KR20000001858A - Electrode manufacture method of direct methanol fuel cell - Google Patents

Electrode manufacture method of direct methanol fuel cell Download PDF

Info

Publication number
KR20000001858A
KR20000001858A KR1019980022324A KR19980022324A KR20000001858A KR 20000001858 A KR20000001858 A KR 20000001858A KR 1019980022324 A KR1019980022324 A KR 1019980022324A KR 19980022324 A KR19980022324 A KR 19980022324A KR 20000001858 A KR20000001858 A KR 20000001858A
Authority
KR
South Korea
Prior art keywords
catalyst
slurry
electrode
fuel cell
direct methanol
Prior art date
Application number
KR1019980022324A
Other languages
Korean (ko)
Other versions
KR100283206B1 (en
Inventor
정두환
이창형
김창수
신동렬
Original Assignee
최수현
한국에너지기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최수현, 한국에너지기술연구소 filed Critical 최수현
Priority to KR1019980022324A priority Critical patent/KR100283206B1/en
Publication of KR20000001858A publication Critical patent/KR20000001858A/en
Application granted granted Critical
Publication of KR100283206B1 publication Critical patent/KR100283206B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE: An electrode manufacture method of a direct methanol cell is provided to improve the dispersion and combination of a catalyzer by injecting and agitating a teflon solution into a catalyzer slurry at a low temperature. CONSTITUTION: The electrode manufacture method of a direct methanol cell comprises the steps of: ball mill-processing by mixing a 5-60wt% Pt-Ru/C zwith water and isopropyl alcohol; agitating and dispersing a catalyzer particle; obtaining a catalyzer slurry by injecting and agitating a 5-30wt% PTFE solution into the slurry that the catalyzer particle is dispersed at 0 to 10°C drying by coating the catalyzer slurry on a carbon paper.

Description

직접 메탄올 연료전지의 전극 제조방법Electrode Manufacturing Method of Direct Methanol Fuel Cell

본 발명은 직접 메탄올 연료전지(Direct Methanol Feul Cell, DMFC)의 전극 제조방법에 관한 것으로, 보다 자세하게는 전극촉매층 제조시 볼밀링에 의해 금속촉매와 용매간의 충분한 혼합이 이루어지도록 한 촉매슬러리에 결합제인 테플론을 저온에서 서서히 가하면서 교반함으로써 촉매의 분산성 및 결합성을 향상시킨 직접 메탄올 연료전지의 전극 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an electrode of a direct methanol fuel cell (DMFC), and more particularly, a binder in a catalyst slurry that allows sufficient mixing between a metal catalyst and a solvent by ball milling during preparation of an electrode catalyst layer. The present invention relates to a method for manufacturing an electrode of a direct methanol fuel cell in which agitation of Teflon at low temperature is improved while improving the dispersibility and bonding property of the catalyst.

일반적으로 수소를 연료로 사용하는 기체형 연료전지는 에너지 밀도가 크다는 장점을 지니고 있으나 수소가스의 취급에 주의를 요하고 연료가스인 수소가스를 생산하기 위하여 메탄, 메탄올등을 이용한 연료개질 장치등의 부대 설비를 필요로하는 문제점이 있다.In general, gaseous fuel cells that use hydrogen as a fuel have the advantage of high energy density, but require attention to the handling of hydrogen gas and fuel reformers using methane, methanol, etc. to produce hydrogen gas, which is fuel gas. There is a problem that requires additional equipment.

이에 반해 액체를 연료로 사용하는 액체형 연료전지는 기체형에 비해 에너지 밀도는 낮으나 연료의 취급이 용이하고 운전온도가 낮으며 특히 연료개질 장치를 필요로 하지 않는다는 특성에 기인하여 소형, 범용 이동용 전원으로 적합한 시스템으로 알려지고 있다.In contrast, liquid fuel cells that use liquid as fuel have lower energy density than gas type, but are easy to handle fuel, have low operating temperature, and do not require fuel reforming device. It is known to be a suitable system.

액체형 연료전지가 지니고 있는 상기의 장점에 기인하여 액체형 연료전지의 대표적인 형태인 직접 메탄올 연료전지(DMFC)에 대한 많은 연구가 수행되어 오고 있는 바, 최근 미국 Los Alamas 국립연구소에서는 고체 고분자막을 전해질로 이용하여 단위전지의 성능이 0.5V에서 670mA/cm2인 고성능의 DMFC의 개발을 발표하였고, Jet Propulsion Laboratory에서는 0.6V에서 180mA/cm2의 스택 개발을 발표함으로써 액상연료인 메탄올을 직접 발전용 연료로 이용한 연료전지의 실용화 가능성을 입증하기에 이르렀다.Due to the above advantages of liquid fuel cells, many researches have been conducted on direct methanol fuel cells (DMFC), which is a representative form of liquid fuel cells. Recently, the Los Alamas National Laboratory used a solid polymer membrane as an electrolyte. the performance of the unit cells was announced the development of the high performance of DMFC 670mA / cm 2 at 0.5V, Jet Propulsion Laboratory of the liquid fuel in the fuel for a direct methanol power generation by the stack presentation development of 180mA / cm 2 at 0.6V The possibility of commercialization of the used fuel cell has been demonstrated.

직접 메탄올 연료전지는 메탄올의 산화반응이 일어나는 연료극 반응과 산소의 환원반응이 일어나는 공기극 반응으로부터 얻어지는 기전력의 힘이 발전의 근간을 이루며, 이때 연료극과 공기극에서 일어나는 반응은 아래와 같다.The direct methanol fuel cell is based on the power of the electromotive force obtained from the cathode reaction in which the oxidation reaction of methanol takes place and the cathode reaction in which the reduction reaction of oxygen occurs, and the reaction occurring in the anode and the cathode is as follows.

연료극: CH3OH + H2O → CO2+ H++ 6e-Ea = 0.04VFuel electrode: CH 3 OH + H 2 O → CO 2 + H + + 6e - Ea = 0.04V

공기극: 3/2O2+ 6H++ 6e- → 3H2O Ec= 1.23VCathode: 3 / 2O 2 + 6H + + 6e- → 3H 2 OE c = 1.23 V

전체반응: CH3OH + 3/2O2→ CO2+ 3H2O Ecell= 1.19VTotal reaction: CH 3 OH + 3 / 2O 2 → CO 2 + 3H 2 OE cell = 1.19 V

상기의 연료극과 공기극에서 일어나는 반응에서 알 수 있듯이, 연료극에서는 액상이 메탄올(CH3OH)과 물(H2O)이 고상인 전극과 반응하는 2상 반응이기 때문에 친수성이 강한 전극이 요구되고 있다. 한편, 공기극에서는 수소이온(H+)과 산소(O2)가 반응하여 생성된 물(H2O)과 공기중의 산소(O2) 및 전극촉매층이 3상으로 존재하고, 반응의 결과로 생성된 물이 외부로 빨리 배출되어야 하기 때문에 소수성이 강한 전극의 제조가 요구되고 있다.As can be seen from the reactions occurring at the anode and the cathode, a hydrophilic electrode is required because the liquid phase is a two-phase reaction in which the liquid phase reacts with an electrode in which methanol (CH 3 OH) and water (H 2 O) are solid. . On the other hand, the air electrode in as a result of the hydrogen ion (H +) and oxygen (O 2) is oxygen (O 2) and the electrode catalyst layer of the reaction to produce water (H 2 O) and air is present in the three-phase, and the reaction Since the produced water has to be discharged to the outside quickly, the manufacture of a strong hydrophobic electrode is calculated | required.

이와같이 연료극과 공기극 각각에서 요구되는 조건을 만족시키기 위해서는, 연료극의 경우 전극촉매를 시트(sheet)상으로 제조하는 데 사용되는 소수성 결합제의 첨가량을 최소화 시킴과 아울러 촉매의 분산성 및 결합성을 높혀야 할 것이다.In order to satisfy the requirements of each of the anode and the cathode, it is necessary to minimize the amount of the hydrophobic binder used to prepare the electrode catalyst in the form of a sheet, and to increase the dispersibility and the bondability of the catalyst. something to do.

그리고, 공기극의 경우에는 소수성 결합제를 첨가하여 충분한 고·액·기상의 반응이 일어나도록 하여야 함과 동시에 충분한 반응성의 부여를 위해 촉매의 분산성 및 결합성을 높혀야 할 것이다.In the case of the cathode, a hydrophobic binder should be added to allow sufficient solid, liquid, and gas phase reactions to occur, and the dispersibility and bondability of the catalyst should be increased to impart sufficient reactivity.

한편, 종래의 연료전지 전극 제조방법에서는 통상적으로 전극촉매층 형성을 위한 슬러리의 제조시 결합제의 첨가량에 대한 제어를 제대로 행하지 않고, 또한 전극 촉매층 슬러리의 교반을 충분히 행하지 않음에 따라 촉매의 분산성 및 결합성이 떨어져서 만족할만한 연료전지의 성능을 기대하는 것이 어려운 실정이다.On the other hand, in the conventional fuel cell electrode manufacturing method, the dispersibility and bonding of the catalyst is usually not properly controlled for the addition amount of the binder during preparation of the slurry for forming the electrode catalyst layer, and the stirring of the electrode catalyst layer slurry is not sufficiently performed. It is difficult to expect satisfactory fuel cell performance due to poor performance.

따라서, 본 발명은 전극촉매층 제조시 볼밀링 교반에 의해 금속촉매와 용매간의 충분한 혼합이 이루어지도록 한 촉매슬러리에 결합제인 테플론을 저온에서 서서히 가하면서 교반함으로써 촉매의 분산성 및 결합성을 향상시킨 직접 메탄올 연료전지의 전극 제조방법을 제공함에 발명의 목적을 두고 있다.Therefore, the present invention provides a direct catalyst that improves the dispersibility and the binding property of the catalyst by slowly adding the binder Teflon at low temperature to the catalyst slurry to allow sufficient mixing between the metal catalyst and the solvent by a ball milling agitation during the preparation of the electrode catalyst layer. An object of the present invention is to provide a method for manufacturing an electrode of a methanol fuel cell.

본 발명의 직접 메탄올 연료전지의 전극 제조방법은 연료극 제조방법과 공기극 제조방법의 두가지 제조공정으로서, 연료극 제조방법의 경우에는 전극촉매층 슬러리의 제조시 소수성 결합제의 첨가량을 최소화시키는 반면에, 공기극 제조방법의 경우에는 소수성 결합제를 상기 연료극의 경우에 비해 상대적으로 많이 첨가하는 점에서 차이를 보이고 있으며, 그 외의 전극 제조공정은 서로 거의 동일하게 수행된다.The electrode manufacturing method of the direct methanol fuel cell of the present invention is a manufacturing method of a cathode and a cathode manufacturing method, and in the case of the anode manufacturing method, the amount of the hydrophobic binder is minimized during the preparation of the electrode catalyst layer slurry, while the cathode manufacturing method is used. In the case of the hydrophobic binder is shown to be a relatively large addition compared to the case of the anode, and the other electrode manufacturing process is performed almost the same as each other.

본 발명은 연료극 제조시 및 공기극 제조시 모두 금속촉매와 용매를 혼합하여 슬러리를 제작할 때 볼밀링에 의한 충분한 교반이 이루어지도록 하여 촉매입자 상호간의 결합력을 저하시키고, 상기의 교반을 통해서 얻어진 슬러리에 테프론 결합제를 첨가하여 교반하는 작업을 저온에서 수행함으로써 교반시 발생되는 열을 억제시켜 결합제가 촉매층에 고르게 분산되도록 한 데에 기술적 특징이 있다.The present invention provides sufficient agitation by ball milling when a slurry is prepared by mixing a metal catalyst and a solvent both during the production of the anode and during the production of the cathode, thereby lowering the binding force between the catalyst particles and Teflon in the slurry obtained through the above agitation. It is a technical feature to suppress the heat generated during stirring by performing a stirring operation by adding a binder at a low temperature so that the binder is evenly dispersed in the catalyst layer.

도1은 본 발명의 방법에 의한 연료극 제조공정도.1 is a manufacturing process of the anode according to the method of the present invention.

도2는 본 발명의 방법에 의한 공기극 제조공정도.Figure 2 is a cathode manufacturing process by the method of the present invention.

도3은 연료극의 테프론 함량에 따른 메탄올 산화전류 특성을 보인 그래프.3 is a graph showing the methanol oxidation current characteristics according to the Teflon content of the anode.

도4는 전극 제조용 촉매슬러리의 저온 혼합시와 상온 혼합시의 성능 차이를 보인 그래프.Figure 4 is a graph showing the difference in performance between the low temperature mixing and the normal temperature mixing of the catalyst slurry for electrode production.

도5는 전극의 표면에 대한 주사전자현미경 사진으로,5 is a scanning electron micrograph of the surface of the electrode,

5A는 종래의 제조방법에 의해 제조된 전극의 표면이고,5A is a surface of an electrode manufactured by a conventional manufacturing method,

5B는 본 발명의 방법에 의해 제조된 전극의 표면이다.5B is the surface of the electrode produced by the method of the present invention.

본 발명 직접 메탄올 연료전지의 전극 제조방법의 상기 목적과 구체적인 제조공정 및 작용효과를 본 발명의 실시예에 의거하여 상세하게 설명하면 다음과 같다.The above object, specific manufacturing process and effect of the electrode production method of the present invention direct methanol fuel cell will be described in detail based on the embodiments of the present invention.

먼저, 본 발명의 직접 메탄올 연료전지 전극 제조방법중 연료극 제조방법을 도1에 도시된 연료극 제조공정도에 의하여 구체적으로 살펴보고자 한다.First, the anode manufacturing method of the direct methanol fuel cell electrode manufacturing method of the present invention will be described in detail with reference to the anode manufacturing process diagram shown in FIG. 1.

연료극 촉매는 비표면적이 넓은 카본블랙에 5 - 60wt%Pt-Ru(몰비 1:1)의 금속촉매가 담지된 촉매가 사용된다. 상기 금속촉매에 순수한 물과 용매로서 이소프로필 알콜(isopropyl alcohol)을 1-100의 부피비로 가하여 1-24시간 혹은 가능하다면 장시간에 걸쳐 볼밀을 이용하여 교반하여 촉매입자의 완전한 분산이 이루어진 슬러리를 제조한다.As the anode catalyst, a catalyst in which a carbon catalyst having a large specific surface area is supported on a metal catalyst of 5 to 60 wt% Pt-Ru (molar ratio 1: 1) is used. Pure water and isopropyl alcohol as a solvent were added to the metal catalyst at a volume ratio of 1-100 to prepare a slurry in which the catalyst particles were completely dispersed by stirring using a ball mill for 1-24 hours or possibly over a long time. do.

이어서, 상기 슬러리를 0℃ 내지 10℃미만의 온도로 유지되는 저온분위기에서 혹은 동결되지 않는 최저의 온도에서 교반을 행하면서 5-30wt%의 농도를 갖는 PTFE(Polytetrafluoroethylene)용액을 가능한 한 소량씩 서서히 가하여 30분에서 1시간정도 혹은 가능하다면 장시간 동안 교반하여 슬러리를 제조한다.Subsequently, the slurry was slowly added in small amounts as little as possible in a PTFE (Polytetrafluoroethylene) solution having a concentration of 5-30 wt% while stirring in a low temperature atmosphere maintained at a temperature below 0 ° C to 10 ° C or at the lowest temperature without freezing. Add slurry for 30 minutes to 1 hour or, if possible, for a long time.

다음, 이렇게 제조된 슬러리를 탄소종이위에 도포하여 20 - 200℃의 온도범위에서 1 - 24시간동안 건조시킨 후에 무게를 측정하여 원하는 촉매함량에 이를 때까지 반복해서 탄소종이위에 슬러리를 균일하게 도포한다. 탄소종이위에 촉매가 도포된 전극은 상온에서 하루정도 건조한 후에 PTFE를 소결시키기 위해 3℃/min 승온속도로 200 - 250℃까지 가열한 후 30 - 60분간 이 온도에서 유지시키고 나서, 3℃/min의 승온속도로 300 - 380℃까지 가열하여 이 온도에서 20 - 60분간을 유지시켜서 촉매층을 얻게 된다. 이때, 오븐의 분위기는 질소분위기로 유지하는 것이 바람직하며, 이렇게 소성된 전극은 탄소종이와 촉매와의 접착력 증대를 위해 2 - 5회가량 롤링머신(rolling machine)을 통과시킴으로서 본 발명에 의한 연료극 제조가 완료된다.Next, the slurry thus prepared is coated on carbon paper and dried for 1 to 24 hours at a temperature range of 20 to 200 ° C., and then the weight is repeatedly measured until the desired catalyst content is repeatedly applied to the slurry evenly on the carbon paper. . The electrode coated with the catalyst on the carbon paper was dried at room temperature for one day and then heated to 200-250 ° C. at a rate of 3 ° C./min at a rate of temperature increase of 3 ° C./min. The catalyst layer is obtained by heating to 300-380 ° C. at a heating rate of and maintaining 20-60 minutes at this temperature. At this time, the atmosphere of the oven is preferably maintained in a nitrogen atmosphere, and the electrode thus fired passes through a rolling machine about two to five times to increase adhesion between carbon paper and the catalyst, thereby manufacturing the anode according to the present invention. Is completed.

다음으로 본 발명의 직접 메탄올 연료전지 전극 제조방법중 공기극 제조방법을 도2에 도시된 공기극 제조공정도에 의하여 구체적으로 살펴보고자 한다.Next, the cathode manufacturing method of the direct methanol fuel cell electrode manufacturing method of the present invention will be described in detail with reference to the cathode manufacturing process shown in FIG. 2.

공기극 촉매는 비표면적이 넓은 카본블랙에 20 - 80wt%Pt/C(몰비 1:1)의 금속촉매가 담지된 촉매를 사용하였다. 상기 금속촉매에 순수한 물과 용매로서 이소프로필 알콜(isopropyp alcohol)을 1-100의 부피비로 가하여 1-24시간 혹은 가능하다면 장시간에 걸쳐 볼밀을 이용하여 교반하여 촉매입자의 완전한 분산이 이루어진 슬러리를 제조한다.As the cathode catalyst, a catalyst in which a carbon catalyst having a large specific surface area was supported on a metal catalyst of 20 to 80 wt% Pt / C (molar ratio 1: 1) was used. Pure water and isopropyl alcohol as a solvent were added to the metal catalyst in a volume ratio of 1-100 to prepare a slurry in which the catalyst particles were completely dispersed by stirring using a ball mill for 1-24 hours or possibly a long time. do.

이어서, 상기 슬러리를 0℃ 내지 10℃미만의 온도로 유지되는 저온분위기에서 혹은 동결되지 않는 최저의 온도에서 교반을 행하면서 30 - 60wt%의 농도를 갖는 PTFE 용액을 가능한한 소량씩 서서히 가하여 30분에서 1시간정도 혹은 가능하다면 장시간 동안 교반하여 슬러리를 제조한다.Subsequently, the slurry was slowly added in small portions as much as possible in a low temperature atmosphere maintained at a temperature between 0 ° C. and 10 ° C. or at a minimum temperature without freezing with a solution of 30 wt% to 60 wt%. The slurry is prepared by stirring at about 1 hour or if possible for a long time.

다음, 이렇게 제조된 슬러리를 탄소종이위에 도포하여 50 - 200℃의 온도범위에서 10 - 24시간동안 건조시킨 후에 무게를 측정하여 원하는 촉매함량에 이를 때까지 반복해서 탄소종이위에 슬러리를 균일하게 도포한다. 탄소종이위에 촉매가 도포된 전극은 상온에서 하루정도 건조한 후에 PTFE를 소결시키기 위해 3℃/min 승온속도로 230 - 250℃까지 가열한 후 30 - 60분간 이 온도에서 유지시키고 나서, 3℃/min의 승온속도로 320 - 380℃까지 가열하여 이 온도에서 20 - 60분간을 유지시켜서 촉매층을 얻게 된다. 이때, 오븐의 분위기는 질소분위기로 유지하는 것이 바람직하며, 이렇게 소성된 전극은 탄소종이와 촉매와의 접착력 증대를 위해 2 - 5회가량 롤링머신(rolling machine)을 통과시킴으로서 본 발명에 의한 연료극 제조가 완료된다.Next, the slurry thus prepared is coated on carbon paper, dried at a temperature range of 50-200 ° C for 10-24 hours, weighed, and then repeatedly applied until the desired catalyst content is reached. . The electrode coated with the catalyst on the carbon paper was dried at room temperature for one day, and then heated to 230-250 ° C at a temperature increase rate of 3 ° C / min to sinter PTFE, and maintained at this temperature for 30-60 minutes, and then 3 ° C / min. The catalyst layer is obtained by heating to 320-380 ° C. at a heating rate of and maintaining 20-60 minutes at this temperature. At this time, the atmosphere of the oven is preferably maintained in a nitrogen atmosphere, and the electrode thus fired passes through a rolling machine about two to five times to increase adhesion between carbon paper and the catalyst, thereby manufacturing the anode according to the present invention. Is completed.

한편, 도3은 PTFE의 함량에 따른 연료전극의 메탄올 산화전류 특성(Open Circuit Voltage, OCV)을 보여주고 있다. 도3에서와 같이 테프론의 함량이 낮을수록 메탄올이 저 전위에서 산화되고 있음을 알 수 있다. 이와같은 이유는 백금입자의 이용율과 밀접한 관계가 있는 것으로 판단되며 실질적으로 백금입자의 이용율은 테프론의 양이 증가하면 감소하고 테프론의 함량이 50wt%를 넘어가게 되면 이와같은 경향은 감소한다고 보고된 바 있다.On the other hand, Figure 3 shows the methanol oxidation current characteristics (Open Circuit Voltage, OCV) of the fuel electrode according to the content of PTFE. As shown in FIG. 3, the lower the content of Teflon, the more methanol is oxidized at low potential. The reason for this is considered to be closely related to the utilization rate of platinum particles. In fact, the utilization rate of platinum particles decreases as the amount of Teflon increases and the tendency decreases when the content of Teflon exceeds 50wt%. have.

일반적으로 테프론의 함량은 전극의 소수성과 밀접한 관계가 있기 때문에 그 함량을 조정하는 것은 전극의 성능에 막대한 영향을 미친다. 테프론의 함량이 적을 경우에는 소수성이 부족하여 전극내의 2상 현상을 빨리 형성하므로 성능이 우수할 것으로 예측되며, 테프론의 함량이 많을 경우에는 소수성이 증가하여 상대적으로 성능이 떨어질 것으로 예측할 수 있다.In general, since the content of Teflon is closely related to the hydrophobicity of the electrode, adjusting the content greatly affects the performance of the electrode. When the content of Teflon is small, the hydrophobicity is insufficient, so that the two-phase phenomenon in the electrode is quickly formed, and the performance is expected to be excellent. When the content of Teflon is high, the hydrophobicity is increased, and the performance may be relatively decreased.

이와같은 사실을 감안하여 본 발명의 연료극 제조시에는 5 - 30wt% PTFE를 사용하며, 공기극 제조시에는 30 - 60wt% PTFE를 사용한다.In view of such a fact, 5-30 wt% PTFE is used in manufacturing the anode of the present invention, and 30-60 wt% PTFE is used in manufacturing the cathode.

도4는 상기 본 발명의 방법에 의한 저온 혼합(mixing)법을 통해서 제조된 전극이 사용된 연료전지와 다른 모든 공정은 본 발명의 전극 제조공정과 동일하게 수행하되 단지 상온 혼합법에 의해 제조된 전극을 사용한 연료전지를 90℃에서 성능비교한 결과를 보여주고 있다.Figure 4 is a fuel cell using the electrode produced by the low temperature mixing (mixing) method by the method of the present invention and all other processes are performed in the same manner as the electrode manufacturing process of the present invention, but only by the room temperature mixing method The performance comparison of the fuel cell using the electrode at 90 ℃ is shown.

도4에서와 같이, 본 발명의 저온 혼합법에 의해서 제조된 전극이 결합된 직접 메탄올 연료전지의 성능이 상온 혼합법으로 제조된 전극이 사용된 연료전지에 비해 우수함을 알 수 있다. 이같은 결과는 테프론을 첨가하여 교반시 저온을 유지시킴으로서 테프론의 엉김이 방지되고 충분한 교반이 이루어짐으로서 나타나는 것으로 판단된다.As shown in FIG. 4, it can be seen that the performance of the direct methanol fuel cell in which the electrode manufactured by the low temperature mixing method of the present invention is combined is superior to the fuel cell in which the electrode manufactured by the normal temperature mixing method is used. This result is judged to be due to the addition of Teflon to maintain a low temperature during stirring to prevent the teflon agglomeration and to achieve sufficient agitation.

다음, 도5는 본 전극촉매의 표면에 대한 현미경 확대사진으로서, 5A는 종래의 일반적인 방법으로 제조된 전극촉매이고, 5B는 본 발명의 방법에 의해 24시간 동안 볼밀링 처리된 전극촉매에 대한 것이다.Next, FIG. 5 is a microscope enlarged photograph of the surface of the present electrocatalyst, 5A is an electrocatalyst prepared by a conventional general method, and 5B is an electrocatalyst which is ball milled for 24 hours by the method of the present invention. .

도5에서와 같이, 본 발명의 방법에 의해 볼밀 처리된 전극촉매가 볼밀 처리를 하지 않은 종래의 전극촉매에 비해 표면균열(갈라짐)이 훨씬 적어져서 매끄러운 표면을 나타내고 있음을 알 수 있다. 이와같은 도5 사진의 관찰결과를 통해서 촉매분말을 볼밀을 이용하여 처리함으로써 엉겨있는 촉매분말이 미세하게 분쇄되어 균일하게 분산됨을 알 수 있다.As shown in Fig. 5, it can be seen that the electrode catalyst ball-treated by the method of the present invention exhibits much less surface cracks (cracking) than the conventional electrode catalyst without the ball-milling, thereby showing a smooth surface. Through the observation result of FIG. 5, it can be seen that the tangled catalyst powder is finely pulverized and uniformly dispersed by treating the catalyst powder using a ball mill.

다시말하면, 본 발명의 직접 메탄올 연료전지의 전극 제조방법에서는 촉매슬러리의 제조시 수행되는 볼밀링 처리에 의해서 촉매의 분산성 및 결합성이 향상되는 효과가 있다.In other words, the electrode manufacturing method of the direct methanol fuel cell of the present invention has the effect of improving the dispersibility and bonding of the catalyst by the ball milling process performed during the production of the catalyst slurry.

Claims (4)

5 - 60wt% Pt-Ru/C 촉매를 물 및 이소프로필 알콜과 혼합하여 볼밀 처리하여 촉매입자를 교반 분산시키는 단계와,5 to 60 wt% Pt-Ru / C catalyst is mixed with water and isopropyl alcohol to be ball milled to stir and disperse the catalyst particles, 0℃ 내지 10℃미만의 온도하에서 상기 촉매입자가 분산된 슬러리에 5 - 30wt% PTFE 용액을 주입 교반하여 촉매 슬러리를 얻는 단계와,Obtaining a catalyst slurry by injecting and stirring a 5-30 wt% PTFE solution into a slurry in which the catalyst particles are dispersed at a temperature of less than 0 ° C to 10 ° C, 탄소종이위에 상기 촉매슬러리를 도포하여 건조시키는 과정을 소정의 촉매함량이 될 때까지 반복하는 단계와,Repeating the process of applying and drying the catalyst slurry on carbon paper until a predetermined catalyst content is obtained; 탄소종이위에 촉매가 도포된 전극의 PTFE를 소결시키는 단계, 및Sintering PTFE of an electrode coated with a catalyst on carbon paper, and 탄소종이와 촉매간의 접착력 증대를 위해 소성된 전극을 롤링 머신에 통과시키는 단계로 이루어짐을 특징으로 하는 직접 메탄올 연료전지의 연료극 제조방법.A method of manufacturing a cathode of a direct methanol fuel cell, characterized in that it comprises the step of passing the fired electrode through a rolling machine to increase the adhesion between the carbon paper and the catalyst. 제1항에 있어서, 상기 PTFE의 소결공정은 질소분위기하에서 3℃/min읜 승온속도로 200 - 250℃까지 가열하여 30 - 60분간 유지시킨 후, 3℃/min의 승온속도로 300 - 380℃까지 가열하여 20 - 60분간 유지시킴을 특징으로 하는 직접 메탄올 연료전지의 연료극 제조방법.According to claim 1, The sintering process of the PTFE is heated to 200 to 250 ℃ at a temperature increase rate of 3 ℃ / min 읜 under nitrogen atmosphere and maintained for 30 to 60 minutes, then 300-380 ℃ at a temperature increase rate of 3 ℃ / min Method for producing a cathode of a direct methanol fuel cell, characterized in that for 20 to 60 minutes by heating to hold. 20 - 80wt% Pt/C 촉매를 물 및 이소프로필 알콜과 혼합하여 볼밀 처리하여 촉매입자를 교반 분산시키는 단계와,Mixing 20-80 wt% Pt / C catalyst with water and isopropyl alcohol to ball mill to stir disperse the catalyst particles, 0℃ 내지 10℃미만의 온도하에서 상기 촉매입자가 분산된 슬러리에 30 - 60wt% PTFE 용액을 주입 교반하여 촉매 슬러리를 얻는 단계와,Injecting and stirring a 30-60wt% PTFE solution in a slurry in which the catalyst particles are dispersed at a temperature of less than 0 ℃ to 10 ℃ to obtain a catalyst slurry, 탄소종이위에 상기 촉매슬러리를 도포하여 건조시키는 과정을 소정의 촉매함량이 될 때까지 반복하는 단계와,Repeating the process of applying and drying the catalyst slurry on carbon paper until a predetermined catalyst content is obtained; 탄소종이위에 촉매가 도포된 전극의 PTFE를 소결시키는 단계, 및Sintering PTFE of an electrode coated with a catalyst on carbon paper, and 탄소종이와 촉매간의 접착력 증대를 위해 소성된 전극을 롤링 머신에 통과시키는 단계로 이루어짐을 특징으로 하는 직접 메탄올 연료전지의 공기극 제조방법.A method of manufacturing a cathode of a direct methanol fuel cell, comprising the step of passing a fired electrode through a rolling machine to increase adhesion between carbon paper and a catalyst. 제3항에 있어서, 상기 PTFE의 소결공정은 질소분위기하에서 3℃/min의 승온속도로 230 - 250℃까지 가열하여 30 - 60분간 유지시킨 후, 3℃/min의 승온속도로 320 - 380℃까지 가열하여 20 - 60분간 유지시킴을 특징으로 하는 직접 메탄올 연료전지의 공기극 제조방법.According to claim 3, The sintering process of the PTFE is heated to 230 to 250 ℃ at a temperature rising rate of 3 ℃ / min in a nitrogen atmosphere and maintained for 30 to 60 minutes, then 320 to 380 ℃ at a temperature rising rate of 3 ℃ / min Method of manufacturing a cathode of a direct methanol fuel cell, characterized in that for 20 to 60 minutes by heating to hold.
KR1019980022324A 1998-06-15 1998-06-15 Electrode Manufacturing Method of Direct Methanol Fuel Cell KR100283206B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980022324A KR100283206B1 (en) 1998-06-15 1998-06-15 Electrode Manufacturing Method of Direct Methanol Fuel Cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019980022324A KR100283206B1 (en) 1998-06-15 1998-06-15 Electrode Manufacturing Method of Direct Methanol Fuel Cell

Publications (2)

Publication Number Publication Date
KR20000001858A true KR20000001858A (en) 2000-01-15
KR100283206B1 KR100283206B1 (en) 2001-05-02

Family

ID=19539481

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980022324A KR100283206B1 (en) 1998-06-15 1998-06-15 Electrode Manufacturing Method of Direct Methanol Fuel Cell

Country Status (1)

Country Link
KR (1) KR100283206B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844110B1 (en) * 2007-01-09 2008-07-04 한국에너지기술연구원 Catalyst slurry for the continuous manufacturing process of membrane electrode assembly in polymer electrolyte fuel cell, and manufacturing method for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844110B1 (en) * 2007-01-09 2008-07-04 한국에너지기술연구원 Catalyst slurry for the continuous manufacturing process of membrane electrode assembly in polymer electrolyte fuel cell, and manufacturing method for the same

Also Published As

Publication number Publication date
KR100283206B1 (en) 2001-05-02

Similar Documents

Publication Publication Date Title
CN100438160C (en) Pt/Ru alloy catalyst for fuel cell
US8252711B1 (en) Self supporting structurally engineered non-platinum electrocatalyst for oxygen reduction in fuel cells
US7902111B2 (en) Supported catalyst for fuel cell, method of preparing the same, electrode for fuel cell including the supported catalyst, and fuel cell including the electrode
EP1164651A1 (en) Electrode catalyst for polymer electrolyte fuel cell and method for its production
KR100550998B1 (en) Catalyst for fuel cell and fuel cell system comprising same
US7232624B2 (en) Membrane and electrode assembly, production method of the same and fuel cell employing the same
CN100495778C (en) Diffusion electrode for fuel cell
CN101183718B (en) Cathode catalyst for fuel cell, method of preparing same, and uses thereof
JP6244936B2 (en) Carbon catalyst and method for producing the same, and catalyst ink and fuel cell using the carbon catalyst
US20070161501A1 (en) Method for making carbon nanotube-supported platinum alloy electrocatalysts
US7833925B2 (en) Method of preparing metal nanoparticles
JP4994605B2 (en) Membrane-electrode assembly for fuel cell and fuel cell system including the same
Choi et al. Highly efficient CO 2 electrolysis to CO on Ruddlesden–Popper perovskite oxide with in situ exsolved Fe nanoparticles
JP4954530B2 (en) Platinum colloid-supporting carbon and method for producing the same
JP2007012284A (en) Electrode catalyst, manufacturing method thereof, fuel electrode, and fuel cell apparatus
EP1455936A2 (en) Catalyst agglomerates for membrane electrode assemblies
WO2020059503A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
CN102347494A (en) Electrode catalyst and method of preparing electrode catalyst for fuel cell, and membrane electrode assembly and fuel cell including same
KR100283206B1 (en) Electrode Manufacturing Method of Direct Methanol Fuel Cell
KR20080023495A (en) Proton conductor for fuel cell and fuel cell employing the same
KR100311731B1 (en) Method for manufacturing electrode for direct methanol feul cell
JP5967548B2 (en) Catalyst for anode for fuel cell and method for producing the same
KR20100068028A (en) Catalyst layer for fuel cell and method for preparing the same
TWI288027B (en) Manufacturing method of platinum alloy electrochemical catalyst carried by carbon nanotube
KR100721310B1 (en) Carbon supported electrocatalyst for polymer electrolyte membrane fuel cell and its fabrication method

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121207

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20131203

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20141205

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20151204

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20161118

Year of fee payment: 18

EXPY Expiration of term