 11 tggtgccagt agctcatatt cttttc 26 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer F2 <400> 12 tactggcacc aggtacctcc agg 23 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer R3 <400> 13 gcgggtttgg gcctggaggt acc 23 <210> 14 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer F3 <400> 14 cccaaacccg cctgatgagg tctat 25 <210> 15 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer R4 <400> 15 ctccacgaca acatagacct catcag 26 <210> 16 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer F4 <400> 16 gttgtcgtgg agataccaaa aggtga 26 <210> 17 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer R5 <400> 17 tcatatttgt tcctctcacc ttttggtat 29 <210> 18 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer F5 <400> 18 gaggaacaaa tatgagatag caaaggagt 29 <210> 19 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer R6 <400> 19 tatgccggga aactcctttg ctatc 25 <210> 20 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer F6 <400> 20 ttcccggcat aaagcttgat agaataa 27 <210> 21 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer R7 <400> 21 aacatatgat gagtatatta ttctatcaag ctt 33 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer F7 <400> 22 tatactcatc atatgtttat cctcttgagt ac 32 <210> 23 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer R8 <400> 23 gcggtatcaa accgtactca agaggata 28 <210> 24 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer F8 <400> 24 ggtttgatac cgcagaccta ttactctg 28 <210> 25 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer R9 <400> 25 ttggatcccc atcagagtaa taggtct 27 <210> 26 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer F9 <400> 26 atggggatcc aatagatgca atggt 25 <210> 27 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer R10 <400> 27 ctctgtgaca taaagaccat tgcatcta 28 <210> 28 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer F10 <400> 28 ctttatgtca cagagcacct atccggg 27 <210> 29 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer R11 <400> 29 gcccttaata taacgcccgg ataggtg 27 <210> 30 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer F11 <400> 30 cgttatatta agggcaaaac cggtcg 26 <210> 31 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer R12 <400> 31 atgttcatca tgccgaccgg tttt 24 <210> 32 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer F12 <400> 32 gcatgatgaa catggttgat tccgg 25 <210> 33 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer R13 <400> 33 attatcgacg tccccggaat caacc 25 <210> 34 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer F13 <400> 34 ggacgtcgat aataaaatta tatgtgtgtg 30 <210> 35 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer R14 <400> 35 gggtcatcaa ggcacacaca tataatttt 29 <210> 36 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer F14 <400> 36 ccttgatgac cctgtttatt ccaagat 27 <210> 37 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer R15 <400> 37 tccctgtagt tatttatctt ggaataaaca 30 <210> 38 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer F15 <400> 38 aaataactac agggaaatac ctgagcat 28 <210> 39 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer R16 <400> 39 cggtttcctt taatacatgc tcaggtatt 29 <210> 40 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer F16 <400> 40 gtattaaagg aaaccgagaa cttctttgaa a 31 <210> 41 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer R17 <400> 41 gcagtttttt gtatgtttca aagaagttct 30 <210> 42 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer F17 <400> 42 catacaaaaa actgcaaaat aaagaggtaa ag 32 <210> 43 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer R18 <400> 43 cagccggtaa cctttacctc tttatttt 28 <210> 44 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer F18 <400> 44 gttaccggct gggaaggccc tga 23 <210> 45 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer R19 <400> 45 gcttggcctt atcagggcct tcc 23 <210> 46 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer F19 <400> 46 taaggccaag caggagataa aaaagg 26 <210> 47 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer R20 <400> 47 tttttataat cttctattgc cttttttatc tcct 34 <210> 48 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer F20 <400> 48 caatagaaga ttataaaaaa ctactcgagc g 31 <210> 49 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> primer R21 <400> 49 cgctcgagta gt 12 <110> Bioneer Corporation <120> Thermostable Pyrophosphatase from Picrophilus torridus <130> 2006DPA120 <160> 49 <170> KopatentIn 1.71 <210> 1 <211> 534 <212> DNA <213> Picrophilus torridus <400> 1 atggaaaaga atatgagcta ctggcaccag gtacctccag gcccaaaccc gcctgatgag 60 gtctatgttg tcgtggagat accaaaaggt gagaggaaca aatatgagat agcaaaggag 120 tttcccggca taaagcttga tagaataata tactcatcat atgtttatcc tcttgagtac 180 ggtttgatac cgcagaccta ttactctgat ggggatccaa tagatgcaat ggtctttatg 240 tcacagagca cctatccggg cgttatatta agggcaaaac cggtcggcat gatgaacatg 300 gttgattccg gggacgtcga taataaaatt atatgtgtgt gccttgatga ccctgtttat 360 tccaagataa ataactacag ggaaatacct gagcatgtat taaaggaaac cgagaacttc 420 tttgaaacat acaaaaaact gcaaaataaa gaggtaaagg ttaccggctg ggaaggccct 480 gataaggcca agcaggagat aaaaaaggca atagaagatt ataaaaaact atga 534 <210> 2 <211> 177 <212> PRT <213> Picrophilus torridus <400> 2 Met Glu Lys Asn Met Ser Tyr Trp His Gln Val Pro Pro Gly Pro Asn   1 5 10 15 Pro Pro Asp Glu Val Tyr Val Val Val Glu Ile Pro Lys Gly Glu Arg              20 25 30 Asn Lys Tyr Glu Ile Ala Lys Glu Phe Pro Gly Ile Lys Leu Asp Arg          35 40 45 Ile Ile Tyr Ser Ser Tyr Val Tyr Pro Leu Glu Tyr Gly Leu Ile Pro      50 55 60 Gln Thr Tyr Tyr Ser Asp Gly Asp Pro Ile Asp Ala Met Val Phe Met  65 70 75 80 Ser Gln Ser Thr Tyr Pro Gly Val Ile Leu Arg Ala Lys Pro Val Gly                  85 90 95 Met Met Asn Met Val Asp Ser Gly Asp Val Asp Asn Lys Ile Ile Cys             100 105 110 Val Cys Leu Asp Asp Pro Val Tyr Ser Lys Ile Asn Asn Tyr Arg Glu         115 120 125 Ile Pro Glu His Val Leu Lys Glu Thr Glu Asn Phe Phe Glu Thr Tyr     130 135 140 Lys Lys Leu Gln Asn Lys Glu Val Lys Val Thr Gly Trp Glu Gly Pro 145 150 155 160 Asp Lys Ala Lys Gln Glu Ile Lys Lys Ala Ile Glu Asp Tyr Lys Lys                 165 170 175 Leu     <210> 3 <211> 549 <212> DNA <213> Picrophilus torridus <220> <221> misc_feature (222) (4) .. (9) <223> EcoRI recognition site <220> <221> misc_feature <542> (542) .. (547) <223> XhoI recognition site <400> 3 ccggaattcg atggaaaaga atatgagcta ctggcaccag gtacctccag gcccaaaccc 60 gcctgatgag gtctatgttg tcgtggagat accaaaaggt gagaggaaca aatatgagat 120 agcaaaggag tttcccggca taaagcttga tagaataata tactcatcat atgtttatcc 180 tcttgagtac ggtttgatac cgcagaccta ttactctgat ggggatccaa tagatgcaat 240 ggtctttatg tcacagagca cctatccggg cgttatatta agggcaaaac cggtcggcat 300 gatgaacatg gttgattccg gggacgtcga taataaaatt atatgtgtgt gccttgatga 360 ccctgtttat tccaagataa ataactacag ggaaatacct gagcatgtat taaaggaaac 420 cgagaacttc tttgaaacat acaaaaaact gcaaaataaa gaggtaaagg ttaccggctg 480 ggaaggccct gataaggcca agcaggagat aaaaaaggca atagaagatt ataaaaaact 540 actcgagcg 549 <210> 4 <211> 540 <212> DNA <213> Thermoplasma acidophilum DSM 1728 <400> 4 atggagagct tttatcattc ggttccagtt ggcccaaagc cgccagagga ggtctacgtc 60 atcgtagaga tcccaagggg aagcagggtg aagtacgaga tagccaagga ctttccgggc 120 atgctagttg acagggtgct ctattcatcc gttgtttatc ctgttgatta cggtctcatt 180 cccagaacgc tttattatga tggagatccc atggacgtga tggttctcat atcgcagccg 240 actttccccg gagccatcat gaaggtcagg cccatcggca tgatgaagat ggtggatcag 300 ggtgaaacgg acaataagat actcgcagtt ttcgacaagg atcccaatgt cagctacata 360 aaggatctga aggatgtcaa tgcccatctg cttgatgaga tagcaaactt cttctcaacg 420 tacaagatcc tggagaagaa ggagacaaag gttcttggat gggagggcaa ggaggctgcc 480 ctaaaggaga tagaagtgtc tattaagatg tatgaggaga aatacggaaa gaagaactag 540                                                                          540 <210> 5 <211> 531 <212> DNA <213> Methanopyrus kandleri AV19 <400> 5 atgatgaacc tctggaaaga cctggaaccg ggcccgaatc cacccgacgt agtgtacgcg 60 gtgatagaaa tcccacgtgg ctcgaggaac aagtacgagt acgacgaaga gcgtgggttc 120 ttcaagctgg accgagtact ctactcgccg ttccactatc cactggacta cgggtttatc 180 ccccgaacgc tgtacgacga cggtgacccc ctcgacatcc tggtgatcat gcaggacccc 240 acgttccccg gctgcgtgat cgaggcacga ccgatcggtc tgatgaagat gttggacgac 300 agcgaccagg acgacaaggt tctggcggtg cccactgagg acccccggtt caaggacgtt 360 aaggacctgg atgacgttcc caagcacctg ctcgacgaga tcgcccacat gttctccgag 420 tacaagcgac tggaaggcaa ggagaccgaa gtcctagggt gggaaggtgc ggacgccgct 480 aaggaagcca tagttcacgc gatagagctg tacgaggagg agcacgggtg a 531 <210> 6 <211> 537 <212> DNA <213> Pyrococcus horikoshii OT3 <400> 6 atgaacccat tccacgacct tgaacccgga ccaaacgttc cagaagttgt ttacgccctg 60 atagagatac cgaagggaag tagaaacaag tacgagctag ataaggaaac gggattgttg 120 aaattagata gggttctcta cacaccgttt cactacccag tagactacgg gataatacca 180 aggacatggt atgaagatgg agatcccttt gacatcatgg taattatgag ggaaccaacg 240 tatccactaa cgataataga ggccaggccg atcggactat ttaaaatgat agacagcgga 300 gataaggatt ataaggtact tgcagttcca gtcgaagatc catactttaa agactggaag 360 gatataagcg atgttcccaa ggcattctta gacgagatag cccacttctt caagaggtat 420 aaggaactcg aaggtaaaga gataatcgta gaaggatggg aaggggcaga agctgctaag 480 agggaaattt taagggctat agagatgtat aaggagaaat tcggcaagaa ggagtga 537 <210> 7 <211> 531 <212> DNA <213> Thermococcus litoralis <400> 7 atgaatccat tccacgattt agagcctgga ccggaagtac cggaagttgt ttacgcctta 60 atagagattc caaaggggag cagaaacaag tatgagcttg acaaaaagac cggccttata 120 aagctcgata gagttcttta cagcccattc cactacccgg tcgactatgg aatcatccca 180 caaacatggt acgatgatga cgacccgttt gacatcatgg tcataatgag ggagccaaca 240 tatccgggag ttcttattga ggcaagacca ataggcctct tcaagatgat agacagcggc 300 gacaaggact acaaggtatt ggcagttcca gtggaagatc cctactttaa tgactggaag 360 gacataagcg acgttccgaa ggctttcctt gacgagattg cgcacttctt ccagagatac 420 aaagagctcc aaggtaagga aatcattgtt gagggctggg aaaacgcaga gaaggcaaag 480 caagaaatac ttagggcaat agaactttac aaggagaaat tcaagaagtg a 531 <210> 8 <211> 528 <212> DNA <213> Thermus thermophilus <400> 8 atggcgaacc tgaagagcct tcccgtgggc gacaaggcgc ccgaggtggt ccacatggtc 60 attgaggtcc cccgcggctc gggcaacaag tacgagtacg acccggacct cggggcgatc 120 aagctggacc gggtcctgcc gggagcccag ttctaccccg gggactacgg cttcatcccc 180 tccaccctgg ccgaggacgg ggaccccttg gacggcctcg tcctctccac ctaccccctc 240 ctccccgggg tggtggtgga ggtccgggtg gtgggcctcc tcctcatgga ggacgagaag 300 ggcggggatg ccaaggtcat cggggtggtg gccgaggacc agcgcctgga ccacatccag 360 gacatcgggg acgtccccga gggcgtgaag caagagatcc agcacttctt tgagacctac 420 aaggccctcg aggccaagaa ggggaagtgg gtcaaggtca cgggctggcg ggaccggaag 480 gcggccttgg aggaggtccg ggcctgcatc gcccgctaca agggctag 528 <210> 9 <211> 13 <212> DNA <213> Artificial Sequence <220> <223> primer R1 <400> 9 catcgaattc cgg 13 <210> 10 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer F1 <400> 10 ccggaattcg atggaaaaga atatgagc 28 <210> 11 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer R2 <400> 11 tggtgccagt agctcatatt cttttc 26 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer F2 <400> 12 tactggcacc aggtacctcc agg 23 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer R3 <400> 13 gcgggtttgg gcctggaggt acc 23 <210> 14 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer F3 <400> 14 cccaaacccg cctgatgagg tctat 25 <210> 15 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer R4 <400> 15 ctccacgaca acatagacct catcag 26 <210> 16 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer F4 <400> 16 gttgtcgtgg agataccaaa aggtga 26 <210> 17 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer R5 <400> 17 tcatatttgt tcctctcacc ttttggtat 29 <210> 18 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer F5 <400> 18 gaggaacaaa tatgagatag caaaggagt 29 <210> 19 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer R6 <400> 19 tatgccggga aactcctttg ctatc 25 <210> 20 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer F6 <400> 20 ttcccggcat aaagcttgat agaataa 27 <210> 21 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> primer R7 <400> 21 aacatatgat gagtatatta ttctatcaag ctt 33 <210> 22 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer F7 <400> 22 tatactcatc atatgtttat cctcttgagt ac 32 <210> 23 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer R8 <400> 23 gcggtatcaa accgtactca agaggata 28 <210> 24 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer F8 <400> 24 ggtttgatac cgcagaccta ttactctg 28 <210> 25 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer R9 <400> 25 ttggatcccc atcagagtaa taggtct 27 <210> 26 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer F9 <400> 26 atggggatcc aatagatgca atggt 25 <210> 27 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer R10 <400> 27 ctctgtgaca taaagaccat tgcatcta 28 <210> 28 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer F10 <400> 28 ctttatgtca cagagcacct atccggg 27 <210> 29 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer R11 <400> 29 gcccttaata taacgcccgg ataggtg 27 <210> 30 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer F11 <400> 30 cgttatatta agggcaaaac cggtcg 26 <210> 31 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer R12 <400> 31 atgttcatca tgccgaccgg tttt 24 <210> 32 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer F12 <400> 32 gcatgatgaa catggttgat tccgg 25 <210> 33 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer R13 <400> 33 attatcgacg tccccggaat caacc 25 <210> 34 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer F13 <400> 34 ggacgtcgat aataaaatta tatgtgtgtg 30 <210> 35 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer R14 <400> 35 gggtcatcaa ggcacacaca tataatttt 29 <210> 36 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer F14 <400> 36 ccttgatgac cctgtttatt ccaagat 27 <210> 37 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer R15 <400> 37 tccctgtagt tatttatctt ggaataaaca 30 <210> 38 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer F15 <400> 38 aaataactac agggaaatac ctgagcat 28 <210> 39 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> primer R16 <400> 39 cggtttcctt taatacatgc tcaggtatt 29 <210> 40 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer F16 <400> 40 gtattaaagg aaaccgagaa cttctttgaa a 31 <210> 41 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> primer R17 <400> 41 gcagtttttt gtatgtttca aagaagttct 30 <210> 42 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> primer F17 <400> 42 catacaaaaa actgcaaaat aaagaggtaa ag 32 <210> 43 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> primer R18 <400> 43 cagccggtaa cctttacctc tttatttt 28 <210> 44 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer F18 <400> 44 gttaccggct gggaaggccc tga 23 <210> 45 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer R19 <400> 45 gcttggcctt atcagggcct tcc 23 <210> 46 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer F19 <400> 46 taaggccaag caggagataa aaaagg 26 <210> 47 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> primer R20 <400> 47 tttttataat cttctattgc cttttttatc tcct 34 <210> 48 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> primer F20 <400> 48 caatagaaga ttataaaaaa ctactcgagc g 31 <210> 49 <211> 12 <212> DNA <213> Artificial Sequence <220> <223> primer R21 <400> 49 cgctcgagta gt 12  

Claims (12)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 서열번호 1로 기재되는 염기서열을 갖는 피로포스파타제 유전자를 포함하는 재조합 발현 벡터 pPROP로 형질전환된 형질전환체를 배지에서 배양하거나, 또는 상기 형질전환체를 임의의 동물에 도입한 후 생체내에서 배양함으로써 서열번호 2로 기재되는 아미노산 서열을 갖는 피크로필러스 토리두스 유래 피로포스파타제를 생산하는 방법.A transformant transformed with the recombinant expression vector pPROP comprising a pyrophosphatase gene having the nucleotide sequence set forth in SEQ ID NO: 1 is cultured in a medium, or in vivo after the transformant is introduced into any animal. Thereby producing a pyrophyllus toridus-derived pyrophosphatase having an amino acid sequence as set forth in SEQ ID NO: 2. 서열번호 2로 기재되는 아미노산 서열을 갖는 피크로필러스 토리두스 유래 피로포스파타제를 피로포스페이트에 적용하여 피로포스페이트를 포스페이트로 분해하는 방법.A method of decomposing pyrophosphate into phosphates by applying pyrophyllus tordus derived pyrophosphatase having an amino acid sequence set forth in SEQ ID NO: 2 to pyrophosphate. 제10항에 있어서,The method of claim 10, 상기 분해는 2가 양이온의 존재하에 65℃ 내지 85℃의 온도, 7.0 내지 9.0의 pH 범위에서 수행되는 것을 특징으로 하는 방법.Said decomposition being carried out in the presence of a divalent cation at a temperature of 65 ° C. to 85 ° C., at a pH range of 7.0 to 9.0. 제11항에 있어서,The method of claim 11, 상기 분해는 MgCl2의 존재하에 80℃, pH 7.5에서 수행되는 것을 특징으로 하는 방법.The decomposition is carried out at 80 ° C., pH 7.5 in the presence of MgCl 2 .
KR1020060117610A 2006-11-27 2006-11-27 Thermostable Pyrophosphatase from Picrophilus torridus KR100861585B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060117610A KR100861585B1 (en) 2006-11-27 2006-11-27 Thermostable Pyrophosphatase from Picrophilus torridus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060117610A KR100861585B1 (en) 2006-11-27 2006-11-27 Thermostable Pyrophosphatase from Picrophilus torridus

Publications (2)

Publication Number Publication Date
KR20080047754A KR20080047754A (en) 2008-05-30
KR100861585B1 true KR100861585B1 (en) 2008-10-07

Family

ID=39664082

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060117610A KR100861585B1 (en) 2006-11-27 2006-11-27 Thermostable Pyrophosphatase from Picrophilus torridus

Country Status (1)

Country Link
KR (1) KR100861585B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481180A (en) * 2021-07-05 2021-10-08 吉林大学 Alkaline thermophilic inorganic pyrophosphatase and application thereof in enhancing polymerase chain reaction and UDP-galactose synthesis reaction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986080A (en) * 1996-10-18 1999-11-16 Mcw Research Foundation Cloned nucleotide pyrophosphohydrolase and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986080A (en) * 1996-10-18 1999-11-16 Mcw Research Foundation Cloned nucleotide pyrophosphohydrolase and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NCBI database accession no.YP024132, GI: 48478426(2005.12.03.)*

Also Published As

Publication number Publication date
KR20080047754A (en) 2008-05-30

Similar Documents

Publication Publication Date Title
KR102395816B1 (en) A composition for preparing tagatose and Methods for producing tagatose using The Same
WO1994002615A1 (en) Purified thermostable pyrococcus furiosus dna ligase
KR19990076834A (en) New DNA Polymerase
JP4486009B2 (en) DNA ligase mutant
KR20090132645A (en) Polypeptides having dna polymerase activity
KR100861585B1 (en) Thermostable Pyrophosphatase from Picrophilus torridus
JPH09508806A (en) Highly purified recombinant reverse transcriptase
US6444429B1 (en) Gene coding for DNA ligase of hyperthermophilic bacteria Aquifex pyrophilus and protein expressed therefrom
JP2004500802A (en) Pyrococcus abyssi genomic sequence and polypeptide, fragments thereof and uses thereof
WO2004020621A1 (en) Thermostable ribonuclease h
JPH1175849A (en) Heat-resistant flap endonuclease originating from hyperthermophilic bacterium belonging to genus pyrococcus
JP3498808B2 (en) DNA polymerase gene
JP3463951B2 (en) Thermostable pyroglutamyl peptidase and its gene
CA2379165A1 (en) Chimeric proteins
JP4714848B2 (en) DNA polymerase mutant
JPH0662847A (en) Thermally stable ligase originated from old bacteria
Smagin et al. Isolation and characteristics of new thermostable DNA ligase from archaea of the genus Thermococcus
WO2006043555A1 (en) Reductase mutant for forming biopolymer
KR100586623B1 (en) Thermostable DNA polymerase of hyperthermophilic archaebacteria Staphylothermus marinus
KR100372777B1 (en) Thermostable DNA Polymerase-encoding Gene from Aquifex pyrophilus and Amino Acid Sequence Deduced Therefrom
KR100673836B1 (en) Thermostable dna ligase of staphylothermus marinus
Hoe et al. Cloning, analysis, and expression of the gene for inorganic pyrophosphatase of Aquifex pyrophilus and properties of the enzyme
KR100533116B1 (en) A Heat-resistant dTDP-Glucose Synthase and Its Gene
JP2007006846A (en) Heat-resistant protease
RU2405823C2 (en) Thermostable dna-ligase of thermococcus archaea, method for producing thereof and dna nucleotide sequence coding such dna-ligase

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130531

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140605

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150604

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160620

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 10