KR100833073B1 - Zn-mg alloy coated steel sheet excellent in corrosion resistance and painttability, and its manufacturing method - Google Patents

Zn-mg alloy coated steel sheet excellent in corrosion resistance and painttability, and its manufacturing method Download PDF

Info

Publication number
KR100833073B1
KR100833073B1 KR1020060137042A KR20060137042A KR100833073B1 KR 100833073 B1 KR100833073 B1 KR 100833073B1 KR 1020060137042 A KR1020060137042 A KR 1020060137042A KR 20060137042 A KR20060137042 A KR 20060137042A KR 100833073 B1 KR100833073 B1 KR 100833073B1
Authority
KR
South Korea
Prior art keywords
molybdenum
steel sheet
silicate
corrosion resistance
based alloy
Prior art date
Application number
KR1020060137042A
Other languages
Korean (ko)
Inventor
송연균
김태엽
곽영진
이동열
남경훈
김광석
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020060137042A priority Critical patent/KR100833073B1/en
Application granted granted Critical
Publication of KR100833073B1 publication Critical patent/KR100833073B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/56Three layers or more
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/64Treatment of refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

A Zn-Mg alloy coated steel sheet having excellent resin paint adhesion and corrosion resistance, and a manufacturing method thereof are provided to improve resin paint adhesion and corrosion resistance of a vacuum deposition-treated Zn-Mg alloy coating film by increasing cohesion of a Zn-Mg alloy costing film and a paint resin coating film. A Zn-Mg based alloy coated steel sheet having excellent resin paint adhesion and corrosion resistance comprises a steel sheet, a Zn-Mg based alloy coating layer formed on an upper portion of the steel sheet, and a molybdenum-silicate coating film formed on an upper portion of the Zn-Mg based alloy coating layer, the molybdenum-silicate coating film having a thickness of 0.05 to 0.5 mum. The molybdenum-silicate coating film comprises 60 to 65% of molybdenum and 40 to 35% of silicate. The Zn-Mg based alloy coating layer has a thickness of 0.5 to 10 mum. The Zn-Mg based alloy coating layer comprises 5 to 15 wt.% of Mg, and the balance of Zn and other inevitable impurities. A manufacturing method of a Zn-Mg based alloy coated steel sheet having excellent resin paint adhesion and corrosion resistance comprises treating a steel sheet having a Zn-Mg based alloy coating layer formed on an upper portion thereof in a molybdenum-silicate solution to form a molybdenum-silicate coating film on an upper portion of the alloy coating layer, the molybdenum-silicate coating film having a thickness of 0.05 to 0.5 mum.

Description

수지도장밀착력과 내식성이 우수한 Zn-Mg 합금도금강판과 그 제조방법{Zn-Mg ALLOY COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND PAINTTABILITY, AND ITS MANUFACTURING METHOD}Zn-Mg ALLOY COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND PAINTTABILITY, AND ITS MANUFACTURING METHOD}

도 1은 Zn-Mg합금도금 강판의 단면 모식도이다. 1 is a schematic cross-sectional view of a Zn-Mg alloy plated steel sheet.

도 2는 몰리브데니윰-실리케이트 피막이 형성된 Zn-Mg 합금도금강판의 모식도이다. 2 is a schematic diagram of a Zn-Mg alloy plated steel sheet on which a molybdenum-silicate film is formed.

국제공개특허 WO05/106074International Publication WO05 / 106074

국제공개특허 WO01/098413International Publication WO01 / 098413

유럽특허 1272640European Patent 1272640

본 발명은 Zn-Mg 합금도금강판과 그 제조방법에 관한 것으로, 보다 상세하게는 그 상부에 몰리브데니윰-실리케이트 피막이 형성되어 수지도장 피막과의 밀착력과 나판 내식성이 보다 향상되는 Zn-Mg 합금도금강판과 그 제조방법에 관한 것이다. The present invention relates to a Zn-Mg alloy plated steel sheet and a method of manufacturing the same, and more particularly, to a Zn-Mg alloy in which a molybdenum-silicate film is formed on the upper portion thereof, thereby adhering to the resin coating film and further improving plate adhesion. It relates to a plated steel sheet and a method of manufacturing the same.

Zn-Mg계 합금도금강판은 다른 아연계 합금 도금 강판에 비하여 내식성, 용접성 등 에서 매우 우수한 성능을 나타낸다. 그러나, 기존의 용융아연도금 방법으로는 Mg 에서 발생되는 퓸(Fume)이 인체에 매우 위독한 물질로서 대기 오염을 유발하고 작업자의 안전성의 문제를 야기할 수 있으므로 극히 제한적으로 생산되고 있다. 반면에, 진공 챔버에서 증착(증발열, 이온빔 및 스퍼터링)하는 방법에 의하여 제조될 경우 우수한 Zn-Mg계 피막을 얻을 수 있으나, 후공정으로 실시되는 도장처리시 요구 밀착력 확보가 어려운 한계점을 지니고 있다. Zn-Mg-based alloy coated steel sheet exhibits excellent performance in corrosion resistance, weldability, etc., compared to other zinc-based alloy coated steel sheets. However, in the existing hot dip galvanizing method, the fume generated from Mg is a very harmful substance to the human body, which may cause air pollution and cause a problem of worker safety. On the other hand, when manufactured by a method of vapor deposition (evaporation heat, ion beam and sputtering) in a vacuum chamber, an excellent Zn-Mg-based film can be obtained, but it has a difficult point in securing the required adhesion during the coating process performed in a post process.

즉, 강판상에 증착된 Zn-Mg계 합금 피막은 증착 제조 공정상 흡착된 원소의 피막 성장시 발생하는 클러스터의 충돌로 인하여 100~500 나노미터의 기공이 도 1과 같이 발생하게 되어 수지와의 밀착력이 좋지 않다. That is, in the Zn-Mg-based alloy film deposited on the steel sheet, pores of 100 to 500 nanometers are generated as shown in FIG. 1 due to the collision of clusters generated during the film growth of the adsorbed elements in the deposition manufacturing process. Adhesion is not good.

따라서, 합금도금강판과 수지가 주성분인 도장피막과의 밀착력 향상을 위하여 인산염피막 제조기술을 이용하는 것은 공지의 기술이다. 진공증착으로 제조된 Zn-Mg계 합금피막에 기존 공지된 인산염피막 제조기술을 적용할 경우 합금피막이 함유하고 있는 기공으로 인해 인산염 피막형성이 불균일한 기술적 한계점을 갖고 있다. 이러한 문제점을 개선시키기 위한 기술로는 국제공개특허 WO05/106074, WO01/098413 및 유럽특허 1272640가 있다. 이들은 마그네슘표면에 인산염 혹은 화성처리 피막을 형성하기 위하여 전공정에 강한 산성 혹은 알칼리 용액에 침지시켜, 표면을 개질한 후 인산염 처리 용액에 침적하여 인산염 피막을 형성하는 기술을 제공하는 것이다. 그러나, 강산성 처리에 의한 후공정시 오염발생이 문제로 제기된다. 또한, Zn-Mg 합금피막 표면에 적용시 Zn 와 Mg 의 갈바닉 기전력 차이에 의한 반응성의 차이와 기공에 의한 반응 불균일로 도장피막과의 밀착력이 크게 향상되지 않는 한계점을 지니고 있다.Therefore, it is a well-known technique to use the phosphate coating production technology to improve the adhesion between the alloy plated steel sheet and the coating film of which the resin is the main component. When applying the conventionally known phosphate film production technology to the Zn-Mg-based alloy film produced by vacuum deposition, the phosphate film formation has a non-uniform technical limitations due to the pores contained in the alloy film. Techniques for improving this problem include International Patent Publications WO05 / 106074, WO01 / 098413 and European Patent 1272640. In order to form a phosphate or chemical conversion film on the surface of magnesium, they are immersed in an acidic or alkaline solution that is strong in the previous process, and then the surface is modified and then immersed in a phosphate solution to form a phosphate film. However, contamination occurs during the post-processing by strong acid treatment. In addition, when applied to the surface of the Zn-Mg alloy coating film has a limitation that the adhesion between the coating film and the coating film is not greatly improved due to the difference in reactivity due to the galvanic electromotive force difference between Zn and Mg and the reaction unevenness caused by the pores.

본 발명은 상기와 같은 문제를 해결하기 위한 것으로, Zn-Mg 합금피막과 도장수지 피막과의 결합력을 증가시켜 진공증착 처리된 Zn-Mg 합금피막의 수지 도장 밀착성과 내식성을 개선하고자 하는 것이다. The present invention is to solve the above problems, to increase the bonding strength of the Zn-Mg alloy film and the coating resin film to improve the resin coating adhesion and corrosion resistance of the Zn-Mg alloy film subjected to vacuum deposition.

상기 목적을 달성하기 위한 본 발명의 Zn-Mg계 합금도금강판은, Zn-Mg alloy plated steel sheet of the present invention for achieving the above object,

강판과 이 강판의 상부에 Zn-Mg계 합금도금층이 형성되며, 이 합금도금층의 상부에 몰리브데니윰-실리케이트 피막을 갖는 것이다. A steel plate and a Zn-Mg type alloy plating layer are formed in the upper part of this steel plate, and it has a molybdenum desilicate-silicate film in the upper part of this alloy plating layer.

본 발명에서 몰리브데니윰-실리케이트 피막은 두께가 0.05-0.5㎛가 바람직하다. In the present invention, the molybdenum-silicate film preferably has a thickness of 0.05-0.5 탆.

본 발명에서 Zn-Mg계 합금도금강판은 Zn-Mg계 합금이면 가능하며, 본 발명의 일실시예에따르면 Mg의 함량이 5∼15중량%이고, 나머지 Zn과 기타 불가피한 불순물로 이루어지는 Zn-Mg계 합금도금이 적용될 수 있다. Zn-Mg계 합금도금층의 두께는 0.5∼10㎛가 바람직하다. In the present invention, the Zn-Mg-based alloy plated steel sheet may be a Zn-Mg-based alloy, and according to an embodiment of the present invention, the content of Mg is 5 to 15% by weight, and Zn-Mg made of the remaining Zn and other unavoidable impurities Based alloy plating may be applied. As for the thickness of a Zn-Mg type alloy plating layer, 0.5-10 micrometers is preferable.

본 발명에 따라 Zn-Mg계 합금도금강판의 제조방법은, Method for producing a Zn-Mg-based alloy plated steel sheet according to the present invention,

Zn-Mg계 합금도금강판을 몰리브데니윰-실리케이트 용액에서 처리하여 상기 도금강판의 상부에 몰리브데니윰-실리케이트 피막을 형성하는 것이다. The Zn-Mg-based alloy plated steel sheet is treated in a molybdenum-silicate solution to form a molybdenum-silicate film on top of the plated steel sheet.

본 발명의 일실시예에 따르면 상기 몰리브데니윰-실리케이트 용액은, Mo:0.1~2.0M, NaOH:1~10g/L, 콜로이달 실리카: 1~20g/L로 조성될 수 있다. 상기한 용액을 가지고 피막을 형성하는 방법은 용액에 침지 또는 용액의 분사 방법을 택할 수 있다. According to one embodiment of the present invention, the molybdenum-silicate solution may be composed of Mo: 0.1 to 2.0 M, NaOH: 1 to 10 g / L, and colloidal silica: 1 to 20 g / L. The method of forming a film with the above-mentioned solution may be a method of immersing or spraying the solution.

이하, 본 발명에 대하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated.

금속표면은 수지도장 피막과의 결합력이 열위해지는 문제점을 갖고 있으며 마그네슘이 함유된 합금의 경우 마그네슘옥사이드의 생성으로 수지와의 결합력이 현저히 열위하게 된다. 이러한 기술적 한계점을 극복하고자 본 발명에서는 Zn-Mg 함금과 결합력이 우수한 몰리브데니윰과 수지와의 결합력이 우수한 실리케이트를 도입하는데 특징이 있다. The metal surface has a problem of inferior bonding strength with the resin coating film, and in the case of an alloy containing magnesium, the bonding strength with the resin is significantly inferior due to the production of magnesium oxide. In order to overcome these technical limitations, the present invention is characterized by introducing a silicate having excellent bonding strength between molybdenum and resin having excellent bonding strength with Zn-Mg alloy.

본 발명에 따라 몰리브데니윰-실리케이트 피막이 적용되는 합금도금강판은, Zn-Mg계 합금도금강판이다. 본 발명에서는 Zn계 합금도금강판에서 Mg에 의한 수지와의 밀착력 열위를 해소하는 것인 바, Zn계 합금도금층에 Mg가 포함되는 것이면 적용 가능한 것이다. 물론, Zn-Mg계 합금도금층에서 Mg의 함량에 특별히 제한되는 것도 아니며, Mg외에 다른 성분이 포함되는 것을 배제하는 것도 아니다. 또한, Zn-Mg계 합금도금층의 하부에 다른 합금층이 형성되는 것도 적용 가능하다. 본 발명의 기재 에서 Zn-Mg계 합금이라는 기재는 광의로는 Zn과 Mg를 포함하는 것이며, 협의의 개념으로는 Zn과 Mg를 주성분으로 하는 것이다. Zn-Mg를 주성분으로 하면서 물론 불가피한 불순물은 포함될 수 있다. An alloy plated steel sheet to which the molybdenum ni-silicate coating is applied according to the present invention is a Zn-Mg-based alloy plated steel sheet. In the present invention, in order to solve the inferior adhesion force with the resin by Mg in the Zn-based alloy plated steel sheet, it is applicable if Mg is included in the Zn-based alloy plated layer. Of course, it is not particularly limited to the content of Mg in the Zn-Mg-based alloy plating layer, and does not exclude the inclusion of other components in addition to Mg. In addition, it is also applicable that another alloy layer is formed under the Zn-Mg-based alloy plating layer. In the description of the present invention, the base material of the Zn-Mg-based alloy broadly includes Zn and Mg, and the main concept is Zn and Mg in a narrow concept. While Zn-Mg is a main component, inevitable impurities may be included.

본 발명의 일실시예에 따르면, Zn-Mg계 합금도금층은 Mg 함량은 5∼15중량%이고, 나머지Zn과 기타 불가피한 불순물로 되는 것이나, 반드시 여기에 제한되는 것이 아니다. Zn-Mg 층내의 Mg 함량은 5∼15중량% 포함될 경우에 합금도금층이 가장 우수한 물성을 나타낸다. 또한, 본 발명에서 Zn-Mg 합금피막 형성시간은 그 두께가 0.5∼10㎛가 되는 것이다. According to one embodiment of the present invention, the Zn-Mg-based alloy plating layer has a Mg content of 5 to 15% by weight, and the other Zn and other unavoidable impurities, but is not necessarily limited thereto. The Mg content in the Zn-Mg layer shows the best physical properties of the alloy plated layer when it contains 5 to 15% by weight. In the present invention, the Zn-Mg alloy film forming time is 0.5 to 10 mu m in thickness.

상기 Zn-Mg 합금도금층의 두께가 0.5㎛ 미만인 경우에는 합금층 형성효과를 크지 않고, 10㎛를 초과하는 경우에는 과피막 형성에 의한 피막층 균열이 우려되어 바람직하지 않다.If the thickness of the Zn-Mg alloy plating layer is less than 0.5 µm, the effect of forming the alloy layer is not large. If the thickness of the Zn-Mg alloy plating layer is greater than 10 µm, the coating layer cracks due to the overcoat formation may be feared.

상기한 Zn-Mg계 합금도금강판의 표면에는 몰리브데니윰-실리케이트 박막이 형성된다. On the surface of the Zn-Mg-based alloy plated steel sheet, a molybdenum-silicate thin film is formed.

상기 몰리브데니윰-실리케이트 막은 Zn-Mg합금도금층 내의 기공을 충진시키고 몰리브데니윰-실리케이트 피막을 형성함으로써 수지도장 피막과의 밀착력을 향상시키고 일시방청성을 부여함으로써 도장밀착력과 내식성을 현저히 개선시키는 역할을 한다. 그러한 역할에 대한 모식도가 도 2에 나타나 있다. The molybdenum-silicate film fills pores in the Zn-Mg alloy plating layer and forms a molybdenum-silicate film to improve adhesion to the resin coating film and impart temporary rust resistance to significantly improve coating adhesion and corrosion resistance. Play a role. A schematic diagram of such a role is shown in FIG. 2.

Zn-Mg계 합금도금층에 몰리브데니윰과 실리케이트가 존재하게 되면, 몰리브데니윰 은 Zn-Mg합금도금층과의 결합력을 실리케이트는 수지와의 결합력을 담당하게 된다. 따라서, 몰리브데니윰-실리케이트 박막에 몰리브데니윰과 실리케이트가 동시에 존재하게 되면 밀착력은 확보되는 것이다. When molybdenum and silicate are present in the Zn-Mg alloy plating layer, molybdenum is responsible for the bonding force with the Zn-Mg alloy plating layer and the silicate is responsible for the bonding force with the resin. Therefore, when molybdenum and silicate are simultaneously present in the molybdenum-silicate thin film, adhesion is secured.

본 발명의 일실시예에 따르면 몰리브데니윰-실리케이트 피막의 두께는 0.05∼0.50㎛를 갖는 것이 바람직하다. 상기 몰리브데니윰-실리케이트 피막의 두께가 0.05㎛보다 작을 경우에는 밀착력 향상효과를 크게 기대할 수 없으며, 0.5 ㎛를 초과할 경우에는 피막 자체에 균열이 발생할 우려가 있다. According to one embodiment of the present invention, the molybdenum-silicate film preferably has a thickness of 0.05 to 0.50 μm. When the thickness of the molybdenum ni-silicate film is less than 0.05㎛ can not be expected to greatly increase the adhesion, if the thickness exceeds 0.5㎛ there is a fear that the film itself cracks.

본 발명의 일실시예에 따르면, 몰리브데니윰-실리케이트 피막층은 몰리브데니윰 약 60~65% 실리케이트 약 40~35%의 조성으로 구성될 수 있다. 상기 피막 조성은 처리 용액의 농도 조건에 의해 결정된다. 피막의 조성은 상기한 조건에 반드시 제한되는 것은 아니며, 상기 피막 조성이 가장 좋은 물성을 얻을 수 있는 최적의 조건이다.According to one embodiment of the invention, the molybdenum-silicate coating layer may be composed of a composition of about 60-65% silicate about 40-35%. The coating composition is determined by the concentration condition of the treatment solution. The composition of the film is not necessarily limited to the above conditions, and the film composition is an optimum condition from which the best physical properties can be obtained.

본 발명에 따라 Zn-Mg계 합금도금강판의 제조방법에 대하여 설명한다.According to the present invention will be described a method of manufacturing a Zn-Mg-based alloy plated steel sheet.

강판에 Zn-Mg 합금도금층을 형성하는 방법은 통상의 방법에 따라 행하면 되며, 본 발명에서특별히 제한하는 것은 아니다. 통상의 방법에 대해 설명하면 다음과 같다. Zn-Mg계 합금도금강판은 일반적으로 진공증착법 (열증발법, 전자빔법, 전자기부양법,이온플레이팅 또는 스퍼터링)에 의하여 형성하는 것이 바람직하다. Zn-Mg계 합 금도금을 진공증착법으로 형성하고자 할 때 타켓으로는 Zn, Mg, 및 Zn-Mg 합금타켓을 사용할 수 있다. 일반적 진공증착법이라 함은 진공챔버 내에서 증착시키고자하는 물질(타켓)을 여러가지 방법에 (저항가열, 전자빔, 전자기부양, 혹은 플라즈마 이온상태) 의하여 기화 시킨후 기화된 타켓 물질이 피복시키고자 하는 물질(피도체)에 흡착 피막을 형성하는 방법을 의미한다. What is necessary is just to perform the method of forming a Zn-Mg alloy plating layer in a steel plate according to a conventional method, and it does not specifically limit in this invention. The conventional method will be described as follows. The Zn-Mg-based alloy plated steel sheet is generally preferably formed by a vacuum deposition method (thermal evaporation method, electron beam method, electromagnetic levitation method, ion plating or sputtering). When the Zn-Mg-based alloy plating is to be formed by vacuum deposition, Zn, Mg, and Zn-Mg alloy targets may be used as targets. The general vacuum evaporation method is a material to be coated by a vaporized target material after vaporizing the material (target) to be deposited in the vacuum chamber by various methods (resistance heating, electron beam, electromagnetic levitation, or plasma ion state). It means the method of forming an adsorption film in a (subject).

열증발법이라 함은 Zn, Mg 혹은 Zn-Mg를 진공챔버내에서 직접 저항가열 혹은 유도 저항 가열법에 의하여 증발 증착시키는 방법을 의미하며, 전자빔범은 전자총에 의하여 방출된 전자빔이 타켓물질을 국부적으로 녹여 증발 기화후 피도체에 흡착되는 방법을 말한다. 전자기 부양법은 교류 유도 가열에 의해 부양된 타겟 물질이 증발하여 피도체에 흡착되는 방법을 의미한다. 이온플레이팅 법은 타켓물질을 플라즈마 이온상태로 활성화 시켜 피도체에 피복하는 방법이다. 스퍼터링 방법은 플라즈마 이온이 타켓 물질을 물리적으로 증발시켜 가속된 타켓 입자가 피도체에 흡착후 피막을 형성하는 방법을 의미한다. Thermal evaporation refers to a method of evaporating and depositing Zn, Mg, or Zn-Mg in a vacuum chamber by direct resistance heating or induction resistance heating. In the electron beam category, an electron beam emitted by an electron gun locally targets a target material. It refers to a method of melting and adsorbing on a subject after evaporation and vaporization. The electromagnetic flotation method refers to a method in which a target material supported by alternating current induction heating is evaporated and adsorbed onto a subject. The ion plating method is to coat a target material by activating the target material in a plasma ion state. The sputtering method refers to a method in which plasma ions physically evaporate a target material so that the accelerated target particles form a film after adsorption on the subject.

상기와 같이, Zn-Mg계 합금도금강판에 몰리브데니윰-실리케이트피막의 형성은 다음과 같이 행한다. 몰리브데니윰, 콜로이달 실리카를 주성분으로 하는 용액으로 피막을 형성하는 것이다. 피막은 Zn-Mg계 함금피막 표면과의 반응시간을 부여하여 형성하면 되는 것으로, 침지 혹은 분사가 바람직하다. 본 발명의 일실시예에 따르면 진공증착 처리후 처리할 강판의 온도 : 100∼400℃ 에서 처리용액에 침지혹은 분사후 열풍건조 시켜 몰리브데니윰-실리케이트 박막을 형성시키는 것이다. As described above, the formation of the molybdenum-silicate film on the Zn-Mg-based alloy plated steel sheet is performed as follows. A film is formed from a solution containing molybdenum and colloidal silica as a main component. The coating may be formed by providing a reaction time with the surface of the Zn-Mg-based alloy coating, and immersion or spraying is preferable. According to one embodiment of the present invention, the temperature of the steel sheet to be treated after the vacuum deposition process: immersed or sprayed in a treatment solution at 100 ~ 400 ℃ hot air drying to form a molybdenum Ni-silicate thin film.

본 발명에서 사용하는 상기 몰리브데니윰-실리케이트 피막용 처리 용액의 조성은 Mo:0.1~2.0 M, NaOH:1~10g/L, 콜로이달 실리카 : 1~20g/L 을 갖는 것이 바람직 하다. Mo의 농도가 0.1 M 미만일 경우 원하는 피막조성이 불가능하며, 2.0 M초과일 경우 피막이 과도하게 생성되어 바람직 하지 못하다. NaOH는 용액내의 pH를 조정하여 용액 안정성을 확보하는 것을 주목적으로 투입되며 1g/L미만일 경우 용액 안정성 확보가 어렵고 10g/L 초과일 경우 용액내 백색 침전물이 관찰되어 바람직하지 않다. 콜로이달실리카는 실리카 성분이 금속표면과 수지피막 사이의 밀착력을 현저히 향상시키며 1g/L 미만일 경우 그목적을 달성키 어렵고 20g/L초과일 경우 실리케이트 성분 끼리 뭉치는 현상이 관찰되어 바람직 하지 못하다. The composition of the treatment solution for molybdenum-silicate coatings used in the present invention is preferably Mo: 0.1 to 2.0 M, NaOH: 1 to 10 g / L, colloidal silica: 1 to 20 g / L. If the concentration of Mo is less than 0.1 M, the desired film composition is impossible, and if it exceeds 2.0 M, the film is excessively produced, which is not preferable. NaOH is mainly added to ensure the solution stability by adjusting the pH in the solution, if less than 1g / L is difficult to secure solution stability, if more than 10g / L white precipitate in the solution is not preferable. Colloidal silica is not preferable because the silica component significantly improves the adhesion between the metal surface and the resin coating, and if it is less than 1g / L, it is difficult to achieve its purpose, and when the silica component exceeds 20g / L, the silicate components are observed.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail with reference to Examples.

하기 실시예는 본 발명에 대한 하나의 예시로서 본 발명은 이에 한정되는 것은 아니다.The following examples are examples of the invention and the invention is not limited thereto.

[실시예1]Example 1

일반 냉연강판을 기판온도 250℃에서 RF 스퍼터링 방법으로 20분간 에칭처리 한 후 하기 표 1의 피막두께를 갖는 Zn-Mg계 합금도금층을 형성하였다. Zn-Mg 합금도금층내 Mg 함량은 가열증발소스 물질의 Mg함량을 변경시키면서 제조하였다. After the general cold rolled steel sheet was etched for 20 minutes at a substrate temperature of 250 ° C. by an RF sputtering method, a Zn-Mg alloy plating layer having a film thickness of Table 1 was formed. The Mg content in the Zn-Mg alloy plating layer was prepared while changing the Mg content of the heat evaporation source material.

상기에서 얻은 Zn-Mg계 도금강판을 Mo 0.5M, NaOH 10g/L , 콜로이달실리리카 10g/L 로 조성되는 용액에 5초간 침지후 열풍건조시켜서 Zn-Mg계 합금도금강판을 제조하였다. 제조된 시편의 수지 도장 밀착력 및 내식성을 측정하고, 그 결과를 하기 표 1에 나타내었다.The Zn-Mg-based galvanized steel sheet obtained above was immersed for 5 seconds in a solution composed of Mo 0.5M, NaOH 10g / L and colloidal silica 10g / L, followed by hot air drying to prepare a Zn-Mg-based alloy plated steel sheet. The resin coating adhesion and corrosion resistance of the prepared specimens were measured, and the results are shown in Table 1 below.

Zn-Mg계 합금도금층의 두께는 피막층에 노치를 낸 후 고배율주사전자 현미경으로 피막층의 단면을 관찰하여 두께를 산출하였으며, Mg 함량은 피막층을 1:1 염산용액에 용해시킨 후 용액을 화학분석법에 의해 분석함으로써 측정되었다. 수지도장은 아크릴계 도료를 고속분사하여 도장막 두께 100um 로 조정 처리하였다.The thickness of the Zn-Mg alloy plating layer was notched in the coating layer, and the thickness of the Zn-Mg alloy plating layer was observed by observing the cross section of the coating layer with a high magnification scanning electron microscope, and the Mg content was dissolved in the 1: 1 hydrochloric acid solution. Was measured by analysis. The resin coating was sprayed with acrylic paint at high speed to adjust the coating thickness to 100 um.

하기 표 1의 수지도장 밀착성은 10x10mm 간격으로 크로스 커트후 스카치 테이프를 접착한 후 떼어내어 박리상태를 육안으로 비교 관찰하여 평가한 것이다. 내식성은 수지도장 처리전 비교재와 발명재를 ASTM B-117 에 의거 5% 백청 발생시까지의 시간을 측정 하였다.The resin coating adhesiveness of the following Table 1 was evaluated by cross-cutting and then peeling off the scotch tape after cross cutting at 10 × 10 mm intervals. Corrosion resistance was measured for the time until the development of 5% white rust according to ASTM B-117.

구분division Zn-Mg계 합금도금층Zn-Mg based alloy plating layer 몰리브데니윰- 실리케이트Molybdenum-Silicate 수지도장밀착성Resin adhesion 내식성 (5%백청발생시간)Corrosion resistance (5% white rust occurrence time) 합금도금 조성Alloy Plating Composition 두께 (um)Thickness (um) 처리(시간)Processing (hours) 피막두께Film thickness 종례예1Example 1 Zn-Mg(Mg5wt%)Zn-Mg (Mg 5 wt%) 55 radish -- 부분박리Peeling 1515 종례예2Example 2 Zn-Mg(Mg10wt%)Zn-Mg (Mg10wt%) 55 radish -- 부분박리Peeling 2020 종례예3Example 3 Zn-Mg(Mg15wt%)Zn-Mg (Mg15wt%) 55 radish -- 부분박리Peeling 3030 발명예4Inventive Example 4 Zn-Mg(Mg5wt%)Zn-Mg (Mg 5 wt%) 55 처리(5초)Processing (5 seconds) 0.5um이하Less than 0.5um 박리무No peeling 4040 발명예5Inventive Example 5 Zn-Mg(Mg10wt%)Zn-Mg (Mg10wt%) 55 처리(5초)Processing (5 seconds) 0.5um이하Less than 0.5um 박리무No peeling 5050 발명예6Inventive Example 6 Zn-Mg(Mg15wt%)Zn-Mg (Mg15wt%) 55 처리(5초)Processing (5 seconds) 0.5um이하Less than 0.5um 박리무No peeling 5555

상기 표 1에 나타난 바와 같이, 종래예1에서 종례예 3은 몰리브데니윰-실리케이트 처리없이 Mg함량에 따른 Zn-Mg 합금층의 수지밀착성과 나판 내식성을 측정 하였다. 이 경우에는 수지 도장 피막 도포시부분적 박리가 일어나고 나판 내식성은 Mg 함량 증가에 따라 약간 증가하는 경향이 관찰되었다. As shown in Table 1, Example 3 in Conventional Example 1 measured the resin adhesion and platelet corrosion resistance of the Zn-Mg alloy layer according to the Mg content without molybdenum ni-silicate treatment. In this case, partial peeling occurred at the time of application of the resin coating film, and it was observed that platelet corrosion resistance slightly increased with increasing Mg content.

한편, 본 발명에 부합되는 발명예(4 ∼6)의 경우에는 몰리브데니윰-실리케이트 피막층이 Zn-Mg 합금도금강판 표면에 형성되어 도장수지 밀착력과 나판 내식성이 현저히 개선됨을 알 수 있으며, Zn-Mg 합금도금강판의 Mg 함량에 관계없이 적용됨을 알 수 있다.On the other hand, in the case of the invention examples (4 to 6) in accordance with the present invention, the molybdenum-silicate coating layer is formed on the surface of the Zn-Mg alloy plated steel sheet, it can be seen that the adhesion of the coating resin and the plate resistance significantly improved, Zn It can be seen that it is applied regardless of the Mg content of -Mg alloy plated steel sheet.

몰리브데니윰-실리케이트 피막층은 1:1 염산용액에 용해시킨 후 용액을 화학분석법에 의해 분석함으로써 측정되었다. 화학분석결과 몰리브데니윰 약 60~65% 실리케이트 약 40~35%의 조성으로 구성된 피막을 얻을수 있었다. 상기 피막 조성은 처리 용액의 농도 조건에 의해 결정된다. The molybdenum-silicate coating layer was measured by dissolving in 1: 1 hydrochloric acid solution and analyzing the solution by chemical analysis. As a result of chemical analysis, a film composed of about 60-65% silicate and about 40-35% silicate was obtained. The coating composition is determined by the concentration condition of the treatment solution.

상기와 같이 본 발명에 따르면 도장수지 밀착력과 내식성이 현저히 개선되는 것은 몰리브데니윰-실리케이트 피막이 수지와 금속계면의 밀착력을 향상시킬 뿐 아니라 Zn-Mg 피막층의 기공을 충진시켜 내식성도 향상되는 것에 기인하는 것으로 판단된다.According to the present invention, the adhesion and corrosion resistance of the coating resin are remarkably improved because the molybdenum ni-silicate coating not only improves adhesion between the resin and the metal interface but also fills pores of the Zn-Mg coating layer to improve corrosion resistance. I think that.

상기한 바와 같이, 본 발명에 의하면, 수지 도장 밀착력 및 내식성이 우수한 Zn-Mg 합금도금강판을 제공할 수 있다.As described above, according to the present invention, a Zn-Mg alloy plated steel sheet excellent in resin coating adhesion and corrosion resistance can be provided.

Claims (8)

강판과 이 강판의 상부에 Zn-Mg계 합금도금층이 형성되고,A steel plate and a Zn-Mg alloy plating layer are formed on the steel plate, 상기 Zn-Mg계 합금도금층의 상부에 몰리브데니윰-실리케이트 피막을 갖되, 상기 몰리브데니윰-실리케이트 피막은 두께가 0.05-0.5㎛임을 특징으로 하는 수지도장밀착력과 내식성이 우수한 Zn-Mg계 합금도금강판.The Zn-Mg-based Zn-Mg-based alloy plating layer has a molybdenum-silicate film on the upper portion, wherein the molybdenum-silicate film has a thickness of 0.05-0.5㎛, Zn-Mg-based excellent adhesion strength and corrosion resistance Alloy plated steel sheet. 삭제delete 제 1항에 있어서, 상기 몰리브데니윰-실리케이트 피막은 몰리브데니윰 60~65% 실리케이트 40~35%임을 특징으로 하는 수지도장밀착력과 내식성이 우수한 Zn-Mg계 합금도금강판.The Zn-Mg-based alloy plated steel sheet having excellent adhesion strength and corrosion resistance according to claim 1, wherein the molybdenum-silicate film is 60-65% silicate 40-35%. 제 1항에 있어서, 상기 Zn-Mg계 합금도금층의 두께는 0.5∼10㎛임을 특징으로 하는 수지도장밀착력과 내식성이 우수한 Zn-Mg계 합금도금강판. The Zn-Mg-based alloy plated steel sheet having excellent resin adhesion and corrosion resistance according to claim 1, wherein the Zn-Mg-based alloy plated layer has a thickness of 0.5 to 10 µm. 제 1항에 있어서, 상기 Zn-Mg계 합금도금층은 Mg의 함량이 5∼15중량%이고, 나머지 Zn과 기타 불가피한 불순물로 이루어지는 수지도장밀착력과 내식성이 우수한 Zn-Mg계 합금도금강판.The Zn-Mg-based alloy plated steel sheet according to claim 1, wherein the Zn-Mg-based alloy plated layer has a Mg content of 5 to 15% by weight and has excellent resin adhesion and corrosion resistance, which is made of the remaining Zn and other unavoidable impurities. 상부에 Zn-Mg계 합금도금층을 갖는 강판을 몰리브데니윰-실리케이트 용액에서 처리하여 상기 합금도금층의 상부에 몰리브데니윰-실리케이트 피막을 형성하되, 상기 몰리브데니윰-실리케이트 피막은 두께가 0.05-0.5㎛임을 특징으로 하는 수지도장밀착력과 내식성이 우수한 Zn-Mg 합금도금강판의 제조방법.A steel sheet having a Zn-Mg-based alloy plating layer thereon was treated in a molybdenum-silicate solution to form a molybdenum-silicate film on the alloy plating layer, wherein the molybdenum-silicate film had a thickness. A method for producing a Zn-Mg alloy plated steel sheet excellent in resin adhesion and corrosion resistance, characterized in that 0.05-0.5㎛. 제 6항에 있어서, 상기 몰리브데니윰-실리케이트 용액은, Mo:0.1~2.0M, NaOH:1~10g/L, 콜로이달 실리카: 1~20g/L로 조성되는 것을 특징으로 하는 수지도장밀착력과 내식성이 우수한 Zn-Mg 합금도금강판의 제조방법.The method of claim 6, wherein the molybdenum ni-silicate solution, Mo: 0.1 ~ 2.0M, NaOH: 1 ~ 10g / L, colloidal silica: 1 ~ 20g / L resin composition characterized in that the adhesive strength Method for producing Zn-Mg alloy plated steel sheet excellent in corrosion resistance and corrosion resistance. 제 6항에 있어서, 상기 처리는 몰리브데니윰-실리케이트 용액에 침지 또는 몰리브데니윰-실리케이트 용액의 분사에서 선택되는 것을 특징으로 하는 수지도장밀착력과 내식성이 우수한 Zn-Mg 합금도금강판의 제조방법.The method of claim 6, wherein the treatment is selected from immersion in the molybdenum-silicate solution or spraying molybdenum-silicate solution, the production of Zn-Mg alloy plated steel sheet having excellent adhesion and corrosion resistance Way.
KR1020060137042A 2006-12-28 2006-12-28 Zn-mg alloy coated steel sheet excellent in corrosion resistance and painttability, and its manufacturing method KR100833073B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060137042A KR100833073B1 (en) 2006-12-28 2006-12-28 Zn-mg alloy coated steel sheet excellent in corrosion resistance and painttability, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060137042A KR100833073B1 (en) 2006-12-28 2006-12-28 Zn-mg alloy coated steel sheet excellent in corrosion resistance and painttability, and its manufacturing method

Publications (1)

Publication Number Publication Date
KR100833073B1 true KR100833073B1 (en) 2008-05-27

Family

ID=39665464

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060137042A KR100833073B1 (en) 2006-12-28 2006-12-28 Zn-mg alloy coated steel sheet excellent in corrosion resistance and painttability, and its manufacturing method

Country Status (1)

Country Link
KR (1) KR100833073B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117760A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Zn-mg alloy plated steel material having excellent corrosion resistance and plating adhesion
WO2020130396A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 Plated steel plate having excellent glossiness and surface property, and method for manufacturing same
CN113227437A (en) * 2018-12-19 2021-08-06 Posco公司 Dissimilar plated steel sheet having excellent workability and corrosion resistance and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990042316A (en) * 1997-11-26 1999-06-15 이구택 Molyphosilicate film forming solution and film forming method using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990042316A (en) * 1997-11-26 1999-06-15 이구택 Molyphosilicate film forming solution and film forming method using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117760A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Zn-mg alloy plated steel material having excellent corrosion resistance and plating adhesion
CN110114499A (en) * 2016-12-23 2019-08-09 Posco公司 Corrosion resistance and the excellent plating Zn-Mg alloy steel products of plating adhesion
JP2020514531A (en) * 2016-12-23 2020-05-21 ポスコPosco Zn-Mg alloy plated steel with excellent corrosion resistance and plating adhesion
US11136651B2 (en) 2016-12-23 2021-10-05 Posco Zn-Mg alloy plated steel material having excellent corrosion resistance and plating adhesion
WO2020130396A1 (en) * 2018-12-19 2020-06-25 주식회사 포스코 Plated steel plate having excellent glossiness and surface property, and method for manufacturing same
KR20200076824A (en) * 2018-12-19 2020-06-30 주식회사 포스코 Plated steel sheet having excellent surface property and glossiness, and method for manufacturing the same
KR102209546B1 (en) 2018-12-19 2021-01-29 주식회사 포스코 Plated steel sheet having excellent surface property and glossiness, and method for manufacturing the same
CN113227437A (en) * 2018-12-19 2021-08-06 Posco公司 Dissimilar plated steel sheet having excellent workability and corrosion resistance and method for producing same
US20220042163A1 (en) * 2018-12-19 2022-02-10 Posco Plated steel plate having excellent glossiness and surface property, and method for manufacturing same
CN113227437B (en) * 2018-12-19 2023-06-30 浦项股份有限公司 Heterogeneous plated steel sheet excellent in workability and corrosion resistance and method for producing same

Similar Documents

Publication Publication Date Title
CN108474119B (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
US9382630B2 (en) Zinc alloy coated steel sheet having good sealer adhesion and corrosion resistance and process of manufacturing the same
US20090139872A1 (en) Method for producing a sheet steel product protected against corrosion
KR20120075196A (en) Al-mg alloy plated steel sheet having excellent coating adhesion and corrosion resistance, and method for manufacturing the same
WO2007123276A1 (en) Zinc-plated steel material coated with composite film excellent in corrosion resistance, unsusceptibility to blackening, coating adhesion, and alkali resistance
KR100833073B1 (en) Zn-mg alloy coated steel sheet excellent in corrosion resistance and painttability, and its manufacturing method
JP3137535B2 (en) Zinc-containing metal-coated steel sheet composite excellent in coatability and method for producing the same
KR100775241B1 (en) Zn-mg alloy layer coated steel sheet and method for manufacturing the coated steel sheet
EP0572673A1 (en) Method of forming layer of evaporation coating
KR100605354B1 (en) Zinc-Based Metal Plated Steel Sheet and Method for Production thereof
AU2008336255B2 (en) Method of metal coating and coating produced thereby
JP2009174010A (en) Chemical conversion treated steel sheet
KR100967709B1 (en) A plate steel sheet with silicon oxide deposition layer and a method for preparing the same
JP2963806B2 (en) Aluminum alloy plate with excellent phosphatability and corrosion resistance after painting
KR100600033B1 (en) Fabrication method of Mn-vapor deposited galvanized steel sheet
KR20030053237A (en) Galvanized steel sheet for color coating
KR20050064066A (en) Depostion of amorphous silicon oxides onto galvanized and galvannealed sheet steels
JPH10219475A (en) Zn-mg plated steel sheet excellent in coating adhesion
JP2016539247A (en) Flat product with coating system and method for coating a flat product
KR100711446B1 (en) A method for manufacturing hot dip alluminum coated steel having excellent phosphatability
KR940000085B1 (en) Method for producing a ti-zn two-layer plating steel sheet with an excellant corrosion resistance and adhesion
KR0166098B1 (en) Method of forming layer of evaporation coating
KR19980051207A (en) Aluminum silicon dioxide composite plated steel sheet with excellent gloss and corrosion resistance and manufacturing method
JPH04341578A (en) Vapor-deposited al-cr plated steel sheet excellent in corrosion resistance after coating
CN111733385A (en) Ti-TiN-TiSiAlN composite coating and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130502

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140521

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160523

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180523

Year of fee payment: 11