KR100811644B1 - Methode of surface activation for electrode plating ITO surface - Google Patents

Methode of surface activation for electrode plating ITO surface Download PDF

Info

Publication number
KR100811644B1
KR100811644B1 KR1020020012279A KR20020012279A KR100811644B1 KR 100811644 B1 KR100811644 B1 KR 100811644B1 KR 1020020012279 A KR1020020012279 A KR 1020020012279A KR 20020012279 A KR20020012279 A KR 20020012279A KR 100811644 B1 KR100811644 B1 KR 100811644B1
Authority
KR
South Korea
Prior art keywords
ito electrode
tin
metal
depositing
deposited
Prior art date
Application number
KR1020020012279A
Other languages
Korean (ko)
Other versions
KR20030072979A (en
Inventor
김재정
차승환
Original Assignee
엘지.필립스 엘시디 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지.필립스 엘시디 주식회사 filed Critical 엘지.필립스 엘시디 주식회사
Priority to KR1020020012279A priority Critical patent/KR100811644B1/en
Publication of KR20030072979A publication Critical patent/KR20030072979A/en
Application granted granted Critical
Publication of KR100811644B1 publication Critical patent/KR100811644B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Liquid Crystal (AREA)

Abstract

본 발명은 투명전극인 ITO전극 위에 저 저항 금속을 무전해 도금하는 방법에 관한 것이다.The present invention relates to a method of electroless plating a low resistance metal on an ITO electrode which is a transparent electrode.

본 발명은 상기 ITO 전극의 표면을 활성화하기 위한 전처리 과정에서, 환원제를 산화하기 위해 사용되는 촉매금속의 증착특성을 개선하기 위해 주석을 증착한다.In the present invention, in the pretreatment process for activating the surface of the ITO electrode, tin is deposited to improve the deposition characteristics of the catalytic metal used to oxidize the reducing agent.

상기 주석을 증착하는 공정은 첫째, ITO전극의 표면에 주석과 촉매금속을 순차적으로 증착하는방법과 둘째, 상기 촉매금속이 혼합된 촉매용액에 주석이온을 혼합하여 증착하는 방법으로 나눌 수 있다.The process of depositing tin may be divided into first, a method of sequentially depositing tin and a catalyst metal on the surface of the ITO electrode, and second, a method of mixing and depositing tin ions in the catalyst solution in which the catalyst metal is mixed.

전술한 바와 같이, 촉매금속을 증착하기전 주석을 증착하게 되면, 촉매금속의 증착특성 개선으로, ITO 전극의 표면에 저저항 금속의 증착특성이 개선되어 ITO 전극을 사용하는 소자의 특성을 개선할 수 있다.
As described above, when the tin is deposited before the deposition of the catalyst metal, the deposition characteristics of the catalyst metal can be improved, thereby improving the deposition characteristics of the low resistance metal on the surface of the ITO electrode, thereby improving the characteristics of the device using the ITO electrode. Can be.

Description

무전해 도금을 실시하기 위한 인듐-틴-옥사이드 전극의 활성화 방법{Methode of surface activation for electrode plating ITO surface}  Method of activating indium tin oxide for electroless plating {Methode of surface activation for electrode plating ITO surface}             

도 1a와 도 1b는 ITO 전극의 표면과, ITO 전극의 표면을 주석용액과 촉매(팔라듐)용액으로 각각 활성화한 상태를 나타낸 원자 힘 현미경(AFM)사진이고, 1A and 1B are atomic force microscopy (AFM) photographs showing the state of the surface of the ITO electrode and the surface of the ITO electrode activated with a tin solution and a catalyst (palladium) solution, respectively;

도 2a와 도 2b는 ITO 전극을 주석 용액과 촉매용액으로 각각 활성화 한 후 XPS로 분석한 그래프이고,2A and 2B are graphs analyzed by XPS after activating the ITO electrode with a tin solution and a catalyst solution, respectively.

도 3은 ITO 전극을 주석 용액과 촉매용액으로 각각 활성화 한 후, 촉매금속(Cu)을 무전해 도금한 표면상태를 나타낸 원자 힘 현미경(AFM)사진이고, 3 is an atomic force microscope (AFM) photograph showing the surface state of electroless plating the catalytic metal (Cu) after activating the ITO electrode with a tin solution and a catalyst solution, respectively.

도 4는 ITO 전극을 주석과 촉매금속(팔라듐)이 같이 함유된 활성화 용액으로 활성화한 상태를 나타낸 원자 힘 현미경(AFM)사진이고, 4 is an atomic force microscopy (AFM) photograph showing the state in which the ITO electrode is activated with an activation solution containing tin and a catalytic metal (palladium).

도 5는 ITO 전극을 주석과 촉매금속(팔라듐)이 같이 함유된 활성화 용액으로각각 활성화 한 후, 촉매금속(Cu)을 무전해 도금한 표면상태를 나타낸 원자 힘 현미경(AFM)사진이고, 5 is an atomic force microscope (AFM) photograph showing the surface state of electroless plating the catalytic metal (Cu) after activating the ITO electrode with an activation solution containing tin and a catalyst metal (palladium), respectively.

6a와 도 6b는 ITO 전극을 주석과 촉매금속이 같이 함유된 용액으로 활성화 한 후 XPS로 분석한 그래프이고,6a and 6b are graphs analyzed by XPS after activating the ITO electrode with a solution containing tin and a catalyst metal.

도 7은 ITO 전극을 주석과 촉매금속(팔라듐)이 같이 함유된 활성화 용액으 로각각 활성화 한 후, 촉매금속(Ag)을 무전해 도금한 표면상태를 나타낸 원자 힘 현미경(AFM)사진이다.
FIG. 7 is an atomic force microscope (AFM) photograph showing the surface state of an electroless plated catalyst metal (Ag) after activating the ITO electrode with an activation solution containing tin and a catalyst metal (palladium), respectively.

<도면의 주요부분에 대한 간단한 설명><Brief description of the main parts of the drawing>

없음.
none.

본 발명은 화상표시장치에 사용되는 ITO 전극의 저항을 낮추기 위한 방법으로 특히, ITO 전극의 표면에 무전해 도금방법으로 저 저항 금속을 증착하기 위한 ITO 전극의 활성화 방법에 관한 것이다.The present invention relates to a method for lowering the resistance of an ITO electrode used in an image display device, and more particularly, to an activation method of an ITO electrode for depositing a low resistance metal on the surface of an ITO electrode by an electroless plating method.

일반적으로, 투명전극인 ITO(indium-tin-oixide)전극은 주석이 주입된 인듐 산화물로 액정표시장치(LCD)또는 플라즈마 평판표시장치(PDP)의 전극으로 응용되고 있다.In general, an indium-tin-oixide (ITO) electrode, which is a transparent electrode, is indium oxide implanted with tin and is used as an electrode of a liquid crystal display (LCD) or a plasma flat panel display (PDP).

상기 표시장치의 대면적화가 이루어지면서 저저항 전극이 요구되는 가운데, 상기 ITO 전극은 대면적 표시장치에 응용하기엔 부적합하다.As a large area of the display device is required and a low resistance electrode is required, the ITO electrode is not suitable for application to a large area display device.

왜냐하면, ITO 전극은 비저항이 높기 때문에 대면적 표시장치에 적용할 경우, 전류의 분포가 불균일하게 될 뿐 아니라 이때 발생하는 열은 소자에 악영향을 미치는 큰 단점이 있기 때문이다. Because the ITO electrode has a high specific resistance, when applied to a large-area display device, not only the current distribution is uneven, but also the heat generated at this time adversely affects the device.                         

이를 해결하기 위해 종래에는 ITO전극의 상부에 저항이 낮은 금속을 도금하는 방법을 사용하였다.In order to solve this problem, conventionally, a method of plating a metal having a low resistance on the ITO electrode was used.

대표적으로 사용되는 금속은 비저항이 낮은 Ag이며, 상기 Ag을 포함한 저 저항 금속은 다양한 방식으로 상기 ITO전극 상부에 증착 될 수 있다.A representative metal used is Ag having low specific resistance, and the low resistance metal including Ag may be deposited on the ITO electrode in various ways.

예를 들면, 스퍼터링 방법과 열증착 방법과 화학 기상 증착 방법 등이 있는데 이러한 방법들은 상기 ITO 전극에만 선택적으로 행하여지는 것이 아니고, 기판의 전 면적에 대해 진행되기 때문에 별도의 식각공정을 필요로 하여 공정이 복잡해 지는 문제가 있다.For example, a sputtering method, a thermal deposition method, and a chemical vapor deposition method, etc., are not selectively performed only on the ITO electrode, but are performed on the entire area of the substrate, and thus require a separate etching process. There is a problem of this complexity.

이를 해결하기 위해 제안된 방법이 도금 방법이다.The proposed method to solve this problem is the plating method.

일반적으로 도금방법은 다른 공정에 비해 공정 비용이 저렴하고 순도가 높은 금속을 얻을 수 있으며, 저온 공정에서 진행되기 때문에 기판에 대한 손상이 적은 장점이 있다. In general, the plating method is less expensive than the other processes and can obtain a high purity metal, and because the process is carried out at a low temperature process has the advantage of less damage to the substrate.

상기 도금 방법 중 화학적 공정에서 행해지는 무전해 도금 방법을 많이 사용하며, 무전해 도금방법은 외부에서 전류를 흐르게 하지 않고 용액중의 금속 이온을 환원 석출 시켜 금속막의 표면에 도금막을 형성하도록 하는 것으로 화학적 환원제를 사용한다.Among the plating methods, many electroless plating methods used in chemical processes are used. In the electroless plating method, a plating film is formed on the surface of a metal film by reducing and depositing metal ions in a solution without flowing an electric current from the outside. Use reducing agent.

종래에는, 상기 무전해 도금방법을 이용하여 ITO 전극 상부에 저저항 금속을 증착하는 방법이 제안되었다.In the related art, a method of depositing a low resistance metal on an ITO electrode using the electroless plating method has been proposed.

이하, 무전해 도금 방법을 이용하여 ITO 전극 상부에 저 저항 금속을 도금하는 방법을 개략적으로 설명한다. Hereinafter, a method of plating a low resistance metal on the ITO electrode by using an electroless plating method will be described schematically.                         

상기 ITO 전극 상부에 무전해 도금 방식으로 저 저항 금속을 증착하기 위해서는, 먼저 ITO 전극 상부에 존재하는 유기물을 제거하는 공정이 선행된다.In order to deposit a low resistance metal on the ITO electrode by an electroless plating method, a process of first removing an organic material present on the ITO electrode is preceded.

다음으로, 무전해 도금 용액에 포함된 환원제를 산화시키는데 필요한 촉매금속을 상기 ITO전극에 증착시키는 공정을 진행한다.Next, a process of depositing a catalyst metal necessary for oxidizing a reducing agent included in the electroless plating solution on the ITO electrode.

상기 촉매금속으로는 팔라듐(Pd), 은(Ag), 구리(Cu), 백금(Pt)등이 있는데, 최종 증착하려는 저 저항 금속에 따라 적당한 것을 선택하여 증착한다.The catalytic metals include palladium (Pd), silver (Ag), copper (Cu), platinum (Pt), and the like.

다음으로, 상기 촉매금속이 형성된 ITO 전극을 무전해 도금용액에 담가 무전해 도금공정을 진행하여, 상기 촉매금속이 형성된 ITO전극에 저 저항 금속을 증착한다.
Next, the ITO electrode on which the catalyst metal is formed is immersed in an electroless plating solution to perform an electroless plating process to deposit a low resistance metal on the ITO electrode on which the catalyst metal is formed.

그러나, ITO 전극은 촉매금속의 증착이 제대로 일어지지 않아, 연속하여 증착되는 저 저항 금속의 증착 특성을 저하하는 원인이 되었다.However, the ITO electrode does not perform deposition of the catalytic metal properly, which causes a decrease in the deposition characteristics of the low resistance metal that is continuously deposited.

본 발명은 이를 해결하기 위해 제안된 것으로, 상기 ITO전극의 표면을 활성화 하기 위한 금속으로 주석(Sn)을 증착하는 방법을 사용한다.The present invention has been proposed to solve this problem, and uses a method of depositing tin (Sn) with a metal for activating the surface of the ITO electrode.

이때, 상기 주석(Sn)은 촉매금속을 증착하기 전 ITO 전극의 표면에 먼저 증착할 수 도 있고, 상기 촉매금속이 포함되는 활성화 용액에 혼합하여 촉매금속과 함께 증착 할 수 있다.In this case, the tin (Sn) may be deposited first on the surface of the ITO electrode before depositing the catalyst metal, or may be mixed with the activation metal containing the catalyst metal and deposited together with the catalyst metal.

이와 같은 방법으로 촉매금속을 증착하기전 상기 ITO전극의 표면을 활성화 하게 되면, 상기 촉매금속의 증착특성이 개선되어 연속된 저 저항 금속의 증착특성 을 개선할 수 있다.
By activating the surface of the ITO electrode before depositing the catalytic metal in this manner, the deposition characteristics of the catalyst metal can be improved to improve the deposition characteristics of the continuous low resistance metal.

전술한 바와 같은 목적을 달성하기 위한 본 발명에 따른 ITO전극의 활성화 방법은 ITO 전극이 형성된 기판을 준비하는 단계와; 상기 ITO 전극의 표면에 주석을 증착하는 단계와; 상기 주석이 증착된 상기 ITO전극의 표면에 촉매금속을 증착하는 단계를 포함한다.According to an aspect of the present invention, there is provided a method of activating an ITO electrode, comprising: preparing a substrate on which an ITO electrode is formed; Depositing tin on the surface of the ITO electrode; And depositing a catalytic metal on a surface of the ITO electrode on which tin is deposited.

상기 촉매금속은 팔라듐(Pd) 또는 은(Ag)이다.The catalyst metal is palladium (Pd) or silver (Ag).

본 발의 제 2 특징에 따른 ITO 전극의 활성화 방법은 ITO 전극이 형성된 기판을 준비하는 단계와; 상기 ITO 전극이 형성된 상기 기판을 주석과 촉매금속이 혼합된 활성화 용액에 담그어 주석과 촉매금속을 증착하는 단계와; 상기 촉매금속과 상기 주석이 증착된 상기 ITO 전극을 가속용액에 담그어 상기 주석을 제거하는 단계를 포함한다.According to a second aspect of the present invention, there is provided a method of activating an ITO electrode, comprising: preparing a substrate on which an ITO electrode is formed; Immersing the substrate on which the ITO electrode is formed in an activation solution in which tin and a catalyst metal are mixed to deposit tin and a catalyst metal; Dipping the ITO electrode on which the catalyst metal and the tin are deposited in an acceleration solution to remove the tin.

본 발명의 제 1 특징에 따른 ITO 전극 표면의 저저항 금속 증착방법은 ITO 전극이 형성된 기판을 준비하는 단계와; 상기 ITO 전극의 표면에 주석을 증착하는 단계와; 상기 주석이 증착된 상기 ITO 전극의 표면에 촉매금속을 증착하는 단계와; 상기 촉매금속이 증착된 상기 ITO 전극의 표면에 저 저항 금속 이온이 혼합된 무전해 도금용액을 이용한 무전해 도금방법으로 저저항 금속을 증착하는 단계를 포함한다.According to a first aspect of the present invention, there is provided a method of depositing a low resistance metal on an ITO electrode surface, comprising: preparing a substrate on which an ITO electrode is formed; Depositing tin on the surface of the ITO electrode; Depositing a catalytic metal on a surface of the ITO electrode on which tin is deposited; And depositing a low resistance metal by an electroless plating method using an electroless plating solution in which low resistance metal ions are mixed on the surface of the ITO electrode on which the catalytic metal is deposited.

본 발명의 제 2 특징에 따른 ITO 전극의 저저항 금속 형성방법은 전극이 형성된 기판을 준비하는 단계와; 상기 ITO 전극이 형성된 상기 기판을 주석과 촉매금속이 혼합된 활성화 용액에 담그어 주석과 촉매금속을 증착하는 단계와; 상기 촉매금속과 상기 주석이 증착된 상기 ITO 전극을 가속용액에 담그어 상기 주석을 제거하는 단계와; 상기 촉매금속이 증착된 상기 ITO 전극의 표면에 저 저항 금속 이온이 혼합된 무전해 도금용액을 이용한 무전해 도금방법으로 저저항 금속을 증착하는 단계를 포함한다.A method of forming a low resistance metal of an ITO electrode according to a second aspect of the present invention includes the steps of preparing a substrate on which the electrode is formed; Immersing the substrate on which the ITO electrode is formed in an activation solution in which tin and a catalyst metal are mixed to deposit tin and a catalyst metal; Dipping the ITO electrode on which the catalyst metal and the tin are deposited in an acceleration solution to remove the tin; And depositing a low resistance metal by an electroless plating method using an electroless plating solution in which low resistance metal ions are mixed on the surface of the ITO electrode on which the catalytic metal is deposited.

-- 실시예 --Example

본 발명의 특징은 저 저항 금속(Cu)을 증착하기 위한 ITO전극을 전처리 하는 방법으로 촉매금속(Pd)을 증착하기 전 주석을 증착하는 것을 특징으로 한다.The present invention is characterized by depositing tin before depositing the catalytic metal (Pd) by a method of pretreatment of the ITO electrode for depositing the low resistance metal (Cu).

상세히 설명하면, 상기 ITO 전극의 상부에 저저항 배선을 증착하기전에 환원제의 산화를 위해 ITO 전극의 표면에 촉매금속을 증착해야 한다.In detail, before depositing the low resistance wiring on the ITO electrode, the catalytic metal must be deposited on the surface of the ITO electrode for the oxidation of the reducing agent.

이때, 상기 저 저항 금속은 구리(Cu)이고 촉매금속은 팔라듐(Cu)인 것을 예를 들어 설명한다.In this case, the low resistance metal is copper (Cu) and the catalytic metal will be described with an example of palladium (Cu).

그런데, ITO 전극의 특성상 상기 촉매금속(Pd)이 제대로 증착되지 않는 단점이 있다.However, there is a disadvantage in that the catalytic metal (Pd) is not deposited properly due to the characteristics of the ITO electrode.

이러한 단점을 해결하기 위한 방법으로, 상기 촉매금속을 증착하기 전 ITO전극의 표면에 활성화 금속으로 주석(Sn)을 증착한다.In order to solve this disadvantage, before the deposition of the catalytic metal, the tin (Sn) is deposited on the surface of the ITO electrode with the active metal.

이하, 상기 주석을 증착하기 위한 두 가지 방법을 제안한다.Hereinafter, two methods for depositing the tin are proposed.

첫 번째는, 상기 촉매금속을 증착하기 전에 먼저 ITO전극의 표면에 주석을 증착한 후 촉매금속을 증착하는 방법이고 둘째는, 상기 촉매금속을 증착하기 위한 활성화 용액에 상기 주석을 첨가하여 촉매금속과 함께 증착하는 것이다.The first method is to deposit tin on the surface of the ITO electrode and then to deposit the catalyst metal before depositing the catalyst metal. The second method is to add the tin to the activating solution for depositing the catalyst metal. To deposit together.

상기 첫 번째 방법인 주석을 먼저 증착한 후 촉매금속을 증착하는 방법은, 우선 ITO전극이 형성된 기판을 주석 화합물(염화주석)이 혼합된 활성화 용액에 5분간 담구어 ITO 전극의 표면에 주석(Sn)을 증착한다.In the first method of depositing tin and then depositing a catalytic metal, first, the substrate on which the ITO electrode is formed is immersed in an activation solution containing tin compound (tin chloride) for 5 minutes, and tin (Sn) is formed on the surface of the ITO electrode. E).

다음으로, 상기 주석(Sn)이 증착된 ITO 전극을 촉매금속이 혼합된 활성화 용액에 담구어 20초간 활성화 처리한다.Subsequently, the ITO electrode on which tin (Sn) is deposited is immersed in an activation solution mixed with a catalyst metal, and then activated for 20 seconds.

다음으로, 상기 활성화 처리된 ITO전극의 표면에 무전해 도금방법으로 구리(Cu)를 증착한다.Next, copper (Cu) is deposited on the surface of the activated ITO electrode by an electroless plating method.

이때, 상기 팔라듐을 포함하는 촉매금속 용액은 염화 팔라듐 0.1g/L과 염산 3ML/L 35%으로 구성된다.At this time, the catalyst metal solution containing palladium is composed of palladium chloride 0.1g / L and hydrochloric acid 3ML / L 35%.

전술한 공정을 통해 ITO전극의 표면에 촉매금속이 증착되었는지 여부를 도 1a와 도 1b를 비교하여 설명한다.Whether the catalytic metal is deposited on the surface of the ITO electrode through the above-described process will be described by comparing FIGS. 1A and 1B.

도 1a는 베어(bear) ITO 전극의 표면을 원자 힘 현미경(AFM)으로 관찰한 사진으로, 도시한 바와 같이 Z축의 높이는 약 100Å이다.FIG. 1A is a photograph of the surface of a bear ITO electrode under an atomic force microscope (AFM). As shown, the height of the Z axis is about 100 Hz.

이러한 상태의 ITO 전극에 전술한 바와 같은 공정으로 주석(Sn)을 증착하고 연속하여 팔라듐(Pd)을 증착한 결과 도 1b에 도시한 바와 같이 약 1000Å의 크기로 결정들이 자란 것을 관찰 할 수 있다.As a result of depositing tin (Sn) and subsequently palladium (Pd) on the ITO electrode in this state as described above, it can be observed that the crystals grew to a size of about 1000 mW as shown in FIG.

또한 이를 뒷받침하기 위한 분석결과를 도 2a와 도 2b에 제시한다.In addition, the analysis results to support this are shown in Figures 2a and 2b.

도 2a와 도 2b는 각각 ITO 전극 상부에 증착된 주석과 팔라듐(Pd)의 XPS분석결과를 도시한 그래프이다.2A and 2B are graphs showing XPS analysis results of tin and palladium (Pd) deposited on the ITO electrode, respectively.

상기 그래프를 통해 상기 ITO 전극의 표면에 증착된 주석과 촉매금속(팔라듐)을 확인할 수 있었다. Through the graph, it was possible to identify tin and a catalytic metal (palladium) deposited on the surface of the ITO electrode.                     

상기 활성화 공정이 진행된 ITO 전극의 표면에 무전해 도금방법으로 저 저항금속(Cu)을 증착하는 공정을 진행한다.A process of depositing a low resistance metal (Cu) is performed on the surface of the ITO electrode where the activation process is performed by an electroless plating method.

이때, 상기 구리의 비저항은 5.3μΩ·㎝이었고, 증착두께는 약 950Å로 관찰되었다.At this time, the specific resistance of the copper was 5.3 μΩ · cm, and the deposition thickness was observed to be about 950 GPa.

상기 구리(Cu)의 표면상태를 도 3에 도시한 원자 힘 현미경 사진을 통해 분석한 결과 약 7nm로 매우 매끈한 표면을 얻을 수 있었다.As a result of analyzing the surface state of the copper (Cu) through the atomic force micrograph shown in Figure 3 it was able to obtain a very smooth surface of about 7nm.

상기 구리(Cu)가 증착된 ITO 전극을 열처리하면 비저항은 약 4μΩ·㎝로 낮아지는 결과를 얻을 수 있었다.Heat treatment of the copper (Cu) -deposited ITO electrode resulted in a decrease in resistivity of about 4 μΩ · cm.

주석(Sn)을 증착하기 위한 두 번째 방법을 사용할 경우에는, 상기 촉매금속과 주석이 혼합된 활성화 용액에 약 3분 동안 담구어 ITO전극의 표면을 활성화시킨다.In the case of using the second method for depositing tin (Sn), the surface of the ITO electrode is activated by immersing in the activation solution mixed with the catalyst metal and tin for about 3 minutes.

연속하여, 상기 활성화된 ITO전극을 가속용액(accelerator)에 약 3분동안 담구어 ITO전극의 표면에 존재하는 주석을 제거하여 팔라듐이 대부분이 드러나도록 하는 공정을 진행한다.Subsequently, the activated ITO electrode is immersed in an accelerator for about 3 minutes to remove tin present on the surface of the ITO electrode so that most of the palladium is exposed.

이때, 상기 주석과 촉매금속이 동시에 혼합된 활성화 용액은 염화팔라듐 1g/L와 염화주석 50g/L과 염산 0.3L/L 37%로 구성되며, 상기 가속용액은 18%의 염산으로 이루어진다.At this time, the activating solution in which the tin and the catalyst metal are mixed at the same time is composed of palladium chloride 1g / L, tin chloride 50g / L and hydrochloric acid 0.3L / L 37%, the acceleration solution consists of 18% hydrochloric acid.

상기 촉매용액에 첨가되는 염화주석의 양 중 46g/L은 나머지 구성성분들을 혼합한 후 몇 시간이 흐른 다음 첨가한다.46 g / L of the amount of tin chloride added to the catalyst solution is added after several hours after mixing the remaining components.

이때, 상기 두 번째 방법으로 주석을 증착하였을 경우, 상기 촉매금속이 증 착되었는지의 여부는 도 4의 원자 힘 현미경 사진(AFM)과 도 5a 내지 도 5b의 XPS분석을 통해 알 수 있었다.In this case, in the case of depositing tin by the second method, whether or not the catalyst metal was deposited can be known through atomic force microscopy (AFM) of FIG. 4 and XPS analysis of FIGS. 5A to 5B.

즉, 도 4를 도 1b와 비교하여 표면의 거칠기 상태는 다르지만 도 1a에 나타난 배어 ITO 전극의 표면에 비해 결정이 성장되었음을 알 수 있다.That is, it can be seen that the crystals are grown compared to the surface of the bare ITO electrode shown in FIG.

전술한 방법으로 ITO 전극의 표면을 활성화 한 후, 무전해 도금방법을 이용하여 상기 ITO전극의 표면에 저저항 금속을 증착하는 공정을 진행한다.After activating the surface of the ITO electrode by the above-described method, a process of depositing a low resistance metal on the surface of the ITO electrode is performed by using an electroless plating method.

상기 촉매금속이 증착된 ITO전극을 무전해 도금용액에 약 3분간 담구어 저 저항 배선을 증착하였을 경우 도 6과 같은 상태를 얻을 수 있었다.When the ITO electrode on which the catalyst metal was deposited was immersed in an electroless plating solution for about 3 minutes to deposit a low resistance wire, a state as shown in FIG. 6 was obtained.

이때의 저 저항금속(Cu)은 도면에서 보이는 바와 같이, 약 1000Å의 두께로 증착되었고 비저항은 4.56μΩ·㎝이다. 이러한 상태의 상기 저 저항 금속은 약 14nm의 낮을 거칠기를 가진다.At this time, as shown in the figure, the low resistance metal (Cu) was deposited to a thickness of about 1000 mW and the specific resistance was 4.56 μΩ · cm. The low resistance metal in this state has a low roughness of about 14 nm.

또한, 상기 증착된 구리금속은 열처리를 진행한 후에 비저항이 약 6% 감소하는 결과를 얻을 수 있었다.In addition, the deposited copper metal was able to obtain a result of decreasing the resistivity by about 6% after the heat treatment.

이때, 상기 저 저항 금속으로 은을 증착할 경우에는 3.27μΩ·㎝의 비저항 값을 나타냈고, 열처리 공정이 진행된 후에는 상기 비저항값을 2.39μΩ·㎝로 더욱 낮출 수 있었다.In this case, in the case of depositing silver with the low resistance metal, a specific resistance value of 3.27 μΩ · cm was shown, and after the heat treatment process was performed, the specific resistance value could be further lowered to 2.39 μΩ · cm.

이때, 상기 은의 거칠기는 도 7의 AFM 사진을 통해 분석한 결과 33nm로 상당히 낮은 거칠기를 나타냄을 알 수 있었다.At this time, the roughness of the silver was analyzed through the AFM photograph of Figure 7 it can be seen that exhibited a very low roughness of 33nm.

전술한 바와 같은 ITO활성화 공정은, 상기 ITO 전극과 유사한 특성을 가지는 모드 전극과 배선에 적용 가능한다.The ITO activation process as described above is applicable to the mode electrode and the wiring having similar characteristics to the ITO electrode.

전술한 바와 같은 본 발명에 따른 활성화 공정을 진행하게 되면, ITO 전극의 표면에 증착되는 저 저항 금속의 증착특성을 개선할 수 있기 때문에, 상기 ITO 전극을 포함하는 화상표시장치의 동작특성을 개선할 수 있는 효과가 있다.















By performing the activation process according to the present invention as described above, since it is possible to improve the deposition characteristics of the low resistance metal deposited on the surface of the ITO electrode, it is possible to improve the operation characteristics of the image display apparatus including the ITO electrode. It can be effective.















Claims (11)

ITO 전극이 형성된 기판을 준비하는 단계와;Preparing a substrate on which an ITO electrode is formed; 상기 ITO 전극의 표면에 촉매금속이 균일하게 증착될 수 있도록 주석을 증착하는 단계와;Depositing tin so that a catalytic metal may be uniformly deposited on the surface of the ITO electrode; 상기 주석이 증착된 상기 ITO전극의 표면에 상기 촉매금속을 증착하는 단계Depositing the catalytic metal on a surface of the tin electrode on which the tin is deposited 를 포함하는 ITO 전극의 활성화 방법.Activation method of the ITO electrode comprising a. 제 1 항에 있어서,The method of claim 1, 상기 촉매금속은 팔라듐(Pd) 또는 은(Ag)인 ITO 전극의 활성화 방법.The catalyst metal is palladium (Pd) or silver (Ag) of the activation method of the ITO electrode. ITO 전극이 형성된 기판을 준비하는 단계와;Preparing a substrate on which an ITO electrode is formed; 상기 ITO 전극이 형성된 상기 기판을 주석과 촉매금속이 혼합된 활성화 용액에 담그어 주석과 촉매금속을 증착하는 단계와;Immersing the substrate on which the ITO electrode is formed in an activation solution in which tin and a catalyst metal are mixed to deposit tin and a catalyst metal; 상기 촉매금속과 상기 주석이 증착된 상기 ITO 전극을 가속용액에 담그어 상기 주석을 제거하는 단계Dipping the ITO electrode on which the catalyst metal and the tin are deposited in an acceleration solution to remove the tin 를 포함하는 ITO전극의 활성화 방법.Activation method of the ITO electrode comprising a. 제 3 항에 있어서,The method of claim 3, wherein 상기 촉매금속은 팔라듐(Pd) 또는 은(Ag)인 ITO 전극의 활성화 방법.The catalyst metal is palladium (Pd) or silver (Ag) of the activation method of the ITO electrode. ITO 전극이 형성된 기판을 준비하는 단계와;Preparing a substrate on which an ITO electrode is formed; 상기 ITO 전극의 표면에 주석을 증착하는 단계와;Depositing tin on the surface of the ITO electrode; 상기 주석이 증착된 상기 ITO 전극의 표면에 촉매금속을 증착하는 단계와;Depositing a catalytic metal on a surface of the ITO electrode on which tin is deposited; 상기 촉매금속이 증착된 상기 ITO 전극의 표면에 저 저항 금속 이온이 혼합된 무전해 도금용액을 이용한 무전해 도금방법으로 저저항 금속을 증착하는 단계를 Depositing a low resistance metal by an electroless plating method using an electroless plating solution in which low resistance metal ions are mixed on the surface of the ITO electrode on which the catalytic metal is deposited; 포함하는 ITO 전극 표면의 저저항 금속 증착방법Low resistance metal deposition method of ITO electrode surface comprising 제 5 항에 있어서,The method of claim 5, wherein 상기 촉매금속은 팔라듐이고, 상기 저 저항 금속은 구리 또는 은인 ITO 전극표면의 저저항 금속 증착방법.And the catalytic metal is palladium, and the low resistance metal is copper or silver. 제 6 항에 있어서,The method of claim 6, 열처리하기 전 상기 구리의 비저항은 5.3μΩ·㎝이고, 열처리 한 후 상기 구리의 비저항은 4μΩ·㎝인 ITO 전극의 저저항 금속 증착방법.The resistivity of the copper before heat treatment is 5.3μΩ · cm, and after the heat treatment, the resistivity of copper is 4μΩ · cm. 제 6 항에 있어서,The method of claim 6, 열처리하기 전 상기 은(Ag)의 비저항은 3.27μΩ·㎝이고, 열처리한 후의 상기 은(Ag)의 비저항은 2.39μΩ·㎝인 ITO전극 표면의 저 저항 금속 증착방법.The resistivity of the silver (Ag) before the heat treatment is 3.27 μΩ · cm, and the resistivity of the silver (Ag) after the heat treatment is 2.39 μΩ · cm. ITO 전극이 형성된 기판을 준비하는 단계와;Preparing a substrate on which an ITO electrode is formed; 상기 ITO 전극이 형성된 상기 기판을 주석과 촉매금속이 혼합된 활성화 용액에 담그어 주석과 촉매금속을 증착하는 단계와;Immersing the substrate on which the ITO electrode is formed in an activation solution in which tin and a catalyst metal are mixed to deposit tin and a catalyst metal; 상기 촉매금속과 상기 주석이 증착된 상기 ITO 전극을 가속용액에 담그어 상기 주석을 제거하는 단계와;Dipping the ITO electrode on which the catalyst metal and the tin are deposited in an acceleration solution to remove the tin; 상기 촉매금속이 증착된 상기 ITO 전극의 표면에 저 저항 금속 이온이 혼합된 무전해 도금용액을 이용한 무전해 도금방법으로 저저항 금속을 증착하는 단계를 Depositing a low resistance metal by an electroless plating method using an electroless plating solution in which low resistance metal ions are mixed on the surface of the ITO electrode on which the catalytic metal is deposited; 포함하는 ITO 전극 표면의 저저항 금속 증착방법Low resistance metal deposition method of ITO electrode surface comprising 제 9 항에 있어서,The method of claim 9, 상기 촉매금속은 팔라듐인 ITO 전극 표면의 저저항 금속 증착방법.And the catalytic metal is palladium. 제 10 항에 있어서,The method of claim 10, 열처리하기 전 상기 구리의 비저항은 4.56μΩ·㎝인 ITO 전극표면의 저저항 금속 증착방법.A method of depositing low-resistance metal on an ITO electrode surface having a specific resistance of copper of 4.56 μΩ · cm before heat treatment.
KR1020020012279A 2002-03-07 2002-03-07 Methode of surface activation for electrode plating ITO surface KR100811644B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020012279A KR100811644B1 (en) 2002-03-07 2002-03-07 Methode of surface activation for electrode plating ITO surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020012279A KR100811644B1 (en) 2002-03-07 2002-03-07 Methode of surface activation for electrode plating ITO surface

Publications (2)

Publication Number Publication Date
KR20030072979A KR20030072979A (en) 2003-09-19
KR100811644B1 true KR100811644B1 (en) 2008-03-11

Family

ID=32223848

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020012279A KR100811644B1 (en) 2002-03-07 2002-03-07 Methode of surface activation for electrode plating ITO surface

Country Status (1)

Country Link
KR (1) KR100811644B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900019166A (en) * 1989-05-18 1990-12-24 굴라 마이클 Plasma Processing Using Metal Mask Integration
KR960024525A (en) * 1994-12-28 1996-07-20 윤종용 Liquid crystal display panel and its electrode manufacturing method
JPH1115008A (en) * 1997-06-19 1999-01-22 Seiko Instr Inc Method for plating display panel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900019166A (en) * 1989-05-18 1990-12-24 굴라 마이클 Plasma Processing Using Metal Mask Integration
KR960024525A (en) * 1994-12-28 1996-07-20 윤종용 Liquid crystal display panel and its electrode manufacturing method
JPH1115008A (en) * 1997-06-19 1999-01-22 Seiko Instr Inc Method for plating display panel

Also Published As

Publication number Publication date
KR20030072979A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
KR100841170B1 (en) Method of preparing low resistance metal line, patterned metal line structure, and display devices using the same
Wang et al. Electroless plating of copper on metal-nitride diffusion barriers initiated by displacement plating
Venkatraman et al. Electrochemical atomic layer deposition of copper: a lead-free process mediated by surface-limited redox replacement of underpotentially deposited zinc
TWI356457B (en) Method of forming low-resistance metal pattername
JP3728572B2 (en) Wiring board manufacturing method
KR100811644B1 (en) Methode of surface activation for electrode plating ITO surface
Sayed et al. Characterization of the interface of gold and silver nanostructures on InP and GaAs synthesized via galvanic displacement
JP2002167674A (en) Metallic material for glass melting treatment and its production method
KR100788310B1 (en) Method of Ag electroless plating on ITO electrode
Chiang et al. Effects of Thiourea and Allyl Thioura on the electrodeposition and microstructures of copper from methanesulfonic acid baths
JP2011165810A (en) Manufacturing method of semiconductor device
JPH07122556A (en) Deposition of wiring metal film by plating
Fang et al. Direct, sequential growth of copper film on TaN/Ta barrier substrates by alternation of Pb-UPD and Cu-SLRR
KR101921845B1 (en) Semiconductor device manufacturing method and semiconductor device
Lim et al. Optimization of catalyzing process on Ta substrate for copper electroless deposition using electrochemical method
AU6532100A (en) Copper deposit process
TW200816291A (en) Electroless NiP adhesion and/or capping layer for copper interconnection layer
JP3478684B2 (en) Glass circuit board
Kim et al. Optimized surface treatment of indium tin oxide (ITO) for copper electroless plating
KR100535977B1 (en) Electroless Plating Method Using Additive for Electroplating
JP2005179695A (en) Wiring substrate and method for forming electric wiring
JP4059133B2 (en) Electroless nickel-gold plating method
Yagi et al. Electroless Nickel Plating onto Minute Patterns of Copper Using Ti (IV)∕ Ti (III) Redox Couple
Zhong et al. Electroless Cu deposition on a TiN barrier in CuSO4-HF solution
Muthuvel et al. Surface chemistry of InP (100) after wet and electrochemical etching: Is digital etching possible?

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20121228

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131227

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150227

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160226

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180213

Year of fee payment: 11