KR100844110B1 - Catalyst slurry for the continuous manufacturing process of membrane electrode assembly in polymer electrolyte fuel cell, and manufacturing method for the same - Google Patents

Catalyst slurry for the continuous manufacturing process of membrane electrode assembly in polymer electrolyte fuel cell, and manufacturing method for the same Download PDF

Info

Publication number
KR100844110B1
KR100844110B1 KR1020070002443A KR20070002443A KR100844110B1 KR 100844110 B1 KR100844110 B1 KR 100844110B1 KR 1020070002443 A KR1020070002443 A KR 1020070002443A KR 20070002443 A KR20070002443 A KR 20070002443A KR 100844110 B1 KR100844110 B1 KR 100844110B1
Authority
KR
South Korea
Prior art keywords
catalyst
catalyst slurry
slurry
stirring
membrane electrode
Prior art date
Application number
KR1020070002443A
Other languages
Korean (ko)
Inventor
박석희
박진수
김민진
박구곤
임성대
양태현
윤영기
이원용
김창수
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020070002443A priority Critical patent/KR100844110B1/en
Application granted granted Critical
Publication of KR100844110B1 publication Critical patent/KR100844110B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

A catalyst slurry with a high viscosity suitably used in a process of continuously manufacturing a membrane electrode assembly of a polymer electrolyte fuel cell is provided, and a method for manufacturing the catalyst slurry is provided to produce a large quantity of membrane electrode assemblies with the same quality within a short time. A method for manufacturing a catalyst slurry used in continuous manufacturing of a membrane electrode assembly of a polymer electrolyte fuel cell comprises the steps of: pouring distilled water into which a dispersant and an anti-foaming agent are dissolved into catalyst particles; adding an organic solvent comprising a binder into the distilled water comprising the catalyst particles; primarily stirring the catalyst slurry; secondly stirring the primarily stirred catalyst slurry; defoaming the secondly stirred catalyst slurry, and thirdly stirring the defoamed catalyst slurry, wherein the first stirring step is performed in a ultrasonic cleaner containing water for 5 to 30 minutes, the second stirring step is performed at a rotation speed of 6 to 15 revolutions per minute within a defoaming machine for 12 to 24 hours, and the third stirring step is performed at a rotation speed of 6 revolutions per minute for 24 to 72 hours after releasing the vacuum state. Further, a viscosity of the catalyst slurry is 8000 to 12000 cP.

Description

고분자 연료전지 막전극접합체 연속식 제조를 위한 촉매 슬러리 및 그 제조 방법{Catalyst Slurry for the Continuous Manufacturing Process of Membrane Electrode Assembly in Polymer Electrolyte Fuel Cell, and Manufacturing Method for the Same}Catalyst Slurry for the Continuous Manufacturing Process of Membrane Electrode Assembly in Polymer Electrolyte Fuel Cell, and Manufacturing Method for the Same

도 1 은 연료 전지의 일반적인 구조도이다. 1 is a general structural diagram of a fuel cell.

도 2 는 본 발명의 막전극접합체의 연속식 제조를 위한 촉매 슬러리의 제조 공정도이다. 2 is a manufacturing process chart of the catalyst slurry for the continuous production of the membrane electrode assembly of the present invention.

본 발명은 고분자 연료전지 막전극접합체 연속식 제조를 위한 촉매 슬러리 및 그 제조 방법에 관한 것이다. 더욱 상세하게는, 본 발명은 촉매, 결합제, 분산제 및 소포제를 포함하는 고분자 연료전지 막전극접합체의 연속식 제조에 사용되는 촉매 슬러리 및 촉매입자에 분산제와 소포제를 용해시킨 증류수를 부어주는 단계; 상기 촉매입자가 포함된 증류수에 결합제가 포함된 유기 용매를 부가하는 단계; 상기 촉매 슬러리를 1 차 교반시키는 단계; 1 차 교반시킨 상기 촉매 슬러리를 2 차 교반시키는 단계; 2 차 교반시킨 상기 촉매 슬러리를 탈포시키는 단계; 및 탈포시 킨 상기 촉매 슬러리를 3 차 교반시키는 단계를 포함하는 고분자 연료전지 막전극접합체의 연속식 제조에 사용되는 촉매 슬러리 제조 방법에 대한 것이다. The present invention relates to a catalyst slurry for continuous production of a polymer fuel cell membrane electrode assembly and a method of manufacturing the same. More specifically, the present invention comprises the steps of pouring a distilled water dissolving the dispersant and the antifoaming agent to the catalyst slurry and catalyst particles used in the continuous production of a polymer fuel cell membrane electrode assembly comprising a catalyst, a binder, a dispersant and an antifoaming agent; Adding an organic solvent including a binder to distilled water including the catalyst particles; First stirring the catalyst slurry; Second stirring of the firstly stirred catalyst slurry; Defoaming the catalyst slurry with secondary agitation; And it relates to a catalyst slurry manufacturing method used in the continuous production of a polymer fuel cell membrane electrode assembly comprising a third step of degassing the catalyst slurry.

연료전지는 발전효율이 높고 불순물의 배출이 적으며, 연료인 수소는 화석연료를 비롯한 다양한 원료를 통하여 공급이 가능할 뿐 아니라 공장의 부산물인 수소를 재이용하는 등 연료원이 풍부하여 여러 가지 용도에 응용이 기대되고 있다.Fuel cells have high power generation efficiency and low emission of impurities. Hydrogen, a fuel, can be supplied through various raw materials including fossil fuels, and has abundant fuel sources such as reuse of plant by-product hydrogen. This is expected.

연료전지는 인산전해질형 연료전지(PAFC : Phosphoric Acid Fuel Cell), 용융탄산염형 연료전지(MCFC : Molten Carbonate Fuel Cell), 고체산화물형 연료전지(SOFC : Solid Oxide Fuel Cell), 고분자전해질형 연료전지(PEFC : Polymer Electrolyte Fuel Cell) 및 알칼리형 연료전지(AFC : Alkaline Fuel Cell) 등이 있으며, 그 중 고분자전해질형 연료전지는 현재 세계적으로 가장 활발하게 개발되고 있는 연료전지다. The fuel cells include phosphate electrolyte fuel cells (PAFC), molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and polymer electrolyte fuel cells. (PEFC: Polymer Electrolyte Fuel Cell) and Alkaline Fuel Cell (AFC), among which polymer electrolyte fuel cell is the most actively developed fuel cell in the world.

고분자전해질형 연료전지는 고체인 폴리머제 박막(두께 20~50㎛ 정도)을 양자가 이동하는 것으로 에너지를 얻는다. PC나 휴대전화 등 소형전자기기에 응용이 기대되는 직접 메탄올형 연료전지(DMFC : Direct Methanol Fuel Cell)는 PEFC의 개량형으로 연료를 액체인 메탄올로 응용한 것이다. A polymer electrolyte fuel cell obtains energy by moving a polymer thin film (about 20 to 50 µm thick) as a solid. Direct Methanol Fuel Cell (DMFC), which is expected to be applied to small electronic devices such as PCs and mobile phones, is an improved PEFC that uses fuel as liquid methanol.

고분자전해질형 연료전지는 다른 연료전지에 비하여 대단히 폭넓은 응용이 기대되고 있는 연료전지이다. 전해질이 고형이기 때문에 액체와 같이 누설되어 없어질 우려가 없으며, 구조가 비교적 간단하여 취급이 용이하다. 연료전지의 하부는 상온에서, 상부는 100℃ 정도의 비교적 낮은 온도에서 동작하기 때문에 기동시간이 짧고, 재료의 제약이 적다. 또 대단히 얇은 박막으로 단위면적당 얻어지는 출력이 높아 소형경량인 연료전지를 만들기 쉽다. 이와 같이 고분자전해질형 연료전지에는 다른 연료전지에는 없는 특징이 있어 현재 가장 활발하게 연구 개발이 이루어지고 있다.Polymer electrolyte fuel cells are fuel cells that are expected to have a wider range of applications than other fuel cells. Since the electrolyte is solid, there is no fear of leaking out like a liquid, and the structure is relatively simple and easy to handle. Since the lower part of the fuel cell operates at room temperature and the upper part is operated at a relatively low temperature of about 100 ° C., the startup time is short and the material is limited. In addition, the ultra-thin thin film has a high output per unit area, making it easy to manufacture a compact and lightweight fuel cell. As such, the polymer electrolyte fuel cell has characteristics that other fuel cells do not have, and research and development are now being made most actively.

고분자전해질형 연료전지에는 전해질이 고체고분자로 된 막이 사용되며, 이 고분자막의 양쪽에 수소와 산소를 반응시키는 촉매가 도포되어 있고, 외측에는 가스확산층(GDL : Gas Diffusion Layer)이 있다. 이 3가지 층의 재료를 합성하여 만든 것을 막전극접합체(Membrane Electrode Assembly)라고 하며, 막전극접합체의 두께는 약 100μm 정도이며, 이것이 발전용 셀이 된다. 1개의 셀에서 얻어지는 에너지는 약 1A/cm2 정도이며 이 셀을 적층하여 1개의 전지로 만든다. 이것을 셀 모듈이라고 한다.In the polymer electrolyte fuel cell, a membrane made of a solid polymer electrolyte is used, and a catalyst for reacting hydrogen and oxygen is coated on both sides of the polymer membrane, and a gas diffusion layer (GDL) is located outside. The composite material of these three layers is called Membrane Electrode Assembly, and the membrane electrode assembly has a thickness of about 100 μm, which becomes a power generation cell. The energy obtained in one cell is about 1 A / cm 2 and these cells are stacked to form one battery. This is called a cell module.

현재 일반적으로 행해지고 있는 촉매 슬러리 제조 방법은 고분자 연료전지의 막전극접합체를 배치 타입, 즉 스프레이 방식, 스크린 프린팅 방식으로 제조하는 방식에 사용하기 위한 것이다. 따라서 촉매 슬러리의 점도가 낮아 연속식 설비에 사용을 하게 되면 건조 과정에서 표면이 심하게 균열이 생겨 연료전지 전극으로 사용할 수가 없게 된다는 문제점이 있었다.The catalyst slurry production method currently performed generally is for use in the method of manufacturing the membrane electrode assembly of a polymer fuel cell by a batch type, ie, a spray method or a screen printing method. Therefore, when the viscosity of the catalyst slurry is used in a continuous installation, there is a problem in that the surface is severely cracked during the drying process, and thus it cannot be used as a fuel cell electrode.

또한, 배치 타입으로 막전극접합체를 제작할 경우 생산되는 각각의 막전극접합체의 두께, 촉매 분산 및 성능 등에 있어서 편차가 크게 된다는 문제점이 있어 연속식으로 막전극접합체를 제작하는 데 사용하기 적합한 촉매 슬러리의 개발이 요구되고 있었다. In addition, when the membrane electrode assembly is manufactured in a batch type, there is a problem in that the variation in thickness, catalyst dispersion, and performance of each membrane electrode assembly produced is large. Development was required.

본 발명의 목적은 고분자 연료전지 막전극접합체의 연속식 제조 공정에 사용되기에 적합한 고점도의 촉매 슬러리를 제공하는 데 있다. It is an object of the present invention to provide a catalyst slurry of high viscosity suitable for use in the continuous production process of polymer fuel cell membrane electrode assemblies.

또한, 본 발명의 목적은 단시간에 같은 품질을 가진 막전극접합체를 대량으로 생산할 수 있는 촉매슬러리의 제조 방법을 제공하는 데 있다.It is also an object of the present invention to provide a method for producing a catalyst slurry that can produce a large amount of membrane electrode assembly having the same quality in a short time.

상기의 본 발명의 목적은 촉매, 결합제, 분산제 및 소포제를 포함하는 고분자 연료전지 막전극접합체의 연속식 제조에 사용되는 촉매 슬러리를 제공함으로써 달성된다. The above object of the present invention is achieved by providing a catalyst slurry used for the continuous production of a polymer fuel cell membrane electrode assembly comprising a catalyst, a binder, a dispersant and an antifoaming agent.

본 발명은 또한, 상기 본 발명의 목적을 달성하기 위하여 촉매 슬러리의 점도가 5,000~20,000 cP, 바람직하게는 8,000~12,000 cP 인 것을 특징으로 하는 촉매 슬러리, 촉매의 함량이 슬러리 고형분의 50~80wt%, 바람직하게는 55~70wt%인 것을 특징으로 하는 촉매 슬러리, 결합제의 함량이 슬러리 고형분의 20~50wt%, 바람직하게는 30~45wt%인 것을 특징으로 하는 촉매 슬러리, 분산제의 함량이 슬러리 고형분의 0.5~3wt%, 바람직하게는 1~2wt% 인 것을 특징으로 하는 촉매 슬러리 및 소포제의 함량이 슬러리 고형분의 0.1~3wt%, 바람직하게는 0.5~2wt%인 것을 특징으로 하는 촉매 슬러리를 제공한다. The present invention is also a catalyst slurry, characterized in that the viscosity of the catalyst slurry is 5,000 ~ 20,000 cP, preferably 8,000 ~ 12,000 cP in order to achieve the object of the present invention, the content of the catalyst is 50 ~ 80wt% of the slurry solids , Catalyst slurry, characterized in that 55 to 70wt%, the content of the binder is 20 to 50wt%, preferably 30 to 45wt% of the slurry solids, the content of the slurry solids, A catalyst slurry is characterized in that the content of the catalyst slurry and the antifoaming agent is 0.5 to 3 wt%, preferably 1 to 2 wt%, and 0.1 to 3 wt% of the slurry solids, preferably 0.5 to 2 wt%.

상기 본 발명의 또 다른 목적은 촉매입자에 분산제와 소포제를 용해시킨 증류수를 부어주는 단계; 상기 촉매입자가 포함된 증류수에 결합제가 포함된 유기 용매를 부가하는 단계; 상기 촉매 슬러리를 1 차 교반시키는 단계; 1 차 교반시킨 상 기 촉매 슬러리를 2 차 교반시키는 단계; 2 차 교반시킨 상기 촉매 슬러리를 탈포시키는 단계; 및 탈포시킨 상기 촉매 슬러리를 3 차 교반시키는 단계를 포함하는 고분자 연료전지 막전극접합체의 연속식 제조에 사용되는 촉매 슬러리 제조 방법을 제공함으로써 달성된다. Another object of the present invention is the step of pouring distilled water dissolved dispersant and antifoaming agent to the catalyst particles; Adding an organic solvent including a binder to distilled water including the catalyst particles; First stirring the catalyst slurry; Secondly stirring the first stirred catalyst slurry; Defoaming the catalyst slurry with secondary agitation; And it is achieved by providing a method for producing a catalyst slurry used in the continuous production of a polymer fuel cell membrane electrode assembly comprising the step of tertiary stirring the degassed catalyst slurry.

본 발명은 또한, 상기 본 발명의 목적을 달성하기 위하여 1 차 교반 단계가 물이 담긴 초음파 세척기에서 5~30분동안 교반되는 것임을 특징으로 하는 촉매 슬러리 제조 방법, 2 차 교반 단계가 탈포기에서 12~24시간 동안 6~15 rpm 로 교반되는 것임을 특징으로 하는 촉매 슬러리 제조 방법, 탈포 단계가 -76mmHg(= -10.1325KPa, 절대진공은 -760mmHg)의 진공 상태로 30분~2시간 동안 탈포되는 것임을 특징으로 하는 촉매 슬러리 제조 방법 및 3 차 교반 단계가 진공을 해제한 후, 6 rpm에서 24~72시간 동안 교반되는 것임을 특징으로 하는 촉매 슬러리 제조 방법을 제공한다. The present invention also provides a method for producing a catalyst slurry, characterized in that the first stirring step is stirred for 5 to 30 minutes in an ultrasonic cleaner containing water in order to achieve the object of the present invention, the second stirring step is carried out in a deaerator 12 Method for producing a catalyst slurry, characterized in that the stirring at 6 ~ 15 rpm for 24 hours, degassing step is -76mmHg (= -10.1325KPa, absolute vacuum is -760mmHg) degassed for 30 minutes to 2 hours in a vacuum state Characterized in that the catalyst slurry production method and the third stirring step provides a catalyst slurry production method, characterized in that the stirring for 24 to 72 hours at 6 rpm after releasing the vacuum.

고분자 연료전지 막전극접합체의 연속식 제조에 사용될 수 있는 고점도의 촉매 슬러리를 얻기 위해서는 기존의 묽은 촉매 슬러리에 비해 용매량을 줄여야 하며,동시에 결합제 역할을 하는 고분자 물질의 양을 늘려야 한다. In order to obtain a high viscosity catalyst slurry that can be used for the continuous production of a polymer fuel cell membrane electrode assembly, the amount of solvent must be reduced compared to the existing thin catalyst slurry, and at the same time, the amount of the polymer material acting as a binder must be increased.

고분자 연료전지에 촉매 슬러리에 사용하는 고분자는 음극에서 발생하는 수소이온의 전도체로 작용하는 전해질막과 동일한 물질을 사용하며, 일반적으로 나피온이 사용된다. 촉매입자들의 결합력을 강화하기 위해 전해질고분자 외에 추가로 분자량이 큰 고분자 결합제를 사용하는 것은 불순물로 작용하기 때문에 적당하지 아니하다.The polymer used for the catalyst slurry in the polymer fuel cell uses the same material as the electrolyte membrane that serves as a conductor of hydrogen ions generated at the cathode, and Nafion is generally used. In order to enhance the binding force of the catalyst particles, it is not suitable to use a high molecular weight binder in addition to the electrolyte polymer because it acts as an impurity.

이때, 최종적인 촉매 슬러리의 점도는 5,000~20,000 cP가 바람직하며, 더욱 바람직하게는 8,000~12,000 cP이다. 점도가 5,000 이하일 경우에는 용매의 함량이 높아 건조 시 촉매층의 균열이 많이 생기게 되며 반대로 점도가 20,000 이상의 고점도일 경우에는 슬러리의 유동성이 크게 떨어져 고르게 코팅을 하기가 어렵고 탈포기나 용기에 많이 묻게 되어 수율도 떨어지게 된다. At this time, the viscosity of the final catalyst slurry is preferably 5,000-20,000 cP, more preferably 8,000-12,000 cP. If the viscosity is 5,000 or less, the content of the solvent is high, so that the cracking of the catalyst layer occurs a lot. On the contrary, if the viscosity is 20,000 or more, the slurry has a high fluidity, so that it is difficult to apply the coating evenly. Will also fall.

본 발명의 촉매 슬러리의 촉매 함량은 고형분의 50~80wt%가 바람직하며, 더욱 바람직하게는 55~70wt%,이다. 촉매 성분으로는 Pt/C, Pt-Ru/C 등이 사용된다. 결합제의 역할을 하는 고분자 함량은 건조를 용이하게 하기 위하여 고형분의 20~50wt%가 바람직하며, 더욱 바람직하게는 30~45wt%이다. The catalyst content of the catalyst slurry of the present invention is preferably 50 to 80wt% of the solid content, more preferably 55 to 70wt%. Pt / C, Pt-Ru / C, etc. are used as a catalyst component. The polymer content, which acts as a binder, is used to reduce the amount of solids to facilitate drying. 20-50 wt% is preferable, More preferably, it is 30-45 wt%.

막전극접합체가 좋은 성능을 가지려면 촉매층에 적당한 양의 촉매와 이온 전도성 고분자가 고르게 분산되어 있어 수소 분자의 이온화 및 생성된 이온의 전도가 동시에 잘 일어나야 한다. 분산성을 높이기 위해 첨가하는 분산제는 촉매담지체인 카본의 분산에 적합한 폴리카르복실산 및 폴리술폰산암모늄염 등의 제품을 선택한다. 본 발명의 촉매 슬러리의 분산제 함량은 고형분의 0.5~3wt%가 바람직하며, 더욱 바람직하게는 1~2wt%이다.In order for the membrane electrode assembly to have good performance, an appropriate amount of the catalyst and the ion conductive polymer are uniformly dispersed in the catalyst layer, so that ionization of the hydrogen molecules and conduction of the generated ions must occur at the same time. The dispersing agent added in order to improve dispersibility selects products, such as polycarboxylic acid and ammonium polysulfonic acid salt suitable for dispersion of carbon which are catalyst carriers. The dispersant content of the catalyst slurry of the present invention is preferably 0.5 to 3 wt% of the solid content, more preferably 1 to 2 wt%.

슬러리의 혼합 시 발생하는 기포를 억제하기 위하여 소량의 소포제를 첨가하게 되는데 촉매 슬러리의 용매인 물과 알코올계에 적합한 폴리에테르계 및 변성실리콘계 등의 소포제를 사용하여야 한다. 본 발명의 촉매 슬러리의 소포제 함량은 바람직하게는 고형분의 0.1~3wt%, 더욱 바람직하게는 0.5~2wt%이다.In order to suppress bubbles generated during mixing of the slurry, a small amount of antifoaming agent is added, and an antifoaming agent, such as polyether and modified silicone, suitable for water and alcohol, which are solvents of the catalyst slurry, should be used. The antifoaming agent content of the catalyst slurry of the present invention is preferably 0.1 to 3 wt%, more preferably 0.5 to 2 wt% of the solid content.

막적극접합체의 연속식 제조에 적합한 슬러리를 제조하기 위해서는 슬러리의 조성과 더불어 제조 공정이 중요하다. 본 발명의 촉매 슬러리 제조 공정은 다음과 같다. In addition to the composition of the slurry, the production process is important for producing a slurry suitable for the continuous production of the membrane active assembly. The catalyst slurry production process of the present invention is as follows.

고분자 연료전지에 사용하는 촉매는 반응성이 매우 높아 휘발성이 높은 유기용매를 직접 접촉하게 되면 연소 반응이 일어나게 되다. 따라서 이를 방지하기 위해서는 촉매입자에 알코올이 들어있는 고분자 용액을 넣어 주기 전에 먼저 용매로 사용하는 물로 충분히 적신 다음 고분자 용액을 넣어주어야 한다. Catalysts used in polymer fuel cells have high reactivity, and combustion reactions occur when the organic solvents are directly contacted with high volatility. Therefore, in order to prevent this, before adding the polymer solution containing alcohol to the catalyst particles, it must first be sufficiently wetted with water to be used as a solvent, and then the polymer solution is added.

이때, 일단 고분자 용액이 들어가면 점도가 높아져 첨가제인 분산제와 소포제의 고른 혼합이 어렵게 되므로 분산제와 소포제는 먼저 물에 용해시킨 다음 용해된 물로 촉매 입자를 적셔주어야 한다. In this case, once the polymer solution enters, the viscosity becomes high, so that evenly mixing the additive dispersant and the antifoaming agent is difficult, so that the dispersant and the antifoaming agent must first be dissolved in water and then wet the catalyst particles with dissolved water.

고분자 용액을 넣은 후, 상기 촉매 슬러리의 혼합을 용이하게 하기 위해 먼저 물을 담은 초음파 세척기에 넣어 약 5~30분간 일차 교반을 시킨다. 일차 교반이 끝나고 난 촉매 슬러리는 탈포기에 붓고 6~15 rpm 로 천천히 12~24시간 교반한다. 2 차 교반이 끝난 후에는 -76mmHg(= -10.1325KPa, 절대진공은 -760mmHg)의 진공 상태로 30분~2시간 탈포를 실시한다. After the polymer solution was added, first, the mixture was first put into an ultrasonic cleaner containing water in order to facilitate mixing of the catalyst slurry, followed by primary stirring for about 5 to 30 minutes. After completion of the primary agitation, the catalyst slurry is poured into a deaerator and slowly stirred for 12 to 24 hours at 6 to 15 rpm. After the second agitation, defoaming is performed for 30 minutes to 2 hours in a vacuum of -76 mmHg (= -10.1325 KPa, absolute vacuum -760 mmHg).

탈포 후에 공기를 불어 넣어 진공을 해제한 다음 6 rpm으로 맞추고 24~72시간 동안 3차 교반을 실시하여 최종 슬러리 제조한다.After defoaming, blow the air to release the vacuum, set at 6 rpm and perform the third stirring for 24 to 72 hours to prepare the final slurry.

본 발명의 조성비 및 제조 공정에 따른 촉매 슬러리를 이용하여 연료전지 막전극접합체를 연속식으로 제조함으로써, 건조 후 약 5~20μm의 편차가 적은 코팅 두께 및 균일한 촉매 분산을 가지는 막전극접합체를 생산할 수 있다. By continuously producing the fuel cell membrane electrode assembly using the catalyst slurry according to the composition ratio and manufacturing process of the present invention, a membrane electrode assembly having a coating thickness and uniform catalyst dispersion with a small variation of about 5-20 μm after drying can be produced. Can be.

현재 일반적으로 사용되는 촉매 슬러리는 배치 타입의 막전극접합체 제조 방식에 사용되기 위한 것으로서, 촉매 슬러리의 점도가 낮아 연속식 설비에 사용을 하게 되면 건조 과정에서 표면이 심하게 균열이 생겨 연료전지 전극으로 사용할 수 없었다. Currently used catalyst slurry is to be used in the batch type membrane electrode assembly manufacturing method, when the viscosity of the catalyst slurry is used in a continuous facility, if the surface is severely cracked during the drying process to be used as a fuel cell electrode Could not.

그러나, 본 발명에 따른 촉매 슬러리를 사용하는 경우, 연료전지 막전극접합체의 연속식 제조가 가능하게 되어 단시간에 두께, 촉매 분산 및 성능 등에 있어서 편차가 거의 없는 즉, 같은 품질을 가진 막전극접합체를 대량으로 생산할 수 있다. However, in the case of using the catalyst slurry according to the present invention, it is possible to continuously manufacture the fuel cell membrane electrode assembly, so that there is almost no variation in thickness, catalyst dispersion and performance in a short time. Can be produced in large quantities.

Claims (16)

촉매, 결합제, 분산제 및 소포제를 포함하는 촉매 슬러리에 있어서, 상기 촉매 슬러리의 점도가 5,000~20,000 cP이고, 상기 촉매의 함량이 슬러리 고형분의 50~80wt%이며, 상기 결합제의 함량이 슬러리 고형분의 20~50wt%이고, 상기 분산제의 함량이 슬러리 고형분의 0.5~3wt%이며, 상기 소포제의 함량이 슬러리 고형분의 0.1~3wt%인 것을 특징으로 하는 고분자 연료전지 막전극접합체의 연속식 제조에 사용되는 촉매 슬러리.A catalyst slurry comprising a catalyst, a binder, a dispersant, and an antifoaming agent, wherein the catalyst slurry has a viscosity of 5,000 to 20,000 cP, the catalyst content is 50 to 80 wt% of the slurry solids, and the binder content is 20 to the slurry solids. ~ 50wt%, the content of the dispersant is 0.5 ~ 3wt% of the slurry solids, the content of the antifoaming agent is 0.1 ~ 3wt% of the slurry solids, the catalyst used for the continuous production of polymer fuel cell membrane electrode assembly Slurry. 삭제delete 제 1 항에 있어서, 상기 촉매 슬러리의 점도가 8,000~12,000 cP 인 것을 특징으로 하는 촉매 슬러리.The catalyst slurry of claim 1, wherein the catalyst slurry has a viscosity of 8,000 to 12,000 cP. 삭제delete 제 1 항에 있어서, 상기 촉매의 함량이 슬러리 고형분의 55~70wt%인 것을 특징으로 하는 촉매 슬러리The catalyst slurry of claim 1, wherein the catalyst content is 55 to 70wt% of the slurry solids. 삭제delete 제 1 항에 있어서, 상기 결합제의 함량이 슬러리 고형분의 30~45wt% 인 것을 특징으로 하는 촉매 슬러리.The catalyst slurry of claim 1, wherein the binder content is 30 to 45 wt% of the slurry solids. 삭제delete 제 1 항에 있어서, 상기 분산제의 함량이 슬러리 고형분의 1~2wt% 인 것을 특징으로 하는 촉매 슬러리.The catalyst slurry of claim 1, wherein the content of the dispersant is 1 to 2 wt% of the slurry solids. 삭제delete 제 1 항에 있어서, 상기 소포제의 함량이 슬러리 고형분의 0.5~2wt% 인 것을 특징으로 하는 촉매 슬러리.The catalyst slurry according to claim 1, wherein the content of the antifoaming agent is 0.5 to 2 wt% of the slurry solids. 촉매입자에 분산제와 소포제를 용해시킨 증류수를 부어주는 단계;Pouring distilled water in which a dispersant and an antifoaming agent are dissolved in the catalyst particles; 상기 촉매입자가 포함된 증류수에 결합제가 포함된 유기 용매를 부가하는 단계;Adding an organic solvent including a binder to distilled water including the catalyst particles; 상기 촉매 슬러리를 1 차 교반시키는 단계;First stirring the catalyst slurry; 1 차 교반시킨 상기 촉매 슬러리를 2 차 교반시키는 단계;Second stirring of the firstly stirred catalyst slurry; 2 차 교반시킨 상기 촉매 슬러리를 탈포시키는 단계; 및Defoaming the catalyst slurry with secondary agitation; And 탈포시킨 상기 촉매 슬러리를 3 차 교반시키는 단계를 포함하는 고분자 연료전지 막전극접합체의 연속식 제조에 사용되는 촉매 슬러리 제조 방법에 있어서, In the catalyst slurry production method used in the continuous production of a polymer fuel cell membrane electrode assembly comprising the step of tertiary stirring the degassed catalyst slurry, 상기 1 차 교반 단계가 물이 담긴 초음파 세척기에서 5~30분동안 교반되는 것이고, 상기 2 차 교반 단계가 탈포기에서 12~24시간 동안 6~15 rpm 로 교반되는 것이며, 상기 3 차 교반 단계가 진공을 해제한 후, 6 rpm에서 24~72시간 동안 교반되는 것임을 특징으로 하는 촉매 슬러리 제조 방법. The first stirring step is to be stirred for 5-30 minutes in the ultrasonic cleaner containing water, the second stirring step is to be stirred at 6 ~ 15 rpm for 12 to 24 hours in the deaerator, the third stirring step is After releasing the vacuum, the catalyst slurry production method characterized in that the stirring for 24 to 72 hours at 6 rpm. 삭제delete 삭제delete 제 12 항에 있어서, 상기 탈포 단계가 -76mmHg(= -10.1325KPa, 절대진공은 -760mmHg)의 진공상태로 30분~2시간 동안 탈포되는 것임을 특징으로 하는 촉매 슬러리 제조 방법. The method of claim 12, wherein the defoaming step is a catalyst slurry production method characterized in that the degassed for 30 minutes to 2 hours in a vacuum state of -76mmHg (= -10.1325KPa, absolute vacuum is -760mmHg). 삭제delete
KR1020070002443A 2007-01-09 2007-01-09 Catalyst slurry for the continuous manufacturing process of membrane electrode assembly in polymer electrolyte fuel cell, and manufacturing method for the same KR100844110B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070002443A KR100844110B1 (en) 2007-01-09 2007-01-09 Catalyst slurry for the continuous manufacturing process of membrane electrode assembly in polymer electrolyte fuel cell, and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070002443A KR100844110B1 (en) 2007-01-09 2007-01-09 Catalyst slurry for the continuous manufacturing process of membrane electrode assembly in polymer electrolyte fuel cell, and manufacturing method for the same

Publications (1)

Publication Number Publication Date
KR100844110B1 true KR100844110B1 (en) 2008-07-04

Family

ID=39823803

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070002443A KR100844110B1 (en) 2007-01-09 2007-01-09 Catalyst slurry for the continuous manufacturing process of membrane electrode assembly in polymer electrolyte fuel cell, and manufacturing method for the same

Country Status (1)

Country Link
KR (1) KR100844110B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101080783B1 (en) * 2008-10-06 2011-11-07 현대자동차주식회사 Process for maufacturing electrode and Membrane-Electrode Assembly for Polymer Electrolyte Membrane Fuel Cell
CN114188548A (en) * 2021-12-07 2022-03-15 鸿基创能科技(广州)有限公司 Catalyst slurry preparation method, catalyst slurry, catalyst coating film and membrane electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000001858A (en) * 1998-06-15 2000-01-15 최수현 Electrode manufacture method of direct methanol fuel cell
KR20020032565A (en) * 2000-07-06 2002-05-03 모리시타 요이찌 Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP2004146165A (en) 2002-10-23 2004-05-20 Matsushita Electric Ind Co Ltd Manufacturing method of paint for catalyst layer of solid polymer type fuel cell
KR20060009849A (en) * 2003-04-16 2006-02-01 캐보트 코포레이션 Method of producing membrane electrode assemblies for use in proton exchange membrane and direct methanol fuel cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000001858A (en) * 1998-06-15 2000-01-15 최수현 Electrode manufacture method of direct methanol fuel cell
KR20020032565A (en) * 2000-07-06 2002-05-03 모리시타 요이찌 Method for producing film electrode jointed product and method for producing solid polymer type fuel cell
JP2004146165A (en) 2002-10-23 2004-05-20 Matsushita Electric Ind Co Ltd Manufacturing method of paint for catalyst layer of solid polymer type fuel cell
KR20060009849A (en) * 2003-04-16 2006-02-01 캐보트 코포레이션 Method of producing membrane electrode assemblies for use in proton exchange membrane and direct methanol fuel cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1020020032565 A

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101080783B1 (en) * 2008-10-06 2011-11-07 현대자동차주식회사 Process for maufacturing electrode and Membrane-Electrode Assembly for Polymer Electrolyte Membrane Fuel Cell
CN114188548A (en) * 2021-12-07 2022-03-15 鸿基创能科技(广州)有限公司 Catalyst slurry preparation method, catalyst slurry, catalyst coating film and membrane electrode

Similar Documents

Publication Publication Date Title
EP1734602A1 (en) Powder catalyst material, method for producing same and electrode for solid polymer fuel cell using same
CN111063925B (en) Catalyst coated membrane, fuel cell and method of making
CN1783556A (en) Fuel cell electrode and membrane-electrode assembly and fuel cell system
CN109921033B (en) Preparation method of fuel cell membrane electrode
CN1891741A (en) Polymer membrane for fuel cell, method of preparing same and fuel cell system comprising same
CN1741309A (en) Electrode for fuel cell and fuel cell comprising same
CN1725538A (en) The manufacture method of membrane electrode assembly, fuel battery, fuel cell system and membrane electrode assembly
CN1294181C (en) Method for preparing poly(2,5-benzimidazole)
US8227137B2 (en) Polymer membrane for fuel cell and method of preparing the same
CN101373833B (en) Process for producing membrane electrode assembly, and fuel cell using the membrane electrode assembly produced by the process
US8889584B2 (en) Apparatus for production of fuel cell catalyst layer, method for production of fuel cell catalyst layer, polyelectrolyte solution, and process for production of polyelectrolyte solution
CN103554537B (en) A kind of film and preparation method thereof
CN1477724A (en) Preparation method of membrane electrode commponent of proton exchange membrane fuel cell
JP4987857B2 (en) Polymer dispersion and electrocatalyst ink
CN101003636A (en) Polymer membrane, method of preparing the same, and fuel cell using the same
CN1983684A (en) Ordered membrane electrode of proton-exchange membrane fuel battery
CN114420955A (en) Preparation method and application of membrane electrode for improving management of cathode catalyst layer of proton exchange membrane fuel cell
CN1801511A (en) Electrode for fuel cell, method for manufacturing the same, and fuel cell using the same
KR100844110B1 (en) Catalyst slurry for the continuous manufacturing process of membrane electrode assembly in polymer electrolyte fuel cell, and manufacturing method for the same
CN114005993A (en) Gas diffusion layer, preparation method thereof and fuel cell
CN111584879B (en) Gas diffusion layer, method for producing same, and corresponding membrane electrode assembly and fuel cell
CN113178583A (en) Modified composite material applied to gas diffusion layer and preparation method and application thereof
CN115295810B (en) Fuel cell membrane electrode slurry and preparation method thereof
KR20080067837A (en) Method for preparation of a membrane-electrode assembly for fuel cell by the electrospray technique
CN1990511A (en) Polymer electrolytic membrane, and fuel cell employing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130701

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140613

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150624

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160615

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee