KR100830531B1 - 탄소나노튜브의 합성 방법 및 장치 - Google Patents

탄소나노튜브의 합성 방법 및 장치 Download PDF

Info

Publication number
KR100830531B1
KR100830531B1 KR1020060135268A KR20060135268A KR100830531B1 KR 100830531 B1 KR100830531 B1 KR 100830531B1 KR 1020060135268 A KR1020060135268 A KR 1020060135268A KR 20060135268 A KR20060135268 A KR 20060135268A KR 100830531 B1 KR100830531 B1 KR 100830531B1
Authority
KR
South Korea
Prior art keywords
source gas
reaction chamber
plasma
amount
carbon nanotubes
Prior art date
Application number
KR1020060135268A
Other languages
English (en)
Inventor
공병윤
이기영
Original Assignee
세메스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세메스 주식회사 filed Critical 세메스 주식회사
Priority to KR1020060135268A priority Critical patent/KR100830531B1/ko
Application granted granted Critical
Publication of KR100830531B1 publication Critical patent/KR100830531B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0004Apparatus specially adapted for the manufacture or treatment of nanostructural devices or systems or methods for manufacturing the same
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

탄소나노튜브의 합성 방법 및 장치가 개시된다. 탄소나노튜브의 합성 장치는 반응 챔버, 소스 가스 제공부, 분석부 및 제어부를 포함한다. 그리고, 탄소나노튜브의 합성 방법에서는 상기 소스 가스 제공부를 사용하여 반응 챔버 내부로 소스 가스를 제공하여 상기 소스 가스를 플라즈마로 형성한다. 그리고, 상기 플라즈마를 사용하여 기판 상에 탄소나노튜브를 합성한다. 이때, 상기 분석부는 반응 챔버 내부에 형성된 플라즈마 상태를 분석하고, 상기 제어부는 상기 분석 결과에 의해 상기 반응 챔버 내부로 제공되는 소스 가스의 양을 실시간으로 조정한다.

Description

탄소나노튜브의 합성 방법 및 장치{Method and apparatus of collecting carbon nano tube}
도 1은 본 발명의 일 실시예에 따른 탄소나노튜브의 합성 장치를 나타내는 개략적인 구성도이다.
도 2는 본 발명의 다른 실시예에 따른 탄소나노튜브의 합성 장치를 나타내는 개략적인 구성도이다.
도 3은 도 1의 탄소나노튜브의 합성 장치를 사용하여 탄소나노튜브를 합성하기 위한 방법을 나타내는 개략적인 공정 흐름도이다.
<도면의 주요부분에 대한 부호의 설명>
10 : 반응 챔버 12, 13 : 소스 가스 제공부
14 : 분석부 16 : 제어부
본 발명은 탄소나노튜브의 합성 방법 및 장치에 관한 것으로써, 보다 상세하게는 플라즈마를 이용하여 기판 상에 탄소나노튜브를 합성하기 위한 방법 및 장치에 관한 것이다.
탄소동소체인 탄소나노튜브는 하나의 탄소 원자가 다른 탄소 원자와 육각형의 벌집 무늬로 결합되어 튜브 형태를 이루고 있는 물질로써, 수 나노미터(nm)의 직경을 갖는다. 특히, 탄소나노튜브는 우수한 기계적 특성, 전기적 선택성, 전계방출 특성, 고효율의 수소저장매체 특성 등을 갖는다. 그러므로, 탄소나노튜브는 항공우주, 생명공학, 환경에너지, 재료산업, 의약의료, 전자컴퓨터, 보안안전 등의 폭넓은 기술 분야에 그 적용이 가능하다.
그리고, 탄소나노튜브를 합성하기 위한 방법의 예로서는 전기방전, 레이저 증착, 플라즈마 화학기상증착, 열 화학기상증착, 열분해 등을 들 수 있고, 이들 방법 중에서도 플라즈마 화학기상증착은 상대적으로 저온에서 높은 순도를 탄소나노튜브를 합성할 수 있다.
여기서, 플라즈마 화학기상증착 즉, 플라즈마를 이용한 탄소나노튜브의 합성에서는 주로 반응 챔버 내부로 소스 가스를 제공하고, 상기 소스 가스를 플라즈마로 형성한다. 이때, 반응 가스로 제공되는 소스 가스의 양은 주로 유량 제어기(MFC)에 의해 조정된다.
그러나, 언급한 플라즈마를 이용한 탄소나노튜브의 합성에서는 플라즈마를 형성하기 위하여 반응 챔버 내부로 제공되는 소스 가스의 양을 정확하게 조정하지 못하는 상황이 빈번하게 발생한다. 즉, 유량 제어기 자체의 기능에만 의존하기 때문에 반응 챔버 내부로 제공되는 소스 가스의 양을 정확하게 조정하지 못하고 있다. 다시 말해, 유량 제어기에 오류가 발생할 경우에는 어떠한 조치도 취하지 못한 상태에서 오류가 발생한 상태에서 탄소나노튜브의 합성이 계속적으로 이루어지는 것이다. 이에, 종래에는 원자방출광학분석기(OES) 등을 사용하여 반응 챔버 내부에 형성되는 플라즈마 상태를 분석하고, 그 결과로써 반응 챔버 내부로 제공되는 소스 가스의 양을 조정하고 있지만 언급한 분석과 그에 따른 조치는 실시간으로 이루어지지 않고 있는 실정이다. 즉, 언급한 분석과 조치를 취함에도 불구하고 오류가 발생한 상태에서 탄소나노튜브의 합성이 계속적으로 이루어질 수 있는 것이다. 특히, 플라즈마를 이용한 탄소나노튜브의 합성에서는 반응 챔버 내부를 진공 상태로 형성하기 때문에 반응 챔버 내부로 제공되는 소스 가스의 속도가 빠르다. 그러므로, 언급한 유량 제어기 단독으로는 반응 챔버 내부로 제공되는 소스 가스의 양을 적절하게 제어하지 못한다.
본 발명의 일 목적은 반응 챔버로 제공되는 소스 가스의 양을 정확하게 조정한 상태에서 플라즈마를 이용하여 기판 상에 탄소나노튜브를 합성할 수 있는 방법을 제공하는데 있다.
본 발명의 다른 목적은 언급한 방법을 용이하게 수행할 수 있는 탄소나노튜브의 합성 장치를 제공하는데 있다.
언급한 일 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따른 탄소나노튜브의 합성 방법은 반응 챔버 내부로 소스 가스를 제공하여 상기 소스 가스를 플라즈마로 형성한다. 그리고, 상기 플라즈마를 사용하여 기판 상에 탄소나노튜브를 합성한다. 이때, 상기 반응 챔버 내부에 형성된 플라즈마 상태를 분석하고, 상 기 분석 결과에 의해 상기 반응 챔버 내부로 제공되는 소스 가스의 양을 실시간으로 조정한다.
본 발명의 일 실시예에 따른 탄소나노튜브의 합성 방법에 의하면, 상기 플라즈마 상태의 분석은 플라즈마로 형성한 라디칼의 변화를 확인함에 의해 달성할 수 있다.
언급한 다른 목적을 달성하기 위한 본 발명의 바람직한 실시예에 따른 탄소나노튜브의 합성 장치는 반응 챔버, 소스 가스 제공부, 분석부 및 제어부를 포함한다. 상기 반응 챔버는 플라즈마를 사용하여 그 내부에 수용된 기판 상에 탄소나노튜브를 합성하기 위한 공간을 제공하고, 상기 소스 가스 제공부는 상기 반응 챔버 내부로 상기 플라즈마를 형성하기 소스 가스를 제공하고, 상기 분석부는 상기 반응 챔버 내부에 형성된 플라즈마 상태를 분석하고, 상기 제어부는 상기 분석부 및 상기 소스 가스 제공부와 연결되고, 상기 분석 결과에 의해 상기 소스 가스 제공부를 제어하여 상기 반응 챔버 내부로 제공되는 소스 가스의 양을 실시간으로 조정한다.
본 발명의 일 실시예에 따른 탄소나노튜브의 합성 장치에 의하면, 상기 소스 가스 제공부는 상기 반응 챔버와 연결되고, 상기 소스 가스가 플로우되는 유로를 제공하는 라인과, 상기 라인에 연결되고, 상기 소스 가스가 플로우되는 양을 제어하는 유량 제어기를 포함하고, 상기 제어부는 상기 유량 제어기를 제어하여 상기 반응 챔버 내부로 제공되는 소스 가스의 양을 조정하거나, 상기 소스 가스 제공부는 상기 반응 챔버와 연결되고, 상기 소스 가스가 플로우되는 유로를 제공하는 라인과, 상기 라인에 연결되고, 상기 소스 가스의 플로우를 개폐하는 밸브를 포함하 고, 상기 제어부는 상기 밸브의 개폐를 제어하여 상기 반응 챔버 내부로 제공되는 소스 가스의 양을 조정하거나, 또는 상기 소스 가스 제공부는 상기 반응 챔버와 연결되고, 상기 소스 가스가 플로우되는 유로를 제공하는 라인과, 상기 라인과 연결되고, 상기 소스 가스가 플로우되는 양을 제어하는 유량 제어기와, 상기 반응 챔버와 유량 제어기 사이의 라인과 연결되고, 상기 소스 가스의 플로우를 개폐하는 밸브를 포함하고, 상기 제어부는 상기 밸브의 개폐를 제어하여 상기 반응 챔버 내부로 제공되는 소스 가스의 양을 조정할 수 있다.
본 발명의 일 실시예에 따른 탄소나노튜브의 합성 장치에 의하면, 상기 분석부는 원자방출광학분석기(OES : optical emission spectrometer), 단색화분석기(monochrometer) 등을 포함할 수 있다. 특히, 언급한 원자방출광학분석기와 단색화분석기는 그 각각을 단독으로 사용하거나, 그들을 서로 연결하여 사용할 수도 있다.
이와 같이, 본 발명의 탄소나노튜브의 합성 방법 및 장치를 사용하면 탄소나노튜브를 합성할 때 플라즈마를 형성하기 소스 가스가 제공되는 양을 실시간으로 조정할 수 있다. 이에, 본 발명의 탄소나노튜브의 합성 방법 및 장치는 소스 가스가 제공되는 양에 의해 발생하는 공정 오류를 충분하게 줄일 수 있다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 될 것이다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위로부터 이탈되지 않은 채 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다. 그리고, 도면들에 있어서 반응 챔버, 소스 가스 제공부, 분석부, 제어부 등은 그 명확성을 기하기 위하여 다소 과장되어진 것이다.
탄소나노튜브의 합성 장치
도 1은 본 발명의 일 실시예에 따른 탄소나노튜브의 합성 장치를 나타내는 개략적인 구성도이다.
도 1을 참조하면, 탄소나노튜브의 합성 장치(100)는 반응 챔버(10), 소스 가스 제공부(12), 분석부(14), 제어부(16) 등을 포함한다.
구체적으로, 반응 챔버(10)는 그 내부에 수용된 기판 상에 탄소나노튜브를 합성하기 위한 공간을 제공한다. 특히, 언급한 탄소나노튜브의 합성 장치(100)를 이용한 합성에서는 플라즈마를 사용하기 때문에 반응 챔버(10) 또한 이에 적절하게 마련되어야 한다. 그러므로, 반응 챔버(10) 내부에는 플라즈마를 생성하기 위한 부재들이 마련된다. 즉, 방전을 일으키는 전원을 생성하기 위하여 전극들이 마련된다. 이때, 전원의 예로서는 직류 전원, 고주파 전원 등을 들 수 있다. 특히, 사용할 수 있는 고주파 전원의 예로서는 약 13.56MHz의 RF 전원, 약 2.47GHz의 마이크로웨이브 전원 등을 들 수 있다. 아울러, 언급한 전극들은 서로 평행하면서 마주하게 배치되고, 서로 마주하게 배치된 전극들 중에서 아래에 위치하는 전극에는 주로 기판이 놓여지는 구성을 갖는다. 이때, 기판이 놓여지는 전극은 접지가 이루어지는 것이 일반적이다. 또한, 기판이 놓여지는 전극의 하부에는 기판을 가열할 수 있는 부재가 마련된다.
그리고, 소스 가스 제공부(12)는 반응 챔버(10) 내부로 플라즈마를 형성하기 위한 소스 가스를 제공한다. 특히, 소스 가스 제공부(12)는 반응 챔버(10)와 연결되고, 소스 가스가 플로우되는 유로를 제공하는 라인(12a)과, 라인(12a)에 연결되고, 소스 가스가 플로우되는 양을 제어하는 유량 제어기(MFC : mass flow controller)(12b) 등을 포함한다. 아울러, 본 발명의 일 실시예에서의 소스 가스 제공부(12)는 반응 챔버(10)와 유량 제어기(12b) 사이의 라인(12a)과 연결되고, 소 스 가스의 플로우를 개폐하는 밸브(12c)를 더 포함한다. 이에, 소스 가스 제공부(12)는 유량 제어기(12b)를 사용하여 반응 챔버(10)로 제공되는 소스 가스의 양을 세팅하고, 밸브(12c)를 개방함에 따라 반응 챔버(10) 내부로 소스 가스를 제공한다. 이때, 반응 챔버(10)로 제공할 수 있는 소스 가스의 예로서는 C2H2, CH4, C2H4, C2H6, CO 등을 들 수 있다. 이들은 단독으로 제공하거나 또는 둘 이상을 혼합하여 제공할 수 있다.
또한, 분석부(14)는 플라즈마를 사용한 탄소나노튜브의 합성을 수행할 때 반응 챔버(10) 내부에 형성된 플라즈마 상태를 분석한다. 여기서, 분석부(14)는 플라즈마로 형성한 라디칼의 변화를 확인함에 의해 플라즈마 상태를 분석한다. 이에, 사용할 수 있는 분석부(14)의 예로서는 주로 원자방출광학분석기(OES : optical emission spectrometer)(14a), 단색화분석기(monochrometer)(14b) 등을 들 수 있다. 특히, 본 발명의 일 실시예에서는 반응 챔버(10) 내부를 직접 확인하도록 원자방출광학분석기(14a)를 위치시키고, 원자방출광학분석기(14a)로부터 전달되는 결과를 분석하도록 단색화분석기(14b)를 위치시킨다. 그러나, 분석부(14)는 원자방출광학분석기(14a)와 단색화분석기(14b)를 언급한 구성 이외에도 적절하게 위치시킬 수 있다. 즉, 원자방출광학분석기(14a) 단독으로 분석부(14)를 구성하거나, 단색화분석기(14b) 단독으로 분석부(14)를 구성할 수 있다.
그리고, 제어부(16)는 분석부(14)와 연결된다. 이에, 제어부(16)는 분석부(14)로부터 분석 결과를 입력받는다. 또한, 제어부(16)는 소스 가스 제공부(12)와도 연결된다. 이에, 제어부(16)는 입력받은 분석 결과에 의해 소스 가스 제공부(12)를 제어하여 반응 챔버(10) 내부로 제공되는 소스 가스의 양을 실시간으로 조정한다. 특히, 제어부(16)는 실시간으로 소스 가스 제공부(12)를 제어하여 반응 챔버(10) 내부로 제공되는 소스 가스의 양을 실시간으로 제어한다. 아울러, 제어부(16)는 주로 기계적 제어가 가능하게 프로그램이 입력된 마이크로 프로세서와 모니터링이 가능한 모니터 등을 포함한다.
특히, 본 발명의 일 실시예에서의 제어부(16)는 반응 챔버(10)로 제공되는 소스 가스의 양을 실시간으로 제어할 수 있도록 소스 가스의 플로우를 개폐하는 밸브(12c)와 연결된다. 그러므로, 소스 가스 제공부(12)의 유량 제어기(12b)에 결함이 발생하더라도 반응 챔버(10)로 제공되는 소스 가스의 양을 실시간으로 충분하게 조정할 수 있다.
언급한 본 발명의 일 실시예에서는 제어부(16)가 소스 가스 제공부(12)의 밸브(12c)의 개폐를 제어하는 구성을 가진다. 그러나, 다른 실시예인 도 2에서와 같이, 소스 가스 제공부(13)가 반응 챔버(10)와 연결되고, 소스 가스가 플로우되는 유로를 제공하는 라인(13a)과, 라인(13a)에 연결되고, 소스 가스가 플로우되는 양을 제어하는 유량 제어기(13b)를 포함할 경우에는 제어부(16)는 유량 제어기(13b)를 제어하는 구성을 가진다. 이에, 다른 실시예의 경우에는 제어부(16)가 소스 가스 제공부(13)의 유량 제어기(13b)를 적절하게 제어함에 따라 반응 챔버(10)로 제공되는 소스 가스의 양을 충분하게 조정할 수 있다. 다만, 다른 실시예의 경우에는 유량 제어기(13b) 자체의 기계적 결함이 발생하면 그 대처가 다소 미흡할 수 있다.
아울러, 도시하지는 않았지만, 제어부(16)가 밸브(12c)와 유량 제어기(12b, 13b) 모두를 제어하는 구성을 가질 수도 있다.
언급한 바와 같이, 본 발명의 일 실시예에 따른 탄소나노튜브의 합성 장치(100)는 탄소나노튜브를 합성할 때 플라즈마를 형성하기 소스 가스가 제공되는 양을 실시간으로 조정할 수 있다. 그러므로, 본 발명의 일 실시예에 따른 탄소나노튜브의 합성 장치(100)를 사용하여 탄소나노튜브를 합성할 경우에는 소스 가스가 제공되는 양에 의해 발생하는 공정 오류를 충분하게 줄일 수 있다. 특히, 본 발명의 일 실시예에 따른 탄소나노튜브의 합성 장치(100)는 유량 제어기(12b) 자체에 결함이 발생하더라도 소스 가스가 제공되는 양을 실시간으로 충분하게 조정할 수 있다. 또한, 플라즈마를 이용한 탄소나노튜브의 합성에서는 반응 챔버(10) 내부를 진공 상태로 형성하기 때문에 반응 챔버(10) 내부로 제공되는 소스 가스의 속도가 다소 빠르다. 하지만, 본 발명의 일 실시예에 따른 탄소나노튜브의 합성 장치(100)는 제어부(16)를 사용한 제어가 가능하기 때문에 반응 챔버(10) 내부로 제공되는 소스 가스의 속도가 다소 빨라도 능동적으로 대처할 수 있다.
탄소나노튜브의 합성 방법
이하, 언급한 탄소나노튜브의 합성 장치를 사용한 탄소나노튜브의 합성 방법은 다음과 같다.
도 3은 도 1의 탄소나노튜브의 합성 장치를 사용하여 탄소나노튜브를 합성하기 위한 방법을 나타내는 개략적인 공정 흐름도이다. 그리고, 이하에서는 도 1과 동일한 부재에 대해서는 동일한 부호를 사용하기로 한다.
먼저, 탄소나노튜브의 합성을 위한 기재인 기판을 준비한다. 여기서, 탄소나노튜브의 합성에 사용할 수 있는 기판의 예로서는 실리콘 기판, 아이티오(ITO : induim tin oxide) 기판, 아이티오 코팅 유리(ITO-coated glass), 소다라임 유리 등을 들 수 있다. 아울러, 탄소나노튜브가 합성될 때 충분한 강성을 가진다면 언급한 예들 이외에도 다양한 종류의 기판을 사용하는 것도 가능하다.
아울러, 기판은 세정이 이루이지고, 그 상부에는 식각된 촉매박막이 형성되어 있다. 구체적으로, 언급한 기판을 마련한 후, 불활성 가스 등을 포함하는 세정 가스를 용하여 기판에 잔류하는 이물질을 충분하게 제거한다. 그리고, 기판 상에 촉매박막을 형성한다. 여기서, 촉매 박막의 형성은 스퍼터링 방식, 화학기상증착 방식 등을 적용한다. 이어서, 기판 상에 형성한 촉매박막을 식각한다. 이때, 촉매박막의 식각에서는 주로 물에 희석시킨 HF 또는 NH3 가스를 사용한다. 이와 같이, 촉매 박막을 식각함에 의해 기판 상에는 요철 형태의 불균일한 표면을 갖는 촉매 박막이 형성된다.
언급한 바와 같이, 마련한 기판을 탄소나노튜브의 합성 장치(100)의 반응 챔버(10) 내에 위치시킨다. 그리고, 반응 챔버(10)에 플라즈마의 형성이 가능한 전원을 인가하고, 반응 챔버(10) 내부로 플라즈마로 형성하기 위한 소스 가스를 제공한다. 이때, 반응 챔버(10) 내부로 제공되는 소스 가스의 양을 주로 소스 가스 제공부(12)의 유량 제어기(12b)에 의해 달성된다. 즉, 소스 가스 제공부(12)의 유량 제 어기(12b)를 세팅하여 반응 챔버(10) 내부로 제공되는 소스 가스의 양을 조정하는 것이다. 그리고, 반응 챔버(10) 내부로 소스 가스를 제공할 때 소스 가스 제공부(12)의 밸브(12c)는 개방되는 것이 일반적이다. 아울러, 사용할 수 있는 소스 가스의 예로서는 언급한 바와 같이 C2H2, CH4, C2H4, C2H6, CO 등을 들 수 있다. 이들은 단독으로 제공하거나 또는 둘 이상을 혼합하여 제공할 수 있다.
이와 같이, 반응 챔버(10)에 전원을 인가하고, 반응 챔버(10) 내부로 소스 가스를 제공함에 따라 플라즈마의 형성이 이루어지고, 반응 챔버(10) 내부에서는 기판 상에 플라즈마를 이용한 탄소나노튜브의 합성이 이루어진다.(S30 및 S32)
그리고, 플라즈마를 이용한 탄소나노튜브의 합성이 이루어질 때 본 발명의 일 실시예에 따른 탄소나노튜브의 합성 방법에서는 분석부(14)를 사용하여 반응 챔버(10) 내부에 형성된 플라즈마 상태를 분석한다.(S34) 이때, 플라즈마 상태의 분석은 주로 플라즈마로 형성한 라디칼의 변화를 확인함에 의해 달성할 수 있다.
언급한 바와 같이, 반응 챔버(10) 내부의 플라즈마 상태를 확인한 결과 별다른 이상이 없을 경우에는 소스 가스 제공부(12)의 별다른 조정없이 계속적으로 탄소나노튜브의 합성을 수행한다.(S36)
그러나, 반응 챔버(10) 내부의 플라즈마 상태를 확인한 결과 라디칼의 변화 등이 확인될 경우에는 분석부(14)로부터 입력받은 데이터에 근거하여 제어부(16)는 소스 가스 제공부(12)를 제어한다.(S36) 그러면, 소스 가스 제공부(12)는 제어부(16)로부터 입력받은 제어 결과에 근거하여 반응 챔버(10) 내부에 제공되는 소스 가스의 양을 조정한다. 여기서, 본 발명의 일 실시예에서는 제어부(16)가 소스 가스 제공부(12)의 밸브(12c)를 제어하는 구성을 갖는다. 즉, 제어부(16)가 소스 가스 제공부(12)의 밸브(12c)의 개방 정도를 조정함으로써 반응 챔버(10) 내부로 제공되는 소스 가스의 양을 조정하는 것이다. 이와 같이, 플라즈마 상태를 확인하고, 그 결과에 의해 반응 챔버(10) 내부로 제공되는 소스 가스의 양을 조정함으로써 계속적으로 균일한 플라즈마 밀도를 갖는 상태에서 탄소나노튜브의 합성을 수행할 수 있다.
언급한 바와 같이, 본 발명의 일 실시예에 따른 탄소나노튜브의 합성 방법에서는 탄소나노튜브를 합성할 때 플라즈마를 형성하기 소스 가스가 제공되는 양을 실시간으로 조정할 수 있다. 그러므로, 본 발명의 일 실시예에 따라 탄소나노튜브를 합성할 경우에는 소스 가스가 제공되는 양에 의해 발생하는 공정 오류를 충분하게 줄일 수 있다.
본 발명의 탄소나노튜브의 합성 방법 및 장치는 탄소나노튜브를 합성할 때 플라즈마를 형성하기 소스 가스가 제공되는 양을 실시간으로 조정할 수 있고, 이에 소스 가스가 제공되는 양에 의해 발생하는 공정 오류를 충분하게 줄일 수 있다.
그러므로, 본 발명의 탄소나노튜브의 합성 방법 및 장치를 사용하면 탄소나노튜브의 합성에 따른 신뢰도와 생산성이 향상되는 이점을 충분하게 기대할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (7)

  1. 반응 챔버 내부로 소스 가스를 제공하여 상기 소스 가스를 플라즈마로 형성하는 단계;
    상기 플라즈마를 사용하여 기판 상에 탄소나노튜브를 합성하는 단계;
    상기 반응 챔버 내부에 형성된 플라즈마 상태를 분석하는 단계; 및
    상기 분석 결과에 의해 상기 반응 챔버 내부로 제공되는 소스 가스의 양을 실시간으로 조정하는 단계를 포함하는 탄소나노튜브의 합성 방법.
  2. 제1 항에 있어서, 상기 플라즈마 상태의 분석은 플라즈마로 형성한 라디칼의 변화를 확인함에 의해 달성하는 것을 특징으로 하는 탄소나노튜브의 합성 방법.
  3. 플라즈마를 사용하여 그 내부에 수용된 기판 상에 탄소나노튜브를 합성하기 위한 공간을 제공하는 반응 챔버;
    상기 반응 챔버 내부로 상기 플라즈마를 형성하기 소스 가스를 제공하는 소스 가스 제공부;
    상기 반응 챔버 내부에 형성된 플라즈마 상태를 분석하기 위한 분석부;
    상기 분석부 및 상기 소스 가스 제공부와 연결되고, 상기 분석 결과에 의해 상기 소스 가스 제공부를 제어하여 상기 반응 챔버 내부로 제공되는 소스 가스의 양을 실시간으로 조정하기 위한 제어부를 포함하는 탄소나노튜브의 합성 장치.
  4. 제3 항에 있어서, 상기 소스 가스 제공부는 상기 반응 챔버와 연결되고, 상기 소스 가스가 플로우되는 유로를 제공하는 라인과, 상기 라인에 연결되고, 상기 소스 가스가 플로우되는 양을 제어하는 유량 제어기를 포함하고, 상기 제어부는 상기 유량 제어기를 제어하여 상기 반응 챔버 내부로 제공되는 소스 가스의 양을 조정하는 것을 특징으로 하는 탄소나노튜브의 합성 장치.
  5. 제3 항에 있어서, 상기 소스 가스 제공부는 상기 반응 챔버와 연결되고, 상기 소스 가스가 플로우되는 유로를 제공하는 라인과, 상기 라인에 연결되고, 상기 소스 가스의 플로우를 개폐하는 밸브를 포함하고, 상기 제어부는 상기 밸브의 개폐를 제어하여 상기 반응 챔버 내부로 제공되는 소스 가스의 양을 조정하는 것을 특징으로 하는 탄소나노튜브의 합성 장치.
  6. 제3 항에 있어서, 상기 소스 가스 제공부는 상기 반응 챔버와 연결되고, 상기 소스 가스가 플로우되는 유로를 제공하는 라인과, 상기 라인과 연결되고, 상기 소스 가스가 플로우되는 양을 제어하는 유량 제어기와, 상기 반응 챔버와 유량 제어기 사이의 라인과 연결되고, 상기 소스 가스의 플로우를 개폐하는 밸브를 포함하고, 상기 제어부는 상기 밸브의 개폐를 제어하여 상기 반응 챔버 내부로 제공되는 소스 가스의 양을 조정하는 것을 특징으로 하는 탄소나노튜브의 합성 장치.
  7. 제3 항에 있어서, 상기 분석부는 원자방출광학분석기(OES : optical emission spectrometer), 단색화분석기(monochrometer) 또는 이들을 복합적으로 포함하는 것을 특징으로 하는 탄소나노튜브의 합성 장치.
KR1020060135268A 2006-12-27 2006-12-27 탄소나노튜브의 합성 방법 및 장치 KR100830531B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060135268A KR100830531B1 (ko) 2006-12-27 2006-12-27 탄소나노튜브의 합성 방법 및 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060135268A KR100830531B1 (ko) 2006-12-27 2006-12-27 탄소나노튜브의 합성 방법 및 장치

Publications (1)

Publication Number Publication Date
KR100830531B1 true KR100830531B1 (ko) 2008-05-21

Family

ID=39664585

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060135268A KR100830531B1 (ko) 2006-12-27 2006-12-27 탄소나노튜브의 합성 방법 및 장치

Country Status (1)

Country Link
KR (1) KR100830531B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048822B1 (ko) 2008-11-26 2011-07-12 세메스 주식회사 탄소나노튜브 합성 장치

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554086B1 (ko) 2005-07-20 2006-02-22 주식회사 비코 탄소나노튜브 합성기의 능동형 가스공급 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100554086B1 (ko) 2005-07-20 2006-02-22 주식회사 비코 탄소나노튜브 합성기의 능동형 가스공급 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048822B1 (ko) 2008-11-26 2011-07-12 세메스 주식회사 탄소나노튜브 합성 장치
US8052940B2 (en) 2008-11-26 2011-11-08 Korea Kumho Petrochemical Co., Ltd. Apparatus for synthesizing carbon nanotubes

Similar Documents

Publication Publication Date Title
Hippler et al. Low temperature plasmas
KR100709360B1 (ko) 플라즈마처리장치 및 처리방법
US8883024B2 (en) Using vacuum ultra-violet (VUV) data in radio frequency (RF) sources
JP5093685B2 (ja) プラズマ装置の供給ガス分解率測定装置
US20060075968A1 (en) Leak detector and process gas monitor
US20160329193A1 (en) Atmospheric-pressure plasma treatment system
KR102192283B1 (ko) 플라즈마 어닐링 방법 및 그 장치
WO2016178819A1 (en) Radial -flow plasma treatment system
KR20020020979A (ko) 플라즈마환경의 동적 감지를 사용하는 플라즈마처리방법및 장치
US8242789B2 (en) Plasma system and measurement method
US20140166616A1 (en) Combinatorial Processing Using a Remote Plasma Source
US7842135B2 (en) Equipment innovations for nano-technology aquipment, especially for plasma growth chambers of carbon nanotube and nanowire
KR100830531B1 (ko) 탄소나노튜브의 합성 방법 및 장치
Rincón et al. Synthesis of flat sticky hydrophobic carbon diamond-like films using atmospheric pressure Ar/CH4 dielectric barrier discharge
KR102388517B1 (ko) 플라즈마의 안정성 판정 방법 및 플라즈마 처리 장치
Camerotto et al. Study of ultrasound-assisted radio-frequency plasma discharges in n-dodecane
CN113820290A (zh) 成膜方法和成膜装置
CN104962880A (zh) 一种气相沉积设备
Schaepkens et al. Gas-phase studies in inductively coupled fluorocarbon plasmas
US20140182357A1 (en) Particle monitoring method and particle monitoring apparatus
US20060228815A1 (en) Inductively coupled plasma chamber attachable to a processing chamber for analysis of process gases
JP2011199072A (ja) 終点検出装置、プラズマ処理装置および終点検出方法
JP2007243020A (ja) プラズマ処理装置
CN102628165B (zh) 一种监控薄膜沉积过程异常的方法及系统
KR20150001250A (ko) 원격 플라즈마 발생기 작동 감시 및 제어 시스템

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130506

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140508

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150430

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160503

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170426

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180503

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190503

Year of fee payment: 12