KR100811912B1 - High Strength Cr-Mo alloy steel for the high temperature vacuum carburizing - Google Patents

High Strength Cr-Mo alloy steel for the high temperature vacuum carburizing Download PDF

Info

Publication number
KR100811912B1
KR100811912B1 KR1020060066080A KR20060066080A KR100811912B1 KR 100811912 B1 KR100811912 B1 KR 100811912B1 KR 1020060066080 A KR1020060066080 A KR 1020060066080A KR 20060066080 A KR20060066080 A KR 20060066080A KR 100811912 B1 KR100811912 B1 KR 100811912B1
Authority
KR
South Korea
Prior art keywords
chromium
alloy steel
weight
vacuum carburizing
carburizing
Prior art date
Application number
KR1020060066080A
Other languages
Korean (ko)
Other versions
KR20080006839A (en
Inventor
조봉래
노현우
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020060066080A priority Critical patent/KR100811912B1/en
Publication of KR20080006839A publication Critical patent/KR20080006839A/en
Application granted granted Critical
Publication of KR100811912B1 publication Critical patent/KR100811912B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

본 발명은 고온 진공침탄용 고강도 크롬-몰리브덴 합금강에 관한 것으로서, 더욱 상세하게는 기존 침탄과 달리 진공침탄에서 얻을 수 있는 장점을 최대화시킬 목적으로 진공침탄에 적합한 진공침탄 전용 고강도 크롬-몰리브덴 합금강에 관한 것이다.The present invention relates to a high-strength chromium-molybdenum alloy steel for high temperature vacuum carburizing, and more particularly, to a high-strength chromium-molybdenum alloy steel for vacuum carburizing suitable for vacuum carburizing for the purpose of maximizing the advantages obtained in vacuum carburizing, unlike conventional carburizing. will be.

이를 위해, 본 발명은 철(Fe)를 주성분으로 하고, 여기에 탄소(C) 0.22∼0.24 중량%, 실리콘(Si) 0.70∼0.90 중량%, 망간(Mn) 0.50∼0.80 중량%, 인(P) 0.030 중량%, 황(S) 0.020 중량%, 크롬(Cr) 1.90∼2.20 중량%, 몰리브덴(Mo) 0.20∼0.40 중량%, 티타늄(Ti) 0.008∼0.012 중량%, 니오븀(Nb) 20∼40 ppm, 질소(N2) 70∼120ppm, 합금계 성분에 합금의 청정도를 위해 용존산소량 15ppm이 함유되어 이루어진 것을 특징으로 하는 고온 진공침탄용 고강도 크롬-몰리브덴 합금강을 제공한다.To this end, the present invention has iron (Fe) as a main component, carbon (C) 0.22 to 0.24% by weight, silicon (Si) 0.70 to 0.90% by weight, manganese (Mn) 0.50 to 0.80% by weight, phosphorus (P) ) 0.030 wt%, sulfur (S) 0.020 wt%, chromium (Cr) 1.90-2.20 wt%, molybdenum (Mo) 0.20-0.40 wt%, titanium (Ti) 0.008-0.012 wt%, niobium (Nb) 20-40 It provides a high-strength chromium-molybdenum alloy steel for high-temperature vacuum carburizing, characterized in that the dissolved oxygen amount of 15ppm ppm, nitrogen (N 2 ) 70-120ppm, alloy-based components for the cleanliness of the alloy.

진공침탄, 고강도 크롬-몰리브덴 합금강, 변속기, 기어 Vacuum carburizing, high strength chromium-molybdenum alloy steel, transmission, gears

Description

고온 진공침탄용 고강도 크롬-몰리브덴 합금강{High Strength Cr-Mo alloy steel for the high temperature vacuum carburizing}High Strength Cr-Mo alloy steel for the high temperature vacuum carburizing}

도 1은 기존의 자동차 변속기용 기어 및 샤프트를 제조하는 과정을 설명하는 공정도.1 is a process diagram illustrating a process of manufacturing a gear and shaft for a conventional vehicle transmission.

본 발명은 고온 진공침탄용 고강도 크롬-몰리브덴 합금강에 관한 것으로서, 더욱 상세하게는 기존 침탄과 달리 진공침탄에서 얻을 수 있는 장점을 최대화시킬 목적으로 진공침탄에 적합한 진공침탄 전용 고강도 크롬-몰리브덴 합금강에 관한 것이다.The present invention relates to a high-strength chromium-molybdenum alloy steel for high temperature vacuum carburizing, and more particularly, to a high-strength chromium-molybdenum alloy steel for vacuum carburizing suitable for vacuum carburizing for the purpose of maximizing the advantages obtained in vacuum carburizing, unlike conventional carburizing. will be.

최근, 자동차 엔진의 고성능, 고출력화 추세에 맞추어 변속기 부품의 내구성 확보가 큰 과제의 하나로 대두되고 있으며, 변속기의 내구성을 개선하기 위해서는 우선 주요 구성원소인 기어류의 내구성 개선이 선결과제이다.Recently, in accordance with the trend of high performance and high output of automotive engines, securing durability of transmission parts has emerged as one of the major challenges. To improve the durability of transmission, improvement of durability of gears, which is a major member, is the first priority.

일반적으로, 변속기 기어류는 내구성 향상을 위해 표면경화처리를 실시해서 사용하는 바, 현재 많이 상용되고 있는 열처리는 일반 가스(gas) 침탄 열처리법이며, 이는 표면에 내구성을 저하시키는 표면 이상층 및 비소입층이 15~25㎛ 생성되고, 제조 공정상에서도 이산화탄소의 발생, 염욕 또는 오일(oil) 사용 등 환경친화추세에 벗어나는 요소들이 잠재되어 있다.In general, transmission gears are used by performing surface hardening treatment to improve durability. Currently, heat treatment that is commonly used is general gas carburizing heat treatment. Particles are formed at 15 to 25 μm, and there are potential elements that deviate from environmentally friendly trends such as generation of carbon dioxide, salt bath or oil in the manufacturing process.

따라서, 이러한 가스(gas) 침탄의 문제에 대응할 새로운 열처리법의 개발이 요구되는데, 이중의 하나가 진공침탄법이다.Therefore, development of a new heat treatment method to cope with the problem of gas carburization is required, one of which is the vacuum carburization method.

상기 진공침탄법은 진공분위기에서 침탄을 실시하고, 고압의 가스(gas)로 소입을 시키는 새로운 열처리 방법으로, 표면이상층이 생성되지 않아 내구성(내피로성 및 내마모성)이 획기적으로 향상되며, 침탄시 이산화탄소 발생이 거의 없고, 퀀칭 매체로 주로 가스를 사용하며, 또한 폐유/폐수처리 등이 거의 없어 친환경적이며, 이물질 제거를 위한 쇼트 등 후공정이 필요없어 생산 시간을 단축 시킬 수 있는 새로운 침탄법으로 알려져 있다.The vacuum carburizing method is a new heat treatment method for carburizing in a vacuum atmosphere and quenching with a high pressure gas, and since the surface abnormality layer is not generated, durability (fatigue resistance and abrasion resistance) is dramatically improved, and when carburizing It is known as a new carburizing method that can reduce production time because it does not generate carbon dioxide, mainly use gas as a quenching medium, and has little waste oil / waste water treatment, and it is eco-friendly. have.

이러한 이유로, 상기 진공침탄법이 유럽 및 미국의 일부 자동차 회사에서 적용하고 있으며, 일본의 자동차 회사를 중심으로 활발한 개발이 진행되고 있다.For this reason, the vacuum carburizing method is applied by some automobile companies in Europe and the United States, and active development is being carried out mainly in Japanese automobile companies.

통상, 자동차용 변속기 기어류는 첨부한 도 1과 같은 제조공정을 통해 제조되고 있으며, 여기서 침탄은 주로 일반 가스 침탄열처리를 의미한다.Typically, transmission gears for automobiles are manufactured through a manufacturing process as shown in FIG. 1, wherein carburization mainly refers to general gas carburization heat treatment.

상용되고 있는 변속기 기어용 합금강을 일반 가스 침탄 대신 진공침탄으로 대체시, 소입시 예측 가능한 열변형 특성 등으로 인해 NVH(Noise, Vibration, Harshness) 성능의 향상도 도모할 수 있고, 공정 자체가 환경친화적이므로 향후 환경 법규에의 대응도 가능한 잇점이 있다.When commercially available alloy steel for transmission gears is replaced by vacuum carburization instead of general gas carburization, the thermal deformation characteristics that can be predicted during quenching can improve NVH (Noise, Vibration, Harshness) performance, and the process itself is environmentally friendly. Therefore, there is an advantage that it is possible to respond to environmental regulations in the future.

그러나, 부품의 내구성은 반드시 향상된다고 말할 수 없는데, 그 이유는 침탄방법 및 소입시 냉각속도 차이에 따른 표면 잔류 응력 분포의 차이 등이 거론되고 있으나, 그 확실한 이유는 아직 알려져 있지 않다.However, the durability of the parts cannot be said to be necessarily improved, because the difference in the surface residual stress distribution according to the carburizing method and the cooling rate difference during the hardening is mentioned, but the obvious reason is not known yet.

하지만, 진공침탄에 적합한 전용소재를 개발할 경우, 위에서 언급된 진공침탄의 장점을 살리고, 또한 내구성도 높일 수 있을 것으로 확신된다.However, if the development of a dedicated material suitable for vacuum carburizing, it is possible to take advantage of the above-mentioned vacuum carburizing and to increase the durability.

또한, 현재 개발된 진공침탄로가 모두 고온침탄이 가능하기 때문에 진공침탄 전용소재가 고온에서 처리될 수 있도록 개발되면 침탄시간 단축에 의한 생산성 향상도 가능해 그 파급효과는 배가될 것으로 판단된다.In addition, since all of the vacuum carburizing furnaces developed at this time can be subjected to high temperature carburizing, if the vacuum carburizing material is developed to be processed at a high temperature, it is possible to improve productivity by shortening the carburizing time, and the ripple effect will be doubled.

이에, 본 발명은 진공침탄은 진공의 무산화분위기에서 침탄이 일어나므로 합금원소 설계시 물성향상에 유익한 원소임에도 불구하고, 기존 침탄에서는 사용이 제한되었던 원소들을 이용할 수 있으며, 그 원소가 주로 크롬과 실리콘인 점을 감안하여, 크롬과 실리콘 함량을 적극적으로 채용함과 함께 1050℃ 고온침탄이 가능하도록 Ti와 Nb도 복합 첨가하여, 기존 Cr-Mo합금강의 구성 원소들을 기초로 진공침탄에 적합하도록 합금설계함으로써, 1050℃의 고온에서도 결정립 조대화없이 침탄 가능한 진공침탄 전용소재이면서 환경친화적 침탄열처리법으로 확대적용 예상되는 진공침탄법에 적합한 전용 합금강으로서 고온 진공침탄용 고강도 크롬-몰리브덴 합금강을 제공하는데 그 목적이 있다.Therefore, in the present invention, vacuum carburization is an element that is limited to use in the conventional carburization, although the carburization occurs in an anhydrous atmosphere of vacuum, although it is a beneficial element in the physical property improvement when designing alloy elements, the element is mainly chromium and Considering the fact that it is silicon, it is actively adopting the content of chromium and silicon, and combined with Ti and Nb to enable high-temperature carburizing at 1050 ℃, and is suitable for vacuum carburizing based on the constituent elements of existing Cr-Mo alloy steel. Designed to provide high strength chromium-molybdenum alloy steel for high temperature vacuum carburizing as an exclusive alloy steel suitable for the vacuum carburizing method, which is a vacuum carburizing material that can be carburized without grain coarsening even at a high temperature of 1050 ° C, and is suitable for the vacuum carburizing method that is expected. There is a purpose.

상기한 목적을 달성하기 위한 본 발명은 철(Fe)를 주성분으로 하고, 여기에 탄소(C) 0.22∼0.24 중량%, 실리콘(Si) 0.70∼0.90 중량%, 망간(Mn) 0.50∼0.80 중량%, 인(P) 0.030 중량%, 황(S) 0.020 중량%, 크롬(Cr) 1.90∼2.20 중량%, 몰리브덴(Mo) 0.20∼0.40 중량%, 티타늄(Ti) 0.008∼0.012 중량%, 니오븀(Nb) 20∼40 ppm, 질소(N2) 70∼120ppm, 합금계 성분에 합금의 청정도를 위해 용존산소량 15ppm이 함유되어 이루어진 것을 특징으로 하는 고온 진공침탄용 고강도 크롬-몰리브덴 합금강을 제공한다.The present invention for achieving the above object is iron (Fe) as a main component, carbon (C) 0.22 to 0.24% by weight, silicon (Si) 0.70 to 0.90% by weight, manganese (Mn) 0.50 to 0.80% by weight , Phosphorus (P) 0.030 wt%, sulfur (S) 0.020 wt%, chromium (Cr) 1.90 to 2.20 wt%, molybdenum (Mo) 0.20 to 0.40 wt%, titanium (Ti) 0.008 to 0.012 wt%, niobium (Nb) ) 20 to 40 ppm, nitrogen (N 2 ) 70 to 120ppm, alloy-based components to provide a high-strength chromium-molybdenum alloy steel for high temperature vacuum carburizing, characterized in that the dissolved oxygen content of 15ppm contained for the cleanliness of the alloy.

이하, 본 발명을 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명에 따른 크롬-몰리브덴 합금강의 합금계 성분은 하기의 표 1에 비교강1 및 비교강 2와 함께 기재된 바와 같다.Alloy-based components of the chromium-molybdenum alloy steel according to the present invention are as described with Comparative Steel 1 and Comparative Steel 2 in Table 1 below.

Figure 112007060708912-pat00005
Figure 112007060708912-pat00005

위의 표 1에서 보는 바와 같이, 본 발명의 크롬-몰리브덴 합금강은 기존의 크롬-몰리브덴 합금강(SCM920HVSi) 및 니켈-크롬-몰리브덴 합금강(SNCM518H)과 달리, 철(Fe)를 주성분으로 하고, 여기에 탄소(C) 0.22∼0.24 중량%, 실리콘(Si) 0.70∼0.90 중량%, 망간(Mn) 0.50∼0.80 중량%, 인(P) 0.030 중량%, 황(S) 0.020 중량%, 크롬(Cr) 1.90∼2.20 중량%, 몰리브덴(Mo) 0.20∼0.40 중량%, 티타늄(Ti) 0.008∼0.012 중량%, 니오븀(Nb) 20∼40 ppm, 질소(N2) 70∼120ppm, 합금계 성분에 합금의 청정도를 위해(불순물 함량을 줄이기 위해) 용존산소량을 15ppm이 함유된 것을 특징으로 한다.As shown in Table 1, the chromium-molybdenum alloy steel of the present invention, unlike conventional chromium-molybdenum alloy steel (SCM920HVSi) and nickel-chromium-molybdenum alloy steel (SNCM518H), the iron (Fe) as a main component, 0.22 to 0.24 wt% of carbon (C), 0.70 to 0.90 wt% of silicon (Si), 0.50 to 0.80 wt% of manganese (Mn), 0.030 wt% of phosphorus (P), 0.020 wt% of sulfur (S), and chromium (Cr) 1.90 to 2.20 wt%, molybdenum (Mo) 0.20 to 0.40 wt%, titanium (Ti) 0.008 to 0.012 wt%, niobium (Nb) 20 to 40 ppm, nitrogen (N 2 ) 70 to 120 ppm, alloy-based components of the alloy For cleanliness (to reduce the impurity content) is characterized in that the dissolved oxygen content of 15ppm.

본 발명의 크롬-몰리브덴 합금강은 가공성을 향상시키기 위하여, 니켈을 첨가하지 않았으며, 피로강도, 비틀림 피로 강도, 접촉피로특성(내피팅성) 등이 기존 합금강 대비 획기적으로 향상되도록 화학성분을 크게 조절하였다.In order to improve the workability, the chromium-molybdenum alloy steel of the present invention was not added with nickel, and the chemical composition was greatly controlled so that fatigue strength, torsional fatigue strength, contact fatigue properties (fitting resistance), and the like were significantly improved compared to conventional alloy steels. It was.

고온침탄 안정화를 위해 미세석출물 원소를 복합 첨가했으며, 또한 소입성 조정 및 원가절감측면에서 비싼 원소인 Mo함량은 조금 줄였다.In order to stabilize the high-temperature carburization, a fine precipitate element was added in combination, and Mo content, which is an expensive element, was slightly reduced in terms of quenchability control and cost reduction.

본 발명의 크롬-몰리브덴 합금강에 첨가되는 크롬과 실리콘은 연화저항성을 매우 향상시키기 때문에 장시간 사용후 발생되는 기어 표면 손상형태인 치면피팅 발생을 최소화해 자동차 보증연한을 늘릴 수 있는 큰 장점을 제공하지만, 크롬과 실리콘이 자동차 기어의 물성 향상에 매우 유효한 원소들임에도 불구하고 사용이 제한되었던 이유는 침탄시 입계산화층을 매우 잘 만드는 원소였기 때문이다.Since chromium and silicon added to the chromium-molybdenum alloy steel of the present invention greatly improve the softening resistance, it minimizes the occurrence of tooth surface fitting, which is a form of damage to the gear surface that occurs after a long time of use, thereby providing a great advantage to increase the vehicle warranty life. Despite the fact that chromium and silicon are very effective elements for improving the properties of automobile gears, their use was limited because they were very good at making intergranular oxide layers during carburization.

그러나, 본 발명의 크롬-몰리브덴 합금강은 무산화분위기 침탄공정인 진공침탄법에 적용되므로, 크롬 및 실리콘을 입계산화층에 대한 우려없이 피로강도와 연화저항성에 최적합한 함량을 투입할 수 있다.However, since the chromium-molybdenum alloy steel of the present invention is applied to the vacuum carburizing method, which is an oxidation-free atmosphere carburizing process, it is possible to input chromium and silicon in a content suitable for fatigue strength and softening resistance without concern for grain boundary oxide layer.

본 발명의 주요 구성원소 및 그 함량의 한정 이유에 대해 더욱 상세하게 설명하면 다음과 같다.Referring to the main members of the present invention and the reason for limitation of the content in more detail as follows.

1) 탄소(C): 0.22∼0.24 중량%1) Carbon (C): 0.22 to 0.24 wt%

원하는 심부경도를 HV 440 내지 495 정도로 얻기 위하여 적어도 0.22중량%의 첨가가 필요하며, 0.24중량%를 넘어서는 경우 심부경도가 너무 증가하여 담금질후에 표면의 압축잔류응력을 충분히 도입을 할 수 없으므로, 탄소의 함량은 0.22∼0.24 중량%로 한정한다.At least 0.22% by weight is required in order to obtain the desired core hardness from about 440 to 495, and when it exceeds 0.24% by weight, the core hardness is increased so that the compressive residual stress on the surface cannot be sufficiently introduced after quenching. The content is limited to 0.22 to 0.24 wt%.

2) 실리콘(Si): 0.70∼0.90 중량%2) Silicon (Si): 0.70 to 0.90 wt%

실리콘은 기지에 고용되어 피로강도향상에 도움이 되고, 템퍼링(tempering)시 연화 저항성을 크게 향상시켜 접촉피로특성(내피팅성)을 현저히 높일 수 있는 성분으로서, 함유량이 0.70 중량% 미만일 경우 연화 저항성이 커지지 않으며, 반면에 0.90 중량%를 넘어서는 경우 기지의 고용강화효과가 너무 커서 성형성을 극히 떨어뜨려 단조 및 가공을 어렵게 하므로, 0.70∼0.90 중량%로 한정하는 것이 좋다.Silicon is used in the base to help improve the fatigue strength and greatly improve the softening resistance during tempering, thereby significantly increasing the contact fatigue property (fitting resistance). If the content is less than 0.70% by weight, softening resistance If it does not become large, on the other hand, if it exceeds 0.90% by weight, the solid solution strengthening effect of the base is so large that the moldability is extremely reduced, so that forging and processing are difficult, it is preferable to limit it to 0.70 to 0.90% by weight.

3) 망간(Mn): 0.50∼0.80 중량%3) Manganese (Mn): 0.50 to 0.80 wt%

강의 담금질성을 보장하기 위하여 적어도 0.50중량%의 양이 첨가되어야 한다. 그러나, Mn은 입자계 산화발생을 일으키기 쉬우므로, 이를 감소시키기 위하여 0.80중량%를 넘지 않아야 한다. An amount of at least 0.50% by weight should be added to ensure hardenability of the steel. However, Mn is susceptible to particle oxidation, and should not exceed 0.80% by weight in order to reduce it.

4) 인(P): 0.030 중량%4) Phosphorus (P): 0.030 wt%

통상 크롬-몰리브덴 합금강과 같이 유해하지 않는 범위 내에서 그 함량을 0.03 중량%로 관리하는 것이 좋다.In general, it is preferable to control the content to 0.03% by weight within a non-hazardous range such as chromium-molybdenum alloy steel.

5) 황(S): 0.020 중량% 5) Sulfur (S): 0.020 wt%

통상 크롬-몰리브덴 합금강 보다 유해하지 않는 범위 내에서 0.02 중량%로 관리하는 것이 좋다.In general, it is preferable to control the amount by 0.02% by weight within a range that is not more harmful than chromium-molybdenum alloy steel.

6) 크롬(Cr): 1.90∼2.20 중량%6) Chromium (Cr): 1.90 to 2.20 wt%

진공침탄 전용 목적 및 피로강도 개선목적의 합금설계를 위한 성분으로서, 크롬은 강의 소입성 향상에 매우 유효한 원소로서, 심부 경도를 높여 굽힘 피로강도 향상에 매우 유용하고, 안정된 미세탄화물을 잘 만들어 침탄을 촉진시키며 침탄을 적합하게끔 만들며, 또한 템퍼링(tempering)시 연화저항성을 크게 향상시켜 특히 접촉피로특성(내피팅성)을 현저히 높이는 성분으로서, 함유량이 1.90 중량% 미만일 경우 통상 고강도 크롬-몰리브덴 합금강의 소입성 대비 현저한 차이가 나지 않아 피로강도 물성향상이 크지 않고, 또한 템퍼링시 연화저항성이 현저히 커지지 않아 접촉피로특성 개선이 미흡하며, 반면에 2.20 중량%를 넘어서는 경우 다량의 미세 탄화물 석출로 가공 및 단조성형성이 급격히 떨어지는 문제가 발생하므로, 1.90∼2.20 중량%로 한정한다.As a component for alloy design for the purpose of vacuum carburizing and improving fatigue strength, chromium is a very effective element for improving the hardenability of steel. It is very useful for improving the bending fatigue strength by increasing the core hardness. It promotes and makes carburizing suitable, and also greatly improves softening resistance during tempering, and significantly improves contact fatigue characteristics (fitting resistance). When the content is less than 1.90% by weight, it is usually small in high strength chromium-molybdenum alloy steel. No significant difference compared to the grain size, the fatigue strength property improvement is not large, and the softening resistance is not significantly increased during tempering, so that the contact fatigue property is insufficient. On the other hand, when it exceeds 2.20% by weight, it is processed and forged by a large amount of fine carbide precipitation. Since the problem of rapid dropping of the formation occurs, it is limited to 1.90 to 2.20% by weight.

7) 몰리브덴(Mo): 0.20∼0.40 중량%7) Molybdenum (Mo): 0.20 to 0.40 wt%

몰리브덴(Mo)의 첨가 목적은 크롬 함량이 많아짐에 따른 다량의 유해 탄화물 형성을 방지해 인성을 높이는(취성을 줄이기 위해서) 것과, 소입성을 적절히 맞추어 진공 침탄후 가스냉각시에도 원하는 미세조직을 얻기 위함이며, 일반적으로 진공침탄후 가스냉각방식은 기존의 오일소입이나, 염욕소입 대비 냉각속도가 낮아 소재의 경화능이 낮게 나와 심부경도가 낮게 나오는 문제가 있다. The purpose of adding Molybdenum (Mo) is to prevent formation of a large amount of harmful carbides due to the increase in chromium content, to increase toughness (to reduce embrittlement), and to obtain a desired microstructure during gas cooling after vacuum carburizing by properly adjusting the hardenability. In general, the gas cooling method after vacuum carburizing has a problem that the hardening ability of the material is low due to low cooling rate compared to conventional oil quenching or salt bath quenching, and thus has a low core hardness.

이에, 몰리브덴(Mo)은 통상 고강도 크롬-몰리브덴 합금강 보다는 작은 0.20∼0.40 중량%를 함유하도록 하여 원가절감이 가능하다.Thus, molybdenum (Mo) is usually contained 0.20 ~ 0.40% by weight less than the high-strength chromium-molybdenum alloy steel it is possible to reduce the cost.

8) 티타늄(Ti), 니오븀(Nb), 질소8) Titanium (Ti), Niobium (Nb), Nitrogen

본 발명의 크롬-몰리브덴 합금강은 고온침탄시 결정립 조대화를 방지하기 위해(GCT를 높이기 위해) 결정립 미세화를 촉진시킬 수 있는 원소인 Ti 및 Nb를 복합 첨가하였다. In the chromium-molybdenum alloy steel of the present invention, in order to prevent grain coarsening during high temperature carburization (to increase GCT), Ti and Nb, which are elements capable of promoting grain refinement, are added.

고온에서 결정립 성장을 막기 위해서는 고온에서 안정한 미세 석출물이 많이 그리고 고르게 분포해 있어야 하는데, 티타늄(Ti)은 TiN 석출물을 만들어 결정립 미세화를 효과적으로 만드는 원소로서 그 효과는 매우 탁월하고, 니오븀(Nb)의 경우도 NbN이나, 다량의 Nb(CN) 등을 만들어 결정립 미세화를 효과적으로 만드는 원소이며, 티타늄(Ti) 함량이 적절히 관리되면 기타 니오븀(Nb) 등의 원소 첨가가 불필요하나, 본 발명에서 니오븀(Nb)를 복합 첨가한 이유는 적절한 티타늄(Ti)함량을 찾기가 매우 어려워, 안정적으로 고온 안정 미세석출물을 얻기 위함이다.In order to prevent grain growth at high temperature, a lot of fine precipitates that are stable at high temperature should be distributed evenly. Titanium (Ti) is an element that makes TiN precipitates and effectively makes grain refinement, and the effect is very excellent, and in case of niobium (Nb) NbN or a large amount of Nb (CN) is an element that effectively makes grain refinement, and if the titanium (Ti) content is properly managed, other niobium (Nb) and other elements need not be added, but in the present invention niobium (Nb) The reason for the complex addition is that it is very difficult to find a suitable titanium (Ti) content, so as to obtain a stable high temperature stable fine precipitate.

따라서, 본 발명의 크롬-몰리브덴 합금강에는 티타늄(Ti) 0.008∼0.012 중량%, 니오븀(Nb) 20∼40 ppm, 그리고 적정량의 TiN 석출을 위해 질소 함량은 70∼120ppm 첨가하였다.Therefore, the chromium-molybdenum alloy steel of the present invention was added in an amount of 0.008 to 0.012% by weight of titanium (Ti), 20 to 40 ppm of niobium (Nb), and 70 to 120 ppm of nitrogen for an appropriate amount of TiN precipitation.

이때, 티타늄(Ti)은 합금강내에서 미세한 탄화물(주로 TiN)을 만들어 결정립을 미세화시키는 원소로서, 그 함량이 0.008 중량% 미만일 경우는 그 효과가 크지 않으며, 0.012 중량%를 넘어서는 경우는 탄화물이 결정입계에 과다 석출 또는 크게 석출해 취성이 커질 뿐만 아니라 결정립 미세화 효과가 떨어지는 문제가 발생하므로, 0.008∼0.012 중량%로 한정한다.At this time, titanium (Ti) is an element that makes fine carbide (mainly TiN) in the alloy steel to refine the crystal grains, the effect is not great when the content is less than 0.008% by weight, the carbide is determined when it exceeds 0.012% by weight Excessive precipitation or large precipitation at grain boundaries not only increases the brittleness but also lowers the grain refining effect, so it is limited to 0.008 to 0.012 wt%.

니오븀(Nb)도 티타늄(Ti)과 마찬가지로 합금강내에서 미세한 니오비윰 탄, 질화물을 만들어 결정립 조대화를 막아주는 원소로서 그 함량이 20ppm 미만일 경우는 그 효과가 크지 않으며, 40ppm 을 넘어서는 경우는 탄화물이 결정입계에 과다 석출해 취성이 커지는 문제가 발생하므로, 20∼40 ppm으로 한정한다.Niobium (Nb), like titanium (Ti), is an element that prevents grain coarsening by making fine niobium carbon and nitride in alloy steel. If the content is less than 20ppm, the effect is not significant. The problem of excessive precipitation at this grain boundary resulting in increased brittleness is limited to 20 to 40 ppm.

이하, 본 발명의 실시예를 비교예와 함께 더욱 상세하게 설명하겠는 바, 본 발명이 하기의 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the embodiment of the present invention will be described in more detail with a comparative example, but the present invention is not limited by the following examples.

실시예Example

철(Fe)를 주성분으로 하고, 여기에 탄소(C) 0.22∼0.24 중량%, 실리콘(Si) 0.70∼0.90 중량%, 망간(Mn) 0.50∼0.80 중량%, 인(P) 0.030 중량%, 황(S) 0.020 중량%, 크롬(Cr) 1.90∼2.20 중량%, 몰리브덴(Mo) 0.20∼0.40 중량%, 티타늄(Ti) 0.008∼0.012 중량%, 니오븀(Nb) 20∼40 ppm, 질소(N2) 70∼120ppm, 합금계 성분에 합금의 청정도를 위해 용존산소량을 15ppm이 함유된 크롬-몰리브덴 합금강 소재를 1050℃에서 40분 동안 침탄하고, 20분 동안 가스 소입시킨 다음, 170℃에서 2시간 동안 템퍼링을 실시하여 시편으로 제작하였다.Iron (Fe) as the main component, carbon (C) 0.22 to 0.24% by weight, silicon (Si) 0.70 to 0.90% by weight, manganese (Mn) 0.50 to 0.80% by weight, phosphorus (P) 0.030% by weight, sulfur (S) 0.020 wt%, Chromium (Cr) 1.90-2.20 wt%, Molybdenum (Mo) 0.20-0.40 wt%, Titanium (Ti) 0.008-0.012 wt%, Niobium (Nb) 20-40 ppm, Nitrogen (N 2 ) 70-120ppm, chromium-molybdenum alloy steel material containing 15ppm of dissolved oxygen in the alloy components for carburizing, carburizing at 1050 ℃ for 40 minutes, gas quenching for 20 minutes, and then at 170 ℃ for 2 hours Tempering was performed to prepare a specimen.

비교예1Comparative Example 1

비교예1에 따른 크롬-몰리브덴 합금강(SCM920HVSi)은 본원 출원인의 대표적 고강도 변속기 기어용강으로서, 중량%로 탄소(C) 0.17∼0.21, 실리콘(Si) 0.15 이하, 망간(Mn) 0.60∼0.85, 인(P) 0.020이하, 황(S) 0.030 이하, 크롬(Cr) 1.25∼1.45, 몰리브덴(Mo) 0.55∼0.65, 니오븀(Nb) 15∼35ppm, 용존산소량 15ppm 이하를 첨가한 크롬-몰리브덴 합금강 소재를 900℃에서 2시간 동안 침탄하고, 염욕에서 220℃로 솔트(salt) 소입시킨 다음, 170℃에서 2시간 동안 템퍼링을 실시하여 시편으로 제작하였다.Chromium-molybdenum alloy steel (SCM920HVSi) according to Comparative Example 1 is the representative high strength transmission gear steel of the applicant of the present application, by weight% of carbon (C) 0.17 to 0.21, silicon (Si) 0.15 or less, manganese (Mn) 0.60 to 0.85, phosphorus (P) 0.020 or less sulfur (S) 0.030 or less, chromium (Cr) 1.25 to 1.45, molybdenum (Mo) 0.55 to 0.65, niobium (Nb) 15 to 35 ppm, dissolved oxygen of 15 ppm or less added chromium-molybdenum alloy steel material Carburized at 900 ° C for 2 hours, salt quenched at 220 ° C in a salt bath, and then tempered at 170 ° C for 2 hours to prepare a specimen.

비교예2Comparative Example 2

비교예2에 따른 니켈-크롬-몰리브덴 합금강(SNCM518H)은 일본 미쯔비시제강의 대표적 고강도 변속기 기어용강으로서, 중량%로 탄소(C) 0.15∼0.18, 실리콘(Si) 0.15 이하, 망간(Mn) 0.60∼0.85, 인(P) 0.025 이하, 황(S) 0.01∼0.02, 니켈(Ni) 1.55∼1.65, 크롬(Cr) 0.50∼0.65, 몰리브덴(Mo) 0.55∼0.65, 니오븀(Nb) 15∼35ppm, 용존산소량 15ppm을 첨가한 니켈-크롬-몰리브덴 합금강 소재를 900℃에서 2시간 동안 침탄하고, 염욕에서 220℃로 솔트(salt) 소입시킨 다음, 170℃에서 2시간 동안 템퍼링을 실시하여 시편으로 제작하였다.Nickel-chromium-molybdenum alloy steel (SNCM518H) according to Comparative Example 2 is a representative high-strength transmission gear steel made by Mitsubishi Steel, Japan, in terms of weight% of carbon (C) of 0.15 to 0.18, silicon (Si) of 0.15 or less, and manganese (Mn) of 0.60 to 0.85, phosphorus (P) 0.025 or less, sulfur (S) 0.01 to 0.02, nickel (Ni) 1.55 to 1.65, chromium (Cr) 0.50 to 0.65, molybdenum (Mo) 0.55 to 0.65, niobium (Nb) 15 to 35 ppm, dissolved Nickel-chromium-molybdenum alloy steel material to which oxygen content of 15 ppm was added was carburized at 900 ° C. for 2 hours, salt quenched at 220 ° C. in a salt bath, and then tempered at 170 ° C. for 2 hours to prepare a specimen.

시험예1Test Example 1

실시예 및 비교예1-2에 대한 경도 측정 및 피로시험, 충격시험, 접촉피로시험, 비틀림 피로시험을 하기의 표 2에 기재된 각주에 설명된 바와 같이 실시하였는 바, 그 물성치 결과는 표 2에 기재된 바와 같다.The hardness measurement and the fatigue test, the impact test, the contact fatigue test and the torsion fatigue test for Examples and Comparative Examples 1-2 were carried out as described in the footnotes described in Table 2 below. As described.

Figure 112006050257425-pat00002
Figure 112006050257425-pat00002

위의 표 2에서 보는 바와 같이, 본 발명에 따른 크롬-몰리브덴 합금강이 기존 고강도 Cr-Mo계 합금강보다 현저하게 물성 향상이 있는 것으로 나타났으며, 1050℃ 고온에서 침탄열처리를 실시했음에도 불구하고, 미세한 결정립 분포를 나타내었으며, 피로특성 또한 현저한 상승 결과를 나타냄을 알 수 있었다.As shown in Table 2 above, the chromium-molybdenum alloy steel according to the present invention was found to have a significant improvement in physical properties compared to the existing high strength Cr-Mo alloy steel, despite the fine carburizing heat treatment at 1050 ℃ high temperature, The grain distribution was shown, and the fatigue characteristics also showed a significant increase.

특히, 접촉피로한 및 비틀림피로한은 합금설계에 부응해 획기적인 상승을 나타냄을 알 수 있었다.In particular, it was found that the contact fatigue and the torsion fatigue showed a significant increase in response to the alloy design.

시험예2Test Example 2

실시예 및 비교예1,2에 따른 합금강에 대하여, 1050℃ 고온 침탄 가능성을 재확인하기 위해 결정립 조대화가 일어나는 온도(GCT)를 비교 평가해 보았는 바, 그 결과는 다음의 표 3에 도시된 바와 같다.For the alloy steels according to Examples and Comparative Examples 1 and 2, a comparative evaluation of the temperature (GCT) at which grain coarsening takes place was carried out to reconfirm the possibility of high temperature carburizing at 1050 ° C., and the results are shown in Table 3 below. same.

Figure 112006050257425-pat00003
Figure 112006050257425-pat00003

위의 표 3에서 보는 바와 같이, 본 발명의 합금강이 기존 고강도 Cr-Mo계 합금강에 비해 고온 결정립 조대화 온도가 현저히 높아짐을 확인할 수 있었다.As shown in Table 3 above, the alloy steel of the present invention was confirmed that the high temperature grain coarsening temperature is significantly higher than the existing high strength Cr-Mo alloy steel.

즉, 기존 고강도 Cr-Mo 계 합금강은 GCT가 1000℃ 이하로 1050℃ 침탄이 불가한데 비해, 본 발명의 합금강은 GCT가 1100℃ 이상으로 1050℃ 이상의 침탄이 가능함을 알 수 있었다.That is, the existing high-strength Cr-Mo alloy steels can not be carburized at 1050 ℃ with a GCT of 1000 ℃ or less, the alloy steel of the present invention was found to be carburized more than 1050 ℃ with a GCT of 1100 ℃ or more.

이상에서 본 바와 같이, 본 발명에 따른 고온 진공침탄용 고강도 크롬-몰리브덴 합금강에 의하면, 진공침탄시 기존 고강도 니켈-크롬-몰리브덴 합금강 및 크롬-몰리브덴강 대비 매우 우수한 피로물성(내구성)을 나타내며, 또한 1050℃ 이상의 고온 침탄도 가능해 열처리 시간 단축 등에 따른 수익성 개선을 얻을 수 있는 장점이 있다.As seen above, according to the high-strength chromium-molybdenum alloy steel for high-temperature vacuum carburization according to the present invention, it exhibits very excellent fatigue properties (durability) compared to the existing high-strength nickel-chromium-molybdenum alloy steel and chromium-molybdenum steel during vacuum carburization. High temperature carburizing of 1050 ℃ or higher is also possible, and thus, it is possible to obtain profitability improvement by shortening the heat treatment time.

Claims (1)

철(Fe)를 주성분으로 하고, 여기에 탄소(C) 0.22∼0.24 중량%, 실리콘(Si) 0.70∼0.90 중량%, 망간(Mn) 0.50∼0.80 중량%, 인(P) 0.030 중량%, 황(S) 0.020 중량%, 크롬(Cr) 1.90∼2.20 중량%, 몰리브덴(Mo) 0.20∼0.40 중량%, 티타늄(Ti) 0.008∼0.012 중량%, 니오븀(Nb) 20∼40 ppm, 질소(N2) 70∼120ppm, 합금계 성분에 합금의 청정도를 위해 용존산소량 15ppm이 함유되어 이루어진 것을 특징으로 하는 고온 진공침탄용 고강도 크롬-몰리브덴 합금강.Iron (Fe) as the main component, carbon (C) 0.22 to 0.24% by weight, silicon (Si) 0.70 to 0.90% by weight, manganese (Mn) 0.50 to 0.80% by weight, phosphorus (P) 0.030% by weight, sulfur (S) 0.020 wt%, Chromium (Cr) 1.90-2.20 wt%, Molybdenum (Mo) 0.20-0.40 wt%, Titanium (Ti) 0.008-0.012 wt%, Niobium (Nb) 20-40 ppm, Nitrogen (N 2 ) High strength chromium-molybdenum alloy steel for high-temperature vacuum carburizing, comprising 70 to 120 ppm of dissolved oxygen in the alloy component.
KR1020060066080A 2006-07-14 2006-07-14 High Strength Cr-Mo alloy steel for the high temperature vacuum carburizing KR100811912B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060066080A KR100811912B1 (en) 2006-07-14 2006-07-14 High Strength Cr-Mo alloy steel for the high temperature vacuum carburizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060066080A KR100811912B1 (en) 2006-07-14 2006-07-14 High Strength Cr-Mo alloy steel for the high temperature vacuum carburizing

Publications (2)

Publication Number Publication Date
KR20080006839A KR20080006839A (en) 2008-01-17
KR100811912B1 true KR100811912B1 (en) 2008-03-10

Family

ID=39220451

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060066080A KR100811912B1 (en) 2006-07-14 2006-07-14 High Strength Cr-Mo alloy steel for the high temperature vacuum carburizing

Country Status (1)

Country Link
KR (1) KR100811912B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115323263B (en) * 2022-06-30 2024-05-17 江阴兴澄特种钢铁有限公司 Wear-resistant high-hardenability gear steel for rear axle reduction gearbox of truck and manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US137766A (en) * 1873-04-15 Improvement in the manufacture of sweet biscuits

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US137766A (en) * 1873-04-15 Improvement in the manufacture of sweet biscuits

Also Published As

Publication number Publication date
KR20080006839A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP5693126B2 (en) Coil spring and manufacturing method thereof
KR100848784B1 (en) The high strength alloy steel for transmission gear of automobile and thereof heat treatment
WO2011093070A1 (en) Case-hardened steel and carburized material
KR101685489B1 (en) The Alloy Steel Which Is Used as The High Tough Outer Wheel of Constant Velocity Joint And The Method of The Same
CN106065455B (en) Carburized alloy steel with improved durability and method for manufacturing same
KR100716344B1 (en) Heat treatment method of cr-mo alloy for transmission gear and shaft
JP4847681B2 (en) Ti-containing case-hardened steel
JP4557833B2 (en) High-strength mechanical structural steel parts with excellent fatigue properties and manufacturing method thereof
KR101575435B1 (en) Material for high carburizing steel and method for producing gear using the same
KR100811912B1 (en) High Strength Cr-Mo alloy steel for the high temperature vacuum carburizing
JP2020041186A (en) Case hardened steel for gas carburization, and gas carburization
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP2003096539A (en) Case hardening steel, and carburized part using the same
JPH07188895A (en) Manufacture of parts for machine structure use
JPH0617225A (en) Carburized bearing parts excellent in rolling fatigue property
KR20080056945A (en) Ultra high strength carburizing steel with high fatigue resistance
JP2011208262A (en) Method for producing case hardening steel having high fatigue strength
JP2010007119A (en) Method for manufacturing high-strength carburized component
KR20050031540A (en) Cr-mo alloy for transmission gear
KR101655181B1 (en) High strength steel and method for manufacturing gear
KR100913172B1 (en) Ultra high strength carburizing steel with high fatigue resistance
CN106435388A (en) Carburized steel and method of manufacturing the same
JP2002194492A (en) High hardness parts
KR100380441B1 (en) Alloy composition for transmission gear
JP2009299146A (en) Method for manufacturing high-strength carburized component

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130228

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140227

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180227

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190227

Year of fee payment: 12