KR100805233B1 - An apparatus for measuring thickness of thin flim on wafer - Google Patents

An apparatus for measuring thickness of thin flim on wafer Download PDF

Info

Publication number
KR100805233B1
KR100805233B1 KR1020070006603A KR20070006603A KR100805233B1 KR 100805233 B1 KR100805233 B1 KR 100805233B1 KR 1020070006603 A KR1020070006603 A KR 1020070006603A KR 20070006603 A KR20070006603 A KR 20070006603A KR 100805233 B1 KR100805233 B1 KR 100805233B1
Authority
KR
South Korea
Prior art keywords
wafer
thin film
thickness
groove
measuring
Prior art date
Application number
KR1020070006603A
Other languages
Korean (ko)
Inventor
최용호
편희수
윤광준
신경수
최진호
박상근
이성호
오빛나
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020070006603A priority Critical patent/KR100805233B1/en
Application granted granted Critical
Publication of KR100805233B1 publication Critical patent/KR100805233B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

An apparatus for measuring the thickness of a wafer thin film is provided to increase a thickness measurement point of a wafer thin film by rotating a rotation chuck on which a wafer is placed. A measurement module(13) irradiates light to a wafer thin film and gathers reflection light. A wafer is placed on a rotation chuck(15). A rotation driving apparatus rotates the rotation chuck in a plurality of portions of the wafer thin film so that the thickness of the wafer thin film can be measured while the wafer is rotated. A plurality of reverence grooves can be formed on the upper surface of the rotation chuck, serving as a reference of measuring the thickness of the wafer thin film.

Description

웨이퍼 박막 두께 측정장치{An apparatus for measuring thickness of thin flim on wafer }An apparatus for measuring thickness of thin flim on wafer}

도1은 본 발명에 의한 박막 두께 측정장치의 평면도이다.1 is a plan view of a thin film thickness measuring apparatus according to the present invention.

도2는 본 발명에 의한 측정부의 측면도이다.2 is a side view of the measuring unit according to the present invention.

도3(a)는 본 발명에 의한 회전척 상부에 200mm웨이퍼가 안착된 것을 도시한 평면도이다.Figure 3 (a) is a plan view showing that the 200mm wafer is seated on the top of the rotary chuck according to the present invention.

도3(b)는 본 발명에 의한 회전척 상부에 300mm웨이퍼가 안착된 것을 도시한 평면도이다.Figure 3 (b) is a plan view showing that the 300mm wafer is seated on the top of the rotary chuck according to the present invention.

도4(a)는 본 발명에 의한 회전척 상부에 200mm웨이퍼가 안착된 상태에서 회전척이 일정각도 만큼 회전한 것을 나타낸 평면도이다.Figure 4 (a) is a plan view showing that the rotary chuck is rotated by a predetermined angle in the state that 200mm wafer is seated on the rotary chuck upper portion according to the present invention.

도4(b)는 본 발명에 의한 회전척 상부에 300mm웨이퍼가 안착된 상태에서 회전척이 일정각도 만큼 회전한 것을 나타낸 평면도이다.Figure 4 (b) is a plan view showing that the rotary chuck rotated by a predetermined angle in the state that 300mm wafer is seated on the rotary chuck upper portion according to the present invention.

도5는 웨이퍼 박막의 두께 측정의 순서를 보인 흐름도이다. 5 is a flowchart showing a procedure of measuring a thickness of a wafer thin film.

*도면의 주요부분에 대한 부호 설명** Description of symbols on the main parts of the drawings *

11: 측정부 13: 측정모듈11: measuring unit 13: measuring module

15: 회전척 17: 회전구동장치15: rotary chuck 17: rotary drive device

21: 기준홈 26: 주변홈21: reference groove 26: peripheral groove

27: 내측주변홈 28: 외측주변홈27: inner peripheral groove 28: outer peripheral groove

본 발명은 웨이퍼박막두께측정장치에 관한 것으로서, 웨이퍼 박막의 두께를 측정함에 있어서, 박막의 복수개의 부분을 신속하게 측정하고, 그 처리량을 현저하게 증대시킬 수 있는 발명에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer thin film thickness measuring apparatus and, in measuring the thickness of a wafer thin film, relates to an invention capable of rapidly measuring a plurality of portions of a thin film and significantly increasing the throughput thereof.

일반적으로 반도체 장치의 제조공정은 단결정 실리콘 재질의 웨이퍼상에 절연막, 유전막, 금속막 등의 다양한 박막을 형성하는 공정과 상기 박막을 원하는 형태의 패턴으로 형성하는 패턴 형성 공정을 포함한다.In general, the manufacturing process of a semiconductor device includes a process of forming various thin films such as an insulating film, a dielectric film, a metal film, and the like on a single crystal silicon wafer and a pattern forming process of forming the thin film in a desired pattern.

따라서, 박막의 물리적 특성은 상기 박막의 상부에 이루어지는 다양한 후속공정에 영향을 미친다.Thus, the physical properties of the thin film affect the various subsequent processes made on top of the thin film.

특히, 최근에는 반도체 장치가 고집적화되면서 기판상에 형성되는 박막의 수가 증가하고, 박막의 물리적특성이 후속공정에 미치는 영향은 더욱 증대되고 있다.In particular, in recent years, as semiconductor devices have been highly integrated, the number of thin films formed on a substrate increases, and the influence of physical properties of the thin films on subsequent processes is further increased.

이에 따라, 박막을 형성한 후에는 상기 박막의 물리적특성에 대한 평가를 수행하고 이를 후속공정에 반영하는 것이 필요하며, 박막의 물리적특성에 따라 다양한 평가공정이 수행되고 있다. Accordingly, after the thin film is formed, it is necessary to evaluate the physical properties of the thin film and reflect it in a subsequent process, and various evaluation processes are performed according to the physical properties of the thin film.

박막의 물리적 특성 중 박막의 두께 및 광학상수(굴절률, 소광계수)는 반도체 장치의 품질에 중대한 영향을 미친다. 예를 들면, 게이트산화막의 경우 원하는 두께 와 광학적 성질이 보장되지 않으면 트랜지시터의 특성저하를 가져와 수율저하 를 초래한다. Among the physical properties of the thin film, the thickness and optical constant (refractive index, extinction coefficient) of the thin film have a significant influence on the quality of the semiconductor device. For example, in the case of a gate oxide film, if the desired thickness and optical properties are not guaranteed, the characteristics of the transistor may be degraded, resulting in a decrease in yield.

웨이퍼 박막의 두께의 균일도를 측정하기 위하여 종래에는 한국공개특허 1998-12163에서 개시된 바와 같이 웨이퍼를 웨이퍼측정스테이지에 놓고 웨이퍼에 5개의 포인트를 둔 상태에서 동시에 박막두께를 측정하였다.In order to measure the uniformity of the thickness of the wafer thin film, as described in Korean Patent Laid-Open Publication No. 1998-12163, the thickness of the thin film was simultaneously measured while placing the wafer on the wafer measuring stage.

그러나, 측정 포인트가 소수인 만큼 웨이퍼 박막의 균일도에 대한 확실한 보장에 어려움이 있고, 웨이퍼측정스테이지를 통한 측정의 경우 그 처리량이 낮아지게 된다는 문제점이 있었다.However, since there are few measuring points, it is difficult to guarantee the uniformity of the wafer thin film, and in the case of measuring through the wafer measuring stage, the throughput becomes low.

또한, 200mm 웨이퍼와 300mm웨이퍼의 박막을 측정하는 경우 각각 별도의 웨이퍼측정스테이지를 이용해야 한다는 문제점도 있었다. In addition, when measuring a thin film of a 200mm wafer and a 300mm wafer, there was also a problem that a separate wafer measuring stage should be used.

본 발명은 이와 같은 문제점을 해결하기 위한 것으로서, 웨이퍼 박막의 균일도를 보다 정확하게 측정할 수 있고, 측정 처리량을 획기적으로 증대시킬 수 있는 웨이퍼박막두께측정장치를 제공하는데 그 목적이 있다.An object of the present invention is to provide a wafer thin film thickness measuring apparatus that can more accurately measure the uniformity of a wafer thin film and can significantly increase the measurement throughput.

또한, 본 발명은 웨이퍼의 직경에 무관하게 하나의 장치에서 웨이퍼 박막을 측정할 수 있는 웨이퍼박막두께측정장치를 제공하는데 또 다른 목적이 있다. Another object of the present invention is to provide a wafer thin film thickness measuring apparatus capable of measuring a wafer thin film in one apparatus regardless of the diameter of the wafer.

상기와 같은 목적을 달성하기 위한 본 발명은 웨이퍼 박막으로 광을 조사하고 반사된 광을 수집하는 측정모듈과; 웨이퍼가 안착되는 회전척과; 상기 웨이퍼가 회전되면서 상기 웨이퍼 박막의 복수개의 부분에서 그 두께가 측정될 수 있도록 상기 회전척을 회전시키는 회전구동장치를 포함하는 것을 특징으로 하는 웨이퍼박막 두께 측정장치를 제공한다. The present invention for achieving the above object is a measurement module for irradiating light to the wafer thin film and collecting the reflected light; A rotary chuck on which the wafer is seated; It provides a wafer thin film thickness measuring apparatus comprising a rotary driving device for rotating the rotary chuck so that the thickness of the plurality of portions of the wafer thin film can be measured while the wafer is rotated.

또한, 상기 회전척의 상면에는 상기 웨이퍼 박막의 두께 측정의 기준이 되는 복수개의 기준홈이 형성되어 있는 것을 특징으로 한다. In addition, the upper surface of the rotary chuck is characterized in that a plurality of reference grooves are formed as a reference for measuring the thickness of the wafer thin film.

또한, 상기 기준홈은 상기 회전척의 중심부에 형성된 중심홈과, 상기 중심홈을 중심으로 상호간에 일정간격 이격되는 주변홈을 포함하며, 상기 주변홈은 상기 중심홈의 주위에 마련된 내측주변홈과, 상기 내측주변홈 주위에 마련된 외측주변홈을 포함하는 것을 특징으로 한다. The reference groove may include a center groove formed at the center of the rotary chuck, and peripheral grooves spaced apart from each other by a predetermined distance from the center groove, and the peripheral grooves may include inner peripheral grooves provided around the center groove; It characterized in that it comprises an outer peripheral groove provided around the inner peripheral groove.

상기 회전척에 200mm웨이퍼 또는 300mm웨이퍼를 안착시키고 그 웨이퍼 박막의 두께를 측정할 수 있도록 상기 내측주변홈은 상기 중심홈을 중심으로 반경 100mm 이내에 등간격으로 형성되며, 상기 외측주변홈은 상기 중심홈을 중심으로 반경 150mm이내에 등간격으로 형성되는 것을 특징으로 한다. The inner peripheral grooves are formed at equal intervals within a radius of 100 mm from the center groove so that a 200 mm wafer or a 300 mm wafer may be seated on the rotary chuck and the thickness of the wafer thin film may be measured. It is characterized in that formed at equal intervals within a radius of 150mm around.

또한, 상기 회전구동장치는 상기 회전척 회전전의 내측 및 외측주변홈의 위치와 회전후의 내측 및 외측주변홈의 위치간에 등간격이 이루어지도록 상기 회전척을 45도 만큼 회전시키는 것을 특징으로 한다.  In addition, the rotary drive device is characterized in that for rotating the rotary chuck by 45 degrees such that the equal interval between the position of the inner and outer peripheral grooves before the rotation of the rotary chuck and the position of the inner and outer peripheral grooves after the rotation.

이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 알아보기로 하겠다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

도1에서 도시한 바와 같이, 본 발명에 의한 웨이퍼박막두께측정장치(1)는 챔버(3)와, 상기 챔버(3)의 일측에 마련되어 웨이퍼가 수용되는 풉(FOUP;Front opening unified fod, 5)과, 상기 풉에 수용된 웨이퍼를 이송하는 이송로봇(7)과, 상기 이송로봇(7)에 의하여 전달된 웨이퍼를 검사가 가능하도록 정렬하는 얼라이 너(9)와, 상기 얼라이너(9)에 의하여 정렬된 웨이퍼를 전달받아서 상기 웨이퍼의 박막 두께를 측정하는 측정부(11)를 포함하고 있다.As shown in FIG. 1, the wafer thin film thickness measuring apparatus 1 according to the present invention includes a chamber 3 and a front opening unified fod 5 provided on one side of the chamber 3 to accommodate a wafer. ), A transfer robot (7) for transporting the wafers accommodated in the pull, an aligner (9) for aligning the wafers transferred by the transfer robot (7) for inspection, and the aligner (9). And a measuring unit 11 for receiving the aligned wafers and measuring the thickness of the wafer.

여기서, 상기 측정부(11)는 웨이퍼박막 위로 광을 조사하고 웨이퍼 박막에서 반사된 광을 받아들이는 측정모듈(13)과, 상기 측정모듈(13)의 하부에 회전가능하게 마련되어 상기 웨이퍼가 안착되는 회전척(15)과, 상기 회전척을 회전시키는 회전구동장치(도2참조, 17)로 구성된다.Here, the measuring unit 11 is provided with a measuring module 13 for irradiating light onto the wafer thin film and receiving the light reflected from the wafer thin film, and rotatably provided under the measuring module 13 to seat the wafer. It comprises a rotary chuck 15 and a rotary drive device (see Fig. 2, 17) for rotating the rotary chuck.

그리고, 상기 챔버(13) 내부의 일측에는 상기 측정모듈(13)에 의하여 측정된 웨이퍼박막의 두께에 관한 정보를 수집하고 계산하는 제어부(19)가 마련되어 있다.In addition, a control unit 19 is provided at one side of the chamber 13 to collect and calculate information on the thickness of the wafer thin film measured by the measuring module 13.

도2에서 도시한 바와 같이, 상기 측정부(11)의 구체적인 구성을 보면 상기 측정부(11)의 상부에는 상기 측정모듈(13)이 마련되고, 상기 측정모듈(13)의 하부에는 웨이퍼(W)가 안착되는 상기 회전척(15)이 마련되며, 상기 회전척(15)의 하부에는 상기 회전척(15)을 회전시키는 상기 회전구동장치(17)로 구성되어 있다.As shown in FIG. 2, in the specific configuration of the measuring unit 11, the measuring module 13 is provided above the measuring unit 11, and the wafer W is provided below the measuring module 13. ) Is provided with the rotary chuck 15 is mounted, the lower portion of the rotary chuck 15 is composed of the rotary drive device 17 for rotating the rotary chuck 15.

여기서, 상기 측정모듈(13)이 웨이퍼(W)의 박막 두께를 측정하는 방식은 크게 듀얼빔 스펙트로메트리(Dual Beam Spectrometry)방식과 스팩트로스코픽 일립소메트리(Spectroscopic Elilipsometry)방식으로 크게 대별되는데, 전자의 경우는 광을 수직에 가까운 각도로 입사하여 반사광의 스펙트럼을 분석하는 방식이고, 후자는 광을 편광시키고 일정한 경사각을 가지도록 입사시켜 그 반사광의 스펙트럼의 분석하여 박막의 두께를 측정하는 방식인데, 본 발명의 측정모듈은 듀얼빔 스펙트로메트리(Dual Beam Spectrometry)방식에 의하여 박막의 두께를 측정한다. Here, the method of measuring the thin film thickness of the wafer W by the measuring module 13 is largely divided into a dual beam spectrometry method and a spectroscopic elilipsometry method. The former is a method of analyzing the spectrum of the reflected light by entering the light at an angle close to the vertical, the second is a method of measuring the thickness of the thin film by polarizing the light and incident to have a constant inclination angle and analyzing the spectrum of the reflected light , The measurement module of the present invention measures the thickness of the thin film by the Dual Beam Spectrometry (Dual Beam Spectrometry) method.

이러한 듀얼빔 스펙트로메트리(Dual Beam Spectrometry)방식에 의하면 웨이 퍼상에 수직에 가까운 각도로 광을 입사하고, 그 후 반사된 광은 샘플채널과 레퍼런스채널로 나뉘어진 후 분광된다.According to the Dual Beam Spectrometry method, light is incident on the wafer at a near vertical angle, and then the reflected light is divided into a sample channel and a reference channel and then spectroscopically.

그리고, 실제 광원에서 인텐시티를 측정하고, 실리콘레퍼런스 칩을 이용하여 레퍼런스 칩을 이용하여 레퍼런스 인텐시티를 계산한다.Then, the intensity is measured in the actual light source, and the reference intensity is calculated using the reference chip using the silicon reference chip.

그 후, 계산된 레퍼런스 인텐시티와 실제 웨이퍼측정치에 의하여 상대적인 반사율을 구하고, 상기 반사율을 변수를 이용하여 웨이퍼 상에 형성되어 있는 박막의 두께를 구할 수 있는 것이다. Then, the relative reflectance can be obtained from the calculated reference intensity and the actual wafer measurement, and the thickness of the thin film formed on the wafer can be obtained using the reflectance variable.

도3a, 3b에서 도시한 바와 같이, 본 발명에 의한 회전척(15)의 상면에는 웨이퍼박막두께의 측정포인트의 지정기준이 되는 기준홈(21)이 형성되어 있는데, 상기 기준홈(21)은 상기 회전척(15) 상면으로부터 아래로 파여져서 일정한 깊이를 가지도록 형성되어 있고, 상기 기준홈(21)의 바닥면에는 상기 측정모듈(도2참고, 13)에서 나오는 광의 입사각 등을 보정하기 위한 보정용미러(미도시)가 마련되어져 있다.As shown in Figures 3a, 3b, the upper surface of the rotary chuck 15 according to the present invention is formed with a reference groove 21 which is a designation reference point of the measurement point of the wafer thin film thickness, the reference groove 21 is It is formed to have a predetermined depth is dug downward from the upper surface of the rotary chuck 15, the bottom surface of the reference groove 21 for correcting the incident angle of light emitted from the measuring module (see Fig. 2, 13), etc. A correction mirror (not shown) is provided.

상기 기준홈(21)은 상기 회전척(15)의 중심부에 마련된 중심홈(25)과, 상기 중심홈(25)을 중심으로 하여 그 주변부에 일정한 간격만큼 이격되어 있는 주변홈(26)으로 이루어져 있는데, 본 발명에서는 상기 중심홈(25)이 1개이고, 상기 주변홈(26)이 8개인 것을 예로 들었다.The reference groove 21 is composed of a center groove 25 provided in the center of the rotary chuck 15, and a peripheral groove 26 spaced apart at regular intervals around the center groove 25 by a predetermined interval. In the present invention, the center groove 25 is one, the peripheral groove 26 is an example of eight.

여기서, 상기 주변홈(26)은 내측주변홈(27)과 외측주변홈(28)으로 다시 구분되며, 상기 내측주변홈(27) 및 중심홈(25)은 200mm웨이퍼(W1)의 박막두께를 측정하는 경우에 사용되며, 300mm웨이퍼(W2)를 측정하는 경우에는 중심홈(25)과, 내측주 변홈(27) 및 외측주변홈(28)이 모두 사용된다. Here, the peripheral groove 26 is divided into the inner peripheral groove 27 and the outer peripheral groove 28 again, the inner peripheral groove 27 and the center groove 25 is a thin film thickness of the 200mm wafer (W1) It is used when measuring, and when measuring the 300mm wafer (W2), both the center groove 25, the inner peripheral groove 27 and the outer peripheral groove 28 are used.

따라서, 상기 내측주변홈(27)은 상기 중심홈(25)으로부터 반경 100mm이내에 배치되는 것이 바람직하며, 상기 외측주변홈(28)은 상기 중심홈(25)으로부터 반경 150mm 이내에 배치되는 것이 바람직하다. Therefore, the inner peripheral groove 27 is preferably disposed within a radius of 100mm from the center groove 25, the outer peripheral groove 28 is preferably disposed within a radius of 150mm from the center groove 25.

도3a에서는 상기 회전척(15)에 200mm웨이퍼(W1)가 안착되어 있는 것을 도시하고 있는데, 이 경우에는 200mm웨이퍼(W1) 하부에 1개의 중심홈(25)과, 4개의 내측주변홈(27)이 위치하는 것이 바람직하며, 이때, 상기 4개의 내측주변홈(27)은 각각 90도 각도만큼 상호 이격되어 있는 것이 바람직하다.In FIG. 3A, the 200 mm wafer W1 is seated on the rotary chuck 15. In this case, one central groove 25 and four inner peripheral grooves 27 are disposed below the 200 mm wafer W1. ) Is preferably located, and the four inner peripheral grooves 27 are preferably spaced apart from each other by 90 degrees.

또한 도3b에서는 회전척(15)에 300mm 웨이퍼(W2)가 안착되어 있는 것을 도시하고 있는데, 이 경우에는 300mm웨이퍼(W2) 하부에 1개의 중심홈(25)과, 4개의 내측주변홈(27) 및 4개의 외측주변홈(28)이 위치하는 것이 바람직하다.In addition, FIG. 3B shows that the 300 mm wafer W2 is seated on the rotary chuck 15. In this case, one central groove 25 and four inner peripheral grooves 27 are disposed below the 300 mm wafer W2. ) And four outer peripheral grooves 28 are preferably located.

도4a 및 도4b에서 도시한 바와 같이 상기 회전척(15)의 회전각도(θ)는 약 45도 정도로 이루어지는 것이 바람직한데, 이는 회전전의 상태에서 기준홈(21)을 척도로 하여 측정포인트를 잡은 다음 광을 입사 및 반사시켜 두께를 측정한 다음, 상기 회전척(15)을 회전시켜서 위치가 변경된 기준홈(21)을 척도로 하여 측정포인트를 잡아서 다시 광을 입사 및 반사시켜 두께를 측정하되, 회전전의 기준홈(21)의 위치에 의한 측정포인트와 회전후의 기준홈(21)의 위치에 의한 측정포인트가 서로 등간격을 갖도록 하기 위함이다.As shown in Figs. 4A and 4B, the rotation angle θ of the rotation chuck 15 is preferably about 45 degrees, which is obtained by measuring the measurement point using the reference groove 21 as a measure in the state before rotation. Next, the thickness of the light is incident and reflected, and the thickness is measured. Then, the rotation chuck 15 is rotated to measure the thickness of the reference groove 21 whose position is changed to measure the thickness by measuring and measuring the thickness. This is to ensure that the measuring point by the position of the reference groove 21 before the rotation and the measuring point by the position of the reference groove 21 after the rotation have equal intervals.

따라서, 하나의 회전척(15) 상에서 여러 포인트의 박막 두께를 측정할 수 있는데, 200mm웨이퍼의 경우에는 9개의 포인트, 300mm웨이퍼의 경우에는 17개의 포인 트에서 박막의 두께가 측정되는 셈이 된다. Therefore, the thickness of the thin film of several points can be measured on one rotary chuck 15, and the thickness of the thin film is measured at nine points in the case of a 200 mm wafer and 17 points in the case of a 300 mm wafer.

이하에서는 첨부된 도면을 참조하여 본 발명의 동작에 대하여 알아보기로 하겠다. Hereinafter, an operation of the present invention will be described with reference to the accompanying drawings.

도5에서 도시한 바와 같이, 풉에 박막이 형성된 웨이퍼가 안착된 상태(S101)에서 상기 풉에 들어있는 웨이퍼가 로봇에 의하여 얼라이너로 이송되고(S102), 얼라이너는 이송된 웨이퍼가 두께 검사 준비에 적절하도록 정렬을 한다(S103). As shown in FIG. 5, in the state in which the wafer with the thin film formed on the pool is seated (S101), the wafer in the pool is transferred to the aligner by a robot (S102), and the aligner prepares the wafer for thickness inspection. The alignment is performed so as to be appropriate (S103).

상기 얼라이너에 의하여 정렬된 웨이퍼는 다시 상기 측정척으로 이송되고(S104), 웨이퍼가 상기 측정척 상면에 안착되면 상기 측정모듈에서 웨이퍼 박막을 향하는 광이 조사된다.The wafer aligned by the aligner is transferred to the measuring chuck again (S104), and when the wafer is seated on the upper surface of the measuring chuck, light directed toward the wafer thin film is emitted from the measuring module.

그리고, 상기 웨이퍼박막에서 반사된 광은 다시 상기 측정모듈로 입사되고, 입사된 광의 스펙트럼특성(파장, 강도)이 상기 제어부에 입력되어 소정의 계산과정을 거친 뒤 반사된 부분의 두께가 측정된다.(S105)The light reflected from the wafer thin film is incident to the measurement module again, and the spectral characteristics (wavelength, intensity) of the incident light are input to the controller, and after a predetermined calculation process, the thickness of the reflected portion is measured. (S105)

그리고, 상기 박막의 두께측정(1차 측정)가 완료되면, 상기 측정척이 상기 회전구동장치에 의하여 45도 정도로 회전을 하여 측정포인트의 위치 기준이되는 기준홈의 위치를 변경시킨다(S106).Then, when the thickness measurement (primary measurement) of the thin film is completed, the measuring chuck is rotated by about 45 degrees by the rotary drive device to change the position of the reference groove which is the position reference of the measuring point (S106).

그리고, 상기 측정척의 회전이 완료되어 위치가 고정되면, 다시 상기 측정모듈에서 광이 조사되어 상기 웨이퍼박막에 입사된 뒤, 반사하여 상기 측정모듈로 들어가게 된다.When the rotation of the measuring chuck is completed and the position is fixed, the light is irradiated from the measuring module again to be incident on the wafer thin film, and then reflected to enter the measuring module.

상기 측정모듈이 2차적으로 반사된 광을 받아들이게 되면, 재차 상기 제어부에서는 입사된 반사광의 스펙트럼특성(파장,강도)이 입력되고, 이를 바탕으로 다시 소정의 계산과정을 거친 후 반사된 부분의 두께가 측정된다(2차측정)(S107). When the measurement module receives the second reflected light, the controller again inputs the spectral characteristics (wavelength, intensity) of the incident reflected light, and after the predetermined calculation process is performed again, the thickness of the reflected part is increased. It is measured (secondary measurement) (S107).

이후, 상기 제어부가 1차 박막 두께측정과 2차 박막두께측정치를 통합하고(S108), 이 결과값에 의하여 각 기준홈에 대응되는 웨이퍼박막부분에서의 두께의 적정여부를 판별한 다음 그 적정성 여부를 표시하는 과정이 완료되면, 측정이 완료된 웨이퍼는 상기 회전척에서 언로딩 됨으로서 종국적으로 웨이퍼 박막의 두께측정과정이 완료된다(S109). Subsequently, the controller integrates the first thin film thickness measurement and the second thin film thickness measurement (S108), and determines whether the thickness is appropriate in the wafer thin film portion corresponding to each reference groove based on the result value. When the process of displaying is completed, the wafer whose measurement is completed is unloaded from the rotary chuck and finally the thickness measurement process of the wafer thin film is completed (S109).

이와 같은 구성을 가진 본 발명에 의하면 웨이퍼가 안착되는 회전척이 회전함에 따라서 웨이퍼 박막의 두께 측정포인트가 기존기술에 비하여 현저히 증대하고, 이에 의하여 박막 두께 측정치의 신뢰도가 증가한다.According to the present invention having such a configuration, as the rotational chuck on which the wafer is seated rotates, the thickness measurement point of the wafer thin film is significantly increased compared to the conventional technology, thereby increasing the reliability of the thin film thickness measurement value.

또한, 스테이지별로 이동할 필요없이 하나의 회전척에서 지정포인트에 대한 측정이 이루어지기 때문에 두께 측정시간이 단축되고 이에 따른 측정처리량도 증가하여 업무효율성도 증가된다.In addition, since the measurement of the designated point is made at one rotation chuck without moving by stage, the thickness measurement time is shortened and the measurement throughput is increased, thereby increasing work efficiency.

그리고, 200mm 웨이퍼이든 300mm 웨이퍼이든지 규격에 무관하게 하나의 회전척을 이용하여 웨이퍼박막의 두께측정을 실행할 수 있으므로 장비에 들어가는 비용도 절감할 수 있는 장점이 있다. In addition, the thickness of the wafer thin film can be measured using a single rotation chuck regardless of the size of the 200mm wafer or 300mm wafer, thereby reducing the cost of equipment.

Claims (5)

웨이퍼 박막으로 광을 조사하고 반사된 광을 수집하는 측정모듈과;A measurement module for irradiating light onto the wafer thin film and collecting the reflected light; 웨이퍼가 안착되는 회전척과;A rotary chuck on which the wafer is seated; 상기 웨이퍼가 회전되면서 상기 웨이퍼 박막의 복수개의 부분에서 그 두께가 측정될 수 있도록 상기 회전척을 회전시키는 회전구동장치를 포함하는 것을 특징으로 하는 웨이퍼박막두께 측정장치.And a rotation driving device for rotating the rotary chuck so that the thickness of the plurality of portions of the wafer thin film can be measured while the wafer is rotated. 제1항에 있어서,The method of claim 1, 상기 회전척의 상면에는 상기 웨이퍼 박막의 두께 측정의 기준이 되는 복수개의 기준홈이 형성되어 있는 것을 특징으로 하는 웨이퍼박막두께 측정장치. Wafer thin film thickness measuring apparatus, characterized in that the upper surface of the rotary chuck is formed with a plurality of reference grooves for the thickness measurement of the wafer thin film. 제2항에 있어서,The method of claim 2, 상기 기준홈은 상기 회전척의 중심부에 형성된 중심홈과, The reference groove is a center groove formed in the center of the rotary chuck, 상기 중심홈을 중심으로 상호간에 일정간격 이격되는 주변홈을 포함하며, It includes a peripheral groove spaced apart from each other by a predetermined center around the center groove, 상기 주변홈은 상기 중심홈의 주위에 마련된 내측주변홈과, 상기 내측주변홈 주위에 마련된 외측주변홈을 포함하는 것을 특징으로 하는 웨이퍼 박막두께 측정장치. The peripheral groove is a wafer thin film thickness measuring apparatus comprising an inner peripheral groove provided around the center groove, and an outer peripheral groove provided around the inner peripheral groove. 제3항에 있어서,The method of claim 3, 상기 회전척에 200mm웨이퍼 또는 300mm웨이퍼를 안착시키고 그 웨이퍼 박막의 두께를 측정할 수 있도록 상기 내측주변홈은 상기 중심홈을 중심으로 반경 100mm 이내에 등간격으로 형성되며,The inner peripheral grooves are formed at equal intervals within a radius of 100 mm with respect to the center groove so that a 200 mm wafer or 300 mm wafer may be seated on the rotary chuck and the thickness of the wafer thin film may be measured. 상기 외측주변홈은 상기 중심홈을 중심으로 반경 150mm이내에 등간격으로 형성되는 것을 특징으로 하는 웨이퍼박막두께 측정장치The outer peripheral groove is a wafer thin film thickness measuring apparatus, characterized in that formed at equal intervals within a radius of 150mm around the center groove. 제3항에 있어서,The method of claim 3, 상기 회전구동장치는 상기 회전척 회전전의 내측 및 외측주변홈의 위치와 회전후의 내측 및 외측주변홈의 위치간에 등간격이 이루어지도록 상기 회전척을 45도 만큼 회전시키는 것을 특징으로 하는 웨이퍼 박막두께 측정장치.The rotary driving device rotates the rotary chuck by 45 degrees so as to have an equal interval between the positions of the inner and outer peripheral grooves before the rotation of the rotary chuck and the positions of the inner and outer peripheral grooves after the rotation. Device.
KR1020070006603A 2007-01-22 2007-01-22 An apparatus for measuring thickness of thin flim on wafer KR100805233B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070006603A KR100805233B1 (en) 2007-01-22 2007-01-22 An apparatus for measuring thickness of thin flim on wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070006603A KR100805233B1 (en) 2007-01-22 2007-01-22 An apparatus for measuring thickness of thin flim on wafer

Publications (1)

Publication Number Publication Date
KR100805233B1 true KR100805233B1 (en) 2008-02-21

Family

ID=39382600

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070006603A KR100805233B1 (en) 2007-01-22 2007-01-22 An apparatus for measuring thickness of thin flim on wafer

Country Status (1)

Country Link
KR (1) KR100805233B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088669A1 (en) * 2018-11-02 2020-05-07 睿励科学仪器(上海)有限公司 Device and method used for measuring wafers
CN113355646A (en) * 2021-06-10 2021-09-07 西华师范大学 Film monitoring preparation device and method based on multi-source co-evaporation technology

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030073935A (en) * 2002-03-14 2003-09-19 삼성전자주식회사 Method of monitoring thickness of thin film formed on semiconductor wafer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030073935A (en) * 2002-03-14 2003-09-19 삼성전자주식회사 Method of monitoring thickness of thin film formed on semiconductor wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088669A1 (en) * 2018-11-02 2020-05-07 睿励科学仪器(上海)有限公司 Device and method used for measuring wafers
CN113355646A (en) * 2021-06-10 2021-09-07 西华师范大学 Film monitoring preparation device and method based on multi-source co-evaporation technology

Similar Documents

Publication Publication Date Title
US8879073B2 (en) Optical metrology using targets with field enhancement elements
CN107548554B (en) The sensor and metering system with electrically controllable aperture for inspection
JP7181211B2 (en) Metrology method and system for thick films and high aspect ratio structures
JP5789353B2 (en) Methods and systems for semiconductor manufacturing processes
US7280233B2 (en) Method and apparatus for inspecting an edge exposure area of a wafer
US10460998B2 (en) Method for inspecting substrate, substrate inspection apparatus, exposure system, and method for producing semiconductor device
US9170156B2 (en) Normal-incidence broadband spectroscopic polarimeter containing reference beam and optical measurement system
US9305341B2 (en) System and method for measurement of through silicon structures
JP2004536440A (en) Optical critical dimension metrology system built into semiconductor wafer processing tool
CN109690235A (en) Based on the reflection infrared spectrum for measuring high-aspect-ratio structure
US9046474B2 (en) Multi-analyzer angle spectroscopic ellipsometry
WO2015022851A1 (en) Measurement device using optical interferometry and measurement method using optical interferometry
KR100706811B1 (en) Test pattern and method for measuring silicon etching depth
JP3625761B2 (en) Film thickness measuring apparatus and method
JP4909480B2 (en) Layer and surface property optical measurement method and apparatus
KR20020092231A (en) Method and apparatus for testing the quality of film
KR100805233B1 (en) An apparatus for measuring thickness of thin flim on wafer
JP6520795B2 (en) Film thickness distribution measurement method
WO2017122248A1 (en) Method for measuring film thickness distribution of wafer with thin film
US7411665B2 (en) Method for wavelength calibration of an optical measurement system
KR20100043379A (en) Air conditioner
KR20040105005A (en) Semiconductor device having measuring pattern to improve measuring reliability and Method of measuring semiconductor device using the measuring pattern
TW202300891A (en) Semiconductor process surface monitoring
KR100271771B1 (en) Analysis system of impurity doping concentration of thin film for semiconductor device and analysis method using the same
US7050160B1 (en) Process and apparatus for integrating sheet resistance measurements and reflectance measurements of a thin film in a common apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130131

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140129

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150202

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200131

Year of fee payment: 13