KR100809981B1 - Liquid Composition for Reducing Sick House Syndrome and Its Preparation Method - Google Patents

Liquid Composition for Reducing Sick House Syndrome and Its Preparation Method Download PDF

Info

Publication number
KR100809981B1
KR100809981B1 KR1020060016354A KR20060016354A KR100809981B1 KR 100809981 B1 KR100809981 B1 KR 100809981B1 KR 1020060016354 A KR1020060016354 A KR 1020060016354A KR 20060016354 A KR20060016354 A KR 20060016354A KR 100809981 B1 KR100809981 B1 KR 100809981B1
Authority
KR
South Korea
Prior art keywords
liquid composition
oil
formaldehyde
sick house
house syndrome
Prior art date
Application number
KR1020060016354A
Other languages
Korean (ko)
Other versions
KR20070083090A (en
Inventor
이종흔
Original Assignee
주식회사 엔큐어스생활환경연구센터
이종흔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔큐어스생활환경연구센터, 이종흔 filed Critical 주식회사 엔큐어스생활환경연구센터
Priority to KR1020060016354A priority Critical patent/KR100809981B1/en
Publication of KR20070083090A publication Critical patent/KR20070083090A/en
Application granted granted Critical
Publication of KR100809981B1 publication Critical patent/KR100809981B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/22Lamiaceae or Labiatae [Mint family], e.g. thyme, rosemary, skullcap, selfheal, lavender, perilla, pennyroyal, peppermint or spearmint
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/24Lauraceae [Laurel family], e.g. laurel, avocado, sassafras, cinnamon or camphor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/28Myrtaceae [Myrtle family], e.g. teatree or clove
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/08Magnoliopsida [dicotyledons]
    • A01N65/36Rutaceae [Rue family], e.g. lime, orange, lemon, corktree or pricklyash

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Wood Science & Technology (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Pest Control & Pesticides (AREA)
  • Botany (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

본 발명은 새집증후군을 유발하는 실내오염물질, 특히 인체에 유해한 포름알데히드 등의 유해물질을 분해제거 하는 실내오염물질 분해제거용 액상 조성물 및 그 제조방법에 관한 것이다. 본 발명의 실내오염물질 분해제거제는 천연 고분자인 글루코사민으로부터 유도되고, 탁월한 포름알데히드 분해력과 항균력이 있는 β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)n)를 유효성분으로 하며, 또한 다종 다량의 폴리페놀 화합물이 함유된 식물성 정유를 더 포함할 수 있다. 본 발명의 실내오염물질 분해제거제는 탁월한 실내오염물질, 특히 포름알데히드의 분해제거, 항균, 항곰팡이, 항진드기, 소취기능을 나타내므로, 건물의 신축 또는 인테리어 공사 등에 따른 새집증후군을 획기적으로 해결할 수 있다. The present invention relates to a liquid composition for decomposition and removal of indoor contaminants that decomposes and removes harmful substances such as formaldehyde, which is harmful to a human body. Β- (1,4) -poly-D-glucosamine derivatives ((C 6 H 11 NO 4 ) n) derived from glucosamine, a natural polymer, having excellent formaldehyde degrading and antimicrobial properties. As an active ingredient, and may further include a vegetable essential oil containing a large amount of polyphenol compounds. Indoor pollutant decomposition remover of the present invention exhibits excellent indoor pollutants, especially formaldehyde decomposition removal, antibacterial, anti-mold, anti-mite, deodorizing function, can significantly solve the sick house syndrome due to new construction or interior construction of the building, etc. have.

새집증후군, 포름알데히드, 실내 오염 물질, 글루코사민, 항균, 식물성 정유 Sick house syndrome, formaldehyde, indoor contaminants, glucosamine, antibacterial, vegetable essential oils

Description

새집증후군 개선용 액상 조성물 및 그 제조방법 {Liquid Composition for Reducing Sick House Syndrome and Its Preparation Method}Liquid Composition for Reducing Sick House Syndrome and Its Preparation Method}

도 1은 본 발명의 액상 조성물을 사용한 실험군에서 시간 경과에 따른 포름알데히드의 농도 변화를 나타낸 것이다.Figure 1 shows the change in the concentration of formaldehyde over time in the experimental group using the liquid composition of the present invention.

도 2는 본 발명의 액상 조성물을 사용한 실험군에서 시간 경과에 따른 포름알데히드의 감소율을 나타낸 것이다.Figure 2 shows the reduction rate of formaldehyde over time in the experimental group using the liquid composition of the present invention.

도 3은 대조군에서 시간 경과에 따른 포름알데히드의 농도 변화를 나타낸 것이다.Figure 3 shows the change in the concentration of formaldehyde over time in the control group.

도 4는 대조군에서 시간 경과에 따른 포름알데히드의 감소율을 나타낸 것이다. Figure 4 shows the reduction rate of formaldehyde over time in the control group.

도 5는 본 발명의 액상 조성물의 항균력을 시험한 결과이다. 5 is a test result of the antimicrobial activity of the liquid composition of the present invention.

본 발명은 새집증후군을 유발하는 실내오염물질, 특히 인체에 유해한 포름알데히드 등의 유해물질을 분해제거 하는 실내오염물질 분해제거용 액상 조성물 및 그 제조방법에 관한 것이다.The present invention relates to a liquid composition for decomposition and removal of indoor contaminants that decomposes and removes harmful substances such as formaldehyde, which is harmful to a human body.

새집증후군(Sick House Syndrom)을 유발하는 실내 공기 오염물질의 85% 이상(인체영향력 기준)이 휘발성유기화합물인 포름알데히드로 알려져 있다. 포름알데히드는 실내생활환경에서 인체에 가장 유해한 물질로 생각되고 있으며, 적은 농도에서도 인체에 영향을 끼치는데, 주로 집중력 저하, 알레르기, 두통, 피로감, 눈이 따갑고 호흡기를 강하게 자극하는 냄새로 호흡기질환 등을 일으키며, 심한 경우 기억상실, 정서불안을 유발하고 주로 신경질환과 암을 유발하는 것으로 알려져 있다. 최근의 연구결과에 따르면, 성장기 어린이의 아토피 질환을 유발하는 최대원인물질이라고도 하며, 국제 발암성 연구소(IARC)에서는 특히 비인두암(Nasopharyngeal cancer)을 유발한다고 확정 발표한 적이 있다. 비인두암은 중국, 동남아시아 등 환경이 열악한 국가에서 주로 발생하는 암이며, 코와 목구멍 사이에서 발생하는 악성종양으로 40~60대 사이에서 많이 발생한다고 한다. 포름알데히드의 농도별 관능적 증상 및 국가별 허용기준치는 다음의 표 1과 같다(1ppm=120㎍).More than 85% (in terms of human impact) of indoor air pollutants that cause sick house syndrome is known as formaldehyde, a volatile organic compound. Formaldehyde is considered to be the most harmful substance to the human body in the indoor living environment, and it affects the human body even at low concentrations, mainly due to poor concentration, allergies, headaches, fatigue, tingling eyes, and strong respiratory tract. In severe cases, it causes memory loss, emotional anxiety, and is mainly known to cause neurological diseases and cancer. Recent studies have shown that it is the leading cause of atopic disease in growing children, and the International Institute for Carcinogenicity (IARC) has confirmed that it causes nasopharyngeal cancer, in particular. Nasopharyngeal cancer is a cancer that occurs mainly in countries with poor environmental conditions, such as China and Southeast Asia, and is a malignant tumor occurring between the nose and the throat. The organoleptic symptoms and the national acceptance criteria for the concentration of formaldehyde are shown in Table 1 below (1 ppm = 120 µg).

Figure 112006012359213-pat00001
Figure 112006012359213-pat00001

새집증후군(Sick House Syndrom)은 석유화학 문명이 만들어 낸 환경 공해병으로, 미국에서는 이미 1980년대, 일본에서도 1990년대부터 사회적으로 문제가 되어왔다. 즉, 새로 신축된 주택이나 건물은 석면, 포름알데히드(Formaldehyde), 기타 입자상의 물질 등의 실내오염물질(Indoor Pollutants)을 배출하면서 인체의 눈과 코, 목 등을 자극하고, 두통과 어지름증 등을 유발하고 실내 거주자에게 쉽게 피로감을 느끼게 하며, 천식, 급성폐렴, 고열 등을 유발시키기도 하는데, 이와 같이 건물 내에 거주자들이 느끼는 건강상의 문제점 및 불쾌감 등의 현상을 “새집증후군 또는 새빌딩증후군(Sick House Sindrome or Sick Building Syndrome)”이라고 한다.Sick House Syndrom is an environmental pollution created by petrochemical civilization, and has been a social problem since the 1980s in the United States and the 1990s in Japan. In other words, newly constructed homes and buildings emit indoor pollutants such as asbestos, formaldehyde and other particulate matter, stimulating the eyes, nose and throat of the human body, headaches and dizziness. It can cause back pain, make the residents feel tired easily, and cause asthma, acute pneumonia, high fever, etc. In this way, the health problems and discomforts of residents in buildings can be described as “Sick House Syndrome or New Building Syndrome” House Sindrome or Sick Building Syndrome ”.

건축물 내에서 배출되는 실내 대기질은 가스상 또는 입자상의 대기오염물질로 구분되며, 불충분한 환기로 인해 오염물질이 실외로 배출되지 못하고 실내에 축적되어 각종 문제점을 유발하게 된다. 현재로서는 다음의 물리적, 생물학적, 화학적 세 가지 요소가 새집증후군의 주원인으로 여겨지고 있으며, 이중 특히 마감재와 건축자재에서 배출되는 휘발성 유기화합물(VOCs), 그중에서도 포름알데히드(HCHO)와 벤젠, 톨루엔, 클로로포름, 아세톤, 스틸렌 등이 주된 원인물질로 생각되고 있다. The indoor air quality discharged from the building is classified into gaseous or particulate air pollutants, and due to insufficient ventilation, pollutants are not discharged to the outside and accumulate indoors, causing various problems. At present, the following three physical, biological and chemical factors are considered to be the main causes of sick house syndrome. Among them, volatile organic compounds (VOCs) emitted from finishing materials and building materials, especially formaldehyde (HCHO), benzene, toluene, chloroform, Acetone and styrene are thought to be the main causative agents.

물리적 인자Physical factor

고열, 스트레스, 습도(점막건조), 빛, 소리(소음), 전자파(저주파파장), 전리방사선(라돈) 등High heat, stress, humidity (mucosa), light, sound (noise), electromagnetic waves (low frequency), ionizing radiation (radon), etc.

생물학적 인자Biological factors

세균(곰팡이, 바이러스, 균류, 박테리아), 원생동물(기생충), 식물화분, 진드기, 벌레, 쥐, 애완동물(피부, 털) 등Bacteria (fungus, viruses, fungi, bacteria), protozoa (parasites), plant pollen, mites, worms, mice, pets (skin, hair), etc.

화학적 인자Chemical factors

이산화탄소, 일산화탄소, 질소산화물, 이산화유황 , 오존, 염소, 광물섬유, (수돗물)납 부진, 입자상물질(매연, 담배연기), 휘발성유기화합물(포름알데히드, 유기용제, 살충제 등) 등Carbon dioxide, carbon monoxide, nitrogen oxides, sulfur dioxide, ozone, chlorine, mineral fiber, (tap water) lead, particulate matter (soot, tobacco smoke), volatile organic compounds (formaldehyde, organic solvents, insecticides, etc.)

새집증후군을 해결하기 위하여 종래에 광촉매, 산소촉매(공기촉매, 무광촉매, 암촉매라고도 함) 등의 촉매반응형 유해유기화합물 제거제가 사용되었다. 이들은 일본에서 최초로 개발이 진행이 되고 완성되었다. 그러나 이들 제품은 주로 건물외장재-건물외벽의 타일, 도로표지판, 가드레일, 터널 내부 등에 유기오염물질이 부착되는 것을 방지하기 위해서 개발되었다. 특히, 이산화티타늄을 졸 상태로 하여 바인더를 배합한 광촉매의 경우는 자외선(UV)이 강하게 조사되어야만 물리적인 에너지를 얻어 화학적 에너지로 변환되어 유기오염물질을 분해시킬 수 있으므로 자외선이 없는 실내조건에서는 촉매반응이 제대로 일어나지 않아 그 효과가 미비하였다. In order to solve the sick house syndrome, a catalytic reaction type harmful organic compound remover such as a photocatalyst, an oxygen catalyst (also known as an air catalyst, a matte catalyst, and a dark catalyst) has been used. They were first developed and completed in Japan. However, these products were mainly developed to prevent organic pollutants from adhering to building exterior materials-building exterior wall tiles, road signs, guard rails, and inside tunnels. Particularly, in the case of a photocatalyst in which a binder is mixed with titanium dioxide in a sol state, ultraviolet rays (UV) must be strongly irradiated to obtain physical energy, which can be converted into chemical energy and decompose organic pollutants. The reaction did not occur properly and the effect was insufficient.

따라서 이러한 문제점을 해결하기 위하여 가시광선 영역에서 물리적 에너지를 얻을 수 있는 여러 가지 형태의 광촉매가 개발되었다. 새롭게 등장한 제품은 인산티타늄을 주요성분으로 하는 산소촉매로, 이 제품은 건물외장재의 오염물 제거에는 탁월한 기능을 발휘하였으나, 실내오염물질 제거에는 기대만큼 효과를 나타내지 못했다. Therefore, in order to solve this problem, various types of photocatalysts capable of obtaining physical energy in the visible light region have been developed. The newly introduced product is an oxygen catalyst whose main component is titanium phosphate. This product has an excellent function in removing contaminants from building exterior materials, but it was not as effective in removing indoor pollutants.

국내에서도 1999년부터 현재까지 이러한 물질들이 수입되면서 새집증후군을 유발하는 실내오염물질 제거제로 이용되고 있으나 많은 문제점이 있다. In Korea, since these materials are imported from 1999 to the present, it is used as an indoor pollutant removal agent that causes sick house syndrome, but there are many problems.

이산화티타늄을 주요성분으로 하는 광촉매의 경우 앞서 설명한 바와 같이, 실내 가구, 건축내장재, 벽면 등에 도포식으로 코팅하여 사용할 경우 자외선이 조사되어야만 그나마 기능을 발휘하기 때문에 실내환경에서는 제대로 효과를 볼 수 없으며, 여기에 바인더로 사용하는 화학물질이 또 다른 오염원으로 작용할 수 있다.In the case of the photocatalyst mainly composed of titanium dioxide, as described above, when it is used as a coating method for indoor furniture, building interior materials, walls, etc., it does not function properly in an indoor environment because it does not function properly when it is irradiated with ultraviolet rays. The chemicals used as binders can act as another contaminant.

인산티타늄을 주요성분으로 하는 산소촉매는 실내 공기 중의 산소와 반응하여 물리적인 에너지를 얻을 수 있으나, 인산티타늄 입자가 건축내장재, 가구, 벽면 등의 표면에 도포되어 이들 자재 내부로부터 휘산되어 나오는 유해화합물과 직접 접촉해야만 반응을 할 수 있으므로, 단위 반응 표면적이 낮아 제거 효율이 떨어진다. Oxygen catalysts containing titanium phosphate as a main component can react with oxygen in the indoor air to obtain physical energy.However, toxic compounds that are vaporized from the interior of titanium phosphate particles are applied to the interior of building materials, furniture, and walls. Since the reaction can only be carried out in direct contact with, the unit reaction surface area is low and the removal efficiency is lowered.

지금까지 개발, 이용되어 오고 있는 촉매 반응형 유해물질 제거제들은 유해물질들과 접촉반응을 일으킬 때 자외선이나 산소와 같은 별도의 매개체를 필요로 하고, 또한 이산화티타늄이나 인산티타늄 형태의 나노입자들을 기재표면에 배열시켜 이미 대기 중에 휘산된 유해유기화합물이 유동하다 이에 부딪혀야만 반응이 일어나 분해될 수 있기 때문에 유해유기화합물의 분해율이 떨어진다는 문제점이 있다. 또한, 항균 및 항곰팡이 기능을 기대할 수 없기 때문에 별도로 항균력을 지닌 나노 은을 소량 첨가하는 등의 방법으로 항균기능을 추가하게 된다. 또, 나노 은의 특성상 20~40나노미터의 입자를 유지해야만 항균효과를 볼 수 있는데 이들 물질과 혼합될 경우 입자간 응집이 일어나게 되어 입자가 더 커지거나 침전되어 항균효과를 기대하기 어렵게 된다.Catalytic toxic substance removers, which have been developed and used so far, require a separate medium such as ultraviolet rays or oxygen when they react with toxic substances, and also display nanoparticles in the form of titanium dioxide or titanium phosphate. There is a problem in that the decomposition rate of harmful organic compounds is lowered because the harmful organic compounds volatilized in the air flow in order to be decomposed only when the reaction occurs. In addition, since antibacterial and antifungal functions cannot be expected, the antimicrobial function is added by adding a small amount of nano silver having antimicrobial power separately. In addition, the antimicrobial effect can be seen only by maintaining the particles of 20 to 40 nanometers due to the nature of the nano silver. When mixed with these substances, aggregation occurs between particles, which makes the particles larger or precipitated, which makes it difficult to expect the antimicrobial effect.

따라서 실제로 아파트의 새집증후군을 유발하는 가장 중요한 원인물질인 포름알데히드의 제거율을 조사한 결과, 광촉매를 이용하여 시공한 아파트의 경우 자외선을 조사하는 실험실 조건에서는 80~90%에 이르던 제거율이 현장에서는 15% 미만인 것으로 알려져 있으며, 산소촉매를 이용하여 시공한 아파트의 경우 자외선을 조사하는 실험실 조건에서는 90~95%에 이르던 제거율이 현장에서는 30~50%에 불과한 것으로 알려져 있다. Therefore, the removal rate of formaldehyde, which is the most important causative agent that causes sick house syndrome in apartments, was investigated.In the case of apartments constructed using photocatalysts, the removal rate was 80% to 90% in the laboratory condition of irradiating ultraviolet rays. In the case of apartments constructed using oxygen catalyst, the removal rate of 90 ~ 95% is known to be only 30 ~ 50% in the field under the condition of UV irradiation.

현장시공과 실험실 조건에서의 포름알데히드 제거율이 이렇게 차이가 나는 이유는, 자외선 조사량의 차이(실험실: 자외선 램프 직접조사, 현장: 자연광 상태) 외에도 실험실 조건의 경우 일정농도의 포름알데히드를 챔버 내에 휘산시켜 가스거지관법을 이용하여 제시된 카드리지의 눈금을 읽어 제거율을 실험하는데 비해, 시공현장은 환경부 기준시험법인 공기포집법(DNPH 유도체화법)을 이용하여 포름알데히드의 량을 정량정성 분석하는 방법이기 때문에 정확도가 월등하다. 이는 실제 실내 환경에서는 포름알데히드 등이 가구나 건축내장재(마감재) 내부에 많이 존재하면서 지속적으로 휘산되어 나오기 때문에 일정량만 단 시간내에 측정하는 것은 무의미하며 지속적인 성능을 발휘하는 조건이 중요하다. 또한 종래 사용되는 촉매형 제거제의 가장 큰 문제점의 하나는 촉매의 바인더에 의해 막이 생기게 되므로, 건축재 내부에서 지속적으로 배출되어 나오는 포름알데히드가 이들 바인더 막의 틈새를 통해 지속적으로 빠져나온 후 공기 중을 돌다가 다시 촉매와 접촉할 때 비로소 분해가 된다는 것과 표면에 분포된 촉매입자가 나노 사이즈기 때문에 실내에서 발생하는 먼지입자가 표면에 붙게 되면 반응이 이루어 질 수 없는 문제가 발생한다. 이러한 낮은 단위 반응 표면적과 그에 따른 낮은 제거효율은 자연상태에서 포름알데히드의 반감기인 18개월, 그리고 이후 10년 동안 계속 휘산되어 사라지는 조건과 크게 다를 바 없다.The reason for the difference in formaldehyde removal rate between field construction and laboratory conditions is that, in addition to the difference in the amount of UV irradiation (laboratory: UV lamp direct irradiation, site: natural light conditions), a certain concentration of formaldehyde is volatilized in the chamber under laboratory conditions. While the removal rate is tested by reading the scale of the cartridge presented using the gas bent pipe method, the construction site is a method that quantitatively analyzes the amount of formaldehyde using air collection method (DNPH derivatization method), which is a standard test method of the Ministry of Environment. Superior It is important to measure only a certain amount in a short time because condition of formaldehyde exists in furniture or building interior materials (finishing materials) continuously and volatilizes in real indoor environment. In addition, one of the biggest problems of the conventional catalyst type remover is that the membrane is formed by the binder of the catalyst, so that formaldehyde continuously discharged from the interior of the building material is continuously discharged through the gap of the binder membrane and then roams in the air. When it comes into contact with the catalyst again, since it is decomposed and the catalyst particles distributed on the surface are nano-size, the problem that the reaction cannot occur when the dust particles generated in the room adhere to the surface. This low unit reaction surface area and thus low removal efficiency are not much different from the conditions of volatilization and disappearance for 18 months, which is the half-life of formaldehyde in nature, and for the next 10 years.

또, 기타 광촉매를 코팅한 조화나 장식물, 그리고 흡착기능 기능을 부여한 제품, 공기청정식물, 공기청정기 등의 경우는, 그 작용자체도 미미할 뿐만 아니라 새집증후군의 주요 원인인 건축 마감내장재, 목공본드 등으로부터 발생하는 유해유기화합물들이 실내공기에 방사 또는 휘산된 후에나 작용을 할 수 있는 것이어서 환기를 시키는 조건보다 크게 나을 것이 없다고 평가되고 있다.In addition, other photocatalyst coatings and decorations, products with an adsorption function, air cleaning plants, air purifiers, etc., are not only effective in themselves, but also the interior finishing materials and woodworking bonds that are the main causes of sick house syndrome. It is estimated that the harmful organic compounds generated from the plant can act only after being released or volatilized to indoor air, and thus, are not much better than the conditions for ventilation.

본 발명은 상기와 같은 종래의 문제점을 해결하고자 하는 것으로, 본 발명에서는 새집 증후군의 주요 원인인 건축자재 등에 도포(스프레이 시공)하여 80% 정도는 건축자재 표면과 피하조직에 침착되어 자재 내부에 분포해 있는 새집증후군 원인 물질이 실내 공기 중에 방사되기 전에 근원적으로 분해제거하고 20% 정도는 도포 후 빠르게 휘산되어 기존에 실내에 방사되어 있거나 건축재의 표면에 분포하는 유해유기화합물을 신속히 분해 제거할 수 있는 조성물 및 그 제조방법을 제공하는 것을 목적으로 한다. The present invention is to solve the conventional problems as described above, in the present invention by applying (spray construction) to the building materials, which is the main cause of the sick house syndrome (80%) is deposited on the surface of the building material and subcutaneous tissue distributed in the material It is possible to decompose and remove the harmful substance that causes sick house syndrome before it is radiated into the indoor air, and 20% is rapidly volatilized after application, which can rapidly decompose and remove harmful organic compounds that are emitted indoors or distributed on the surface of building materials. It is an object to provide a composition and a method for producing the same.

이를 위해 본 발명에서는 기존 광촉매나 산소촉매와 같이 바인더를 필요로 하는 입자상 물질이 아니라 천연 고분자인 글루코사민으로부터 유도되고, 탁월한 포름알데히드 분해력과 항균력이 있는 β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)n)를 주성분으로 사용한다. 또한, 보조성분으로 다종 다량의 폴리페놀 화합물이 함유된 식물성 정유를 사용하여 β-(1,4)-폴리-D-글루코사민 유도체와 함께 실내오염물질의 분해제거, 항균, 항곰팡이, 항진드기, 소취 기능 등을 동시에 제공할 수 있도록 한다. To this end, in the present invention, β- (1,4) -poly-D-glucosamine derived from glucosamine, which is a natural polymer, and has excellent formaldehyde degrading power and antibacterial activity, rather than a particulate material requiring a binder like a conventional photocatalyst or an oxygen catalyst. A derivative ((C 6 H 11 NO 4 ) n) is used as the main component. In addition, using vegetable essential oils containing a large amount of polyphenol compounds as a secondary component, with β- (1,4) -poly-D-glucosamine derivatives, decomposition and removal of indoor pollutants, antibacterial, anti-fungal, anti-mite The deodorizing function can be provided at the same time.

즉, 본 발명에서는, That is, in the present invention,

β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)n)와 수성 용매를 포함하는 실내오염물질 분해제거용 액상 조성물이 제공된다. 바람직하게는 상기 조성물은 질경이; 레몬유; 해바라기유; 박하유; 정향유(clove oil); 계피유(cinnamon oil) 중에서 선택된 1종 이상의 식물성 정유를 1~20 중량% 더 포함한다. A liquid composition for decomposing and removing indoor pollutants comprising β- (1,4) -poly-D-glucosamine derivative ((C 6 H 11 NO 4 ) n) and an aqueous solvent is provided. Preferably the composition is plantain; Lemon oil; Sunflower oil; peppermint oil; Clove oil; It further comprises 1 to 20% by weight of one or more vegetable essential oils selected from cinnamon oil.

또한 본 발명에서는,In the present invention,

β-(1,4)-폴리-D-글루코사민 유도체 5~50 중량%와 질경이; 레몬유; 해바라기유; 박하유; 정향유; 계피유 중에서 선택된 1종 이상의 식물성 정유 1~20 중량% 및 물 잔부를 혼합한 후, 40~80℃에서 3~6시간 동안 1000~3000rpm으로 교반하는 것을 특징으로 하는 실내오염물질 분해제거용 액상 조성물의 제조방법이 제공된다.5-50% by weight of β- (1,4) -poly-D-glucosamine derivative and plantain; Lemon oil; Sunflower oil; peppermint oil; Clove oil; After mixing 1 to 20% by weight of at least one vegetable essential oil selected from cinnamon oil and the balance of water, the liquid composition for the decomposition and removal of indoor pollutants, characterized in that the stirring at 1000 ~ 3000rpm for 3-6 hours at 40 ~ 80 ℃ A manufacturing method is provided.

기타 본 발명의 다른 목적 및 장점들은 하기에 설명될 것이며, 본 발명의 실시에 의해 더 잘 알게 될 것이다. Other objects and advantages of the present invention will be described below and will be better understood by practice of the present invention.

본 발명의 실내오염물질 분해제거용 액상 조성물은 유효성분으로 β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)n)와 이를 용해시키는 수성 용매를 포함한다. The liquid composition for decomposition and removal of indoor pollutants of the present invention includes β- (1,4) -poly-D-glucosamine derivative ((C 6 H 11 NO 4 ) n) and an aqueous solvent for dissolving it as an active ingredient.

β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)n)는 천연 고분자 물질로, 포름알데히드를 포함한 알데히드류(15종)와 단분자와 반응하여 알데히드를 반응성이 없는 화합물로 분해시킨다. 분해 기작은 하기 반응식 1과 같으며, β-(1,4)-폴리- D-글루코사민 유도체의 아미노기와 알데히드가 반응하여 반응성이 없는 지방족 1차 이민 화합물과 물로 변환된다. 변환된 이민화합물은 방향성이 없는 물질이다.β- (1,4) -poly-D-glucosamine derivative ((C 6 H 11 NO 4 ) n) is a natural polymer and reacts with aldehydes including formaldehyde (15 species) as a single molecule to react aldehydes. Decompose to compounds without. The mechanism of degradation is shown in Scheme 1 below, and the amino group of the β- (1,4) -poly-D-glucosamine derivative reacts with an aldehyde to convert an unreactive aliphatic primary imine compound and water. The converted imine compound is an aromatic substance.

Figure 112006012359213-pat00002
Figure 112006012359213-pat00002

β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)n)는 수성 용매에 용해시켜 액상 도포제의 형태로 사용한다. 수성 용매는 β-(1,4)-폴리-D-글루코사민 유도체를 용해시킬 수 있는 것이면 제한 없이 사용될 수 있으며, 바람직하게는 증류수, 염소가 제거된 물을 사용할 수 있다. 바람직하게는, β-(1,4)-폴리-D-글루코사민 유도체는 수용액 중에 5~50 중량%로 포함된다. 5 중량% 미만에서는 효과가 미약하고, 50 중량%를 넘으면 균일한 수용액 상태를 이루기가 어려울 수 있다. β- (1,4) -poly-D-glucosamine derivative ((C 6 H 11 NO 4 ) n) is dissolved in an aqueous solvent and used in the form of a liquid coating agent. The aqueous solvent can be used without limitation as long as it can dissolve the β- (1,4) -poly-D-glucosamine derivative, and preferably distilled water or chlorine-free water may be used. Preferably, the β- (1,4) -poly-D-glucosamine derivative is included in the aqueous solution at 5-50% by weight. If it is less than 5% by weight, the effect is weak, and if it exceeds 50% by weight, it may be difficult to achieve a uniform aqueous solution.

β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)n)는 수용성 상태로 도포되어, 수분이 증발한 후 벽지나 가구 등의 건자재 피하조직의 셀룰로오스나 아세테이트와 공유 결합하여 존재하면서 자재 내부에서 지속적으로 유리되어 나오는 포름알데히드 단분자와 반응하여 분해기작을 유지하게 된다.β- (1,4) -poly-D-glucosamine derivative ((C 6 H 11 NO 4 ) n) is applied in a water-soluble state, and after evaporation of water, cellulose or acetate of dry subcutaneous tissue such as wallpaper or furniture It exists in covalent bonds and reacts with formaldehyde monomolecules which are constantly released from the inside of the material to maintain the decomposition mechanism.

또한, β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)n)는 항균작용도 나타내게 된다. β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)n)는 유기산과 함께 존재할 때 아미노기가 양이온을 나타내게 되어 박테리아 체표면 단백질 중의 카르복실기(음이온)과 결합하게 된다. 따라서 글루코사민 유도체가 균 표면을 감싸게 되고, 균의 분열 및 영양분 흡수를 막음으로써 균이 증식되는 것을 막아 항균작용을 나타내게 된다. 본 발명의 실시예에서는 접종 60분 후 대장균, 황색포도상구균, 폐렴구균, 녹농균이 99.9% 감소되는 것으로 나타났다. In addition, β- (1,4) -poly-D-glucosamine derivative ((C 6 H 11 NO 4 ) n) also exhibits antimicrobial activity. β- (1,4) -poly-D-glucosamine derivatives ((C 6 H 11 NO 4 ) n), when present with an organic acid, show an amino group with a cation, which binds to a carboxyl group (anion) in bacterial body surface proteins. . Therefore, the glucosamine derivative is wrapped around the surface of the bacteria, and prevents the growth of the bacteria by preventing the bacterial division and absorption of nutrients exhibits the antibacterial action. In the embodiment of the present invention, the E. coli, Staphylococcus aureus, pneumococci, Pseudomonas aeruginosa were reduced by 99.9% after 60 minutes of inoculation.

본 발명의 실내오염물질 분해제거용 액상 조성물은 유효성분으로 다종 다량의 폴리페놀 화합물이 함유된 식물성 정유를 더 포함할 수 있다. 예를 들어, 질경이; 레몬유; 해바라기유; 박하유; 정향유(clove oil); 계피유(cinnamon oil) 등이 1종 이상 포함될 수 있다. The liquid composition for decomposition and removal of indoor pollutants of the present invention may further include a vegetable essential oil containing a large amount of polyphenol compounds as an active ingredient. For example, plantain; Lemon oil; Sunflower oil; peppermint oil; Clove oil; Cinnamon oil (cinnamon oil) and the like may be included one or more.

이러한 식물성 정유에 포함된 폴리페놀 화합물은 여러 개의 수산기((-OH)를 가지고 있는데, 이 수산기가 각종 유해 유기화합물질과 반응하여 화학적으로 중화, 치환, 환원반응 등을 일으켜 탈취 효과를 내게 된다. 또한 식물성 정유가 가지는 흡착성과 휘발성에 의해 기자재 표면 및 공기 중의 유해물질을 강제 연행하여 급속히 휘발하여 배출시키는 특정기능을 발휘하게 되고, 또한 용매의 휘발을 도와 줌으 로써 상기 β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)n)가 건자재 내부에 침투하게 하여 신속하게 자재의 조직과 결합하게 하는 역할을 한다. 바람직하게는, 식물성 정유는 조성물 중에 1~20 중량%로 포함된다. The polyphenol compound included in the vegetable essential oil has a plurality of hydroxyl groups ((-OH), which react with various harmful organic compounds to chemically neutralize, substitute, and reduce, resulting in a deodorizing effect. In addition, due to the adsorption and volatility of vegetable essential oils, the surface of the equipment and the harmful substances in the air are forced to volatilize and exert a specific function to rapidly volatilize and also help volatilization of the solvent. The poly-D-glucosamine derivative ((C 6 H 11 NO 4 ) n) penetrates into the building material and quickly binds to the tissue of the material. Included in%.

본 발명의 액상 조성물은 바람직하게는 β-(1,4)-폴리-D-글루코사민 유도체와 식물성 정유 각 성분과 물을 혼합한 후 가온 교반하여 유화분산 및 숙성시키는 과정을 통해 얻을 수 있다. 바람직하게는 온도 40~80℃에서 3~6시간 동안 교반속도 1000~3000rpm으로 교반한다.The liquid composition of the present invention may be preferably obtained by mixing β- (1,4) -poly-D-glucosamine derivative, vegetable essential oil, and water, followed by heating and stirring to disperse the emulsion and mature. Preferably it is stirred at a stirring speed of 1000 ~ 3000rpm for 3-6 hours at a temperature of 40 ~ 80 ℃.

또, 본 조성물은 사용될 건축자재 등의 특성 등을 고려하여 용도에 따라 비율을 더욱 효과적으로 조정할 수 있다. 즉, 주 반응을 담당하는 아미노기의 활성,분자량을 증대하기 위한 조건과 기재와의 결합성, 기재 도포 후 휘산성 등을 고려한 조정이 가능하다. 예를 들어, 목재, 섬유 등과 같이 셀룰로스 조직이 많은 기재에 사용되는 경우에는, β-(1,4)-폴리-D-글루코사민 유도체는 5~50 중량%, 식물성 정유는 1~10 중량%를 혼합하고 나머지는 물을 혼합하여 온도 40~70℃ 사이에서 3~6 시간 동안 교반속도 1000~3000rpm으로 교반한다. 또, PVC, 아세테이트 등의 화학소재로 구성된 기재에 사용되는 경우에는, β-(1,4)-폴리-D-글루코사민 유도체는 5~30 중량%, 식물성 정유는 1~20 중량%를 혼합하고 나머지는 물을 혼합하여 온도 60~80℃ 사이에서 3~6 시간 동안 교반속도 1000~3000rpm으로 교반한다. In addition, the composition can be adjusted more effectively according to the use in consideration of characteristics such as building materials to be used. That is, adjustment can be made in consideration of the activity of the amino group which is responsible for the main reaction, conditions for increasing the molecular weight, binding to the substrate, volatilization after coating of the substrate, and the like. For example, when used in substrates with a large number of cellulose tissues such as wood, fibers, etc., 5-50% by weight of β- (1,4) -poly-D-glucosamine derivatives and 1-10% by weight of vegetable essential oils Mix and the remainder is mixed with water and stirred at a stirring speed of 1000 ~ 3000rpm for 3-6 hours between 40 ~ 70 ℃ temperature. In addition, when used for a substrate made of chemical materials such as PVC and acetate, 5-30% by weight of the β- (1,4) -poly-D-glucosamine derivative and 1-20% by weight of the vegetable essential oil are mixed. The remainder is mixed with water and stirred at a stirring speed of 1000 to 3000 rpm for 3 to 6 hours between a temperature of 60 to 80 ℃.

이밖에도 본 발명의 조성물에는 항진드기제나 유화제와 같은 공지의 첨가제 가 알려진 목적과 방법에 따라 첨가될 수 있다. 특히, 식물에서 추출된 항진드기제인 피레트린(Pyrethrin), 시네린(Cinerine) 등이 조성물 중에 각각 0.5~2% 함유될 수 있다. In addition, a known additive such as an anti-mite agent or an emulsifier may be added to the composition of the present invention according to a known purpose and method. In particular, anti-mite extracts Pyrethrin, Cinerine and the like extracted from plants may be contained in the composition 0.5 ~ 2%.

이하 구체적인 실시예를 통해 본 발명을 보다 상세히 설명한다. 그러나 다음의 실시예에 의해 본 발명의 범위가 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능한 것은 물론이다. Hereinafter, the present invention will be described in more detail with reference to specific examples. However, the scope of the present invention is not limited by the following examples, and those skilled in the art to which the present invention pertains should be within the equivalent scope of the technical concept of the present invention and the claims to be described below. Of course, various modifications and variations are possible.

실시예Example

β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)3) 30 중량%, 레몬유?질경이?해바라기유의 1:1:1의 혼합유로 10 중량% 및 증류수 60 중량%를 혼합하여 60℃에서 4 시간 동안 교반속도 2000rpm으로 교반하여 액상 조성물을 만들었다.β- (1,4) -poly-D-glucosamine derivative ((C 6 H 11 NO 4 ) 3 ) 30% by weight, 10% by weight of 1: 1: 1 mixed oil of lemon oil, plantain and sunflower oil, and 60% by weight of distilled water % Was mixed and stirred at 60 ° C. for 4 hours at a stirring speed of 2000 rpm to form a liquid composition.

실험예Experimental Example 1 One

현장적용 실험Field application experiment

1. 실험 조건1. Experimental conditions

신축공동주택의 건축자재는 건설사마다 특성이 다르고 입주 시기가 서로 다르기 때문에 현장적용 실험을 하기에 매우 어려운 상황이다. 또한, 동일 건설사에 서 시공한 경우에도 실험군과 대조군의 초기 농도를 동일하게 맞추기는 어렵다. 따라서 건설기술연구원의 건자재 시험주택을 임대하여 실험군과 대조군의 초기농도를 맞추기 위하여 동일한 건축자재로 동시에 시공 하였으며, 건물을 신축시공하거나 인테리어 시 발생될 수 있는 포름알데히드의 농도를 최대로 발생시킬 수 있는 자재를 사용하였다.The construction materials of new apartment buildings are very difficult to carry out field application experiments because the construction companies have different characteristics and occupancy periods are different. In addition, even if the construction in the same construction company it is difficult to match the initial concentration of the experimental group and the control. Therefore, in order to match the initial concentrations of the experimental group and the control group, the construction materials were rented out by the Institute of Construction Technology and were simultaneously constructed with the same building materials, and the maximum concentration of formaldehyde that can be generated during the construction or interior of the building can be maximized. Material was used.

실험군은 상기 실시예에서 제조한 본 발명의 액상 조성물을 사용하였다. 대조군은 Bake-out만 실시하였으며 단, 30분 환기 후 실험군과 조건을 맞추기 위해 온도를 조절하였다. The experimental group used the liquid composition of the present invention prepared in the above examples. The control group was Bake-out only, but after 30 minutes of ventilation, the temperature was adjusted to match the experimental group.

2. 측정2. Measure

(1) 온도 : 시료채취 시 실내온도를 20℃ 이상으로 유지.(1) Temperature: Keep the room temperature above 20 ℃ during sampling.

(2) 기류 : 환기시스템 미설치로 기류 영향 없었음.(2) Airflow: There was no airflow effect due to the lack of ventilation system.

3. 시료채취방법 3. Sample Collection Method

30분 환기 후 5시간 밀폐한 공기를 포집하여 샘플로 하였으며, 동시에 3회 측정하였다. After 30 minutes of ventilation, air was sealed for 5 hours, and samples were collected and measured at the same time three times.

4. 시험방법4. Test Method

환경부의 실내공기질 공정시험방법을 사용하였으며, 포름알데히드는 2,4-DNPH 유도체화 HPLC 분석법을 이용하였다.The indoor air process test method of the Ministry of Environment was used, and formaldehyde was used for 2,4-DNPH derivatization HPLC analysis.

5. 결과5. Results

(1) 실험군(1) experimental group

실험군에서는 초기농도를 측정한 후 상기 실시예에서 제조된 본 발명의 액상 조성물을 도포(시공)하였고 그 다음날부터 주기적으로 대조군과 동일한 조건으로 환기 및 밀폐를 한 후 측정하였다. 결과는 다음의 표 2 및 도 1, 2와 같다. 표 2 및 도 1은 실험군의 포름알데히드 농도 변화를 나타낸 것으로, 측정 결과 초기 농도는 2880㎍/㎥이었고 시공한 이틀 후 측정한 결과는 1115㎍/㎥로 감소되었으며, 실험 마지막 날에는 533㎍/㎥으로 나타났다. 도 2는 실험군의 시간경과에 따른 포름알데히드 감소율을 나타낸 것으로, 도포한 이틀 후에는 61%가 감소했으며, 12일 후에는 81% 정도를 유지하였다. In the experimental group, the initial concentration was measured and then applied (constructed) the liquid composition of the present invention prepared in the above example, and then measured after ventilation and sealing under the same conditions as the control group periodically from the next day. The results are shown in Table 2 and FIGS. 1 and 2. Table 2 and Figure 1 shows the change in formaldehyde concentration of the experimental group, the measurement result was the initial concentration was 2880㎍ / ㎥ and after two days of construction the measurement was reduced to 1115㎍ / ㎥, the last day of the experiment 533㎍ / ㎥ Appeared. Figure 2 shows the reduction rate of formaldehyde over time of the experimental group, after two days of application was reduced by 61%, after 12 days was maintained at 81%.

Figure 112006012359213-pat00003
Figure 112006012359213-pat00003

(2) 대조군(2) control

대조군은 실시예에서 제조된 액상 조성물을 도포(시공)하지 않고 Bake-out 만 실시하였다. 환기 및 밀폐는 상기 실험군과 동일한 조건으로 하였다. 단, 측정 당일 오전의 사전 환기인 30분 환기 후에는 일반 생활 형태 및 실험군과의 조건을 맞추기 위해 실내 온도를 22∼25℃로 조절하여 측정하였다. 결과는 다음의 표 3 및 도 3, 4와 같다. 표 3 및 도 3은 대조군에서 시간 경과에 따른 포름알데히드의 농도 변화를 나타낸 것으로, 측정 결과 초기 농도는 2895㎍/㎥로 실험군과 유사하게 시작되었고, Bake-out을 실시한 12일 경과 후에는 1955㎍/㎥이었으며, 실험 종료일에는 2005㎍/㎥로 나타났다. 도 4는 대조군에서 시간 경과에 따른 포름알데히드의 감소율을 나타낸 것으로, Bake-out을 실시한 4일 후에는 19% 정도 감소되었고, 8일 후에는 29% 정도 감소되었으며, 12일 이후에는 32%정도 감소율을 유지하였다.The control group was subjected only to bake-out without applying (building) the liquid composition prepared in Example. Ventilation and sealing were performed under the same conditions as the above experimental group. However, after 30 minutes of ventilation, which is the pre-ventilation of the morning of the measurement day, the room temperature was adjusted to 22 to 25 ° C. in order to meet the general living conditions and the experimental group. The results are shown in Table 3 below and FIGS. 3 and 4. Table 3 and Figure 3 shows the change in the concentration of formaldehyde over time in the control group, the initial concentration was 2895 ㎍ / ㎥ started similar to the experimental group, 12 days after the bake-out 1955 ㎍ It was / ㎥, it was 2005 ㎍ / ㎥ at the end of the experiment. Figure 4 shows the reduction of formaldehyde over time in the control group, after 4 days of bake-out was reduced by 19%, after 8 days was reduced by 29%, after 12 days about 32% decrease Was maintained.

Figure 112006012359213-pat00004
Figure 112006012359213-pat00004

(3) 정리(3) clearance

결과를 정리하면, 본 발명의 액상 조성물을 도포한 실험군에서는 도포 2일 후에 61%, 16일 후에는 82% 정도의 제거 효율을 보인 반면, Bake-out을 실시한 대조군에서는 4일 후에 19% 정도, 12일 후에 32% 정도의 제거 효율이 나타나 현격한 차이를 보였다. 결론적으로, 실험군이 대조군에 비해 포름알데히드 제거효율이 50% 이상 우수하였다.In summary, in the experimental group to which the liquid composition of the present invention was applied, the removal efficiency was about 61% after 2 days of application and about 82% after 16 days, whereas in the control group which was subjected to bake-out, about 19% after 4 days, After 12 days, the removal efficiency was about 32%, showing a significant difference. In conclusion, the experimental group was more than 50% better than the control group formaldehyde removal efficiency.

실험예Experimental Example 2 2

항균력 시험Antibacterial test

“Shake flask method KS W 0146-2003” (한국원사직물 시험연구원)에 따라 시험균액을 37± 1℃에서 24시간 진탕배양 후 균수를 측정(진탕횟수 120회/분)하였다. 상기 실시예에서 제조된 본 발명의 액상 조성물을 접종한 후 60분 후 대장균, 황색포도상구균, 폐렴구균, 녹농균이 99.9% 감소되는 것으로 나타났다. 결과는 도 5와 같다. According to the “Shake flask method KS W 0146-2003” (Korea Yarn Textile Testing Institute), the test bacteria were cultured at 37 ± 1 ° C. for 24 hours and then the number of bacteria was measured (shaking frequency 120 times / min). E. coli, Staphylococcus aureus, pneumococci, Pseudomonas aeruginosa were reduced by 99.9% after 60 minutes after inoculating the liquid composition of the present invention prepared in the above Examples. The results are shown in FIG.

본 발명의 액상 조성물은, 새집증후군을 유발하는 원인물질의 85%를 차지하는 포름알데히드에 대해 탁월한 분해제거 능력을 나타내며, 또한 항균, 항곰팡이, 항진드기, 암모니아류의 소취기능 등을 동시에 만족시킬 수 있으므로, 건물의 신축 또는 인테리어 공사 등에 따른 새집증후군을 획기적으로 해결할 수 있다. 또한, 기존 광촉매나 산소촉매와 달리 오염유발원이 될 수 있는 바인더를 사용할 필요가 없고, 시공 후 기존 자재의 표면 외관이나 질감에는 전혀 영향을 주지 않는 장점도 갖고 있다. The liquid composition of the present invention exhibits excellent decomposition and removal ability for formaldehyde, which accounts for 85% of the causative agents causing sick house syndrome, and can simultaneously satisfy the antibacterial, antifungal, anti-mite, and deodorant functions of ammonia. Therefore, it is possible to solve the sick house syndrome due to new building or interior construction. In addition, unlike conventional photocatalysts or oxygen catalysts, there is no need to use a binder that can be a source of pollution, and has the advantage of not affecting the surface appearance or texture of the existing material after construction.

Claims (7)

β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)n)와 수성 용매를 포함하며, 포름알데히드 분해제거능 및 항균력이 있는 새집증후군 개선용 액상 조성물.A liquid composition for improving sick house syndrome, comprising a β- (1,4) -poly-D-glucosamine derivative ((C 6 H 11 NO 4 ) n) and an aqueous solvent, and having an ability to decompose and remove formaldehyde. 제1항에 있어서, 상기 β-(1,4)-폴리-D-글루코사민 유도체는 5~50 중량%로 포함되는 것을 특징으로 하는 새집증후군 개선용 액상 조성물.According to claim 1, wherein the β- (1,4) -poly-D-glucosamine derivative is a liquid composition for improving sick house syndrome, characterized in that contained 5 to 50% by weight. 제2항에 있어서, 질경이; 레몬유; 해바라기유; 박하유; 정향유; 계피유 중에서 선택된 1종 이상의 식물성 정유를 1~20 중량% 더 포함하는 새집증후군 개선용 액상 조성물.The method of claim 2, comprising: plantain; Lemon oil; Sunflower oil; peppermint oil; Clove oil; Birdhouse syndrome improvement liquid composition further comprises 1 to 20% by weight of at least one vegetable essential oil selected from cinnamon oil. 제3항에 있어서, 피레트린(Pyrethrin) 또는 시네린(Cinerine)을 0.5~2 중량% 더 포함하는 새집증후군 개선용 액상 조성물.According to claim 3, Pyrethrin (Pyrethrin) or cinerine (Cinerine) further comprises 0.5 to 2% by weight of a sick house syndrome improvement liquid composition. β-(1,4)-폴리-D-글루코사민 유도체((C6H11NO4)n) 5~50 중량%와 질경이; 레몬유; 해바라기유; 박하유; 정향유; 계피유 중에서 선택된 1종 이상의 식물성 정유 1~20 중량% 및 물 잔부를 혼합한 후, 40~80℃에서 3~6시간 동안 1000~3000rpm으로 교반하는 것을 특징으로 하는 새집증후군 개선용 액상 조성물의 제조방법.5-50% by weight of β- (1,4) -poly-D-glucosamine derivative ((C 6 H 11 NO 4 ) n) and plantain; Lemon oil; Sunflower oil; peppermint oil; Clove oil; 1 to 20% by weight of at least one vegetable essential oil selected from cinnamon oil and the remainder of the water, and then a method for producing a liquid composition for improving sick house syndrome, characterized in that the stirring at 1000 ~ 3000rpm for 3-6 hours at 40 ~ 80 ℃ . 제5항에 있어서, β-(1,4)-폴리-D-글루코사민 유도체 5~50 중량%와 식물성 정유 1~10 중량% 및 증류수 잔부를 혼합한 후 40~70℃에서 3~6시간 동안 1000~3000rpm으로 교반하는 것을 특징으로 하는 새집증후군 개선용 액상 조성물의 제조방법.The method according to claim 5, wherein 5 to 50% by weight of β- (1,4) -poly-D-glucosamine derivative, 1 to 10% by weight of vegetable essential oil and the remainder of distilled water are mixed, and then 3 to 6 hours at 40 to 70 ° C. Method for producing a liquid composition for improving sick house syndrome, characterized in that the stirring at 1000 ~ 3000rpm. 제5항에 있어서, β-(1,4)-폴리-D-글루코사민 유도체 5~30 중량%와 식물성 정유 1~20 중량% 및 증류수 잔부를 혼합한 후 60~80℃에서 3~6시간 동안 1000~3000rpm으로 교반하는 것을 특징으로 하는 새집증후군 개선용 액상 조성물의 제조방법.The method according to claim 5, wherein 5 to 30% by weight of β- (1,4) -poly-D-glucosamine derivative, 1 to 20% by weight of vegetable essential oil and the remainder of distilled water are mixed and then 3 to 6 hours at 60 to 80 ° C. Method for producing a liquid composition for improving sick house syndrome, characterized in that the stirring at 1000 ~ 3000rpm.
KR1020060016354A 2006-02-20 2006-02-20 Liquid Composition for Reducing Sick House Syndrome and Its Preparation Method KR100809981B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060016354A KR100809981B1 (en) 2006-02-20 2006-02-20 Liquid Composition for Reducing Sick House Syndrome and Its Preparation Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060016354A KR100809981B1 (en) 2006-02-20 2006-02-20 Liquid Composition for Reducing Sick House Syndrome and Its Preparation Method

Publications (2)

Publication Number Publication Date
KR20070083090A KR20070083090A (en) 2007-08-23
KR100809981B1 true KR100809981B1 (en) 2008-03-06

Family

ID=38612525

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060016354A KR100809981B1 (en) 2006-02-20 2006-02-20 Liquid Composition for Reducing Sick House Syndrome and Its Preparation Method

Country Status (1)

Country Link
KR (1) KR100809981B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050018738A (en) * 2004-06-02 2005-02-28 윤여범 Photoless-catalysis compositions and wallpaper which have Anti-bacterial, deodorizing, and anti-mold effects
KR20060002356A (en) * 2004-07-02 2006-01-09 오화영 Multi-functional mixture
KR20060006368A (en) * 2004-07-15 2006-01-19 이은재 Composition for elimination formaldehyde and volatile organic compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050018738A (en) * 2004-06-02 2005-02-28 윤여범 Photoless-catalysis compositions and wallpaper which have Anti-bacterial, deodorizing, and anti-mold effects
KR20060002356A (en) * 2004-07-02 2006-01-09 오화영 Multi-functional mixture
KR20060006368A (en) * 2004-07-15 2006-01-19 이은재 Composition for elimination formaldehyde and volatile organic compound

Also Published As

Publication number Publication date
KR20070083090A (en) 2007-08-23

Similar Documents

Publication Publication Date Title
Baughman et al. Indoor humidity and human health--Part I: Literature review of health effects of humidity-influenced indoor pollutants
CN103055465B (en) A kind of oil-soluble formaldehyde scavenger and preparation method thereof
KR100634943B1 (en) Anti-microbial and deodorizing catalyst coating agent and its preparation process
CN105854823B (en) A kind of biological composite antibacterial adsorbent material and preparation method thereof
KR100605004B1 (en) Water-soluble paint composition containing illite powder
KR100808094B1 (en) Deodorization and antigerm composition for eliminating formaldehyde and volatile-organic compounds causing sick housesyndrome
KR20060110386A (en) Coating materials for surface finishing of construction
CN108144417A (en) Multiple-effect, environmentally-friendly eliminating smell agent and preparation method and application
CN110038554A (en) A kind of V that mica supports2O5-WO3/TiO2The preparation method of catalyst
Samudro et al. Prevention of indoor air pollution through design and construction certification: A review of the sick building syndrome conditions
CN111318106A (en) Composition for removing indoor environmental pollutants
KR101605114B1 (en) Method of manufacturing eco-friendly deodorant included Wasabia koreana for removing sick house syndrome
JP2006239393A (en) Allergen inactivating agent
KR20100138320A (en) Paint composition for painting
KR100809981B1 (en) Liquid Composition for Reducing Sick House Syndrome and Its Preparation Method
KR101889286B1 (en) Composition for remove substances causing sick house syndrome and removal method of substances causing sick house syndrome using the same
KR101584789B1 (en) Bio ceramic composition and method for controlling odor and hazardous substance by using same
KR20070068070A (en) Composition having antimicroorganism performance, a filter for indoor air quality applying the same and manufacturing method thereof
Han et al. The sources and health impacts of indoor air pollution
CN102728223B (en) Method for solving indoor air pollution
CN109745856A (en) It is a kind of for eliminating the spray of pollutants in air
Oanh et al. Indoor air pollution control
KR20070072667A (en) Bioceramic
KR20100092649A (en) Composition for antibacterial and deodorizing action having platinium particles
KR20090098182A (en) The treatment method of cleaning agent from voc(volatile organic compound) in new housing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee
R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20130826

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140827

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160829

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee