KR100826308B1 - GaN/Ga2O3 NANO CABLES, FET USING THE NANO CABLES AND METHODES OF PRODUCING THE SAMES - Google Patents

GaN/Ga2O3 NANO CABLES, FET USING THE NANO CABLES AND METHODES OF PRODUCING THE SAMES Download PDF

Info

Publication number
KR100826308B1
KR100826308B1 KR1020060070038A KR20060070038A KR100826308B1 KR 100826308 B1 KR100826308 B1 KR 100826308B1 KR 1020060070038 A KR1020060070038 A KR 1020060070038A KR 20060070038 A KR20060070038 A KR 20060070038A KR 100826308 B1 KR100826308 B1 KR 100826308B1
Authority
KR
South Korea
Prior art keywords
gallium nitride
gallium
nano
gallium oxide
oxide
Prior art date
Application number
KR1020060070038A
Other languages
Korean (ko)
Other versions
KR20080010062A (en
Inventor
명재민
함문호
차동호
Original Assignee
연세대학교 산학협력단
주식회사 나노텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단, 주식회사 나노텍 filed Critical 연세대학교 산학협력단
Priority to KR1020060070038A priority Critical patent/KR100826308B1/en
Publication of KR20080010062A publication Critical patent/KR20080010062A/en
Application granted granted Critical
Publication of KR100826308B1 publication Critical patent/KR100826308B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0038Manufacturing processes for forming specific nanostructures not provided for in groups B82B3/0014 - B82B3/0033
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Abstract

본 발명은 질화갈륨(GaN)계 나노선을 이용한 질화갈륨/산화갈륨(Ga2O3) 나노케이블, 이의 제조방법 및 이를 이용한 소자에 관한 것으로서, 본 발명에 따라 질화갈륨 나노선을 열산화하여 제조된 질화갈륨/산화갈륨 나노케이블은 하나의 1차원 나노구조가 반도체/절연체로 구성되어 있기 때문에 전계효과 트랜지스터, 바이오/가스 센서 등에 유리하게 이용될 수 있다.The present invention relates to a gallium nitride / gallium oxide (Ga 2 O 3 ) nano-cable using a gallium nitride (GaN) -based nanowire, a method for manufacturing the same and a device using the same, by thermally oxidizing gallium nitride nanowires according to the present invention The manufactured gallium nitride / gallium oxide nanocables can be advantageously used for field effect transistors, bio / gas sensors, etc. because one one-dimensional nanostructure is composed of a semiconductor / insulator.

나노케이블, 나노선, 질화갈륨, 산화갈륨, 전계효과 Nano Cable, Nano Wire, Gallium Nitride, Gallium Oxide, Field Effect

Description

질화갈륨/산화갈륨 나노케이블, 나노케이블을 이용한 전계효과 트랜지스터 및 그 제조 방법{GaN/Ga2O3 NANO CABLES, FET USING THE NANO CABLES AND METHODES OF PRODUCING THE SAMES}GaN / Ga2O3 NANO CABLES, FET USING THE NANO CABLES AND METHODES OF PRODUCING THE SAMES}

도 1은 본 발명의 일 실시예에 따른 질화갈륨 나노선과 열산화 후의 질화갈륨/산화갈륨 나노케이블의 X-선 회절(XRD: X-ray Diffraction) 패턴이다.1 is an X-ray diffraction (XRD) pattern of a gallium nitride nanowire and a gallium nitride / gallium oxide nanocable after thermal oxidation according to an embodiment of the present invention.

도 2a는 질화갈륨 나노선의 투과전자현미경 사진(TEM: Transmission Electron Microscopy)이다.2A is a transmission electron micrograph (TEM) of gallium nitride nanowires.

도 2b는 본 발명의 일 실시예에 따른 질화갈륨 나노선 열산화 후의 질화갈륨/산화갈륨 나노케이블의 투과전자현미경 사진(TEM)이다. 2B is a transmission electron micrograph (TEM) of a gallium nitride / gallium oxide nanocable after thermal oxidation of gallium nitride nanowires according to an embodiment of the present invention.

도 3a는 본 발명의 일 실시예에 따른 질화갈륨/산화갈륨 나노케이블 전계효과 트랜지스터(FET: Field Effect Transistor)의 기본 구조도이다.3A is a basic structural diagram of a gallium nitride / gallium oxide nano cable field effect transistor (FET) according to an embodiment of the present invention.

도 3b는 본 발명의 일 실시예에 따른 질화갈륨/산화갈륨 나노케이블 소자의 주사전자현미경사진(SEM: Scanning Electron Microscopy)이다.3B is a scanning electron micrograph (SEM) of a gallium nitride / gallium oxide nanocable device according to one embodiment of the present invention.

도 4는 본 발명에 일 실시예에 따른 질화갈륨/산화갈륨 나노케이블 전계효과 트랜지스터의 인가전압에 따른 전류를 나타내는 그래프를 나타낸다.4 is a graph showing a current according to an applied voltage of a gallium nitride / gallium oxide nano-cable field effect transistor according to an embodiment of the present invention.

본 발명은 질화갈륨계 나노선을 이용한 질화갈륨/산화갈륨 나노케이블의 제조방법 및 이를 이용한 소자에 관한 것으로, 구체적으로는 질화갈륨계 나노선을 아르곤(Ar), 질소(N2), 산소(O2), 오존(O3), 수증기(H2O), 공기(air) 등의 분위기에서 열산화하여 제조되는 질화갈륨/산화갈륨 나노케이블에 관한 것이다.The present invention relates to a method of manufacturing a gallium nitride / gallium oxide nano-cable using a gallium nitride-based nanowires and a device using the same, specifically, the gallium nitride-based nanowires are argon (Ar), nitrogen (N 2 ), oxygen ( The present invention relates to a gallium nitride / gallium oxide nanocable produced by thermal oxidation in an atmosphere such as O 2 ), ozone (O 3 ), water vapor (H 2 O), air, or the like.

질화갈륨은 상온에서 3.4 eV의 넓은 밴드갭 에너지를 가지는 직접 천이형 반도체로서, 고온에서 안정하기 때문에, 자외선 및 청색 발광소자와 광검출소자로 널리 응용되고 있을 뿐만 아니라 고온 및 고출력 소자로도 응용이 기대되고 있다. 또한, 게이트 전극으로 백금(Pt) 또는 팔라듐(Pd) 금속을 사용하여 소자를 제작하면, 수소 등의 기체 검출소자 제작이 가능하다. Gallium nitride is a direct transition type semiconductor with a wide bandgap energy of 3.4 eV at room temperature. Since it is stable at high temperatures, it is not only widely applied to ultraviolet and blue light emitting devices and photodetectors, but also to high temperature and high output devices. It is becoming. In addition, when a device is manufactured using platinum (Pt) or palladium (Pd) metal as the gate electrode, it is possible to manufacture a gas detection device such as hydrogen.

산화갈륨은 상온에서 4.6 eV의 매우 넓은 밴드갭 에너지를 가지는 절연체로서, 유전상수가 약 10~14 정도로 높기 때문에, 표면 보호막 및 절연막 등으로 응용이 기대되고 있다. 특히, 산화갈륨은 질화갈륨을 열산화함으로서 질화갈륨의 표면에 쉽게 형성할 수 있기 때문에 질화갈륨을 이용한 소자들에 적용하기 위한 연구가 진행되고 있다. Gallium oxide is an insulator having a very wide bandgap energy of 4.6 eV at room temperature. Since the dielectric constant is high as about 10 to 14, it is expected to be applied as a surface protective film and an insulating film. In particular, since gallium oxide can be easily formed on the surface of gallium nitride by thermally oxidizing gallium nitride, researches for applying it to devices using gallium nitride have been conducted.

최근, 1차원 나노구조에 관한 연구가 시작되면서 이러한 나노구조체를 이용하여 기존의 박막 형태의 광/전자소자를 대체하려는 연구가 많은 관심을 모으고 있다. 나노선이 갖는 우수한 결정학적 특성, 양자역학적 특성, 크기 특성을 소자에 응용하기 위해 질화갈륨 나노선을 합성하고 조작하여 소자화하는 기술이 필요하다. 이때 나노선이 넓은 표면적을 갖기 때문에 나노선을 조작하는 과정에서 표면에 많은 수의 댕글링 본드(dangling bond)가 존재하며 불순물이 혼입되는 문제점이 있다. 따라서 소자 특성 향상을 위해서는 불순물의 혼입을 막고 댕글링 본드를 최소화하기 위해 질화갈륨 나노선 표면의 패시베이션(passivation)이 필요하다. 또한, 산화갈륨이 넓은 밴드갭과 높은 유전상수를 갖기 때문에 질화갈륨 나노선을 이용한 트랜지스터 제작시 산화갈륨은 게이트 절연막의 역할을 수행할 수 있다. 따라서 질화갈륨/산화갈륨 나노케이블을 이용하면, 하나의 1차원 나노구조체가 반도체/절연체 역할을 수행하기 때문에 소자 구현 및 집적화에 유리하다.Recently, as the research on the one-dimensional nanostructure is started, a lot of attentions are being made to replace the conventional thin film type optical / electronic device using the nanostructure. In order to apply the excellent crystallographic, quantum mechanical, and size characteristics of nanowires to a device, a technique for synthesizing and manipulating gallium nitride nanowires is required. At this time, since the nanowires have a large surface area, a large number of dangling bonds exist on the surface in the process of manipulating the nanowires, and there is a problem in that impurities are mixed. Therefore, in order to improve device characteristics, passivation of gallium nitride nanowire surfaces is required to prevent incorporation of impurities and to minimize dangling bonds. In addition, since gallium oxide has a wide band gap and a high dielectric constant, gallium oxide may serve as a gate insulating film when fabricating a transistor using gallium nitride nanowires. Therefore, when the gallium nitride / gallium oxide nanocable is used, since one one-dimensional nanostructure serves as a semiconductor / insulator, it is advantageous for device implementation and integration.

본 발명의 목적은 질화갈륨 나노선에 산화갈륨을 코팅시켜 반도체/절연체 구조를 단일 일차원 나노구조체로 구현할 수 있는 질화갈륨계 나노케이블 및 이를 대량으로 제조하는 방법을 제공하는 것이다.An object of the present invention is to provide a gallium nitride-based nano-cable and a method for producing a large amount of the gallium nitride nanowires by coating a gallium oxide nanowire can realize a semiconductor / insulator structure as a single one-dimensional nanostructure.

상기 목적을 달성하기 위하여 본 발명에서는 질화갈륨계 나노선을 합성하고 열산화하여 질화갈륨의 표면에 산화갈륨을 코팅하여 질화갈륨/산화갈륨 나노케이블을 제공한다. In order to achieve the above object, in the present invention, a gallium nitride-based nanowire is synthesized and thermally oxidized to provide gallium nitride / gallium oxide nanocable by coating gallium oxide on the surface of gallium nitride.

또한, 본 발명에서는 상기 질화갈륨/산화갈륨 나노케이블, 나노케이블을 이용한 나노 전계효과 트랜지스터 및 그 제조방법을 제공한다.In addition, the present invention provides a nano-field effect transistor using the gallium nitride / gallium oxide nanocables, nanocables and a method of manufacturing the same.

본 발명은 질화갈륨(GaN)계 나노선; 질화갈륨계 나노선 표면에 코팅된 산화 갈륨(Ga2O3); 을 포함하여, 반도체/절연체 구조가 하나의 1차원 나노 구조로 이루어지는 것을 특징으로 하는 질화갈륨/산화갈륨 나노케이블을 제공한다. 바람직하게는 산화갈륨은, 산화갈륨의 특성을 향상시키기 위하여 Al, Ti, Hf 등의 다른 원소를 첨가하여 형성된다.The present invention is a gallium nitride (GaN) -based nanowire; Gallium oxide (Ga 2 O 3 ) coated on the surface of gallium nitride-based nanowires; Including a gallium nitride / gallium oxide nano-cable, characterized in that the semiconductor / insulator structure consisting of one one-dimensional nanostructure. Preferably, gallium oxide is formed by adding other elements, such as Al, Ti, Hf, in order to improve the characteristic of gallium oxide.

또한 본 발명은 질화갈륨/산화갈륨 나노케이블의 제조방법에 있어서,In addition, the present invention is a method for producing a gallium nitride / gallium oxide nano cable,

a) 질화갈륨 나노선을 합성하고,a) synthesizing gallium nitride nanowires,

b) 합성된 질화갈륨 나노선을 열산화하여, 질화갈륨/산화갈륨의 단일 1차원 나노 구조 형태로 제조하는 것을 특징으로 하는 질화갈륨/산화갈륨 나노케이블의 제조방법을 제공한다.b) providing a method for producing gallium nitride / gallium oxide nanocables, characterized in that the gallium nitride nanowires are thermally oxidized to produce a single one-dimensional nanostructure of gallium nitride / gallium oxide.

또한 본 발명은 질화갈륨/산화갈륨 나노케이블을 이용한 나노 전계효과 트랜지스터에 있어서, 산화 실리콘이 성장된 실리콘 기판; 실리콘 기판 위에 배열된 질화갈륨/산화갈륨 나노케이블; 나노케이블 양 단의 산화갈륨이 제거된 부분에 증착된 금속; 나노케이블에 중간에 식각된 패턴에 증착된 금속; 으로 이루어지는 것을 특징으로 하는 나노 전계효과 트랜지스터(FET: field effect transistor)를 제공한다.In addition, the present invention is a nano-field effect transistor using a gallium nitride / gallium oxide nano-cable, comprising: a silicon substrate on which silicon oxide is grown; Gallium nitride / gallium oxide nanocables arranged on silicon substrates; A metal deposited on a portion where gallium oxide is removed from both ends of the nanocable; Metal deposited in a pattern etched in the middle of the nano-cable; It provides a nano field effect transistor (FET), characterized in that consisting of.

또한 본 발명은 질화갈륨/산화갈륨 나노케이블을 이용한 나노 전계효과 트랜지스터의 제조방법에 있어서, In addition, the present invention is a method for manufacturing a nano-field effect transistor using a gallium nitride / gallium oxide nano cable,

a) 산화실리콘이 성장된 실리콘 기판에 질화갈륨/산화갈륨 나노케이블을 배열시키고,a) arranging the gallium nitride / gallium oxide nano cable on the silicon substrate on which silicon oxide is grown;

b) 나노케이블에 식각 마스크를 나노케이블이 배열된 기판에 코팅하고,b) coating the etching mask on the nano-cable on the substrate on which the nano-cable is arranged;

c) 식각 장치로 나노케이블 양 단의 마스크를 제거하고,c) remove the mask on both sides of the nano-cable with an etching device,

d) 에칭으로 양 단의 산화갈륨을 제거하고,d) etching removes gallium oxide at both ends,

e) 식각 장치로 나노 케이블에 패턴을 형성하고, 금속을 증착하는 것을 특징으로 하는 질화갈륨/산화갈륨 나노케이블을 이용한 나노 전계효과 트랜지스터의 제조방법을 제공한다.e) The present invention provides a method of manufacturing a nano-field effect transistor using a gallium nitride / gallium oxide nanocable, wherein the etching apparatus forms a pattern on the nanocable and deposits a metal.

도면을 참조하여 본 발명을 좀 더 자세히 설명한다.The present invention will be described in more detail with reference to the drawings.

본 발명에 따른 질화갈륨/산화갈륨 나노케이블은 질화갈륨 나노선(1) 표면에 산화갈륨 코팅(2)을 입혀 반도체/절연체 나노케이블 구조를 단일 1차원 나노구조 형태로 제조하는 것을 특징으로 한다. 산화갈륨 코팅(2)은, 질화갈륨 나노선(1) 표면의 열산화를 통해 이루어진다. 따라서 질화갈륨/산화갈륨 나노케이블의 대량 생산에 용이하다. 도 1은 본 발명의 일 실시예에 따른 질화갈륨 나노선(1)과 질화갈륨을 열산화하여 산화갈륨 코팅(2)을 질화갈륨 나노선(1) 표면에 형성한 질화갈륨/산화갈륨 나노케이블의 X-선 회절 패턴을 나타낸 것이다.The gallium nitride / gallium oxide nanocable according to the present invention is characterized by producing a semiconductor / insulator nanocable structure in the form of a single one-dimensional nanostructure by coating a gallium oxide coating (2) on the gallium nitride nanowire (1) surface. The gallium oxide coating 2 is made through thermal oxidation of the surface of the gallium nitride nanowire 1. Therefore, it is easy to mass-produce gallium nitride / gallium oxide nanocables. 1 is a gallium nitride / gallium oxide nanocable in which gallium nitride nanowires 1 and gallium nitride are thermally oxidized to form a gallium oxide coating 2 on a gallium nitride nanowire 1 surface according to an embodiment of the present invention. X-ray diffraction pattern is shown.

또한, 바람직하게는 질화갈륨 나노선(1) 표면의 산화갈륨 코팅(2)의 특성을 향상시키기 위하여 특정물질(Al, Ti, Hf 등)을 첨가할 수도 있다. 일 예로, 산화갈륨 코팅(2)의 밴드갭을 높이기 위하여, 질화갈륨 나노선(1) 표면에 Al이 첨가된 형태의 산화갈륨-산화알루미늄(Al2O3) 합금을 제조할 수 있다.In addition, it is preferable to add a specific material (Al, Ti, Hf, etc.) to improve the properties of the gallium oxide coating (2) on the surface of the gallium nitride nanowire (1). For example, in order to increase the band gap of the gallium oxide coating 2, a gallium oxide-aluminum oxide (Al 2 O 3 ) alloy in which Al is added to the surface of the gallium nitride nanowire 1 may be manufactured.

본 발명의 일 실시예로, 질화갈륨 나노선(1)은 고체 상태의 갈륨(Ga) 또는 질화갈륨(GaN) 분말을 가열하여 증발하고 암모니아(NH3) 가스 분위기 하에서 합성된다. 분말 소스의 온도는 1100℃이고 성장압력은 600 mTorr이며 질화갈륨 나노선(1)이 합성되는 위치의 온도는 900℃이다. 질화갈륨 나노선(1)을 열산화하여 질화갈륨 나노선(1) 표면에 산화갈륨 코팅(2)을 할 경우 열산화 시의 분위기는 아르곤, 질소, 산소, 오존, 수증기, 공기 등을 이용할 수 있고, 열산화하는 온도는 600~1000℃이다.In one embodiment of the present invention, the gallium nitride nanowire 1 is evaporated by heating gallium (Ga) or gallium nitride (GaN) powder in a solid state and synthesized under ammonia (NH 3 ) gas atmosphere. The temperature of the powder source is 1100 ° C, the growth pressure is 600 mTorr, and the temperature at the location where the gallium nitride nanowires 1 are synthesized is 900 ° C. When gallium nitride nanowires (1) are thermally oxidized and gallium oxide coatings (2) are coated on the surfaces of the gallium nitride nanowires (1), argon, nitrogen, oxygen, ozone, water vapor, and air may be used for the thermal oxidation. The temperature to thermally oxidize is 600 to 1000 ° C.

본 발명에 따라 제조되는 질화갈륨 나노선(1) 표면에 형성되는 산화갈륨 코팅(2)의 결정성 및 두께는 열산화 온도, 열산화 시간, 분위기, 산화될 질화갈륨 나노선(1)의 직경에 따라 다양하게 조절할 수 있다.The crystallinity and thickness of the gallium oxide coating (2) formed on the surface of the gallium nitride nanowire (1) produced according to the present invention is the thermal oxidation temperature, thermal oxidation time, atmosphere, the diameter of the gallium nitride nanowire (1) to be It can be adjusted in various ways.

상기 질화갈륨 나노선(1)은 단결정의 우수한 결정성을 갖고 결함이 적어 106~107cm-1의 낮은 전자 농도를 나타낼 뿐만 아니라 고온에서 열적 안정성이 뛰어나다. 또한, 상기 질화갈륨/산화갈륨 나노케이블은 질화갈륨 나노선(1)의 열산화에 의해 쉽게 반도체/절연체 구조를 형성할 수 있으며, 반도체/절연체 구조가 하나의 1차원 나노구조로 이루어져 있기 때문에 질화갈륨 나노선(1)의 표면에 존재하는 댕글링 본드 등을 패시베이션할 수 있고 질화갈륨/산화갈륨 계면에서의 계면 전하밀도가 낮다. 따라서 상기 나노케이블을 이용하여 트랜지스터 제작시, 반도체/절연체 계면에서의 포획 전하밀도가 낮기 때문에 우수한 캐패시턴스(capacitance) 특성을 나타낼 것이다.The gallium nitride nanowire (1) has a good crystallinity of a single crystal and fewer defects to show a low electron concentration of 10 6 ~ 10 7 cm -1 as well as excellent thermal stability at high temperatures. In addition, the gallium nitride / gallium oxide nano cable can easily form a semiconductor / insulator structure by the thermal oxidation of the gallium nitride nanowire (1), because the semiconductor / insulator structure is made of a single one-dimensional nanostructure nitride Dangling bonds and the like present on the surface of the gallium nanowire 1 can be passivated and the interfacial charge density at the gallium nitride / gallium oxide interface is low. Therefore, when the transistor is manufactured using the nanocable, since the capture charge density at the semiconductor / insulator interface is low, it will exhibit excellent capacitance characteristics.

도 3a은 본 발명의 일 실시예에 따른 질화갈륨/산화갈륨 나노케이블을 이용 한 나노 전계효과 트랜지스터의 기본구조도를 도시한 것이고, 도 3b는 본 발명의 일 실시예에 따라 제작된 나노 전계효과 트랜지스터의 주사전자현미경 사진을 나타낸 것이다. 나노케이블을 이용한 트랜지스터는, 실리콘이 성장한 기판, 기판 위에 배열된 나노케이블, 나노케이블의 양 단의 산화갈륨 코팅(2)이 제거된 부위에 증착된 소스 전극 역할을 하는 금속(3)과 드레인 전극 역할을 수행하는 금속(4), 나노케이블 가운데에 식각된 패턴에 증착된 게이트 역할을 하는 금속(5)을 포함하여 구성된다.3A illustrates a basic structure diagram of a nanofield effect transistor using a gallium nitride / gallium oxide nanocable according to an embodiment of the present invention, and FIG. 3B illustrates a nanofield effect transistor manufactured according to an embodiment of the present invention. The scanning electron micrograph of the is shown. The transistor using a nanocable is a drain electrode and a metal (3) serving as a source electrode deposited on a region where silicon is grown, a nanocable arranged on the substrate, and a gallium oxide coating (2) on both ends of the nanocable. Metal 4 to play a role, and a metal 5 to serve as a gate deposited in the pattern etched in the center of the nano-cable.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. Hereinafter, the present invention will be described in more detail based on the following examples.

실시예 1: 질화갈륨/산화갈륨 나노케이블의 제작Example 1: Fabrication of gallium nitride / gallium oxide nanocables

수평로를 이용하여 질화갈륨 나노선(1)을 합성하였다. 이때, 반응물질로 질화갈륨 분말을 사용하고 질소 소스로서 30 sccm의 암모니아 가스를 흘러주었다. 반응물질의 증발온도는 1100℃로 유지하였고 질화갈륨 나노선(1)이 합성되는 온도는 900℃였다. 이 때의 성장압력은 600 mTorr로 유지하였다. 합성된 질화갈륨 나노선(1)의 직경과 길이는 각각 5㎛와 20nm였다. 합성된 질화갈륨 나노선(1)을 열산화하여 산화갈륨 코팅(2)을 만들어 질화갈륨/산화갈륨 나노케이블 구조를 제작하였다. 열산화는 10 mol/min의 N2 가스를 흘려주면서 1000℃에서 30분동안 실시하였다.Gallium nitride nanowires (1) were synthesized using a horizontal furnace. At this time, gallium nitride powder was used as a reactant and 30 sccm of ammonia gas was flowed as a nitrogen source. The evaporation temperature of the reactants was maintained at 1100 ℃ and the temperature at which the gallium nitride nanowire (1) is synthesized was 900 ℃. The growth pressure at this time was maintained at 600 mTorr. The diameter and length of the synthesized gallium nitride nanowire 1 were 5 μm and 20 nm, respectively. The gallium nitride nanowires (1) were thermally oxidized to produce gallium oxide coatings (2) to fabricate gallium nitride / gallium oxide nanocable structures. Thermal oxidation was carried out at 1000 ° C. for 30 minutes while flowing 10 mol / min of N 2 gas.

제작된 질화갈륨/산화갈륨 나노케이블을 투과전자현미경으로 관찰한 결과를 도 2(b)에 나타내었다. 나노케이블 구조에서 질화갈륨 나노선(1)의 직경은 13.5nm였고 질화갈륨 나노선(2) 표면의 산화갈륨 코팅(2)의 두께는 4.5nm로 관찰되었다. The result of observing the produced gallium nitride / gallium oxide nano cable with a transmission electron microscope is shown in Figure 2 (b). In the nanocable structure, the diameter of the gallium nitride nanowire (1) was 13.5 nm and the thickness of the gallium oxide coating (2) on the surface of the gallium nitride nanowire (2) was 4.5 nm.

실시예 2: 질화갈륨/산화갈륨 나노케이블을 이용한 나노 전계효과 트랜지스터의 제작Example 2: Fabrication of nanofield effect transistor using gallium nitride / gallium oxide nanocable

제조된 질화갈륨/산화갈륨 나노케이블을 산화실리콘이 성장된 실리콘 기판에 배열시킨다. 이빔 레지스트(ER: e-beam resist)를 상기 나노케이블이 배열된 기판 위에 코팅한다. 그리고나서 이빔 식각장치 (e-beam lithography)를 이용하여 나노케이블의 양 끝단 부분의 이빔 레지스트를 제거한다. 그 후 기판을 3%로 희석된 불산(HF) 용액에 담궈 나노케이블의 양 끝단 부분의 산화갈륨 코팅(2)을 에칭하여 제거한다. 산화갈륨 코팅(2)이 제거되고 질화갈륨 나노선(1)이 노출된 부분에 Ti/Au 금속을 스퍼터링을 이용하여 증착한다. 이때 나노케이블의 양 단에 증착된 금속은 각각 소스(3)와 드레인(4) 전극 역할을 수행한다. 마지막으로 나노케이블의 가운데를 이빔 식각장치를 이용하여 패턴을 형성하고 백금(5: Pt) 금속을 스퍼터링을 이용하여 증착한다. 백금(5)/산화갈륨(2)/질화갈륨(1), 다시말해 금속/절연체/반도체(MOS) 구조가 형성되고 백금(5)은 게이트, 산화갈륨(2)은 게이트 유전체, 질화갈륨(1)은 채널 역할을 수행한다. The prepared gallium nitride / gallium oxide nano cable is arranged on a silicon substrate on which silicon oxide is grown. An e-beam resist (ER) is coated on the substrate on which the nanocables are arranged. The e-beam lithography is then used to remove the e-beam resist at both ends of the nanocables. The substrate is then immersed in 3% dilute hydrofluoric acid (HF) solution to etch away the gallium oxide coating (2) at both ends of the nanocable. The gallium oxide coating 2 is removed and the Ti / Au metal is deposited by sputtering on the portion where the gallium nitride nanowires 1 are exposed. At this time, the metal deposited on both ends of the nano-cable serves as a source (3) and drain (4) electrode, respectively. Finally, a pattern is formed in the center of the nanocable using an e-beam etching apparatus, and platinum (5: Pt) metal is deposited by sputtering. Platinum (5) / gallium oxide (2) / gallium nitride (1), that is, metal / insulator / semiconductor (MOS) structures are formed, platinum (5) is a gate, gallium oxide (2) is a gate dielectric, gallium nitride ( 1) acts as a channel.

이빔 식각장치 외에 사진 식각장치(photolithohgraphy) 등의 다른 패턴 형성장치를 이용해도 무방하다.In addition to the e-beam etching apparatus, other pattern forming apparatuses such as photolithohgraphy may be used.

또한, 본 발명의 실시예 2에 따라 제조된, 질화갈륨/산화갈륨 나노케이블 구조의 나노 전계효과 트랜지스터에서 관찰된 전류-전압 특성을 도 4에 나타내었다. 인가전압에 따른 전류 변화 측정 결과 게이트 전압의 변화에 따른 드레인 전류의 변화가 뚜렷하게 나타내는 것을 알 수 있었다. In addition, the current-voltage characteristics observed in the nanofield effect transistor of the gallium nitride / gallium oxide nanocable structure prepared according to Example 2 of the present invention are shown in FIG. 4. As a result of measuring the current change according to the applied voltage, it was found that the change of the drain current according to the change of the gate voltage was clearly represented.

이상 설명한 바와 같이, 본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형의 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.As described above, the present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by those skilled in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes are within the scope of the claims.

본 발명에 따라 제조된 질화갈륨/산화갈륨 나노케이블은 단일 1차원 나노구조체로 반도체/절연체를 구성하므로 나노선을 이용한 소자 제작시 집적화에 유리하며, 나노선의 표면이 대기에 노출되기 않기 때문에 댕글링 본드, 불순물 혼입에 의한 나노선의 특성 저하를 방지하여 고온 등의 혹독한 환경에서도 나노선 고유의 특성을 유지할 수 있을 것으로 기대된다. Since the gallium nitride / gallium oxide nanocable manufactured according to the present invention constitutes a semiconductor / insulator as a single one-dimensional nanostructure, it is advantageous for integration when manufacturing a device using nanowires, and because the surface of the nanowires is not exposed to the atmosphere, dangling It is expected that nanowire characteristics can be maintained even in harsh environments such as high temperature by preventing the degradation of nanowire characteristics due to the incorporation of bonds and impurities.

Claims (5)

질화갈륨(GaN)계 나노선; 질화갈륨계 나노선 표면에 형성되며, Al, Ti, Hf 중 어느 하나 이상의 다른 원소가 첨가된 산화갈륨(Ga2O3) 코팅층; 을 포함하여, 반도체/절연체 구조가 하나의 1차원 나노 구조로 이루어지는 것을 특징으로 하는 질화갈륨/산화갈륨 나노케이블.Gallium nitride (GaN) -based nanowires; A gallium oxide (Ga 2 O 3 ) coating layer formed on the surface of the gallium nitride-based nanowire, to which at least one other element of Al, Ti, and Hf is added; Including, gallium nitride / gallium oxide nano-cable, characterized in that the semiconductor / insulator structure consisting of one one-dimensional nanostructure. 삭제delete 삭제delete 질화갈륨/산화갈륨 나노케이블을 이용한 나노 전계효과 트랜지스터에 있어서, 산화 실리콘이 성장된 실리콘 기판; 실리콘 기판 위에 배열된 질화갈륨/산화갈륨 나노케이블; 나노케이블 양 단의 산화갈륨이 제거된 부분에 증착된 금속; 나노 케이블에 중간에 식각된 패턴에 증착된 금속; 으로 이루어지는 것을 특징으로 하는 나노 전계효과 트랜지스터(FET: field effect transistor).A nanofield effect transistor using gallium nitride / gallium oxide nanocables, comprising: a silicon substrate on which silicon oxide is grown; Gallium nitride / gallium oxide nanocables arranged on silicon substrates; A metal deposited on a portion where gallium oxide is removed from both ends of the nanocable; A metal deposited in a pattern etched in the middle of the nano cable; Nano field effect transistor (FET), characterized in that consisting of. 질화갈륨/산화갈륨 나노케이블을 이용한 나노 전계효과 트랜지스터의 제조방법에 있어서, In the method of manufacturing a nano field effect transistor using gallium nitride / gallium oxide nano cable, a) 산화실리콘이 성장된 실리콘 기판에 질화갈륨/산화갈륨 나노케이블을 배열시키고,a) arranging the gallium nitride / gallium oxide nano cable on the silicon substrate on which silicon oxide is grown; b) 나노케이블에 식각 마스크를 나노케이블이 배열된 기판에 코팅하고,b) coating the etching mask on the nano-cable on the substrate on which the nano-cable is arranged; c) 식각 장치로 나노케이블 양 단의 마스크를 제거하고,c) remove the mask on both sides of the nano-cable with an etching device, d) 에칭으로 양 단의 산화갈륨을 제거하고,d) etching removes gallium oxide at both ends, e) 식각 장치로 나노 케이블에 패턴을 형성하고, 금속을 증착하는 것을 특징으로 하는 질화갈륨/산화갈륨 나노케이블을 이용한 나노 전계효과 트랜지스터의 제조방법.e) A method of manufacturing a nanofield effect transistor using a gallium nitride / gallium oxide nanocable, wherein the etching device forms a pattern on the nanocable and deposits a metal.
KR1020060070038A 2006-07-25 2006-07-25 GaN/Ga2O3 NANO CABLES, FET USING THE NANO CABLES AND METHODES OF PRODUCING THE SAMES KR100826308B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060070038A KR100826308B1 (en) 2006-07-25 2006-07-25 GaN/Ga2O3 NANO CABLES, FET USING THE NANO CABLES AND METHODES OF PRODUCING THE SAMES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060070038A KR100826308B1 (en) 2006-07-25 2006-07-25 GaN/Ga2O3 NANO CABLES, FET USING THE NANO CABLES AND METHODES OF PRODUCING THE SAMES

Publications (2)

Publication Number Publication Date
KR20080010062A KR20080010062A (en) 2008-01-30
KR100826308B1 true KR100826308B1 (en) 2008-04-30

Family

ID=39222254

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060070038A KR100826308B1 (en) 2006-07-25 2006-07-25 GaN/Ga2O3 NANO CABLES, FET USING THE NANO CABLES AND METHODES OF PRODUCING THE SAMES

Country Status (1)

Country Link
KR (1) KR100826308B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103105421A (en) * 2013-01-16 2013-05-15 大连理工大学 Nanowire semiconductor gas sensitive material based on GaN-Ga2O3 core-shell structure
CN109346400B (en) * 2018-10-17 2021-09-10 吉林大学 High-quality Ga2O3Film and heteroepitaxial preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030067162A (en) * 2002-02-07 2003-08-14 대한민국 (한밭대학총장) Manufacturing methods of nano size Gallium Nitride powder, Gallium Nitride - Gallium Oxide compound powder and Electro luminescence Devices
JP2005225737A (en) 2004-02-16 2005-08-25 National Institute For Materials Science Single crystal cubic gallium nitride nanotube and its manufacturing method
JP2005272207A (en) * 2004-03-24 2005-10-06 National Institute For Materials Science Method of manufacturing gallium nitride nanowire coated with gallium oxide layer
JP2006176383A (en) 2004-12-24 2006-07-06 National Institute For Materials Science Method of manufacturing manganese-doped gallium nitride nano-wire

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030067162A (en) * 2002-02-07 2003-08-14 대한민국 (한밭대학총장) Manufacturing methods of nano size Gallium Nitride powder, Gallium Nitride - Gallium Oxide compound powder and Electro luminescence Devices
JP2005225737A (en) 2004-02-16 2005-08-25 National Institute For Materials Science Single crystal cubic gallium nitride nanotube and its manufacturing method
JP2005272207A (en) * 2004-03-24 2005-10-06 National Institute For Materials Science Method of manufacturing gallium nitride nanowire coated with gallium oxide layer
JP2006176383A (en) 2004-12-24 2006-07-06 National Institute For Materials Science Method of manufacturing manganese-doped gallium nitride nano-wire

Also Published As

Publication number Publication date
KR20080010062A (en) 2008-01-30

Similar Documents

Publication Publication Date Title
US20100140584A1 (en) Method for producing catalyst-free single crystal silicon nanowires, nanowires produced by the method and nanodevice comprising the nanowires
KR100785347B1 (en) Alignment of semiconducting nanowires on metal electrodes
JP5600246B2 (en) Nanowire containing silicon-rich oxide and method for producing the same
JP5410773B2 (en) Branched nanowire and method for producing the same
US7303631B2 (en) Selective growth of ZnO nanostructure using a patterned ALD ZnO seed layer
JP2006349673A (en) Nanowire sensor device and method of fabricating nanowire sensor device structure
JP2009010383A (en) Zinc oxide semiconductor and method for manufacturing it
JP2006512218A (en) Sacrificial template method for producing nanotubes
Hui et al. n-and p-Type modulation of ZnO nanomesh coated graphene field effect transistors
KR100826308B1 (en) GaN/Ga2O3 NANO CABLES, FET USING THE NANO CABLES AND METHODES OF PRODUCING THE SAMES
KR101273702B1 (en) Method for growing GaN nanowire using Pt catalyst
KR20120051883A (en) Method for fabricating silicon nanowire with rough surface
JP2020021828A (en) Semiconductor device and manufacturing method thereof
KR100698014B1 (en) Silicon nitride film for light emitting device, light emitting device using the same and method for forming silicon nitride film for light emitting device
KR101122129B1 (en) Method for preparing Si/SiOx core/shell nanowire by using Si-rich oxides
KR20120100338A (en) Method for growing nanowire
Wang et al. One step fabrication of low noise CuO nanowire-bridge gas sensor
US7781317B2 (en) Method of non-catalytic formation and growth of nanowires
KR100366372B1 (en) METHOD FOR MANUFACTURING A METAL THIN FILM OF OHMIC CONTACT FOR LIGHT EMITTING DIODE AND LASER DIODE BASED ON ZnO OXIDE SEMICONDUCTOR
KR100659280B1 (en) Fabrication method of nanocrystalline-silicon in silicon-based nanostructure
KR100670767B1 (en) Process for the growth of amorphous Silicone Oxide nanowires directly from NiO/Si and nanowires made from the process
KR101431818B1 (en) Fabrication method for nanowire device
Conley Jr et al. Selective growth and directed integration of ZnO nanobridge devices on si substrates without a metal catalyst using a ZnO seed layer
KR100239679B1 (en) Method for fabricating fine-crystalline silicon with visible luminescence
KR101639978B1 (en) Manufacturing Mehtod for polymer/nanowire compsite

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130423

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140303

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150205

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160919

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee