KR100842013B1 - - - -Butyrobetaine hydroxylase derived from Neurospora crassa its gene and processes for preparing L-carnitine using the same - Google Patents

- - -Butyrobetaine hydroxylase derived from Neurospora crassa its gene and processes for preparing L-carnitine using the same Download PDF

Info

Publication number
KR100842013B1
KR100842013B1 KR1020060065624A KR20060065624A KR100842013B1 KR 100842013 B1 KR100842013 B1 KR 100842013B1 KR 1020060065624 A KR1020060065624 A KR 1020060065624A KR 20060065624 A KR20060065624 A KR 20060065624A KR 100842013 B1 KR100842013 B1 KR 100842013B1
Authority
KR
South Korea
Prior art keywords
butyrobetaine
carnitine
butyrobetaine hydroxylase
hydroxylase
crassa
Prior art date
Application number
KR1020060065624A
Other languages
Korean (ko)
Other versions
KR20080006659A (en
Inventor
조재용
최인석
Original Assignee
대상 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대상 주식회사 filed Critical 대상 주식회사
Priority to KR1020060065624A priority Critical patent/KR100842013B1/en
Publication of KR20080006659A publication Critical patent/KR20080006659A/en
Application granted granted Critical
Publication of KR100842013B1 publication Critical patent/KR100842013B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2497Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing N- glycosyl compounds (3.2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/007Carnitine; Butyrobetaine; Crotonobetaine

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

본 발명은 서열번호 1의 아미노산 서열을 가지며, γ-부티로베타인(γ-butyrobetaine)을 히드록실화하여 L-카르니틴을 생성하는 γ-부티로베타인 히드록실라제를 제공한다. 또한, 본 발명은 상기 γ-부티로베타인 히드록실라제를 코딩하는 유전자, 이를 포함하는 발현 벡터, 및 상기 발현 벡터로 사카로마이세스(Saccharomyces) 속 미생물을 형질전환시킨 형질전환체를 제공한다. 또한, 본 발명은 상기 γ-부티로베타인 히드록실라제를 이용하여, γ-부티로베타인(γ-butyrobetaine)을 히드록실화시키는 단계를 포함하는 L-카르니틴의 제조방법이 제공된다.The present invention provides a γ-butyrobetaine hydroxylase having an amino acid sequence represented by SEQ ID NO: 1 and generating L-carnitine by hydroxylating γ-butyrobetaine. In addition, the present invention provides a gene encoding the γ-butyrobetaine hydroxylase, an expression vector comprising the same, and a transformant transformed into a Saccharomyces genus microorganism with the expression vector. do. In addition, the present invention provides a method for producing L-carnitine comprising the step of hydroxylating γ-butyrobetaine (γ-butyrobetaine) using the γ-butyrobetaine hydroxylase.

γ-부티로베타인 히드록실라제 γ-butyrobetaine hydroxylase

Description

뉴로스포라 크라사 유래의 γ-부티로베타인 히드록실라제, 그의 유전자, 및 이를 이용한 L-카르니틴의 제조방법{γ-Butyrobetaine hydroxylase derived from Neurospora crassa, its gene, and processes for preparing L-carnitine using the same}Γ-Butyrobetaine hydroxylase derived from Neurospora Krasa, its gene, and method for producing L-carnitine using same (γ-Butyrobetaine hydroxylase derived from Neurospora crassa, its gene, and processes for preparing L-carnitine using the same}

도 1은 NCU03802.1의 아미노산 서열 및 N. crassa TMLH 및 인간의 γ-부티로베타인 히드록실라제 (BBH)의 서열분석 결과를 나타낸다.1 shows the amino acid sequence of NCU03802.1 and the results of sequencing of N. crassa TMLH and human γ-butyrobetaine hydroxylase (BBH).

도 2는 NCU03802.1을 코딩하는 유전자로 클로닝된 발현 벡터의 작제도를 나타낸다.2 shows the construction of expression vectors cloned into genes encoding NCU03802.1.

본 발명은 뉴로스포라 크라사 (Neurospora crassa)로부터 유래한 γ-부티로베타인 히드록실라제, 이를 코딩하는 유전자, 이를 포함하는 발현 벡터, 및 상기 발현 벡터로 사카로마이세스(Saccharomyces) 속 미생물을 형질전환시킨 형질전환체에 관한 것이다. 또한, 본 발명은 상기 γ-부티로베타인 히드록실라제를 이용하여, γ-부티로베타인(γ-butyrobetaine)을 히드록실화시키는 단계를 포함하는 L-카르니틴의 제조방법에 관한 것이다.The present invention is neurospora Krasa ( Neurospora γ-butyrobetaine hydroxylase derived from crassa ), a gene encoding the same, an expression vector comprising the same, and a transformant transformed into a Saccharomyces microorganism with the expression vector will be. In addition, the present invention relates to a method for producing L-carnitine comprising the step of hydroxylating γ-butyrobetaine (γ-butyrobetaine) using the γ-butyrobetaine hydroxylase.

L-카르니틴(3-히드록시-4-트리메틸암모늄 부티레이트)는 활성화된 지방산을 미토콘드리아 내막을 통하여 매트릭스로 전달하여 β-산화(β-oxidation)시키는데 중요한 역할을 하는 물질이다. L-카르니틴은 1980년대에 최초로 상업화된 이래로, 의약, 식품, 및 식품 첨가물에서 광범위하게 적용되어 왔다. L-카르니틴이 생리학적으로 유효한 형태인 반면, D-카르니틴은 L-카르니틴의 경쟁적 저해제로서 작용하므로, L-카르니틴을 선택적으로 제조하는 방법을 개발하는 것이 당업계에 요구된다.L-carnitine (3-hydroxy-4-trimethylammonium butyrate) is a substance that plays an important role in β-oxidation by transferring activated fatty acids to the matrix through the mitochondrial lining. Since L-carnitine was first commercialized in the 1980s, it has been widely applied in medicine, food, and food additives. While L-carnitine is a physiologically effective form, while D-carnitine acts as a competitive inhibitor of L-carnitine, there is a need in the art to develop a method for selectively producing L-carnitine.

L-카르니틴을 화학적 공정으로 제조할 경우 DL-카르니틴 혼합물의 형성을 거치게 되어 D- 및 L- 이성체의 분리를 필요로 한다. 따라서, 미생물 발효에 근거한 개량된 제조공정을 개발하는 것이 보다 실제적인 의미를 가진다. 비록 소량이지만, 세포 내에 L-카르니틴을 축적할 수 있는 미생물로서, 사카로마이세스 세레비제 (Saccharomyces cerevisiae) 등의 진핵 미생물이 보고된 바 있으며 (Sigma Tau, 1983, Process for enzymatically producing L-carnitine; 미국특허 제4,371,618호; Nippon Pet Food, 1990, Method for preparation of L-carnitine; 일본 특허공개 평2-069188; Yakult Honsha, 1993, L-carnitine preparation, 일본 특허공개 평5-199890), 몇몇의 다른 미생물이 γ-부티로베타인을 L-카르니틴으로 전환시킨다는 것이 알려져 있다.(Jung, H., K. Jung, and H. P. Klebar. 1993. Synthesis of L-carnitine by microorganisms and isolated enzymes. Adv. Biochem. Eng. Biotechnol. 50: 21-44. 및 Naidu, G. S. N., I. Y. Lee, E. G. Lee, G. H. Kang, and Y. H. Park. 2000. Microbial and enzymatic production of L-carnitine. Bioprocess Eng. 23: 627-635). When L-carnitine is prepared by a chemical process, it undergoes the formation of a DL-carnitine mixture, which requires separation of the D- and L- isomers. Therefore, it is more practical to develop an improved manufacturing process based on microbial fermentation. As microorganisms capable of accumulating L-carnitine in cells in small amounts, eukaryotic microorganisms such as Saccharomyces cerevisiae have been reported (Sigma Tau, 1983, Process for enzymatically producing L-carnitine; U.S. Patent No. 4,371,618; Nippon Pet Food, 1990, Method for preparation of L-carnitine; Japanese Patent Application Laid-Open No. 2-069188; Yakult Honsha, 1993, L-carnitine preparation, Japanese Patent Application Laid-open No. Hei 5-199890), several others microorganisms are known to convert the betaine to sikindaneun γ- butyronitrile with L- carnitine. (Jung, H., K. Jung , and HP Klebar. 1993. Synthesis of L-carnitine by microorganisms and isolated enzymes. Adv. Biochem. Eng Biotechnol . 50: 21-44. And Naidu, GSN, IY Lee, EG Lee, GH Kang, and YH Park. 2000. Microbial and enzymatic production of L-carnitine. Bioprocess Eng . 23: 627-635).

또한, 최근에 에스케리치아 콜라이(Escherichia coli ), 살모넬라 티피무리움(Salmonella typhimurium ) 및 프로테우스 불가리스(Proteus vulgaris) 등의 엔테로박테라아시아에(Enterobacteriaceae) 속에 속하는 균종이 크로토노베타인(crotonobetaine)을 생물전환시켜 L-카르니틴을 생성한다는 것이 보고된 바 있다 (Caovas, M., J. R. Maiquez, J. M. Obon, and J. L. Iborra. 2002. Modeling of the biotransformation of crotonobetaine into l-(-)-carnitine by Escherichia coli strains. Biotechnol. Bioeng. 77: 764-775; Castellar, M. R., M. Canovas, H. P. Kleber, and J. L. Iborra. 1998. Biotransformation of d-(+)-carnitine by resting cells of Escherichia coli O44 K74. J. Appl. Microbiol. 85: 883-890; Engemann, C. T. Elssner, S. Pfeifer, C. Krumbholz, T. Maier, and H. P. Kebler. 2005. Identification and functional characterization of genes and corresponding enzymes involved in carnitine metabolism of Proteus sp. Arch. Microbiol. 183: 176-189; Kleber, H. P. 1997. Bacterial carnitine metabolism. FEMS Microbiol. Lett. 147: 1-9; 및 Obon, J. M., J. R. Maiquez, M. Canovas, H. P. Kleber, and J. L. Iborra. 1999. High-density Escherichia coli cultures for continuous l-(-)-carnitine production. Appl. Microbiol. Biotechnol. 51: 760-764)Also recently, Escherichia coli), Salmonella typhimurium (Salmonella typhimurium) and Proteus vulgaris (Proteus It has been reported that a species belonging to the genus Enterobacteriaceae , such as vulgaris ), bioconverts crotonobetaine to produce L-carnitine (Caovas, M., JR Maiquez, JM Obon, and JL Iborra. 2002. Modeling of the biotransformation of crotonobetaine into l-(-)-carnitine by Esherichia coli strains. Biotechnol . Bioeng . 77: 764-775; Castellar, MR, M. Canovas, HP Kleber, and JL Iborra. 1998.Biotransformation of d-(+)-carnitine by resting cells of Esherichia coli O44 K74. J. Appl . Microbiol . 85: 883-890; Engemann, CT Elssner, S. Pfeifer, C. Krumbholz, T. Maier, and HP Kebler. 2005. Identification and functional characterization of genes and corresponding enzymes involved in carnitine metabolism of Proteus sp. Arch . Microbiol . 183: 176-189; Kleber, HP 1997. Bacterial carnitine metabolism. FEMS Microbiol . Lett . 147: 1-9; And Obon, JM, JR Maiquez, M. Canovas, HP Kleber, and JL Iborra. 1999.High-density Escherichia coli cultures for continuous l-(-)-carnitine production. Appl . Microbiol . Biotechnol . 51: 760-764)

사상균(filamentous fungus)인 뉴로스포라 크라사 (Neurospora crassa)에서 L-카르니틴의 생합성 경로 및 그의 중간 대사물이 밝혀진 바 있다 (대한민국 특허 공개 제2006-5189호). 뉴로스포라 크라사 (Neurospora crassa)에서 L-카르니틴은 라이신으로부터 5개의 효소, 즉 S-아데노실메티오닌-6-N-L-라이신 메틸트랜스퍼라제, ε-N-트리메틸라이신 히드록실라제(EC 1.14.11.8), β-히드록시-ε-N-트리메틸라이신 알돌라제, γ-트리메틸아미노부티르알데히드 디히드로게나제(EC 1.2.1.47), 및 γ-부티로베타인 히드록실라제(EC 1.14.11.1)의 순차적인 반응에 의해 합성된다. Neurospora , a filamentous fungus crassa ) has revealed the biosynthetic pathway of L-carnitine and its intermediate metabolites (Korean Patent Publication No. 2006-5189). Neurospora Krasa L-carnitine in crassa ) is derived from five enzymes from lysine, namely S-adenosylmethionine-6- N- L-lysine methyltransferase, ε- N -trimethyllysine hydroxylase (EC 1.14.11.8), β- Sequential of hydroxy-ε- N -trimethyllysine aldolase, γ-trimethylaminobutyraldehyde dehydrogenase (EC 1.2.1.47), and γ-butyrobetaine hydroxylase (EC 1.14.11.1) It is synthesized by phosphorus reaction.

본 발명자들은 L-카르니틴을 효과적으로 생성할 수 있는 유전공학적으로 형질전환된 미생물을 개발하던 중, 뉴로스포라 크라사 (Neurospora crassa)의 게놈으로부터 γ-부티로베타인 히드록실라제의 활성을 가진 새로운 단백질 및 이를 코딩하는 유전자를 발견하였다.The present inventors have while trying to develop transgenic microorganisms genetically engineered to produce an L- carnitine effectively, neuro Spokane LA Crowley four (Neurospora From the genome of crassa ) a new protein with the activity of γ-butyrobetaine hydroxylase and a gene encoding it were found.

따라서, 본 발명은 뉴로스포라 크라사 (Neurospora crassa)에서 유래된 γ-부티로베타인 히드록실라제를 제공하는 것을 목적으로 한다.Therefore, the present invention is neurospora Krasa ( Neurospora It is an object to provide γ-butyrobetaine hydroxylase derived from crassa ).

본 발명은 또한 상기 γ-부티로베타인 히드록실라제를 코딩하는 유전자, 이를 포함하는 발현 벡터, 및 상기 발현 벡터로 사카로마이세스(Saccharomyces) 속 미생물을 형질전환시킨 형질전환체를 제공하는 것을 목적으로 한다.The present invention also provides a gene encoding the γ-butyrobetaine hydroxylase, an expression vector comprising the same, and a transformant transformed into a Saccharomyces genus microorganism with the expression vector. For the purpose of

본 발명은 또한 상기 γ-부티로베타인 히드록실라제를 이용하여, γ-부티로베타인(γ-butyrobetaine)을 히드록실화시키는 단계를 포함하는 L-카르니틴의 제조방법을 제공하는 것을 목적으로 한다.The present invention also provides a method for producing L-carnitine comprising the step of hydroxylating γ-butyrobetaine (γ-butyrobetaine) using the γ-butyrobetaine hydroxylase. It is done.

본 발명의 일 태양에 따라, 서열번호 1의 아미노산 서열을 가지며, γ-부티로베타인(γ-butyrobetaine)을 히드록실화하여 L-카르니틴을 생성하는 γ-부티로베타인 히드록실라제가 제공된다.According to an aspect of the present invention, there is provided a γ-butyrobetaine hydroxylase having an amino acid sequence of SEQ ID NO: 1, which generates L-carnitine by hydroxylating γ-butyrobetaine. do.

본 발명의 다른 태양에 따라, 상기 γ-부티로베타인 히드록실라제를 코딩하는 유전자가 제공된다.According to another aspect of the present invention, a gene encoding said γ-butyrobetaine hydroxylase is provided.

본 발명의 또 다른 태양에 따라, 상기 유전자를 포함하는 발현 벡터가 제공된다.According to another aspect of the present invention, an expression vector comprising the gene is provided.

본 발명의 또 다른 태양에 따라, 상기 발현 벡터로 사카로마이세스(Saccharomyces) 속 미생물을 형질전환시킨 형질전환체가 제공된다.According to another aspect of the present invention, a transformant transformed into a Saccharomyces microorganism with the expression vector is provided.

본 발명의 또 다른 태양에 따라, 상기 γ-부티로베타인 히드록실라제를 이용하여, γ-부티로베타인(γ-butyrobetaine)을 히드록실화시키는 단계를 포함하는 L-카르니틴의 제조방법이 제공된다.According to another aspect of the invention, the method for producing L-carnitine comprising the step of hydroxylating γ-butyrobetaine (γ-butyrobetaine) using the γ-butyrobetaine hydroxylase This is provided.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명자들은 공지된 인간의 γ-부티로베타인 히드록실라제를 근거로 N. crassa의 총 게놈 데이터베이스 (www.broad.mit.edu/annotation/fungi/neurospora_crassa_7/index.html) 상에서 γ-부티로베타인 히드록실라제를 코딩하는 N. crassa cDNA 클론을 스크리닝하였다. BLASTp 상동성 검색 결과, 3개의 오픈 리딩 프레임(open reading frames, ORFs), NCU03802.1, NCU02196.1, 및 NCU06891.1이 검색되었으며, 이들은 각각 인간의 γ-부티로베타인 히드록실라제에 대하여 23, 24, 및 27%의 상동성을 나타냈다. 상기 얻어진 NCU03802.1, NCU02196.1, 및 NCU06891.1의 염기서열을 증폭하여, 형질전환체를 작제하여 γ-부티로베타인 히드록실라제 활성을 측정하였다. NCU06891.1의 ORF 염기서열은 증폭되지 않았으나, NCU03802.1 및 NCU02196.1의 ORF 염기서열은 효과적으로 증폭되었다. 놀랍게도, NCU02196.1 을 코딩하는 염기서열로 형질전환된 형질전환제는 γ-부티로베타인 히드록실라제 활성을 전혀 나타내지 않았으나, NCU03802.1을 코딩하는 염기서열로 형질전환된 형질전환제는 매우 높은 γ-부티로베타인 히드록실라제 활성을 나타내었다. 이는 NCU03802.1 및 NCU02196.1의 ORF 서열이 인간의 γ-부티로베타인 히드록실라제에 대하여 유사한 상동성(23 및 24 %)을 갖는다는 것을 감안할 때 매우 놀라운 것이다.We based the known human γ-butyrobetaine hydroxylase on the total genome database of N. crassa (www.broad.mit.edu/annotation/fungi/neurospora_crassa_7/index.html). N. crassa coding for robetine hydroxylase cDNA clones were screened. As a result of BLASTp homology, three open reading frames (ORFs), NCU03802.1, NCU02196.1, and NCU06891.1, were searched for human γ-butyrobetaine hydroxylase, respectively. 23, 24, and 27% homology. The nucleotide sequences of NCU03802.1, NCU02196.1, and NCU06891.1 obtained above were amplified, and a transformant was constructed to measure γ-butyrobetaine hydroxylase activity. ORF sequences of NCU06891.1 were not amplified, but ORF sequences of NCU03802.1 and NCU02196.1 were effectively amplified. Surprisingly, the transformants transformed with the nucleotide sequence encoding NCU02196.1 showed no γ-butyrobetaine hydroxylase activity, but the transformants transformed with the nucleotide sequence encoding NCU03802.1 It exhibited very high γ-butyrobetaine hydroxylase activity. This is very surprising given that the ORF sequences of NCU03802.1 and NCU02196.1 have similar homology (23 and 24%) to human γ-butyrobetaine hydroxylase.

더욱이, NCU03802.1의 아미노산 서열은 오히려 L-카르니틴 생합성 경로의 2 번째 단계를 촉매하는 ε-N-트리메틸라이신 히드록실라제 (ε-N-trimethyllysine hydoxylase, TMLH)와 91%의 상동성을 나타내었다(도 1 참조). 따라서, NCU03802.1이 높은 γ-부티로베타인 히드록실라제 활성을 나타낸다는 것은 매우 놀라운 것이다. TMLH 및 NCU03802.1 의 게놈 서열은 N. crassa의 게놈 상에 서로 상이한 크로모좀에 위치하며 NCU03802.1의 아미노산 서열은 N. crassa TMLH 에서 발견된 바 있는 독특한 11 개의 잔여 폴리(피) 영역(poly(P) region)을 포함한다. 도 1에 나타낸 바와 같이, 인간의 γ-부티로베타인 히드록실라제의 아미노산 서열은 N. crassa TMLH 와 약 25%의 상동성을 나타낸다. 보존적 치환(conservative substitutions)을 고려하더라도, NCU03802.1 및 N. crassa TMLH의 아미노산 서열에 대한 인간의 γ-부티로베타인 히드록실라제의 상동성은 각각 49 및 50%에 불과하다. 따라서, 상기 와 같은 분석 결과는 N. crassa 내에서 유전자 단편 또는 전체 게놈의 복제(duplication)가 발생하여 유전자의 복제된 카피(duplicated copy)가 새로운 기능을 획득하게 된 것으로 추정된다.Furthermore, the amino acid sequence of N ε- NCU03802.1 rather that catalyzes the second step in the L- carnitine biosynthesis-trimethyl lysine hydroxyl sila the (N ε- -trimethyllysine hydoxylase, TMLH) and indicate a homology of 91% (See FIG. 1). Thus, it is surprising that NCU03802.1 exhibits high γ-butyrobetaine hydroxylase activity. The genomic sequences of TMLH and NCU03802.1 are located in different chromosomes on the genome of N. crassa and the amino acid sequences of NCU03802.1 are N. crassa It includes 11 unique residual poly (P) regions that have been found in TMLH. As shown in Figure 1, the amino acid sequence of human γ-butyrobetaine hydroxylase is N. about 25% homology with crassa TMLH. Even considering conservative substitutions, NCU03802.1 and N. The homology of human γ-butyrobetaine hydroxylase to the amino acid sequence of crassa TMLH is only 49 and 50%, respectively. Therefore, the above analysis results are N. It is estimated that duplication of gene fragments or entire genomes occurs in the crassa so that duplicated copies of the genes acquire new functions.

따라서, 본 발명은 N. crassa 에서 유래된 신규의 γ-부티로베타인 히드록실라제 즉, NCU03802.1의 아미노산 서열(서열번호 1의 아미노산 서열)을 가지며, γ-부티로베타인(γ-butyrobetaine)을 히드록실화하여 L-카르니틴을 생성하는 γ-부티로베타인 히드록실라제를 제공한다.Thus, the present invention provides N. Novel γ-butyrobetaine hydroxylase derived from crassa , ie, amino acid sequence of NCU03802.1 (amino acid sequence of SEQ ID NO: 1), and hydroxylated γ-butyrobetaine (γ-butyrobetaine) To provide γ-butyrobetaine hydroxylase, which produces L-carnitine.

본 발명은 상기 γ-부티로베타인 히드록실라제를 코딩하는 유전자를 제공한다. 당업자는 상기 γ-부티로베타인 히드록실라제의 아미노산 서열 즉, 서열번호 1의 아미노산 서열을 근거로 축퇘(degeneracy)를 고려하여 다양한 염기서열을 설계할 수 있다. 상기 γ-부티로베타인 히드록실라제를 코딩하는 유전자는 바람직하게는 서열번호 2의 염기서열을 갖는 유전자이다.The present invention provides a gene encoding the γ-butyrobetaine hydroxylase. Those skilled in the art can design various base sequences in consideration of degeneracy based on the amino acid sequence of the γ-butyrobetaine hydroxylase, that is, the amino acid sequence of SEQ ID NO: 1. Gene encoding the γ-butyrobetaine hydroxylase is preferably a gene having a nucleotide sequence of SEQ ID NO: 2.

본 발명은 상기 γ-부티로베타인 히드록실라제를 코딩하는 유전자를 포함하는 발현 벡터를 포함한다. 본 발명에서 발현 벡터의 클로닝 벡터로 사용가능한 벡터로는 공지된 다양한 벡터를 사용할 수 있으며, 예를 들면, pBluescript II KS+ (Stratagene, La Jolla, CA, U.S.A) 등을 사용할 수 있다. 상기 발현 벡터는 γ-부티로베타인 히드록실라제를 코딩하는 유전자를 적절한 제한효소로 절단한 클로닝 벡터에 통상의 방법으로 삽입시켜 제조할 수 있다. 상기 γ-부티로베타인 히드록실라제를 코딩하는 유전자를 포함하는 발현 벡터로는 pRS426 (Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119-122)에 서열번호 2의 유전자를 클로닝하여 제조한 플라스미드 pSJ420 이 바람직하다.The present invention includes an expression vector comprising a gene encoding the γ-butyrobetaine hydroxylase. As a vector which can be used as a cloning vector of an expression vector in the present invention, various known vectors can be used. For example, pBluescript II KS + (Stratagene, La Jolla, CA, U.S.A) can be used. The expression vector can be prepared by inserting a gene encoding γ-butyrobetaine hydroxylase into a cloning vector digested with an appropriate restriction enzyme by a conventional method. As an expression vector including a gene encoding the γ-butyrobetaine hydroxylase, pRS426 (Christianson, TW, RS Sikorski, M. Dante, JH Shero, and P. Hieter. 1992. Multifunctional yeast high-copy plasmid pSJ420 prepared by cloning the gene of SEQ ID NO: 2 in Gene 110: 119-122).

본 발명은 상기 발현 벡터로 사카로마이세스(Saccharomyces) 속 미생물을 형질전환시킨 형질전환체를 포함한다. 상기 사카로마이세스(Saccharomyces) 속 미생물로는 γ-부티로베타인 히드록실라제가 효과적으로 발현될 수 있다면, 특별히 제한되는 것은 아니며, 예를 들어 사카로마이세스 세레비제 SJ7164 (S. cerevisiae SJ7164)(ATCC 44774) 을 바람직한 숙주 미생물로 사용할 수 있다.The present invention includes a transformant transformed Saccharomyces microorganism with the expression vector. The microorganism of the genus Saccharomyces is not particularly limited as long as γ-butyrobetaine hydroxylase can be effectively expressed. For example, Saccharomyces cerevisiae SJ7164 ( S. cerevisiae SJ7164) (ATCC 44774) can be used as the preferred host microorganism.

본 발명은 상기 γ-부티로베타인 히드록실라제를 이용하여, γ-부티로베타인(γ-butyrobetaine)을 히드록실화시키는 단계를 포함하는 L-카르니틴의 제조방법을 포함한다. The present invention includes a method for preparing L-carnitine, comprising the step of hydroxylating γ-butyrobetaine using the γ-butyrobetaine hydroxylase.

본 발명의 L-카르니틴 제조방법은 상기한 서열번호 1의 γ-부티로베타인 히드록실라제를 별도로 분리하여 기질로서 γ-부티로베타인을 포함한 매질에서 반응(γ-부티로베타인의 히드록실화)을 수행할 수도 있으며, 상기 형질전환체를 γ-부티로베타인을 포함한 배양액 중에서 배양하여 γ-부티로베타인의 히드록실화를 수행할 수도 있다.The method for preparing L-carnitine of the present invention separates the γ-butyrobetaine hydroxylase of SEQ ID NO: 1 above and reacts in a medium containing γ-butyrobetaine as a substrate (hydroxyl of γ-butyrobetaine Dilation) may be carried out, and the transformant may be cultured in a culture solution containing γ-butyrobetaine to perform hydroxylation of γ-butyrobetaine.

바람직하게는 상기 히드록실화시키는 단계는 γ-부티로베타인을 함유하는 배지 중에, 플라스미드 pSJ420로 사카로마이세스 세레비제 SJ7164 (S. cerevisiae SJ7164)(ATCC 44774)를 형질전환시킨 형질전환체를 배양하고, L-카르니틴을 회수함으로써 수행될 수 있다.Preferably, the step of hydroxylation is culturing a transformant transformed with S. cerevisiae SJ7164 (ATCC 44774) with plasmid pSJ420 in a medium containing γ-butyrobetaine. And recovering L-carnitine.

상기 형질전환체는 통상의 사카로마이세스 (Saccharomyces) 속 미생물의 배 양용 배양액에서 배양될 수 있으며, 예를 들어, yeast nitrogen base (아미노산 비함유), 글루코즈, 및 유라실을 함유한 글루코즈 최소 배지 중에 γ-부티로베타인을 함유시켜 배양할 수 있다. The transformant may be cultured in a culture medium for the culture of microorganisms of the genus Saccharomyces , for example, a glucose minimal medium containing yeast nitrogen base (amino acid free), glucose, and uracil. It can culture by containing (gamma) -butyrobetaine in it.

상기 L-카르니틴을 회수는 통상의 세포 제거 조추출물(crude cell free extract)로부터 통상의 방법에 따라 회수할 수 있다.The L-carnitine can be recovered from a conventional cell free extract of crude cells according to a conventional method.

이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나, 이들 실시예는 본 발명을 예시하기 위한 것으로, 본 발명이 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrating the present invention, and the present invention is not limited to these examples.

실시예Example 1.  One. N. N. crassa crassa of 게놈 분석 Genome analysis

인간의 γ-부티로베타인 히드록실라제(Vaz, F. M., S. van Gool, R. Ofman, L. Ijlst, and R. J. A. Wanders. 1998. Carnitine biosynthesis: Identification of the cDNA encoding human γ-butyrobetaine hydroxylase, Biochem. Biophys. Res. Commun. 250: 506-510.)를 근거로 N. crassa의 총 게놈 데이터베이스 (www.broad.mit.edu/annotation/fungi/neurospora_crassa_7/index.html) 상에서 γ-부티로베타인 히드록실라제를 코딩하는 N. crassa cDNA 클론을 스크리닝하였다. BLASTp 상동성 검색 결과, 3개의 오픈 리딩 프레임(open reading frames, ORFs), NCU03802.1, NCU02196.1, 및 NCU06891.1이 검색되었으며, 이들은 각각 인간의 γ-부티로베타인 히드록실라제에 대하여 23, 24, 및 27%의 상동성을 나타냈다. 상기 단백질들은 각각 1,407, 1,278, 및 3,786 bp 의 서열로 이루어져 있으며, 이 ORF 들과 N. crassa 게놈 서열을 정렬(Alignment)시켰을 때, NCU03802.1, NCU02196.1, 및 NCU06891.1의 염기서열은 각각 8개, 2개, 및 5개의 엑손으로 이루어지는 것을 확인하였다. Human γ-butyrobetaine hydroxylase (Vaz, FM, S. van Gool, R. Ofman, L. Ijlst, and RJA Wanders. 1998. Carnitine biosynthesis: Identification of the cDNA encoding human γ-butyrobetaine hydroxylase, .... Biochem Biophys Res Commun 250: 506-510.), A basis in which the hydroxyl N. sila beta -butyrolactone as γ- encoding a claim on the total genome database (www.broad.mit.edu/annotation/fungi/neurospora_crassa_7/index.html) of N. crassa crassa cDNA clones were screened. As a result of BLASTp homology, three open reading frames (ORFs), NCU03802.1, NCU02196.1, and NCU06891.1, were searched for human γ-butyrobetaine hydroxylase, respectively. 23, 24, and 27% homology. The proteins consist of sequences of 1,407, 1,278, and 3,786 bp, respectively. When the ORFs and N. crassa genomic sequences are aligned, the nucleotide sequences of NCU03802.1, NCU02196.1, and NCU06891.1 are It confirmed that it consists of 8, 2, and 5 exons, respectively.

도 1은 NCU03802.1의 아미노산 서열 및 N. crassa TMLH 및 인간의 γ-부티로베타인 히드록실라제 (BBH)의 서열분석 결과를 나타낸다. 아미노산 서열은 T-COFFEE 프로그램(Notredame, C., D. Higgins, and J. Heringa. 2000. A novel method for multiple sequence alignments. J. Mol. Biol. 302: 205-217.)으로 얼라인(align) 하였으며, 서열중의 대쉬(dashes)는 얼라인먼트를 최대화하기 위해 도입된 갭(gaps)을 나타낸다. (*: Identical residues, ; : conserved residues).1 shows the amino acid sequence of NCU03802.1 and the results of sequencing of N. crassa TMLH and human γ-butyrobetaine hydroxylase (BBH). Amino acid sequences are aligned by the T-COFFEE program (Notredame, C., D. Higgins, and J. Heringa. 2000. A novel method for multiple sequence alignments. J. Mol . Biol . 302: 205-217.) Dashes in the sequence represent gaps introduced to maximize alignment. (*: Identical residues,;: conserved residues).

도 1에서 확인할 수 있는 바와 같이 NCU03802.1의 아미노산 서열은 ε-N-트리메틸라이신 히드록실라제 (ε-N-trimethyllysine hydoxylase, TMLH)와 91%의 상동성을 갖는다. 또한, 인간의 γ-부티로베타인 히드록실라제의 아미노산 서열은 N. crassa TMLH 와 25%의 상동성을 나타내었으며, 보존적 치환(conservative substitutions)을 고려할 경우, NCU03802.1 및 N. crassa TMLH의 아미노산 서열에 대한 인간의 γ-부티로베타인 히드록실라제의 상동성은 각각 49 및 50% 이다. TMLH 및 NCU03802.1 의 게놈 서열은 N. crassa의 게놈 상에서 서로 상이한 크로모좀에 위치하며 NCU03802.1 의 아미노산 서열은 N. crassa TMLH 에서 발견(Swiegers, J. H., F. M. Vaz, I. S. Pretorius, R. J. A. Wanders, and F. F. Bauer. 2002. Carnitine biosynthesis in Neurospora crassa: identification of a cDNA coding for ε-N-trimethyllysine hydoxylase and its functional expression in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 210: 19-23.)된 바 있는 독특한 11 개의 잔여 폴리(피) 영역(poly(P) region)을 포함한다. Also the amino acid sequence of NCU03802.1 As can be seen in 1 ε- N - trimethyl lysine has a hydroxyl sila claim homology (ε- N -trimethyllysine hydoxylase, TMLH) and 91%. Furthermore, the amino acid sequence of human γ-butyrobetaine hydroxylase is N. 25% homology with crassa TMLH, and NCU03802.1 and N. were considered when conservative substitutions were considered. The homology of human γ-butyrobetaine hydroxylase to the amino acid sequence of crassa TMLH is 49 and 50%, respectively. The genomic sequences of TMLH and NCU03802.1 are located in different chromosomes on the genome of N. crassa and the amino acid sequences of NCU03802.1 are N. crassa Found TMLH (Swiegers, JH, FM Vaz , IS Pretorius, RJA Wanders, and FF Bauer 2002. Carnitine biosynthesis in Neurospora crassa:.. Identification of a cDNA coding for ε- N -trimethyllysine hydoxylase and its functional expression in Saccharomyces cerevisiae FEMS Microbiol . Lett . 210: 19-23.), Including 11 unique residual poly (P) regions.

실시예Example 2. 중합효소 연쇄 반응 2. Polymerase Chain Reaction

NCU03802.1, NCU02196.1, 및 NCU06891.1의 예상되는 코딩 서열에 근거하여, 표 1과 같의 프라이머 세트, 즉 3802.1F 및 3802.1R, 2196.1F 및 2196.1R, 6891.1F 및 6891.1R를 제작하였으며, 이들은 시작 및 정지 코돈과 중첩(overlapping) 된다.Based on the expected coding sequences of NCU03802.1, NCU02196.1, and NCU06891.1, a primer set as shown in Table 1, ie 3802.1F and 3802.1R, 2196.1F and 2196.1R, 6891.1F, and 6891.1R, was prepared. , They overlap with the start and stop codons.

프라이머primer 서열 번호Sequence number 서열a Sequence a 제한효소Restriction enzyme 3802.1F3802.1F 33 5'-attccgatatc catATGAGACCGCAAGTGGTAGG-3'5'-attcc gatatc catATG AGACCGCAAGTGGTAGG-3 ' EcoRV 및 NdeI Eco RV and Nde I 3802.1R3802.1R 44 5'-ccgatgaattcTCAGTCCTTAACCAGTAACCC-3'5'-ccgat gaattc TCAGTCCTTAACCAGTAACCC-3 ' EcoRI Eco RI 2196.1F2196.1F 55 5'-actgataagcttcATGGCCACGGCAGCGGTTCAGG-3'5'-actgat aagcttc ATGGCCACGGCAGCGGTTCAGG-3 ' HindIII Hin dIII 2196.1R2196.1R 66 5'-ccgatgaattcTCAATACCCTCCCCCACCCTGCG-3'5'-ccgat gaattc TCAATACCCTCCCCCACCCTGCG-3 ' EcoRI Eco RI 6891.1F6891.1F 77 5'-attccgatatcATGGGGTTCCTCGCTACTCTCATCG-3'5'-attcc gatatc ATGGGGTTCCTCGCTACTCTCATCG-3 ' EcoRV Eco RV 6891.1R6891.1R 88 5'-attccgatatcTTATGCGTTCCAGTTCACCGTGCC-3'5'-attcc gatatc TTATGCGTTCCAGTTCACCGTGCC-3 ' EcoRV Eco RV

a 밑줄로 표기한 서열은 제한효소에 의해 절단되는 위치를 나타낸다. The underlined sequence indicates the position cleaved by the restriction enzyme.

상기 프라이머 세트를 사용하여 N. crassa cDNA yeast expression library (Lambda g15-NC cDNA; Fungal Genetic Stock Center, Kansas City, KS, USA) 유래의 ORF를 중합효소 연쇄 반응(polymerase chain reaction, PCR)으로 증폭시켰다.Using the primer set, ORFs derived from N. crassa cDNA yeast expression library (Lambda g15-NC cDNA; Fungal Genetic Stock Center, Kansas City, KS, USA) were amplified by polymerase chain reaction (PCR). .

50 ㎕의 PCR 반응물은 10 ㎕ 의 10 X 반응 완충액 [100 mM의 KCl, 100 mM의 (NH4)2SO4, 200 mM의 Tris-Cl (pH 8.75), 20 mM의 MgSO4, 1 %의 TritonTM X-100, 1000 ug/ml의 BSA], 200 uM의 각 dNTP, 100 pmol의 각 프라이머, 2.5 units의 Top-Pfu DNA 폴리머라제(Solgent, 대전, 한국), 및 주형으로서 250 ng 의 Lambda g15-NC cDNA을 포함한다. 50 μl of PCR reaction was performed with 10 μl of 10 × reaction buffer [100 mM KCl, 100 mM (NH 4 ) 2 SO 4 , 200 mM Tris-Cl (pH 8.75), 20 mM MgSO 4 , 1% Triton X-100, 1000 ug / ml BSA], 200 uM of each dNTP, 100 pmol of each primer, 2.5 units of Top - Pfu DNA polymerase (Solgent, Daejeon, Korea), and 250 ng of Lambda as template g15-NC cDNA.

각 샘플을 PTC-100TM Programmable Thermal Controller (MJ Research, Waltham, MA, 미국)에 넣고, 최초 95 ℃에서 5 분, 이어서 94 ℃에서 1분, 56 ℃에서 1분, 및 72 ℃에서 5분의 조건으로 30 사이클을 수행하였다. N. crassa cDNA 라이브러리를 주형으로 사용하여, NCU03802.1 및 NCU02196.1 cDNA 의 ORF를 포함하는 1,407 및 1,278 bp 의 PCR 산물이 각각 성공적으로 증폭되었으나, 프라이머 6891.1F 및 6891.1R를 사용한 PCR 산물은 증폭되지 않았다.Each sample was placed in a PTC-100 Programmable Thermal Controller (MJ Research, Waltham, Mass., USA), initially 5 minutes at 95 ° C., then 1 minute at 94 ° C., 1 minute at 56 ° C., and 5 minutes at 72 ° C. 30 cycles were carried out under the conditions. Using the N. crassa cDNA library as a template, 1,407 and 1,278 bp PCR products containing ORFs of NCU03802.1 and NCU02196.1 cDNA were successfully amplified, respectively, but PCR products using primers 6891.1F and 6891.1R were amplified. It wasn't.

실시예Example 3. 발현 벡터의 제조 3. Preparation of Expression Vectors

실시예 2에서 얻어진 ORF 서열들을 S. cerevisiae-E. coli 셔틀 벡터 pRS426 (Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and P. Hieter. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119-122.)의 글루코즈 유도성 adh1 프로모터 및 adh1 전사 터미네이터 사이에 클로닝하였다. The ORF sequence obtained in Example 2 S. cerevisiae -. E. coli shuttle vector pRS426 (Christianson, TW, Sikorski RS, Dante M., Shero JH, and Hieter P. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110: 119-122 .) Was cloned between the glucose inducible adh1 promoter and adh1 transcription terminator.

990 bp의 adh1 프로모터 영역 및 706 bp의 터미네이터 영역을 각각 프라이머 P1 및 P2, T1 및 T2, 및 S. cerevisiae SJ7164 의 게놈 DNA를 주형으로 사용하여 먼저 증폭시켰다. 상기 프라이머 서열은 다음 표 2와 같다.The 990 bp adh1 promoter region and 706 bp terminator region were first amplified using genomic DNA of primers P1 and P2, T1 and T2, and S. cerevisiae SJ7164 as a template, respectively. The primer sequence is shown in Table 2 below.

프라이머primer 서열 번호Sequence number 서열a Sequence a 제한효소Restriction enzyme P1P1 99 5'-taggtaccACGCGCATAACCGCTAGAGTA-3'5'-ta ggtacc ACGCGCATAACCGCTAGAGTA-3 ' KpnI Kpn I P2P2 1010 5'-tactcgagTGAGATAGTTGATTGTATGCTTGG-3'5'-ta ctcgag TGAGATAGTTGATTGTATGCTTGG-3 ' XhoI Xho I T1T1 1111 5'-tcactagtCGTTGTTGACACTTCTAAATAAGCG-3'5'-tc actagt CGTTGTTGACACTTCTAAATAAGCG-3 ' SpeI Spe i T2T2 1212 5'-tagagctcTACCAGGATAGGACACGGTGTT-3'5'-ta gagctc TACCAGGATAGGACACGGTGTT-3 ' SacI Sac i

adh1 프로모터 서열을 포함하는 얻어진 990 bp의 산물을 KpnI 및 XhoI로 절단하고, pBluescript II KS+ (Stratagene, La Jolla, CA, U.S.A)의 대응 부위에 서브클로닝하였다. 얻어진 플라스미드를 SpeI and SacI로 절단하고, SpeI and SacI로 절단한 adh1 터미네이터 서열을 포함하는 706 bp의 PCR 산물과 접합(ligation)시켰다. 얻어진 플라스미드(pSJ400으로 명명)를 EcoRV 및 EcoRI으로 자른 다음, NCU03802.1 cDNA의 ORF를 포함하는 1,407 bp의 EcoRV-EcoRI PCR 단편과 접합켜 플라스미드 pSJ401를 제조하였다. adh1 프로모터 및 adh1 터미네이터 사이에 NCU03802.1 cDNA 의 ORF를 포함한 pSJ401 의 KpnI-SacI 단편을 pRS426의 대응 부위에 삽입하여 플라스미드 pSJ420를 제조하였다. NCU02196.1의 단백질을 과발현시키는 발현 플라스미드를 구축하기 위하여, pSJ420 의 내부 HindIII- EcoRI 단편을 HindIII- EcoRI로 절단한 NCU02196.1 cDNA 의 ORF를 포함하는 1,278 bp PCR 단편으로 교체하여 pSJ404를 제조하였다. 서열분석 결과, NCU03802.1의 468개 아미노산을 갖는 단백질을 코딩하는 1,407 bp의 ORF 및 NCU02196.1의 425개 아미노산을 갖는 단백질을 코딩하는 1,278 bp의 ORF임을 확인하였다. The resulting 990 bp product containing adh1 promoter sequence was digested with Kpn I and Xho I and subcloned into the corresponding site of pBluescript II KS + (Stratagene, La Jolla, CA, USA). Cutting the resulting plasmid with Spe I and Sac I, and, Spe I and Sac I and the PCR product was joined (ligation) of 706 bp containing the terminator sequence adh1 cut into. The resulting plasmid (named pSJ400) was cut into Eco RV and Eco RI, followed by conjugation with a 1,407 bp Eco RV- Eco RI PCR fragment containing an ORF of NCU03802.1 cDNA to prepare plasmid pSJ401. adh1 promoter and inserted into the Kpn I- Sac I fragment of pSJ401 contains the ORF of the cDNA NCU03802.1 between adh1 terminator to the corresponding region of pRS426 was prepared plasmid pSJ420. To construct an expression plasmid that overexpresses the protein of NCU02196.1, the internal Hin dIII - Eco RI fragment of pSJ420 was replaced with a 1,278 bp PCR fragment containing the ORF of NCU02196.1 cDNA digested with Hin dIII - Eco RI. Was prepared. Sequencing confirmed that it was an ORF of 1,407 bp encoding a protein with 468 amino acids of NCU03802.1 and an 1,278 bp ORF encoding a protein with 425 amino acids of NCU02196.1.

실시예Example 4. 형질전환체의 제조 및 배양 4. Preparation and Cultivation of Transformant

실시예 3에서 제조한 발현 벡터를 사용하여, 리튬 아세테이트 방법(Gietz, R. D., R. H. Schiestl, A. R. Williams, and R. A. Woods. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355-360 및 Kleber, H. P. 1997. Bacterial carnitine metabolism. FEMS Microbiol. Lett. 147: 1-9.)으로, 사카로마이세스 세레비제 SJ7164 (S. cerevisiae SJ7164)(ATCC 44774)(his3 - delta1, leu2 -3, leu2 -112, ura3 -52, trp1 -289)를 형질전환시켜, 각각 pSJ420 및 pSJ404 으로 형질전환된 형질전환체를 제조하였다. Using the expression vector prepared in Example 3, a lithium acetate method (Gietz, RD, RH Schiestl, AR Williams, and RA Woods. 1995. Studies on the transformation of intact yeast cells by the LiAc / SS-DNA / PEG procedure . Yeast 11:... Lett 355-360 and Kleber, HP 1997. Bacterial carnitine metabolism FEMS Microbiol 147: 1-9), the non-zero My process celebrity SJ7164 (S. cerevisiae SJ7164) (ATCC 44774) (his3 a saccharide-by transforming a delta1, leu2 -3, leu2 -112, -52 ura3, trp1 -289), Transformants transformed with pSJ420 and pSJ404, respectively, were prepared.

얻어진 형질전환체를 글루코즈 최소 배지 [리터당 6.7 g 의 yeast nitrogen base (아미노산 비함유), 20 g 의 글루코즈, 및 20 mg 의 유라실]에서 배양하였다.The resulting transformants were incubated in a glucose minimal medium [6.7 g yeast nitrogen base (without amino acid), 20 g glucose, and 20 mg uracil per liter].

실시예Example 5. γ- 5. γ- 부티로베타인Butyrobetaine 히드록실라제Hydroxylase 활성 분석 Activity analysis

γ-부티로베타인 히드록실라제 활성은 γ-부티로베타인 히드록실라제에 대한 N. crassa ORF를 포함하는 형질전환체의 세포-제거 조추출물(crude cell free extract)로부터 2 단계 과정으로 측정하였으며, 상기 과정에서 γ-부티로베타인 히드록실라제로부터 효소적으로 생성된 L-카르니틴을 비색적으로(colorimetrically) 측정하였다(Vaz, F. M., S. van Gool, R. Ofman, L. Ijlst, and R. J. A. Wanders. 1998. Carnitine biosynthesis: Identification of the cDNA encoding human γ-butyrobetaine hydoxylase. Biochem. Biophys. Res. Commun. 250: 506-510. 및 Wieland, O. H., T. Deufel, and I. Paetzke-Brunner. 1985. Free and esterified carnitine: colometric method, pp. 481-488. In H. U. Bergmeyer (ed.), Methods of Enzymatic Analysis, Vol. 8, 3rd Ed. VCH, Weinheim.23, 25). γ-butyrobetaine hydroxylase activity is a two-step process from a crude cell free extract of a transformant comprising N. crassa ORF against γ-butyrobetaine hydroxylase. In this process, L-carnitine, which was enzymatically generated from γ-butyrobetaine hydroxylase, was measured colorimetrically (Vaz, FM, S. van Gool, R. Ofman, L). . Ijlst, and RJA Wanders 1998. Carnitine biosynthesis:.... Identification of the cDNA encoding human γ-butyrobetaine hydoxylase Biochem Biophys Res Commun 250:... 506-510 and Wieland, OH, T. Deufel, and I. Paetzke . -Brunner 1985. Free and esterified carnitine: .. colometric method, pp 481-488 In HU Bergmeyer (. ed), Methods of Enzymatic Analysis , Vol. 8, 3 rd Ed. VCH, Weinheim. 23, 25).

γ-부티로베타인 히드록실라제 활성 분석을 위한 세포-제거 조추출물(crude cell free extract)은 대수적으로 자라는 배양액으로부터 얻었다. 최종 부피 500 ㎕ 중 γ-부티로베타인 히드록실라제 활성 분석을 위한 반응 혼합물은 20 mM의 KCl, 3 mM의 α-케토글루타레이트, 10 mM의 소듐 아스코베이트, 2 g/liter Triton X-100, 0.25 mM 의 (NH4)2Fe(SO4)2, 및 0.2 mM γ-부티로베타인을 함유한 pH 7.0 의 20 mM 의 포타슘 포스페이트 완충액으로 이루어진다. γ-부티로베타인 히드록실라제에 의해 효소적으로 생성된 L-카르니틴 함량은 기지의 L-카르니틴을 사용하여 작성한 표준 곡선으로부터 계산하였다. 그 결과는 다음 표 3과 같다. 하기 표 3에서 세포 추출물 중의 단백질 농도는 소 혈청 알부민을 사용하여 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 31-37 에 개시된 방법에 의해 측정하였다.Cell-free extracts for assaying γ-butyrobetaine hydroxylase activity were obtained from algebraically grown cultures. The reaction mixture for assaying γ-butyrobetaine hydroxylase activity in a final volume of 500 μl was 20 mM KCl, 3 mM α-ketoglutarate, 10 mM sodium ascorbate, 2 g / liter Triton X 20 mM potassium phosphate buffer at pH 7.0 containing -100, 0.25 mM of (NH 4 ) 2 Fe (SO 4 ) 2 , and 0.2 mM γ-butyrobetaine. The L-carnitine content enzymatically produced by γ-butyrobetaine hydroxylase was calculated from a standard curve created using known L-carnitine. The results are shown in Table 3 below. In Table 3 below, protein concentrations in cell extracts were measured using bovine serum albumin Bradford, MM 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal . Biochem . 72: measured by the method disclosed in 31-37.

숙주host 플라스미드Plasmid 활성(Specific activity) (umol/min/mg protein)Specific activity (umol / min / mg protein) 사카로마이세스 세레비제 SJ7164 (S. cerevisiae SJ7164)Saccharomyces cerevisiae sj7164 ( S. cerevisiae SJ7164) pRS426pRS426 NDND pSJ404pSJ404 NDND pSJ420pSJ420 0.036 ± 0.0030.036 ± 0.003

ND: 미 검출(not detected)ND: not detected

표 3에서 확인할 수 있는 바와 같이, 외부(exogenus) γ-부티로베타인 존재하에서, NCU03802.1 (pSJ420)의 단백질 생성물을 과발현하도록 제조된 형질전환체의 세포-제거 조추출물(crude cell free extracts)로부터 측정된 γ-부티로베타인 히드록실라제 활성은 높은 γ-부티로베타인 히드록실라제 활성을 나타낸 반면, NCU02196.1 (pSJ404)의 단백질 생성물을 과발현하도록 한 형질전환체의 세포-제거 조추출물(crude cell free extracts)로부터 측정된 γ-부티로베타인 히드록실라제 활성은 측정되지 않았다. 또한, pRS426 (음성 대조군)을 포함하는 형질전환체의 세포-제거 조추출물(crude cell free extracts)로부터의 활성은 외부 γ-부티로베타인 존재하에서도 검출되지 않았다. 이는 사카로마이세스 세레비제 SJ7164 (S. cerevisiae SJ7164) 자체는 γ-부티로베타인 히드록실라제 활성을 결여하고 있음을 나타낸다.As can be seen in Table 3, crude cell free extracts of transformants prepared to overexpress the protein product of NCU03802.1 (pSJ420) in the presence of exogenus γ-butyrobetaine Γ-butyrobetaine hydroxylase activity measured from) shows high γ-butyrobetaine hydroxylase activity, whereas cells of the transformant to overexpress the protein product of NCU02196.1 (pSJ404) No γ-butyrobetaine hydroxylase activity was determined from crude cell free extracts. In addition, the activity from crude cell free extracts of transformants comprising pRS426 (negative control) was not detected in the presence of external γ-butyrobetaine. This indicates that Saccharomyces cerevisiae SJ7164 ( S. cerevisiae SJ7164) itself lacks γ-butyrobetaine hydroxylase activity.

서열번호 1의 아미노산 서열을 갖는 폴리펩타이드는 γ-부티로베타인 히드록실라제 활성을 가지며, 이를 코딩하는 유전자로 형질전환된 사카로마이세스(Saccharomyces) 속 미생물을 배양할 경우, γ-부티로베타인으로부터 L-카르니틴을 제조할 수 있다.Polypeptides having the amino acid sequence of SEQ ID NO: 1 have γ-butyrobetaine hydroxylase activity, and when cultured Saccharomyces microorganisms transformed with the gene encoding it, L-carnitine can be prepared from lovetaine.

서열목록 전자파일 첨부 Attach sequence list electronic file

Claims (10)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 서열번호 1의 아미노산 서열로 구성된 γ-부티로베타인 히드록실라제를 이용하여, γ-부티로베타인(γ-butyrobetaine)을 히드록실화시키는 단계를 포함하는 L-카르니틴의 제조방법.A method for producing L-carnitine comprising the step of hydroxylating γ-butyrobetaine using γ-butyrobetaine hydroxylase composed of the amino acid sequence of SEQ ID NO: 1. 제9항에 있어서, 상기 히드록실화시키는 단계가 γ-부티로베타인을 함유하는 배지 중에, 플라스미드 pSJ420로 사카로마이세스 세레비제 SJ7164 (S. cerevisiae SJ7164)(ATCC 44774)를 형질전환시킨 형질전환체를 배양하고, L-카르니틴을 회수함으로써 수행되는 것을 특징으로 하는 L-카르니틴의 제조방법.10. The transformation according to claim 9, wherein the hydroxylating step is a transformation of S. cerevisiae SJ7164 (ATCC 44774) with plasmid pSJ420 in a medium containing γ-butyrobetaine. A method for producing L-carnitine, which is carried out by culturing a sieve and recovering L-carnitine.
KR1020060065624A 2006-07-13 2006-07-13 - - -Butyrobetaine hydroxylase derived from Neurospora crassa its gene and processes for preparing L-carnitine using the same KR100842013B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060065624A KR100842013B1 (en) 2006-07-13 2006-07-13 - - -Butyrobetaine hydroxylase derived from Neurospora crassa its gene and processes for preparing L-carnitine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060065624A KR100842013B1 (en) 2006-07-13 2006-07-13 - - -Butyrobetaine hydroxylase derived from Neurospora crassa its gene and processes for preparing L-carnitine using the same

Publications (2)

Publication Number Publication Date
KR20080006659A KR20080006659A (en) 2008-01-17
KR100842013B1 true KR100842013B1 (en) 2008-06-27

Family

ID=39220299

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060065624A KR100842013B1 (en) 2006-07-13 2006-07-13 - - -Butyrobetaine hydroxylase derived from Neurospora crassa its gene and processes for preparing L-carnitine using the same

Country Status (1)

Country Link
KR (1) KR100842013B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64976A (en) * 1987-06-23 1989-01-05 Fujitsu Ltd Transferring and fixing device
KR20050087302A (en) * 2004-02-26 2005-08-31 씨제이 주식회사 γ-Butyrobetaine hydroxylase originated from Neurospora crassa

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64976A (en) * 1987-06-23 1989-01-05 Fujitsu Ltd Transferring and fixing device
KR20050087302A (en) * 2004-02-26 2005-08-31 씨제이 주식회사 γ-Butyrobetaine hydroxylase originated from Neurospora crassa

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
논문 1976
카달로그

Also Published As

Publication number Publication date
KR20080006659A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
KR20210138642A (en) Trophan alkaloids (TA) to produce non-plant host cells, and methods of making and using the same
US9611490B2 (en) Biological method for producing cis-5-hydroxy-L-pipecolic acid
KR20200040017A (en) Recombinant Acid Resistant Yeast Inhibited alcohol production and Method for Preparing Lactic Acid Using The Same
Bon et al. Asparaginase II of Saccharomyces cerevisiae: GLN3/JURE2 Regulation of a Periplasmic Enzyme
Klein et al. Purification and characterization of invertase from a novel industrial yeast, Schwanniomyces occidentalis
US20060223140A1 (en) Transglycosylation method and protein having transglycosylation activity
EP1215281B1 (en) Cyclic depsipeptide synthases, genes thereof and mass production system of cyclic depsipeptide
KR100842013B1 (en) - - -Butyrobetaine hydroxylase derived from Neurospora crassa its gene and processes for preparing L-carnitine using the same
Sachadyn et al. Purification to homogeneity of Candida albicans glucosamine-6-phosphate synthase overexpressed in Escherichia coli
CN109563504B (en) Nucleoside enzyme
EP1174499B1 (en) Novel amidase gene
Takada et al. ADP-ribosylarginine hydrolases
JP2770010B2 (en) Gene for positively controlling mannose-1-phosphate transfer in yeast and method for producing high mannose-type neutral sugar chain using mutant mutant of this gene
CN115348865A (en) Microbial production of NMN and derivatives thereof
US20130302853A1 (en) Compositions and methods of producing enterokinase in yeast
US7198932B1 (en) Gdp-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase gene derived from arabidopsis thaliana
US7351560B2 (en) Glycerol-3-phosphate phosphatase and glycerol-3-phosphate dehydrogenase from Candida albicans, genes encoding the same, vector and host cell containing the genes, and method for producing glycerol using the host cell
KR101755349B1 (en) Microorganism producing L-threonine and process for producing L-threonine using the same
Min-Sang et al. Sequence-Based Screening for a Putative ${\gamma} $-Butyrobetaine Hydroxylase Gene from Neurospora crassa
US10947523B2 (en) Biotechnological production of L-tryptophan
LU100521B1 (en) Improved biotechnological production of L-tryptophan
US6916641B2 (en) (R)-2-hydroxy-3-phenylpropionate (d-phenyllactate) dehydrogenase and gene encoding the same
KR101713885B1 (en) Lipase with sn-1 specificity and method for production thereof
WO2024013212A1 (en) Microbial cell factories producing thiamine
JP4171805B2 (en) Glycosyltransferase

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130422

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140507

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160316

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170328

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180416

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190327

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200224

Year of fee payment: 13