KR100845903B1 - 다중 코어 플라즈마 발생기를 갖는 플라즈마 반응기 - Google Patents

다중 코어 플라즈마 발생기를 갖는 플라즈마 반응기 Download PDF

Info

Publication number
KR100845903B1
KR100845903B1 KR1020060125399A KR20060125399A KR100845903B1 KR 100845903 B1 KR100845903 B1 KR 100845903B1 KR 1020060125399 A KR1020060125399 A KR 1020060125399A KR 20060125399 A KR20060125399 A KR 20060125399A KR 100845903 B1 KR100845903 B1 KR 100845903B1
Authority
KR
South Korea
Prior art keywords
plasma
gas
core
dielectric plates
plasma reactor
Prior art date
Application number
KR1020060125399A
Other languages
English (en)
Other versions
KR20080053631A (ko
Inventor
최대규
위순임
Original Assignee
주식회사 뉴파워 프라즈마
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 뉴파워 프라즈마 filed Critical 주식회사 뉴파워 프라즈마
Priority to KR1020060125399A priority Critical patent/KR100845903B1/ko
Publication of KR20080053631A publication Critical patent/KR20080053631A/ko
Application granted granted Critical
Publication of KR100845903B1 publication Critical patent/KR100845903B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2229/00Details of cathode ray tubes or electron beam tubes
    • H01J2229/70Electron beam control outside the vessel
    • H01J2229/703Electron beam control outside the vessel by magnetic fields
    • H01J2229/7031Cores for field producing elements, e.g. ferrite

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Plasma Technology (AREA)

Abstract

다중 코어 플라즈마 발생기를 갖는 플라즈마 반응기가 게시된다. 본 발명의 플라즈마 반응기는 하나 이상의 유전체 플레이트와 유전체 플레이트를 향하여 자속 출입구가 배치되며 전원 공급원에 전기적으로 연결되는 일차 권선을 갖는 하나 이상의 코어 그룹을 포함하는 다중 코어 플라즈마 발생기, 하나 이상의 유전체 플레이트에 연결되는 하나 이상의 공정 챔버를 포함한다. 발명의 플라즈마 반응기에 의하면, 대면적의 피처리 기판의 크기에 적합하게 코어 그룹의 사이즈를 크게 하는 것으로 대면적의 플라즈마를 발생할 수 있음으로 플라즈마 반응기의 대면적화가 용이하며 두 개의 진공 챔버를 병렬로 구성하여서 두 장의 대면적의 피처리 기판을 동시에 처리할 수 있어서 설비 면적당 기판 처리율을 높일 수 있다.
플라즈마, 유도 결합, 마그네틱 코어, 전류 균형

Description

다중 코어 플라즈마 발생기를 갖는 플라즈마 반응기{PLASMA REACTOR HAVING MULTI-CORE PLASMA GENERATOR}
본 발명의 상세한 설명에서 사용되는 도면을 보다 충분히 이해하기 위하여, 각 도면의 간단한 설명이 제공된다.
도 1은 본 발명의 바람직한 실시예에 따른 플라즈마 반응기의 사시도이다.
도 2는 도 1의 다중 코어 플라즈마 발생기의 구성을 보여주기 위한 부분 분리 사시도이다.
도 3은 도 1의 플라즈마 반응기의 단면도 및 회로 구성을 보여주는 도면이다.
도 4 및 도 5는 전압 조절부가 부가된 플라즈마 반응기의 회로 구성예를 보여주는 도면이다.
도 6은 및 도 7은 전압 조절부의 변형예들을 보여주는 도면이다.
도 8 및 도 9는 가스 공급 구조의 변형예들을 보여주는 플라즈마 반응기의 부분 단면도이다.
도 10은 전류 균형 회로가 부가된 플라즈마 반응기의 회로 구성을 회로 구성을 보여주는 도면이다.
*도면의 주요 부분에 대한 부호의 설명*
100: 플라즈마 반응기 110, 120: 제1 및 제2 진공 챔버
130: 다중 코어 플라즈마 발생기 200, 250: 제1 및 제2 코어 그룹
300, 320: 바이어스 전원 공급원 310, 330, 350: 임피던스 정합기
340: 전원 공급원 360: 전류 균형 회로
400; 전압 조절부
본 발명은 변압기 플라즈마 소스(transformer plasma source)를 갖는 플라즈마 반응기에 관한 것으로, 구체적으로는 다중 코어 플라즈마 발생기를 갖는 플라즈마 반응기로서 하나 이상의 대면적의 피처리 기판을 처리할 수 있는 플라즈마 반응기에 관한 것이다.
플라즈마는 같은 수의 음이온(positive ions)과 전자(electrons)를 포함하는 고도로 이온화된 가스이다. 플라즈마 방전은 이온, 자유 라디컬, 원자, 분자를 포함하는 활성 가스를 발생하기 위한 가스 여기에 사용되고 있다. 활성 가스는 다양한 분야에서 널리 사용되고 있으며 대표적으로 반도체 제조 공정 예들 들어, 식각(etching), 증착(deposition), 세정(cleaning), 에싱(ashing) 등에 다양하게 사용된다.
플라즈마를 발생하기 위한 플라즈마 소스는 여러 가지가 있는데 무선 주파수(radio frequency)를 사용한 용량 결합 플라즈마(capacitive coupled plasma)와 유도 결합 플라즈마(inductive coupled plasma)가 그 대표적인 예이다.
용량 결합 플라즈마 소스는 정확한 용량 결합 조절과 이온 조절 능력이 높아서 타 플라즈마 소스에 비하여 공정 생산력이 높다는 장점을 갖는다. 반면, 무선 주파수 전원의 에너지가 거의 배타적으로 용량 결합을 통하여 플라즈마에 연결되기 때문에 플라즈마 이온 밀도는 용량 결합된 무선 주파수 전력의 증가 또는 감소에 의해서만 증가 또는 감소될 수 있다. 그러나 무선 주파수 전력의 증가는 이온 충격 에너지를 증가시킨다.
한편, 유도 결합 플라즈마 소스는 무선 주파수 전원의 증가에 따라 이온 밀도를 쉽게 증가시킬 수 있으며 이에 따른 이온 충격은 상대적으로 낮아서 고밀도 플라즈마를 얻기에 적합한 것으로 알려져 있다. 그럼으로 유도 결합 플라즈마 소스는 고밀도의 플라즈마를 얻기 위하여 일반적으로 사용되고 있다. 유도 결합 플라즈마 소스는 대표적으로 무선 주파수 안테나(RF antenna)를 이용하는 방식과 변압기를 이용한 방식으로 기술 개발이 이루어지고 있다.
변압기를 이용한 방식의 유도 결합 플라즈마 소스는 고밀도의 플라즈마를 비교적 손쉽게 얻을 수 있으나, 구조적 특징에 따라서 플라즈마 균일도가 영향을 받는다. 그럼으로 플라즈마 소스 구조를 개선하여 균일한 고밀도의 플라즈마를 얻기 위해 노력하고 있다.
최근 반도체 소자의 초미세화, 반도체 회로를 제조하기 위한 실리콘 웨이퍼 기판의 대형화, 액정 디스플레이를 제조하기 위한 유리 기판의 대형화 그리고 새로운 처리 대상 물질 등장 등과 같은 여러 요인으로 인하여 더욱 향상된 플라즈마 처 리 기술이 요구되고 있다. 특히, 대면적의 피처리물에 대한 우수한 처리 능력을 갖는 향상된 플라즈마 소스 및 플라즈마 처리 기술이 요구되고 있다. 이에 대응하여 대면적 플라즈마를 얻기 위하여 복수개의 변압기 결합 구조를 채용한 플라즈마 반응기들이 제안되고 있다. 그러나 복수개의 변압기를 사용하는 경우 대면적의 플라즈마를 얻을 수는 있겠지만 균일한 플라즈마를 얻기가 용이하지 않다.
피처리 기판의 대형화는 전체적인 생산 설비의 대형화를 야기하게 된다. 생산 설비의 대형화는 전체적인 설비 면적을 증가시켜 결과적으로 생산비를 증가시키는 요인이 된다. 그럼으로 가급적 설비 면적을 최소화 할 수 있는 플라즈마 반응기 및 플라즈마 처리 시스템이 요구되고 있다. 특히, 반도체 제조 공정에서는 단위 면적당 생산성이 최종 재품의 가격에 영향을 미치는 중요한 요인의 하나로 작용한다. 그럼으로 단위 면적당 생산성을 높이기 위한 방법으로 생산 설비의 구성들을 효과적으로 배치하는 기술들이 제공되고 있다. 예를 들어, 두 장의 피처리 기판을 병렬로 처리하는 플라즈마 반응기가 제공되고 있다. 그러나 대부분의 두 장의 피처리 기판을 병렬로 처리하는 플라즈마 반응기들은 두 개의 플라즈마 소스를 탑재하고 있어서 실질적으로 공정 설비의 최소화를 이루지 못하고 있는 실정이다.
만약, 플라즈마 반응기를 두 개 이상 수직 또는 수평으로 병렬 배열할 때 각 구성의 공통적인 부분을 공유하고 하나의 플라즈마 소스에 의해서 두 장의 피처리 기판을 병렬 처리할 수 있다면 설비 공간의 축소나 설비 구성의 최소화에 의한 여러 가지 이득을 얻을 수 있을 것이다.
어느 산업 분야에서와 같이, 반도체 집적회로장치나 액정표시장치를 제조하 기 위한 반도체 산업에서도 생산성을 높이기 위해 여러 가지 노력들이 계속되고 있다. 생산성을 높이기 위해서는 기본적으로 생산 설비가 증가되거나 향상되어야 한다. 그러나 단순히 생산 설비를 증가하는 것으로는 공정 설비의 증설 비용뿐만 아니라 클린룸의 공간 설비 또한 증가하게 되어 고비용이 발생되는 문제점을 갖고 있다.
본 발명의 목적은 대면적화가 용이하며 고밀도의 플라즈마를 균일하게 발생할 수 있는 그리고 하나 이상의 대면적의 피처리 기판을 동시에 처리할 수 있어서 설비 면적당 기판 처리율이 높은 다중 코어 플라즈마 발생기를 갖는 플라즈마 반응기를 제공하는데 있다.
상기한 기술적 과제를 달성하기 위한 본 발명의 일면은 플라즈마 반응기에 관한 것이다. 본 발명의 플라즈마 반응기는: 하나 이상의 유전체 플레이트와 유전체 플레이트를 향하여 자속 출입구가 배치되며 전원 공급원에 전기적으로 연결되는 일차 권선을 갖는 하나 이상의 코어 그룹을 포함하는 다중 코어 플라즈마 발생기; 하나 이상의 유전체 플레이트에 연결되는 하나 이상의 공정 챔버를 포함한다.
일 실시예에 있어서, 상기 다중 코어 플라즈마 발생기는: 가스 공급원에 연결되는 가스 입구; 공정 챔버로 가스를 분사하기 위해 유전체 플레이트에 구비되는 다수의 가스 분사구; 및 가스 입구와 유전체 플레이트의 가스 분사구 사이에 연결되는 가스 공급 채널을 포함한다.
일 실시예에 있어서, 상기 다중 코어 플라즈마 발생기는: 상기 가스 입구는 서로 다른 가스를 공급 받는 제1 및 제2 가스 입구를 포함하고, 상기 가스 공급 채널은 서로 다른 가스를 분리 공급하는 분리된 가스 공급 채널을 포함한다.
일 실시예에 있어서, 상기 다중 코어 플라즈마 발생기는: 수직으로 평행하게 배치되는 제1 및 제2 유전체 플레이트; 제1 및 제2 유전체 플레이트를 향하여 자속 출입구가 배치되며 전원 공급원에 전기적으로 연결되는 일차 권선을 갖는 제1 및 제2 코어 그룹을 포함하고, 제1 및 제2 유전체 플레이트에 연결되는 제1 및 제2 공정 챔버를 포함하며, 제1 및 제2 공정 챔버는: 각기 기판이 수직으로 출입하는 기판 출입구; 제1 및 제2 유전체 플레이트에 대향하게 설치되는 기판 지지대; 및 가스 출구를 포함한다.
일 실시예에 있어서, 상기 공정 챔버는 각기 배기 배플을 포함한다.
일 실시예에 있어서, 자속 출입구를 제외한 부분에서 유전체 플레이트에 근접하여 설치되는 평판 전극; 평판 전극에 인가되는 전압 레벨을 조절하기 위한 전압 조절부를 포함한다.
일 실시예에 있어서, 상기 코어 그룹은 각기 일차 권선을 갖는 다수개의 마그네틱 코어 유닛을 포함하며; 다수개의 마그네틱 코어 유닛의 일차 권선들로 공급되는 전류의 균형을 제어하는 전류 균형 회로를 포함한다.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시예에 의하여 달성되는 목적을 충분히 이해하기 위해서는 본 발명의 바람직한 실시예를 예시하는 첨부 도면 및 첨부 도면에 기재된 내용을 참조하여야 한다. 본 발명의 실시예는 여러 가 지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예로 인해 한정되어 지는 것으로 해석되어져서는 안 된다. 본 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공 되어지는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어진 것이다. 각 도면을 이해함에 있어서, 동일한 부재는 가능한 한 동일한 참조부호로 도시하고자 함에 유의하여야 한다. 그리고 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.
(실시예)
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명함으로써, 본 발명의 플라즈마 반응기를 상세히 설명한다.
도 1은 본 발명의 바람직한 실시예에 따른 플라즈마 반응기의 사시도이다.
도 1을 참조하여, 본 발명의 바람직한 실시예에 따른 플라즈마 반응기(100)는 다중 코어 플라즈마 발생기(130)와 이를 사이에 두고 결합된 제1 및 제2 공정 챔버(110, 120)를 구비한다. 제1 및 제2 공정 챔버(110, 120)는 전면으로 각각 수직의 기판 출입구(112, 122)가 구비되며, 각각의 기판 출입구(112, 122)를 통하여 제1 및 제2 진공 챔버(110, 120)로/로부터 피처리 기판이 수직으로 로딩/언로딩 된다.
다중 코어 플라즈마 발생기(130)의 하우징(131)에는 가스 입구(132)가 마련되어 있으며, 제1 및 제2 공정 챔버(110, 120)의 양쪽 바깥 측벽으로는 각기 가스 출구(113, 123)가 마련되어 있다. 그럼으로 가스 입구(132)를 통해서 유입되는 공정 가스는 제1 및 제2 공정 챔버(110, 120)로 공급되고, 제1 및 제2 공정 챔버(110, 120)의 각각의 가스 출구(113, 123)를 통해서 배기가 이루어진다.
제1 및 제2 공정 챔버(110, 120)와 다중 코어 플라즈마 발생기(130)의 각각의 하우징(111, 121, 131)은 알루미늄, 스테인리스, 구리와 같은 금속 물질로 재작된다. 또는 코팅된 금속 예를 들어, 양극 처리된 알루미늄이나 니켈 도금된 알루미늄으로 재작될 수 있다. 또는 내화 금속(refractory metal)로 재작될 수 있다. 또 다른 대안으로 석영, 세라믹과 같은 전기적 절연 물질로 재작하는 것도 가능하며, 의도된 플라즈마 프로세스가 수행되기에 적합한 다른 물질로도 재작될 수 있다. 다중 코어 플라즈마 발생기(130)로부터 발생되는 유도 기전력에 의해 에디 전류가 발생되는 것을 막기 위하여 각각의 하우징(111, 121, 131)은 적절한 부분에 전기적 절연층이 구비될 수 있다. 그리고 각각의 하우징(111, 121, 131) 전체적으로 사각의 박스형 구조를 갖지만 다른 구조로 변형이 가능하다.
도 2는 도 1의 다중 코어 플라즈마 발생기의 구성을 보여주기 위한 부분 분리 사시도이고, 도 3은 도 1의 플라즈마 반응기의 단면도 및 회로 구성을 보여주는 도면이다.
도 2 및 도 3을 참조하여, 다중 코어 플라즈마 발생기(130)는 두 개의 평판형 제1 및 제2 유전체 플레이트(133-1, 133-2))와 제1 및 제2 유전체 플레이트(133-1, 133-2)를 향하여 자속 출입구가 배치되는 제1 및 제2 코어 그룹(200, 250)을 포함한다. 제1 및 제2 코어 그룹(200, 250)은 무선 주파수를 공급하는 전 원 공급원(340)에 전기적으로 연결되는 일차 권선(220)을 갖는다. 일차 권선(220)과 전원 공급원(340) 사이에는 임피던스 정합을 위한 임피던스 정합기(350)가 구성된다. 그러나 별도의 임피던스 정합기 없이 출력 전원의 제어가 가능한 전원 공급원(340)을 사용하여 구성할 수도 있다. 제1 및 제2 코어 그룹(200, 250)은 제1 및 제2 유전체 플레이트(133-1, 133-2)를 향하여 근접하게 병렬로 배치되는 다수개의 마그네틱 코어 유닛(210)으로 구성된다. 각각의 마그네틱 코어 유닛(210)은 다수개의 말굽 형상의 마그네틱 코어들이 열을 이루고 있으며, 열을 이루는 다수개의 마그네틱 코어들을 하나의 묶음으로 해서 일차 권선(220)이 감겨 있다. 다수개의 마그테닉 코어 유닛(210)에 감겨진 일차 권선(220)들은 임피던스 정합기(350)를 통하여 전원 공급원에 병렬이나 직렬 또는 직렬과 병렬 혼합 방식으로 연결될 수 있다.
제1 및 제2 공정 챔버(110, 120)의 내부에는 각기 제1 및 제2 유전체 플레이트(133-1, 133-2)에 대향하게 기판 지지대(114, 124)가 설치된다. 기판 지지대(114, 124)에는 각기 피처리 기판(115, 125)이 안착된다. 피처리 기판(115, 125)은 예를 들어, 반도체 장치를 제조하기 위한 실리콘 웨이퍼 기판 또는 액정 디스플레이나 플라즈마 디스플레이 등의 제조를 위한 유리 기판이다. 제1 및 제2 공정 챔버(110, 120)에는 균일한 배기를 위하여 각기 배기 배플(116, 126)이 설치될 수 있다.
제1 및 제2 공정 챔버(110, 120)의 각각의 기판 지지대(114, 124)는 임피던스 정합기(310, 330)를 통하여 바이어스 전원 공급원(300, 320)에 연결되어 바이어 스 된다. 기판 지지대(114, 124)는 단일 전원 공급원에 의해 단일 바이어스 구조를 갖지만, 서로 다른 무선 주파수 전원을 공급하는 두 개의 전원 공급원에 의해 이중 바이어스 되는 구조를 취할 수도 있다. 바이어스 전원 공급원(300, 320)은 별도의 임피던스 정합기 없이 출력 전원의 제어가 가능한 전원 공급원을 사용하여 구성할 수도 있다. 또한, 본 발명의 유도 결합 플라즈마 반응기(100)는 기판 지지대(330)에 바이어스 전원의 공급 없이 제로 포텐셜(zero potential)을 갖는 구조로 변형 실시될 수도 있다.
전원 공급원(340)으로부터 일차 권선(210)으로 무선 주파수가 공급되면 제1 및 제2 코어 그룹(200, 250)에 의해서 발생 자기장(240)은 제1 및 제2 유전체 플레이트(133-1, 133-2)를 통하여 제1 및 제2 공정 챔버(110, 120)의 내부로 전달된다. 그럼으로 제1 및 제2 진공 챔버(110, 120)의 내부로 유도 기전력이 전달되어 플라즈마 방전이 이루어진다. 이때, 제1 및 제2 코어 그룹(210, 220)은 제1 및 제2 유전체 플레이트(133-1, 133-2)에 전체적으로 균일하게 배치되어 있음으로 균일한 플라즈마 방전이 이루어진다.
다수개의 마그네틱 코어 유닛(210)의 자속 출입구 사이에는 각기 길이 방향으로 길게 배치되는 다수개의 평판 전극(230)이 구성된다. 평판 전극(230)은 엷은 띠 모양의 도전성 평판으로 구성된다. 이 실시예에서 평판 전극(230)은 다수개로 구성되었으나, 제1 및 제2 유전체 플레이트(133-1, 133-2)의 평면적과 동일한 면적의 도전성 평판으로 구성하되 마그네틱 코어 유닛(210)들의 자속 출입구와 겹치는 부분은 개구되도록 구성할 수도 있다.
평판 전극은(230) 전기적으로는 접지된 구조를 갖거나, 첨부도면 도 4 또는 도 5에 도시된 바와 같이, 가변적인 전압 공급이 가능하도록 전압 조절부(400)가 구성될 수 있다. 평판 전극(230)에 의해서 제1 및 제2 진공 챔버(110, 120)의 내부에 더욱 균일한 플라즈마 발생과 아울러 피처리 기판(115, 125) 표면에서 플라즈마 이온 에너지 조절 능력을 더욱 향상 시킬 수 있음으로 플라즈마 처리 효율을 더욱 높일 수 있어서 피처리 기판(115, 125)에 대한 보다 균일한 플라즈마 처리와 고품질의 박막을 형성할 수 있다.
도 4 및 도 5는 전압 조절부가 부가된 플라즈마 반응기의 회로 구성예를 보여주는 도면이고, 도 6은 및 도 7은 전압 조절부의 변형예들을 보여주는 도면이다.
도 4를 참조하여, 평판 전극(230)에 인가되는 전압을 가변하기 위한 전압 조절부(400)는 일차 권선(220)의 마지막 후단과 접지 사이에 연결되는 전압 분압 수단(410)과 전압 분압 수단(210)에 의해 분압 된 전압 중 어느 하나를 평판 전극(300)으로 인가하는 멀티 탭 스위칭 회로(420)로 구성된다. 전압 조절부(400)는, 도 5에 도시된 바와 같이, 일차 권선(230)의 첫 번째 입력단과 접지 사이에 구성할 수도 있다.
전압 분압 수단(410)은 멀티 탭을 갖는 인덕터 코일로 구성될 수 있다. 또는 도 6에 도시된 바와 같이, 일차측이 안테나 코일의 양단 중 어느 하나와 접지 사이에 일차측이 연결되고 이차측으로 분압된 전압을 출력하기 위한 멀티 탭을 갖는 트랜스포머(410a)로 구성할 수 있다. 또는 도 7에 도시된 바와 같이, 분압된 전압을 출력하기 위한 멀티 탭을 갖는 직렬 커패시터 어레이(410b)로 구성할 수도 있다.
다시, 도 3을 참조하여, 다중 코어 플라즈마 발생기(130)는 제1 및 제2 공정 챔버(110, 120)로 공정 가스를 공급하기 위한 공통 가스 공급 채널을 구비한다. 제1 및 제2 유전체 플레이트(133-1, 133-2)에는 각기 다수개의 가스 분사구(134) 형성되어 있다. 공통 가스 공급 채널은 가스 입구(132)와 다수개의 가스 분사구(134) 사이에 가스 공급 경로를 제공한다. 예를 들어, 공통 가스 공급 채널은 제1 및 제2 코어 그룹(200, 250) 사이에 길게 형성되는 중앙 공급로(136)와 중앙 공급로(136)로부터 연장되어서 다수개의 마그네틱 코어 유닛(210)의 각 열 사이를 통해서 제1 및 제2 유전체 플레이트(133-1, 133-2)에 형성된 가스 분사구(134)에 연결되는 가스 공급 가지(139)로 구성된다. 그리고 가스를 균일하게 분배 공급하기 위한 수단으로 중앙 공급로(136)에 가스 분배판(138)이 구성될 수 있다.
도 8 및 도 9는 가스 공급 구조의 변형예들을 보여주는 플라즈마 반응기의 부분 단면도이다.
도 8을 참조하여, 가스 공급 구조의 일 변형으로 다중 코어 플라즈마 발생기(130)는 제1 및 제2 공정 챔버(110, 120)로 각기 분리되어 가스를 공급하는 분리된 가스 공급 구조를 가질 수 있다. 제1 가스 공급 채널은 제1 가스 입구(132-1)와 제1 유전체 플레이트(133-1)의 가스 분사구 사이에 연결되는 제1 가스 공급로(136-1)를 포함한다. 제2 가스 공급 채널은 제2 가스 입구(132-2)와 제2 유전체 플레이트(133-2)의 가스 분사구 사이에 연결되는 제2 가스 공급로(136-2)를 포함한다. 제1 및 제2 가스 공급로(136-1, 136-2)는 각각 제1 및 제2 유전체 플레이 트(133-1, 133-2)와 제1 및 제2 코어 그룹(200, 250) 사이에 구성되며, 가스를 균일하게 분배 공급하기 위한 수단으로 각기 가스 분배판(138-1, 138-2)이 구성될 수 있다.
도 9를 참조하여, 가스 공급 구조의 다른 변형으로 다중 코어 플라즈마 발생기(130)는 제1 및 제2 공정 챔버(110, 120)로 서로 다른 공정 가스를 분리 공급하는 분리된 가스 공급 구조를 가질 수 있다.
다중 코어 플라즈마 발생기(130)는 제1 공정 가스를 공급하는 제1 가스 공급원(미도시)에 연결되는 제1 가스 입구(132)와 제2 공정 가스를 공급하는 제2 가스 공급원(미도시)에 연결되는 제2 가스 입구(161, 162)를 구비한다. 제1 공정 가스(GAS_1)의 공급하기 위한 제1 가스 공급 채널은 도 3에서 설명된 바와 동일한 가스 공급 구조로 제1 가스 입구(132)와 제1 및 제2 유전체 플레이트(133-1, 133-2)의 가스 분사구 중 일부에 연결되어 제1 공정 가스(GAS_1)를 공급한다. 제2 공정 가스(GAS_2)를 공급하기 위한 제2 가스 공급 채널은 두 개의 제2 가스 입구(161, 162)와 제1 및 제2 유전체 플레이트(133-1, 133-2)의 가스 분사구들 중 다른 일부 사이에 연결되어 제2 공정 가스(GAS_2)를 공급하는 가스 공급로(160)를 포함한다.
도 10은 전류 균형 회로가 부가된 플라즈마 반응기의 회로 구성을 회로 구성을 보여주는 도면이다.
도 10을 참조하여, 본 발명의 플라즈마 반응기(100)는 제1 및 제2 코어 그룹(200, 250)에 속한 다수개의 마그네틱 코어 유닛(210)의 일차 권선들로 공급되는 전류의 균형을 제어하는 전류 균형 회로(360)를 더 포함할 수 있다. 전류 균형 회 로(360)에는 다수개의 마그네틱 코어 유닛(210)의 일차 권선(220)들이 병렬로 연결되어 있다. 전류 균형 회로(360)는 임피던스 정합기(350)를 통하여 전원 공급원(340)으로부터 공급되는 무선 주파수를 입력 받아서 다수개의 마그네틱 코어 유닛(210)의 일차 권선(220)들로 전류 균형을 이루면서 공급한다. 전류 균형 회로(360)에 의해 전류 균형이 이루어지면서 무선 주파수가 다수개의 마그네틱 코어 유닛(210)의 일차 권선(220)들로 공급됨으로 제1 및 제2 공정 챔버(110, 120)가 내부에서 발생되는 플라즈마는 더욱 균일도는 더욱 향상된다. 전류 균형 회로(360)의 구체적인 회로 구성의 일 예들은 본 발명자들에 의해 제안되어 선출원된 특허 출원 제10-2006-0123186호 '다중 루프 코어 플라즈마 발생기를 구비한 플라즈마 반응기'에 상세히 설명되어 있다.
상술한 바와 같은 본 발명의 플라즈마 반응기(100)는 다중 코어 플라즈마 발생기(130)를 사이에 두고 두 개의 제1 및 제2 공정 챔버(110, 120)가 양측으로 병렬로 연결되는 구성으로 갖고 있다. 이는 두 장의 피처리 기판을 병렬로 처리하기 위한 구성이다. 그러나 한 장의 피처리 기판을 독립적으로 처리하기 위한 구조로 변형도 가능하다. 즉, 다중 코어 플라즈마 반응기(130)를 하나의 코어 그룹(200 or 250)을 갖도록 하고 여기에 하나의 공정 챔버(110 or 120)를 연결하여 구성도 가능하다. 그리고 플라즈마 반응기(100)가 수직 구조를 기본으로 하고 있으나 수평 구조로 변형도 가능하다.
이상에서 설명된 본 발명의 플라즈마 반응기의 실시예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변 형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그럼으로 본 발명은 상기의 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 한다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이며, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.
상술한 바와 같은 본 발명의 플라즈마 반응기에 의하면, 대면적의 피처리 기판의 크기에 적합하게 코어 그룹을 크게 하는 것으로 대면적의 플라즈마를 발생할 수 있음으로 플라즈마 반응기의 대면적화가 용이하며 전류 균형 회로에 의해서 균일한 전류 공급이 이루어지며, 하나 이상의 가스 공급 채널에 의해 균일한 가스 공급이 이루어짐으로서 고밀도의 플라즈마를 균일하게 발생할 수 있다. 그리고 두 개의 진공 챔버를 병렬로 구성하여서 두 장의 대면적의 피처리 기판을 동시에 처리할 수 있어서 설비 면적당 기판 처리율을 높일 수 있다.

Claims (7)

  1. 평행하게 배치되는 제1 및 제2 유전체 플레이트와 상기 제1 및 제2 유전체 플레이트를 향하여 자속 출입구가 배치되며 전원 공급원에 전기적으로 연결되는 일차 권선을 갖는 제1 및 제2 코어 그룹을 포함하는 다중 코어 플라즈마 발생기; 및
    상기 제1 및 제2 유전체 플레이트에 연결되는 제1 및 제2 공정 챔버를 포함하는 플라즈마 반응기.
  2. 제1항에 있어서,
    상기 다중 코어 플라즈마 발생기는:
    가스 공급원에 연결되는 가스 입구;
    상기 제1 및 제2 공정 챔버로 가스를 분사하기 위해 상기 제1 및 제2 유전체 플레이트에 구비되는 다수의 가스 분사구; 및
    상기 가스 입구와 상기 제1 및 제2 유전체 플레이트의 가스 분사구 사이에 연결되는 가스 공급 채널을 포함하는 플라즈마 반응기.
  3. 제2항에 있어서,
    상기 가스 입구는 서로 다른 가스를 공급받는 제1 및 제2 가스 입구를 포함하고,
    상기 가스 공급 채널은 서로 다른 가스를 분리 공급하는 분리된 가스 공급 채널을 포함하는 플라즈마 반응기.
  4. 제1항에 있어서,
    상기 제1 및 제2 유전체 플레이트는 수직으로 평행하게 배치되며,
    상기 제1 및 제2 공정 챔버는 각기 기판이 수직으로 출입하는 기판 출입구와 상기 제1 및 제2 유전체 플레이트에 대향 되게 설치되는 기판 지지대 및 가스 출구를 포함하는 플라즈마 반응기.
  5. 제4항에 있어서,
    상기 제1 및 제2 공정 챔버는 각기 배기 배플을 포함하는 플라즈마 반응기.
  6. 제1항에 있어서,
    상기 다중 코어 플라즈마 발생기는
    자속 출입구를 제외한 부분에서 제1 및 제2 유전체 플레이트에 근접하여 설치되는 평판 전극과
    상기 평판 전극에 인가되는 전압 레벨을 조절하기 위한 전압 조절부를 포함하는 플라즈마 반응기.
  7. 제1항에 있어서,
    상기 코어 그룹은
    각기 일차 권선을 갖는 다수개의 마그네틱 코어 유닛을 포함하며,
    상기 다수개의 마그네틱 코어 유닛의 일차 권선들로 공급되는 전류의 균형을 제어하는 전류 균형 회로를 포함하는 플라즈마 반응기.
KR1020060125399A 2006-12-11 2006-12-11 다중 코어 플라즈마 발생기를 갖는 플라즈마 반응기 KR100845903B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060125399A KR100845903B1 (ko) 2006-12-11 2006-12-11 다중 코어 플라즈마 발생기를 갖는 플라즈마 반응기

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060125399A KR100845903B1 (ko) 2006-12-11 2006-12-11 다중 코어 플라즈마 발생기를 갖는 플라즈마 반응기

Publications (2)

Publication Number Publication Date
KR20080053631A KR20080053631A (ko) 2008-06-16
KR100845903B1 true KR100845903B1 (ko) 2008-07-16

Family

ID=39800837

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060125399A KR100845903B1 (ko) 2006-12-11 2006-12-11 다중 코어 플라즈마 발생기를 갖는 플라즈마 반응기

Country Status (1)

Country Link
KR (1) KR100845903B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101585890B1 (ko) * 2009-05-31 2016-01-15 위순임 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기
CN103632998B (zh) * 2013-11-22 2016-05-04 沈阳拓荆科技有限公司 等离子体处理装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000023689A (ko) * 1996-07-10 2000-04-25 메르다드 엠. 모슬레히 다중-구역 고-밀도 유도-결합된 플라즈마 발생을 위한 장치 및 방법
KR20040095100A (ko) * 2003-05-06 2004-11-12 위순임 넓은 볼륨의 플라즈마 발생을 위한 유도 플라즈마 챔버

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000023689A (ko) * 1996-07-10 2000-04-25 메르다드 엠. 모슬레히 다중-구역 고-밀도 유도-결합된 플라즈마 발생을 위한 장치 및 방법
KR20040095100A (ko) * 2003-05-06 2004-11-12 위순임 넓은 볼륨의 플라즈마 발생을 위한 유도 플라즈마 챔버

Also Published As

Publication number Publication date
KR20080053631A (ko) 2008-06-16

Similar Documents

Publication Publication Date Title
KR100979186B1 (ko) 용량 결합 플라즈마 반응기
KR101463934B1 (ko) 혼합형 플라즈마 반응기
KR20110104847A (ko) 용량 결합 플라즈마 반응기
KR101496841B1 (ko) 혼합형 플라즈마 반응기
KR20120004040A (ko) 플라즈마 발생장치
KR20080024693A (ko) 대면적 유도 결합 플라즈마 반응기
KR20100010069A (ko) 유도 결합 플라즈마 반응기
KR20070112988A (ko) 다중 배열된 방전실을 갖는 플라즈마 반응기 및 이를이용한 플라즈마 처리 시스템
KR101200726B1 (ko) 상하 다중 분할 전극이 구비된 플라즈마 반응기
KR101572100B1 (ko) 복합 주파수를 이용한 대면적 플라즈마 반응기
KR101468730B1 (ko) 다중 무선 주파수 안테나를 갖는 유도 결합 플라즈마반응기
KR100845903B1 (ko) 다중 코어 플라즈마 발생기를 갖는 플라즈마 반응기
KR101167952B1 (ko) 대면적의 플라즈마를 발생시키는 플라즈마 반응기
WO2007123378A1 (en) Plasma reactor having plasma chamber coupled with magnetic flux channel
KR20070112990A (ko) 다중 배열된 방전실을 갖는 플라즈마 반응기 및 이를이용한 플라즈마 처리 시스템
KR100980291B1 (ko) 다중 방전관 브리지를 구비한 유도 플라즈마 챔버
KR101236206B1 (ko) 균일한 고밀도 플라즈마를 발생하기 위한 유도 결합플라즈마 반응기
KR20100129373A (ko) 복합형 플라즈마 반응기
KR100772451B1 (ko) 플라즈마 처리 챔버 및 플라즈마 처리 시스템
KR20080028518A (ko) 대면적 플라즈마 처리를 위한 유도 결합 플라즈마 반응기
KR100980281B1 (ko) 다중 코어 플라즈마 발생기를 갖는 이중 플라즈마 반응기
KR100955207B1 (ko) 이중 기판 처리를 위한 용량 결합 플라즈마 반응기
KR100798351B1 (ko) 다중 원격 플라즈마 발생기를 구비한 플라즈마 처리 챔버
KR100883561B1 (ko) 자속 채널에 결합된 기판 처리 챔버를 구비한 플라즈마반응기
KR20100129369A (ko) 수직 듀얼 챔버로 구성된 대면적 플라즈마 반응기

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130708

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140709

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee