JP2005272207A - Method of manufacturing gallium nitride nanowire coated with gallium oxide layer - Google Patents

Method of manufacturing gallium nitride nanowire coated with gallium oxide layer Download PDF

Info

Publication number
JP2005272207A
JP2005272207A JP2004088041A JP2004088041A JP2005272207A JP 2005272207 A JP2005272207 A JP 2005272207A JP 2004088041 A JP2004088041 A JP 2004088041A JP 2004088041 A JP2004088041 A JP 2004088041A JP 2005272207 A JP2005272207 A JP 2005272207A
Authority
JP
Japan
Prior art keywords
gallium nitride
oxide layer
gallium
nitride nanowire
gallium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004088041A
Other languages
Japanese (ja)
Other versions
JP4025876B2 (en
Inventor
Yoshio Bando
義雄 板東
Tang Chengchun
チェンチュン・タン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004088041A priority Critical patent/JP4025876B2/en
Publication of JP2005272207A publication Critical patent/JP2005272207A/en
Application granted granted Critical
Publication of JP4025876B2 publication Critical patent/JP4025876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a gallium nitride nanowire coated with a gallium oxide layer. <P>SOLUTION: The gallium nitride nanowire coated with the gallium oxide layer is manufactured by heating gallium nitride nanowire having 40-50 nanometer diameter at 700-1,200°C for 12-24 hr in dry air. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この出願の発明は、酸化ガリウム層で被覆された窒化ガリウムナノワイヤーの製造方法に関するものである。さらに詳しくは、この出願の発明は、高温用あるいは高電力用デバイスや青色〜紫外光発光ダイオード等への使用が検討されている酸化ガリウム層で被覆された窒化ガリウムナノワイヤーの製造方法に関するものである。   The invention of this application relates to a method for producing a gallium nitride nanowire covered with a gallium oxide layer. More specifically, the invention of this application relates to a method for producing a gallium nitride nanowire coated with a gallium oxide layer, which is being studied for use in high temperature or high power devices, blue to ultraviolet light emitting diodes, and the like. is there.

バルクおよび薄膜の窒化ガリウムのパッシベーションのための表面酸化は、MOS型電界
効果型トランジスターの作製に必要な技術であり、多くの研究が行われている(たとえば、非特許文献1,2参照。)。また、窒化ガリウムナノワイヤーの電子移動度やp-n接合
に関する研究が、電子デバイスや光学デバイスへの応用を目的として行われている(たとえば、非特許文献3,4参照。)。
S.D.Wolterほか、アプライド・フィジックス・レターズ(Appl.Phys.Lett.)70巻、2156頁、1997年。 H.Kimほか、ジャーナル・オブ・バキューム・サイエンス・アンド・テクノロジーズB(J.Vac.Sci.Technol.B)19巻、579頁、2001年。 J.R.Kimほか、アプライド・フィジックス・レターズ(Appl.Phys.Lett.)80巻、3548頁、2002年。 Y.Huangほか、サイエンス(Science)294巻、1313頁、2001年。
Surface oxidation for passivation of bulk and thin film gallium nitride is a technique necessary for the fabrication of MOS field effect transistors, and many studies have been conducted (for example, see Non-Patent Documents 1 and 2). . Further, research on electron mobility and pn junction of gallium nitride nanowires has been conducted for the purpose of application to electronic devices and optical devices (for example, see Non-Patent Documents 3 and 4).
SDWolter et al., Applied Physics Letters, 70, 2156, 1997. H. Kim et al., Journal of Vacuum Science and Technologies B (J.Vac.Sci.Technol.B) Volume 19, 579, 2001. JRKim et al., Applied Physics Letters (Appl. Phys. Lett.), 80, 3548, 2002. Y. Huang et al., Science 294, 1313, 2001.

この出願の発明は、上記の三次元のバルクや二次元の薄膜ではなく、一次元の窒化ガリウムナノワイヤーの熱酸化によるナノワイヤーの表面が酸化ガリウム層で覆われた窒化ガリウムナノワイヤーの製造方法を提供することを解決すべき課題としている。   The invention of this application is not a three-dimensional bulk or a two-dimensional thin film, but a method for producing a gallium nitride nanowire in which the surface of the nanowire is covered with a gallium oxide layer by thermal oxidation of the one-dimensional gallium nitride nanowire. Providing is an issue to be solved.

この出願の発明は、上記の課題を解決するものとして、直径40〜50ナノメートルの窒化ガリウムナノワイヤーを乾燥空気中で700〜1200℃に12〜24時間加熱することを特徴とす
る酸化ガリウム層で被覆された窒化ガリウムナノワイヤーの製造方法を提供する。
In order to solve the above-mentioned problems, the invention of this application is characterized in that a gallium nitride nanowire having a diameter of 40 to 50 nanometers is heated in a dry air at 700 to 1200 ° C. for 12 to 24 hours. A method for producing a gallium nitride nanowire coated with a metal is provided.

この出願の発明の酸化ガリウム層で被覆された窒化ガリウムナノワイヤーの製造方法によれば、窒化ガリウムのパッシベーション膜の形成に際して、別の材料を使用することなく、表面のみを酸化させることができる。このため、微細構造のエレクトロニクスデバイス用材料として有用である。   According to the method for producing a gallium nitride nanowire covered with a gallium oxide layer of the invention of this application, only the surface can be oxidized without using another material when forming a passivation film of gallium nitride. Therefore, it is useful as a material for an electronic device having a fine structure.

既知の方法で製造した直径40〜50ナノメートルの窒化ガリウムナノワイヤーを乾燥空気中で、700〜1200℃に12〜24時間加熱してナノワイヤーの表面を酸化させる。   A gallium nitride nanowire having a diameter of 40 to 50 nanometers manufactured by a known method is heated in dry air to 700 to 1200 ° C. for 12 to 24 hours to oxidize the surface of the nanowire.

直径40〜50ナノメートルの窒化ガリウムナノワイヤーを用いる理由は、40ナノメートルよりも直径が小さいと、表面だけでなく内部まで酸化されたり、酸化膜が剥離するので好ましくない。直径が50ナノメートル超えると、微小サイズデバイス向きではなくなる。   The reason for using gallium nitride nanowires having a diameter of 40 to 50 nanometers is not preferable if the diameter is smaller than 40 nanometers because not only the surface but also the inside is oxidized or the oxide film is peeled off. When the diameter exceeds 50 nanometers, it is not suitable for micro-sized devices.

加熱温度は700〜1200℃の範囲である。700℃未満の温度では酸化が十分に進行せず、1200℃で酸化が十分に進行するのでこれ以上の温度に上げる必要はない。   The heating temperature is in the range of 700-1200 ° C. Oxidation does not proceed sufficiently at temperatures below 700 ° C, and oxidation proceeds sufficiently at 1200 ° C, so there is no need to raise the temperature further.

加熱時間は、12〜24時間の範囲である。24時間で十分に酸化され、12時間未満では酸化が不十分である。   The heating time is in the range of 12-24 hours. It is fully oxidized in 24 hours, and is insufficiently oxidized in less than 12 hours.

上記の条件で加熱することにより、ナノワイヤーの表面におよそ厚さ10ナノメートルの酸化ガリウム層が形成される。酸化ガリウム層が形成されたことは、X線回折のパターン
を調べることにより確認することができる。
By heating under the above conditions, a gallium oxide layer having a thickness of about 10 nanometers is formed on the surface of the nanowire. The formation of the gallium oxide layer can be confirmed by examining the X-ray diffraction pattern.

次に、実施例を示し、この出願の発明の酸化ガリウム層で被覆された窒化ガリウムナノワイヤーの製造方法についてさらに具体的に説明する。   Next, an example is shown and the manufacturing method of the gallium nitride nanowire covered with the gallium oxide layer of the invention of this application is explained more concretely.

まず、既知の方法(C.C.Tang, et al, Appl.Phys.Lett.77巻、1961頁、2000年に記載)により、ガリウム、二酸化ケイ素、アルミナに担持した酸化鉄の混合物をアンモニア気流中で950℃に加熱して六方晶系の窒化ガリウムナノワイヤーを製造した。
次に、この六方晶系窒化ガリウムナノワイヤーを管状炉に入れ、乾燥空気を200sccmの流
量で流しながら、850℃で24時間加熱した。
First, using a known method (CCTang, et al, Appl. Phys. Lett. 77, 1961, described in 2000), a mixture of gallium, silicon dioxide, and iron oxide supported on alumina was heated to 950 ° C in an ammonia stream. To produce hexagonal gallium nitride nanowires.
Next, this hexagonal gallium nitride nanowire was placed in a tubular furnace and heated at 850 ° C. for 24 hours while flowing dry air at a flow rate of 200 sccm.

図1に、窒化ガリウムナノワイヤーを空気中で850℃、24時間加熱した後のX線回折のパターンを示した。この図1から単斜晶系のβ-型酸化ガリウムの層が形成されていること
が分かる。
FIG. 1 shows an X-ray diffraction pattern after heating gallium nitride nanowires in air at 850 ° C. for 24 hours. It can be seen from FIG. 1 that a monoclinic β-type gallium oxide layer is formed.

図2に、窒化ガリウムナノワイヤーを空気中で850℃、24時間加熱した後の高分解能透
過型電子顕微鏡像の写真を示した。ナノワイヤー全体の直径が50ナノメートルで、酸化ガリウム層の厚さがおよそ10ナノメートルであることが分かる。
FIG. 2 shows a photograph of a high-resolution transmission electron microscope image after heating gallium nitride nanowires in air at 850 ° C. for 24 hours. It can be seen that the overall diameter of the nanowire is 50 nanometers and the thickness of the gallium oxide layer is approximately 10 nanometers.

この出願の発明により、窒化ガリウムナノワイヤーの表面にパッシベーション膜としての酸化ガリウム層を形成させることが可能となったので、MOS型電界効果型トランジスタ
ーへの応用の道が開ける。
The invention of this application makes it possible to form a gallium oxide layer as a passivation film on the surface of a gallium nitride nanowire, thus opening the way to application to a MOS field effect transistor.

窒化ガリウムナノワイヤーを空気中で850℃、24時間加熱した後のX線回折のパターンである。This is a pattern of X-ray diffraction after heating a gallium nitride nanowire in air at 850 ° C. for 24 hours. 窒化ガリウムナノワイヤーを空気中で850℃、24時間加熱した後の高分解能電子顕微鏡像の図面代用写真である。It is a drawing substitute photograph of the high-resolution electron microscope image after heating a gallium nitride nanowire in air at 850 degreeC for 24 hours.

Claims (1)

直径40〜50ナノメートルの窒化ガリウムナノワイヤーを乾燥空気中で700〜1200℃に12〜24時間加熱することを特徴とする酸化ガリウム層で被覆された窒化ガリウムナノワイヤー
の製造方法。

A method for producing a gallium nitride nanowire covered with a gallium oxide layer, comprising heating a gallium nitride nanowire having a diameter of 40 to 50 nanometers in dry air to 700 to 1200 ° C for 12 to 24 hours.

JP2004088041A 2004-03-24 2004-03-24 Method for producing gallium nitride nanowires coated with a gallium oxide layer Expired - Lifetime JP4025876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088041A JP4025876B2 (en) 2004-03-24 2004-03-24 Method for producing gallium nitride nanowires coated with a gallium oxide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088041A JP4025876B2 (en) 2004-03-24 2004-03-24 Method for producing gallium nitride nanowires coated with a gallium oxide layer

Publications (2)

Publication Number Publication Date
JP2005272207A true JP2005272207A (en) 2005-10-06
JP4025876B2 JP4025876B2 (en) 2007-12-26

Family

ID=35172262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088041A Expired - Lifetime JP4025876B2 (en) 2004-03-24 2004-03-24 Method for producing gallium nitride nanowires coated with a gallium oxide layer

Country Status (1)

Country Link
JP (1) JP4025876B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826308B1 (en) * 2006-07-25 2008-04-30 연세대학교 산학협력단 GaN/Ga2O3 NANO CABLES, FET USING THE NANO CABLES AND METHODES OF PRODUCING THE SAMES

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100826308B1 (en) * 2006-07-25 2008-04-30 연세대학교 산학협력단 GaN/Ga2O3 NANO CABLES, FET USING THE NANO CABLES AND METHODES OF PRODUCING THE SAMES

Also Published As

Publication number Publication date
JP4025876B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
KR101138865B1 (en) Nano wire and manufacturing method for the same
Xuan et al. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics
US20090152527A1 (en) Method for producing catalyst-free single crystal silicon nanowires, nanowires produced by the method and nanodevice comprising the nanowires
CN106558475B (en) Wafer scale single layer molybdenum disulfide film and preparation method thereof
JP2006239857A (en) Silicon nano-wire, semiconductor element including silicon nano-wire, and method for manufacturing silicon nano-wire
TWI559374B (en) Carbon layer and method of manufacture
CN101117208A (en) Method for preparation of one-dimensional silicon nanostructure
JP2007186413A5 (en)
CN101941696A (en) Nanolithographic method applied to manufacture of graphene-based field effect tube
JP4025876B2 (en) Method for producing gallium nitride nanowires coated with a gallium oxide layer
Chiew et al. Formation and characterization of SiOx nanowires and Si/SiOx core-shell nanowires via carbon-assisted growth
He et al. Laser induced oxidation and optical properties of stoichiometric and non-stoichiometric Bi 2 Te 3 nanoplates
CN109368605A (en) A kind of preparation method of tellurium nano-wire material, tellurium nano-wire material and device
Harada et al. A versatile patterning process based on easily soluble sacrificial bilayers
Kwon et al. Fabrication and properties of pn diodes with hybrid 2D layers: Graphene/MoS2
Lim et al. Monolayer MoS 2 growth at the Au–SiO 2 interface
CN102290333A (en) Method for forming gate oxide medium applied to graphene-based device
Kim et al. Hybrid nanofabrication processes utilizing diblock copolymer nanotemplate prepared by self-assembled monolayer based surface neutralization
Krylyuk et al. Rapid thermal oxidation of silicon nanowires
Sharma et al. Ordered arrays of Ag nanoparticles grown by constrained self-organization
Lehnert et al. Graphene on silicon dioxide via carbon ion implantation in copper with PMMA-free transfer
JP4025869B2 (en) Gallium oxide nanowire and manufacturing method thereof
Murakami et al. Synthesis of graphene nanoribbons from amyloid templates by gallium vapor-assisted solid-phase graphitization
JP2005112701A (en) Method of producing silicon nano-wire
Pan et al. Behind the quantum and size effects: broken-bond-induced local strain and skin-depth densified quantum trapping of charge and energy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350