KR100805184B1 - Method for concrete lining quality evaluating according to concussion blasting excavation in tunnel - Google Patents

Method for concrete lining quality evaluating according to concussion blasting excavation in tunnel Download PDF

Info

Publication number
KR100805184B1
KR100805184B1 KR1020060104063A KR20060104063A KR100805184B1 KR 100805184 B1 KR100805184 B1 KR 100805184B1 KR 1020060104063 A KR1020060104063 A KR 1020060104063A KR 20060104063 A KR20060104063 A KR 20060104063A KR 100805184 B1 KR100805184 B1 KR 100805184B1
Authority
KR
South Korea
Prior art keywords
concrete lining
tunnel
concrete
lining
model
Prior art date
Application number
KR1020060104063A
Other languages
Korean (ko)
Inventor
유정훈
안형준
유진오
전중규
Original Assignee
코오롱건설주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱건설주식회사 filed Critical 코오롱건설주식회사
Priority to KR1020060104063A priority Critical patent/KR100805184B1/en
Application granted granted Critical
Publication of KR100805184B1 publication Critical patent/KR100805184B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/313Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by explosives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Civil Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

A method for evaluating the quality of concrete lining by blast vibration at tunnel excavation is provided to secure the quality of concrete lining by measuring a strain rate and a crack growth phenomenon caused by blast vibration and evaluating the optimum level of the minimum safety distance for concrete lining construction. A method for evaluating the quality of concrete lining by blast vibration at tunnel excavation comprises the steps of: placing first model concrete lining(300) in a place within the safety distance(D) influenced by blast vibration in a tunnel, and second model concrete lining(400) in a place uninfluenced by blast vibration in a tunnel on the basis of a permissible level using a vibration equation deduced in a construction site if a tunnel(100) is excavated to the appointed length; installing many buried concrete strain gauges for measuring an effective strain rate exactly and artificial crack plates for measuring a crack growth phenomenon when placing the first model concrete lining and the second model concrete lining; blasting in a time zone when vibration has a sensitive influence on concrete strength after placing the first model concrete lining and the second model concrete lining; removing the artificial crack plates from the first model concrete lining and the second model concrete lining to form many artificial crack parts on internal walls of the first model concrete lining and the second model concrete lining; measuring a concrete lining strain rate and a crack growth phenomenon using the concrete strain gauges and the artificial crack plates installed to the first model concrete lining and the second model concrete lining; evaluating the optimum level of the minimum safety distance of concrete lining constructed at the rear of an excavated tunnel by analyzing the data on the measured concrete lining strain rate and the crack growth phenomenon; and performing blast excavation of a tunnel face and construction of concrete lining on the basis of the minimum safety distance simultaneously.

Description

터널 굴착시 발파진동에 따른 콘크리트 라이닝 품질 평가방법{METHOD FOR CONCRETE LINING QUALITY EVALUATING ACCORDING TO CONCUSSION BLASTING EXCAVATION IN TUNNEL}Evaluation method of concrete lining according to blasting vibration in tunnel excavation {METHOD FOR CONCRETE LINING QUALITY EVALUATING ACCORDING TO CONCUSSION BLASTING EXCAVATION IN TUNNEL}

도 1은 본 발명에 의한 터널 굴착시 발파진동에 따른 콘크리트 라이닝 품질 평가방법을 설명하기 위하여 장대터널이 시공되는 것을 나타내는 사시도.1 is a perspective view showing that the pole tunnel is constructed in order to explain the concrete lining quality evaluation method according to the blasting vibration when tunneling according to the present invention.

도 2a 및 도 2b는 도 1의 A-A선 단면도 및 B-B선 단면도.2A and 2B are cross-sectional views taken along line A-A and line B-B of Fig. 1.

도 3은 본 발명을 실시하기 위하여 터널 내부에 모형 콘크리트 라이닝이 타설된 터널의 사시도.3 is a perspective view of a tunnel in which model concrete linings are placed in a tunnel to implement the present invention;

도 4는 본 발명을 실시하기 위하여 모형 콘크리트 라이닝에 콘크리트 변형률계가 설치된 것을 나타내는 사시도.Figure 4 is a perspective view showing that the concrete strain meter is installed on the model concrete lining for practicing the present invention.

도 5는 본 발명을 실시하기 위하여 모형 콘크리트 라이닝에 콘크리트 변형률계 및 인공균열부를 형성하기 위한 인공균열판이 설치된 것을 나타내는 단면도.Figure 5 is a cross-sectional view showing that the artificial cracking plate for forming a concrete strain meter and artificial cracks in the model concrete lining to implement the present invention.

본 발명은 터널시공에 관한 것으로, 더욱 상세하게는 터널굴착 작업과 그 내부의 콘크리트 라이닝 병행시공 시, 콘크리트 라이닝을 시공하기 전에 최소 안전 이격거리 이내와 이외 지점에 모형 콘크리트라이닝을 먼저 타설하여 발파진동에 따른 콘크리트 라이닝의 변형율과 균열현상을 평가하여 안전 이격거리에 대한 콘크리트 라이닝의 시공위치를 조절할 수 있는 터널 굴착시 발파진동에 따른 콘크리트 라이닝 품질 평가방법에 관한 것이다.The present invention relates to a tunnel construction, and more particularly, when the tunnel excavation work and the concrete lining inside the construction, the blasting vibration by placing the model concrete lining first within the minimum safety separation distance and the other points before constructing the concrete lining This study relates to the evaluation method of concrete lining quality according to blasting vibration during tunnel excavation that can control the construction position of concrete lining for safety separation distance by evaluating the strain and cracking phenomena of concrete lining.

최근 들어 장대(長大)터널 건설이 증가하고 있으며, 이러한 장대터널은 공사기간이 그만큼 많이 소요되어 공사비용이 증대되므로 공사기간을 단축할 수 있는 방안이 절실히 필요하다. 장대터널의 시공에 있어서 공사기간에 가장 큰 비중을 차지하는 것이 굴착이며, 일반적으로 장대터널의 시공은 발파굴착이 완료된 후, 콘크리트 라이닝 구조물을 시공하는 것이 일반적인 방법이다.In recent years, the construction of long tunnels has been increasing, and these long tunnels require a lot of construction periods, which increases the cost of construction. In the construction of pole tunnel, excavation is the biggest part of the construction period, and in general, construction of pole tunnel is the general method of constructing concrete lining structure after blasting excavation is completed.

이와 같은 터널시공방법은 공사기간이 많이 소요되므로, 터널을 일정거리 굴착한 다음 후속 공종(工種)으로 콘크리트 라이닝 구조물 작업을 실시하여 굴착작업과 콘크리트 라이닝 시공작업을 병행한다면 터널의 공사기간을 상당히 단축시킬 수 있는 장점이 있다.Since this tunnel construction method takes a lot of construction period, if the tunnel is excavated for a certain distance and the concrete lining structure work is carried out by the subsequent construction, the excavation work and the concrete lining construction work are shortened. There is an advantage to this.

그러나 암반 굴착작업과 콘크리트 라이닝 시공작업을 병행하여 터널시공을 할 경우에는, 터널 굴착에 따른 발파작업으로부터 발생하는 진동이 타설되는 콘크리트 라이닝 구조물에 균열을 발생시킬 가능성이 있으며 특히 양생중인 콘크리트 강도 발현 과정에서 진동의 영향은 콘크리트를 구성하는 성분들이 조직화되어 경화되는 과정에서 영향을 주어 콘크리트 강도를 저하시킬 가능성이 있다.However, in the case of tunnel construction in combination with rock excavation and concrete lining work, there is a possibility that the vibration generated from the blasting work due to the tunnel excavation may cause cracks in the concrete lining structure in which it is poured, especially during the development of concrete strength during curing. The effect of vibration on the structure is likely to lower the strength of concrete by affecting the components of concrete that are organized and hardened.

이러한 작업공정은 발파작업에서 발생하는 발파진동이 타설되는 콘크리트 라이닝에 균열을 발생시키거나 강도를 저하시킬 수도 있으므로, 이를 예방하기 위한 방법으로 막장으로부터 콘크리트 라이닝 구조물 타설지점 까지의 안전 이격거리를 확보하여 작업하게 된다.This work process may cause cracking or deterioration of the strength of the concrete lining in which the blasting vibration generated in the blasting work is placed. Therefore, as a way to prevent this, a safe separation distance is secured from the curtain to the point where the concrete lining structure is placed. Will work.

본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 굴착과 콘크리트 라이닝을 병행시공할 때, 콘크리트 라이닝의 품질을 확보할 수 있도록, 모형 콘크리트 라이닝을 터널내 막장후방에 안전 이격거리 이내와 안전 이격거리를 벗어난 곳에 타설하여 모형 콘크리트 라이닝이 직접 발파진동의 영향을 받게 한 후, 변형률과 균열현상을 측정하여 콘크리트라이닝 시공의 안전 이격거리에 대한 적정성을 평가하는 터널 굴착시 발파진동에 따른 콘크리트 라이닝 품질 평가방법을 제공하는데 있다.The present invention has been made to solve the conventional problems as described above, the object of the present invention, when parallel construction of excavation and concrete lining, to ensure the quality of the concrete lining, the concrete concrete lining in the tunnel A tunnel that is placed within the safety separation distance and outside the safety separation distance at the rear to directly influence the blasting vibration of the model concrete lining, and then measure the strain and crack phenomena to evaluate the adequacy of the safety separation distance of the concrete lining construction. To provide a quality evaluation method of concrete lining according to blasting vibration during excavation.

본 발명이 제안하는 터널 굴착시 발파진동에 따른 콘크리트 라이닝 품질 평가방법은, 터널 굴착작업과 콘크리트 라이닝 시공작업을 병행하여 터널시공을 할 경우에 있어서,Concrete lining quality evaluation method according to the blasting vibration during tunnel excavation proposed by the present invention, when the tunnel construction in parallel with the tunnel excavation work and concrete lining construction work,

일정 길이의 터널이 굴착되면 현장에서 도출된 진동추정식을 이용하여 허용수준을 기준으로 터널내부의 임의의 위치에 터널 막장으로부터 발생하는 발파진동의 영향을 받는 제1모형 콘크리트 라이닝과, 발파진동의 영향을 받지 않을 가능성이 있는 터널 내부의 임의의 위치에 제2모형 콘크리트 라이닝을 각각 타설하는 단계;When the tunnel of a certain length is excavated, the first model concrete lining is affected by the blasting vibration generated from the tunnel face at any position inside the tunnel using the vibration estimation equation derived from the site and the blasting vibration Placing each second model concrete lining at any location within the tunnel that is unlikely to be affected;

상기 제1,2모형 콘크리트 타설시 그 내부에 발파진동의 영향을 측정할 수 있 는 콘크리트 변형률계 및 균열현상을 측정하기 위한 인공 균열판을 매입 설치하는 단계;When installing the first and second model concrete, installing a concrete strain meter for measuring the effect of the blasting vibration and an artificial crack plate for measuring the crack phenomenon;

상기 단계의 작업이 완료된 후, 터널막장에 터널 굴착을 위한 발파를 행하는 단계;After the operation of the step is completed, blasting for tunnel excavation at the tunnel curtain;

상기 제1,2 모형 콘크리트 라이닝 양생과정에서 여기에 설치된 인공 균열판을 제거하여 인공균열부를 마련하는 단계;Preparing an artificial crack by removing the artificial crack plate installed in the first and second model concrete lining curing processes;

상기 발파로 인하여 발생된 발파진동을 상기 제1,2모형 콘크리트 라이닝에 설치된 콘크리트 변형률계 및 인공균열부를 통하여 콘크리트 라이닝 변형률 및 균열현상을 측정하는 단계;Measuring the concrete lining strain and crack through the blasting vibration generated by the blasting through a concrete strain meter and an artificial crack installed on the first and second model concrete linings;

상기에서 측정된 제1,2모형 콘크리트 라이닝 변형률 데이터 및 균열현상 데이터를 분석하여 굴착된 터널의 후방으로부터 시공하는 콘크리트 라이닝의 최소 안전이격거리에 대한 적정성을 평가하는 단계;Analyzing the first and second model concrete lining strain data and crack phenomenon data measured above to evaluate adequacy of the minimum safety separation distance of the concrete lining constructed from the rear of the excavated tunnel;

를 포함하는 터널 굴착시 발파진동에 따른 콘크리트 라이닝 품질 평가방법을 제공한다.It provides a concrete lining quality evaluation method according to the blasting vibration when tunnels including.

상기 발파단계는, 발파 진동이 양생중인 콘크리트 강도에 영향을 주는 가장 예민한 시간대인 제1,2모형 콘크리트 라이닝 타설후 3-12 시간 사이에 발파를 실시한다.In the blasting step, the blasting vibration is carried out between 3-12 hours after the first and second model concrete lining is placed, which is the most sensitive time zone that affects the curing concrete strength.

이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 더욱 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, preferred embodiments of the present invention will be described in more detail.

도 1은 본 발명에 의한 터널 굴착시 발파진동에 따른 콘크리트 라이닝 품질 평가방법을 설명하기 위하여 장대터널이 시공되는 것을 나타내는 사시도이고, 도 2a 및 도 2b는 도 1의 A-A선 단면도 및 B-B선 단면도이고, 도 3은 본 발명을 실시하기 위하여 터널 내부에 모형 콘크리트 라이닝이 타설된 터널의 사시도를 나타낸다.1 is a perspective view showing the construction of a pole tunnel in order to explain the concrete lining quality evaluation method according to the blasting vibration when tunneling according to the present invention, Figures 2a and 2b is a cross-sectional view taken along line AA and BB of FIG. 3 is a perspective view of a tunnel in which model concrete linings are placed in a tunnel for implementing the present invention.

도시된 바와 같이 본 발명의 터널 굴착시 발파진동에 따른 콘크리트 라이닝 품질 평가방법은, 통상적인 터널시공이나 장대(長大)터널의 시공시 터널 굴착작업과 콘크리트 구조물 시공작업을 병행할 경우에 적용될 수 있으며, 이렇게 터널 굴착작업과 콘크리트 구조물 시공작업을 병행할 경우, 일정한 길이의 터널(100)이 굴착되면 터널의 막장(110)에서는 굴착작업을 계속 진행하면서 굴착된 터널의 후방에서는 라이닝폼(200)을 설치하고 그 외측에 콘크리트 라이닝(210)을 타설하여 양생하는 방법으로 일정구간의 터널 내벽을 형성하게 된다.As shown, the concrete lining quality evaluation method according to the blasting vibration during the tunnel excavation of the present invention, can be applied when the tunnel excavation work and concrete structure construction work at the time of the conventional tunnel construction or pole tunnel construction In this case, when the tunnel excavation work and the concrete structure construction work in parallel, when the tunnel 100 of a predetermined length is excavated, the lining foam 200 at the rear of the excavated tunnel is continued while the excavation work is continued in the tunnel membrane 110 of the tunnel. The inner wall of the tunnel is formed in a predetermined section by installing and curing the concrete lining 210 on the outside thereof.

이와 같이 터널막장(110)에서의 발파에 의한 굴착과 막장 후방에서의 콘크리트 라이닝(210) 시공을 동시에 병행할 때, 완성된 콘크리트 라이닝(210)의 품질에 영향을 미치지 않도록 하기 위하여 터널 막장(110)과 콘크리트 라이닝(210)이 시공되는 최소의 안전 이격거리(D)를 산정하여 시공하게 되는데, 본 발명에서는 그러한 안전 이격거리를 유지하며 콘크리트 라이닝 시공작업을 병행하기 이전에, 이격거리가 타당한지 적정 여부를 판단하기 위하여 모형 콘크리트 라이닝을 타설하여 발파진동에 따른 콘크리트 라이닝의 품질을 평가하도록 구성된다.As such, when the excavation due to blasting in the tunnel curtain 110 and the construction of the concrete lining 210 at the rear of the curtain wall are simultaneously performed, the tunnel curtain 110 is not affected in order to not affect the quality of the finished concrete lining 210. ) And the concrete lining 210 is constructed by calculating the minimum safety separation distance (D) to be constructed, in the present invention to maintain such a safety separation distance before the concrete lining construction work in parallel, whether the separation distance is reasonable In order to determine the appropriateness, the model concrete lining is poured to evaluate the quality of the concrete lining according to the blasting vibration.

그러한 것을 위하여 먼저, 일정한 길이의 터널(100)이 굴착되면, 현장에서 도출된 진동추정식을 이용하여 허용수준을 기준으로 모형 콘크리트 라이닝을 터널 내의 발파진동의 영향을 받는 안전 이격거리(D) 내의 위치에 제1모형 콘크리트 라이닝(300)과, 발파진동의 영향을 받지 않을 가능성이 있는 터널 내부의 임의의 위치에 제2모형 콘크리트 라이닝(400)을 각각 타설한다.To that end, first, when the tunnel 100 of a certain length is excavated, the model concrete lining is applied within the safety separation distance D, which is affected by the blasting vibration in the tunnel, based on the allowable level using the vibration estimation equation derived from the field. The first model concrete lining 300 and the second model concrete lining 400 are placed at an arbitrary position inside the tunnel which may not be affected by the blasting vibration.

상기 안전 이격거리(D)는 터널굴착에 대한 자료와 해당 터널의 굴착이 진행과정에서 터널 막장에서 발파로 인해 발생하는 진동을 현장계측을 실시하여 진동전파식을 도출하여 영향권 분석을 통해 산정 할 수 있다.The safety separation distance (D) can be calculated through the field measurement of the data on the tunnel excavation and the vibration generated by the blasting at the tunnel face during the excavation of the tunnel, and the vibration propagation equation can be calculated and analyzed through the influence area analysis. have.

상기 제1모형 콘크리트 라이닝(300)과 제2모형 콘크리트 라이닝(400)은 콘크리트 라이닝의 품질평가를 보다 정확하게 하기 위하여 터널막장(110)으로부터 일정 거리별로 각각 2개씩 설치할 수 있다.The first model concrete lining 300 and the second model concrete lining 400 may be installed in each of a predetermined distance from the tunnel curtain 110 in order to more accurately evaluate the quality of the concrete lining.

상기 제1모형 콘크리트 라이닝(300)은 산정된 상기 안전 이격거리(D)내의 터널 막장(110)으로부터 100m~150m, 200m~250m사이에 각각 설치하여 터널(100)을 일정 길이 굴착 할 동안 발파진동의 영향을 지속적으로 받은 수 있도록 하고, 제2모형 콘크리트 라이닝(400)은 산정된 상기 안전 이격거리(D)를 벗어날 가능성이 있는 터널 막장(110)으로부터 400m~450m, 500m~550m사이에 각각 설치하여 발파진동의 영향을 받지 않을 가능성이 있는 위치에 각각 설치한다.The first model concrete lining 300 is installed between the 100m ~ 150m, 200m ~ 250m from the tunnel barrier 110 within the calculated safety separation distance (D), respectively, and the blasting vibration during the excavation of a predetermined length of the tunnel 100 And the second model concrete lining 400 is installed between 400 m to 450 m and 500 m to 550 m from the tunnel barrier 110, which is likely to deviate from the calculated safety separation distance D. Install them in positions where they may not be affected by blasting vibrations.

상기 제1모형 콘크리트 라이닝(300)과 제2모형 콘크리트 라이닝(400)은, 터널(100)내 바닥을 콘크리트로 보강한 후 그 위에 거푸집을 설치하고, 상기 콘크리트 라이닝(210)을 형성할 때 사용하는 동일한 콘크리트를 이용하여 제작한다. 한편 모형라이닝 제원은 해당 현장의 터널 라이닝 설계단면을 기준으로 폭과 높이는 20% 이상 축소한 크기로 제작하고, 모형라이닝 길이는 폭과 동일한 길이로 각각 타설하 여 형성할 수 있다.The first model concrete linings 300 and the second model concrete linings 400 are used to reinforce the floor in the tunnel 100 with concrete, install formwork thereon, and form the concrete linings 210. Manufactured using the same concrete. Meanwhile, the model lining specifications can be made by reducing the width and height by 20% or more based on the tunnel lining design section of the site, and the model lining length can be formed by pouring the same length as the width.

이와 같은 제1모형 콘크리트 라이닝(300) 및 제2모형 콘크리트 라이닝(400)의 콘크리트 타설시 그 내부에는 도 4 및 도 5에서와 같이 매설형 콘크리트 변형률계(500) 및 인공 균열판(600)을 매입 설치한다.When the concrete of the first model concrete lining 300 and the second model concrete lining 400 is placed therein, the buried concrete strain meter 500 and the artificial crack plate 600 as shown in FIGS. 4 and 5. Purchase and install.

상기 매설형 콘크리트 변형률계(500)는 강화 콘크리트나 콘크리트 구조물에 매설하여 콘크리트 내부에 작용하는 유효 변형율을 정확히 계측하기 위한 것으로서, 콘크리트의 변형이 진동 스트립(Strip)으로 전이하여 스트립의 인장력에 따른 공진주파수를 이용하여 변형률을 계측하는 통상적인 것이 사용될 수 있다.The buried concrete strain meter 500 is to accurately measure the effective strain acting in the concrete by embedding in reinforced concrete or concrete structure, the deformation of the concrete transition to the vibration strip (Strip), the resonance according to the tensile force of the strip Conventional ones for measuring strain using frequency can be used.

이러한 콘크리트 변형률계(500)는 모형 라이닝 콘크리트를 타설하는 과정에서 다수개를 매설하여 설치한다. 이때 모형 콘크리트 라이닝(300)(400)의 타설은 굴착을 위한 발파전 3-12시간(진동에 가장 예민한 시간대)이내에 완료한다.The concrete strain gauge 500 is installed by embedding a plurality in the process of pouring the model lining concrete. At this time, the casting of the model concrete lining 300, 400 is completed within 3-12 hours (the most sensitive time zone for vibration) before the blasting for excavation.

이렇게 모형 콘크리트 라이닝(300)(400) 내부에 설치된 콘크리트 변형률계(500)는 와이어가 외부로 연결되어 변형율 데이터를 전송할 수 있도록 구성되며, 이 데이터를 컴퓨터 등에서 처리하여 변형율을 측정할 수 있다.The concrete strain meter 500 installed inside the model concrete lining 300 and 400 is configured to transmit the strain data by connecting the wire to the outside, and may measure the strain by processing the data in a computer or the like.

상기 인공 균열판(600)은 15cm×20cm×0.03cm(가로×세로×두께) 크기의 플라스틱 판으로 이루어지며, 제1,2모형 콘크리트 라이닝(300)(400) 타설시 15cm 깊이로 삽입한 후, 일정시간(약 24시간 이내)이 경과한 후 제거한다.The artificial crack plate 600 is made of a plastic plate of 15cm × 20cm × 0.03cm (width × length × thickness) size, and when the first and second model concrete lining (300, 400) is placed at a depth of 15cm Remove after a certain period of time (about 24 hours).

인공 균열판(600)의 매입은 동일한 방향으로 매입하거나 일렬씩 서로 다른 방향으로 매입할 수 있으며, 이렇게 매입된 제1,2모형 콘크리트 라이닝(300)(400)에서 인공 균열판(600)을 제거하면 제거된 부분이 홈으로 이루어져 제1,2모형 콘크 리트 라이닝(300)(400) 내벽으로는 다수의 인공균열부가 형성된다.The artificial crack plate 600 may be purchased in the same direction or may be purchased in different directions in a row, and the artificial crack plate 600 may be removed from the first and second model concrete linings 300 and 400. The lower portion is formed of a groove is formed of a plurality of artificial cracks in the inner wall of the first and second model concrete lining (300, 400).

이와 같이 제1,2모형 콘크리트 라이닝(300)(400)이 타설후 진동이 양생중인 콘크리트 강도에 영향을 주는 가장 예민한 시간대(콘크리트 타설 후 3-12 시간 이내)에서 발파를 행하면, 이로 인하여 발생된 발파진동이 상기 제1,2모형 콘크리트 라이닝(300)(400)에 설치된 콘크리트 변형률계(500) 및 인공 균열판(600)이 제거된 부분에 형성된 인공균열부를 통하여 콘크리트 라이닝 변형률 및 균열현상을 측정한다.As such, when the first and second model concrete linings 300 and 400 blast in the most sensitive time zone (within 3-12 hours after concrete placing), the vibration after curing affects the strength of the cured concrete. Concrete lining strain and crack phenomena are measured through the artificial cracks formed in the portions where the blasting vibration is removed from the concrete strain meter 500 and the artificial crack plate 600 installed on the first and second model concrete linings 300 and 400. do.

콘크리트 라이닝 변형률의 측정은 콘크리트 변형률계(500)를 통하여 콘크리트의 응력 변화 데이터가 컴퓨터 등으로 전송되면 변형률로 정확하게 계산하여 측정할 수 있다.The measurement of the concrete lining strain may be accurately calculated by measuring the strain when the stress change data of the concrete is transmitted to a computer through the concrete strain gauge 500.

균열현상의 측정은 인공균열부 주변으로 발생되는 균열형태, 균열 폭, 균열길이 등을 크랙 게이지를 이용하여 측정할 수 있다.The crack phenomena can be measured using a crack gauge to determine the crack shape, crack width, and crack length generated around the artificial crack.

이렇게 제1,2모형 콘크리트 라이닝(300)(400)에서 각각 측정된 콘크리트 라이닝 변형률 및 균열현상 데이터가 마련되면, 이들 데이터를 분석하여 굴착된 터널의 후방에서 시공되는 콘크리트 라이닝(210)의 최소 안전 이격거리(D)에 대한 적정성을 평가한다.When the concrete lining strain and crack phenomena data measured in each of the first and second model concrete linings 300 and 400 are prepared, the minimum safety of the concrete lining 210 constructed at the rear of the excavated tunnel is analyzed by analyzing these data. Evaluate the adequacy of the separation distance (D).

그리고 그 데이터에 의하여 터널의 막장 발파굴착과 병행하여 콘크리트 라이닝(210)의 시공을 최소 안전 이격거리(D)를 기준으로 터널을 시공하면 된다.In addition, the tunnel may be constructed based on the minimum safety separation distance (D) for the construction of the concrete lining 210 in parallel with the tunnel blasting excavation based on the data.

상기한 콘크리트 라이닝 변형률 및 균열현상의 측정은 모형라이닝을 타설후 연속적으로 수행하며 모형라이닝에서 코어를 채취하여 콘크리트 28일 압축강도를 실시하여 비교 · 평가한다.The above-mentioned concrete lining strain and crack phenomena are measured continuously after pouring the model lining, and the cores are taken from the model lining and subjected to 28-day compressive strength of concrete for comparison and evaluation.

이상 설명한 바와 같이 본 발명에 의한 터널 굴착시 발파진동에 따른 콘크리트 라이닝 품질 평가방법은, 굴착과 콘크리트 라이닝을 병행시공할 때, 콘크리트 라이닝 시공이전에 모형 콘크리트 라이닝을 터널내 막장후방의 안전 이격거리 이내와 안전 이격거리를 벗어난 곳에 각각 타설하여 발파 진동으로 인한 변형률과 균열현상을 측정하므로, 콘크리트 라이닝 시공의 안전 이격거리를 항상 확보한 상태로 시공하므로 콘크리트 라이닝의 품질이 저하되지 않도록 방지한다.As described above, the method of evaluating the quality of concrete lining according to the blasting vibration during tunnel excavation according to the present invention, when constructing the excavation and the concrete lining in parallel, before the concrete lining construction, the model concrete lining within the safety separation distance of the rear of the membrane Since the strain and cracks caused by the blasting vibration are measured by placing each of them out of the safety separation distance and the safety separation distance, the construction should always be secured with the safety separation distance of the concrete lining to prevent the quality of the concrete lining from deteriorating.

Claims (2)

터널 굴착작업과 콘크리트 라이닝 시공작업을 병행하여 터널시공을 할 경우 터널 굴착시 발파진동에 따른 콘크리트 라이닝의 품질 평가방법으로서,In the case of tunnel construction in combination with tunnel excavation work and concrete lining construction work, it is a quality evaluation method of concrete lining according to blasting vibration during tunnel excavation. 일정 길이의 터널이 굴착되면 현장에서 도출된 진동추정식을 이용하여 허용수준을 기준으로 터널내부의 임의의 위치에 터널 막장으로부터 발생하는 발파진동의 영향을 받는 제1모형 콘크리트 라이닝과, 발파진동의 영향을 받지 않을 가능성이 있는 터널 내부의 임의의 위치에 제2모형 콘크리트 라이닝을 각각 타설하는 단계;When the tunnel of a certain length is excavated, the first model concrete lining is affected by the blasting vibration generated from the tunnel face at any position inside the tunnel using the vibration estimation equation derived from the site and the blasting vibration Placing each second model concrete lining at any location within the tunnel that is unlikely to be affected; 상기 제1,2모형 콘크리트 타설시 그 내부에 발파진동의 영향을 측정할 수 있는 콘크리트 변형률계 및 균열현상을 측정하기 위한 인공 균열판을 매입 설치하는 단계;When installing the first and second model concrete, installing a concrete strain meter to measure the effect of the blast vibration and an artificial crack plate for measuring the crack phenomenon; 상기 단계의 작업이 완료된 후, 터널막장에 터널 굴착을 위한 발파를 행하는 단계;After the operation of the step is completed, blasting for tunnel excavation at the tunnel curtain; 상기 제1,2 모형 콘크리트 라이닝 양생과정에서 콘크리트 라이닝에 설치된 인공 균열판을 제거하여 인공균열부를 마련하는 단계;Preparing an artificial crack by removing the artificial crack plate installed in the concrete lining in the first and second model concrete lining curing process; 상기 발파로 인하여 발생된 발파진동을 상기 제1,2모형 콘크리트 라이닝에 설치된 콘크리트 변형률계 및 인공균열부를 통하여 콘크리트 라이닝 변형률 및 균열현상을 측정하는 단계;Measuring the concrete lining strain and crack through the blasting vibration generated by the blasting through a concrete strain meter and an artificial crack installed on the first and second model concrete linings; 상기에서 측정된 제1,2모형 콘크리트 라이닝 변형률 데이터 및 균열현상 데이터를 분석하여 굴착된 터널의 후방으로부터 시공하는 콘크리트 라이닝의 최소 안전이격거리에 대한 적정성을 평가하는 단계;Analyzing the first and second model concrete lining strain data and crack phenomenon data measured above to evaluate adequacy of the minimum safety separation distance of the concrete lining constructed from the rear of the excavated tunnel; 를 포함하는 터널 굴착시 발파진동에 따른 콘크리트 라이닝 품질 평가방법.Concrete lining quality evaluation method according to the blasting vibration during tunnel excavation comprising a. 청구항 1에 있어서, 상기 발파단계는, 발파 진동이 양생중인 콘크리트 강도에 영향을 주는 가장 예민한 시간대인 제1,2모형 콘크리트 라이닝 타설후 3-12 시간 사이에 실시하는 터널 굴착시 발파진동에 따른 콘크리트 라이닝 품질 평가방법.The method according to claim 1, wherein the blasting step, the concrete according to the blasting vibration during the tunnel excavation carried out between 3-12 hours after the first and second model concrete lining, which is the most sensitive time that the blasting vibration affects the curing concrete strength How to evaluate lining quality.
KR1020060104063A 2006-10-25 2006-10-25 Method for concrete lining quality evaluating according to concussion blasting excavation in tunnel KR100805184B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060104063A KR100805184B1 (en) 2006-10-25 2006-10-25 Method for concrete lining quality evaluating according to concussion blasting excavation in tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060104063A KR100805184B1 (en) 2006-10-25 2006-10-25 Method for concrete lining quality evaluating according to concussion blasting excavation in tunnel

Publications (1)

Publication Number Publication Date
KR100805184B1 true KR100805184B1 (en) 2008-02-21

Family

ID=39382578

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060104063A KR100805184B1 (en) 2006-10-25 2006-10-25 Method for concrete lining quality evaluating according to concussion blasting excavation in tunnel

Country Status (1)

Country Link
KR (1) KR100805184B1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832140A (en) * 2010-04-20 2010-09-15 北京交通大学 Testing method of water pressure distribution law of subsea tunnel lining
KR101257854B1 (en) * 2010-12-06 2013-04-24 에스케이건설 주식회사 The method of constructing lining concrete in full scale underground storage
CN104713987A (en) * 2015-01-25 2015-06-17 北京工业大学 Model test apparatus for stimulating tunnel excavation process
CN107178392A (en) * 2017-06-28 2017-09-19 中铁第四勘察设计院集团有限公司 A kind of method for controlling Tunneling by mining method secondary lining water pressure
CN107796646A (en) * 2017-11-23 2018-03-13 中南大学 Simulate the experimental rig and test method of deep-lying tunnel Blasting Excavation off-load
CN109507048A (en) * 2019-01-08 2019-03-22 中国地质大学(武汉) The pilot system and method that simulation tunnel blasting excavation influences existing lining cutting
CN111798155A (en) * 2020-07-13 2020-10-20 中电建路桥集团有限公司 Similar rock pile body tunnel surrounding rock quality evaluation and monitoring excavation management system
CN112414733A (en) * 2020-11-10 2021-02-26 山东大学 Shield tunnel structure mechanical property model test system and method
CN112730103A (en) * 2021-01-19 2021-04-30 中国科学院西北生态环境资源研究院 Model test device and test method for simulating blasting excavation of soil tunnel
CN113063890A (en) * 2021-03-02 2021-07-02 山东科技大学 Equivalent model for tunnel blasting excavation test and using method thereof
CN116482320A (en) * 2023-06-20 2023-07-25 深圳市勘察研究院有限公司 Tunnel water burst effect monitoring model test device and test method for groundwater environment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031002A (en) 1996-07-15 1998-02-03 Arusu Kaihatsu Kk Structure and method of detecting crack of structure
JPH10197296A (en) 1997-01-07 1998-07-31 Hitachi Eng & Services Co Ltd Regional monitoring system for soil or baserock collapse and central monitoring system
JP2001174242A (en) 1999-12-22 2001-06-29 Toyo Commun Equip Co Ltd In-tunnel monitoring system
JP2003247814A (en) 2002-02-22 2003-09-05 Tohoku Regional Bureau Ministry Of Land Infrastructure & Transport Method of measuring deformation of tunnel
KR200399594Y1 (en) 2005-06-24 2005-10-26 주식회사 지티씨 엔지니어링 Instrument for measuring two dimensional deformation in tunnels
KR100572990B1 (en) 2004-12-23 2006-04-24 코오롱건설주식회사 Verification method optimum spacing distance between excavation and concrete lining in tunnel construction

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1031002A (en) 1996-07-15 1998-02-03 Arusu Kaihatsu Kk Structure and method of detecting crack of structure
JPH10197296A (en) 1997-01-07 1998-07-31 Hitachi Eng & Services Co Ltd Regional monitoring system for soil or baserock collapse and central monitoring system
JP2001174242A (en) 1999-12-22 2001-06-29 Toyo Commun Equip Co Ltd In-tunnel monitoring system
JP2003247814A (en) 2002-02-22 2003-09-05 Tohoku Regional Bureau Ministry Of Land Infrastructure & Transport Method of measuring deformation of tunnel
KR100572990B1 (en) 2004-12-23 2006-04-24 코오롱건설주식회사 Verification method optimum spacing distance between excavation and concrete lining in tunnel construction
KR200399594Y1 (en) 2005-06-24 2005-10-26 주식회사 지티씨 엔지니어링 Instrument for measuring two dimensional deformation in tunnels

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101832140A (en) * 2010-04-20 2010-09-15 北京交通大学 Testing method of water pressure distribution law of subsea tunnel lining
KR101257854B1 (en) * 2010-12-06 2013-04-24 에스케이건설 주식회사 The method of constructing lining concrete in full scale underground storage
CN104713987A (en) * 2015-01-25 2015-06-17 北京工业大学 Model test apparatus for stimulating tunnel excavation process
CN104713987B (en) * 2015-01-25 2017-04-19 北京工业大学 Model test apparatus for stimulating tunnel excavation process
CN107178392A (en) * 2017-06-28 2017-09-19 中铁第四勘察设计院集团有限公司 A kind of method for controlling Tunneling by mining method secondary lining water pressure
CN107796646A (en) * 2017-11-23 2018-03-13 中南大学 Simulate the experimental rig and test method of deep-lying tunnel Blasting Excavation off-load
CN109507048A (en) * 2019-01-08 2019-03-22 中国地质大学(武汉) The pilot system and method that simulation tunnel blasting excavation influences existing lining cutting
CN111798155A (en) * 2020-07-13 2020-10-20 中电建路桥集团有限公司 Similar rock pile body tunnel surrounding rock quality evaluation and monitoring excavation management system
CN111798155B (en) * 2020-07-13 2024-04-30 中电建路桥集团有限公司 Surrounding rock quality evaluation and monitoring excavation management system for rock-like pile tunnel
CN112414733A (en) * 2020-11-10 2021-02-26 山东大学 Shield tunnel structure mechanical property model test system and method
CN112414733B (en) * 2020-11-10 2021-10-22 山东大学 Shield tunnel structure mechanical property model test system and method
CN112730103A (en) * 2021-01-19 2021-04-30 中国科学院西北生态环境资源研究院 Model test device and test method for simulating blasting excavation of soil tunnel
CN113063890A (en) * 2021-03-02 2021-07-02 山东科技大学 Equivalent model for tunnel blasting excavation test and using method thereof
CN116482320A (en) * 2023-06-20 2023-07-25 深圳市勘察研究院有限公司 Tunnel water burst effect monitoring model test device and test method for groundwater environment
CN116482320B (en) * 2023-06-20 2024-01-26 深圳市勘察研究院有限公司 Tunnel water burst effect monitoring model test device and test method for groundwater environment

Similar Documents

Publication Publication Date Title
KR100805184B1 (en) Method for concrete lining quality evaluating according to concussion blasting excavation in tunnel
CN103604384B (en) Distributed fiber monitoring method and system for strains and stresses of ship lock structure
JP7216464B2 (en) STRESS MONITORING SENSOR AND STRESS MONITORING METHOD
KR100959193B1 (en) The method to estimate realtime-quantitative stability of the tunnel under construction and it's system
CN104328776B (en) A kind of method predicting that the soil body and surrounding enviroment are affected by power dynamic compaction tool
EP3625437B1 (en) Pre-cast segment for tunnels and method for producing and monitoring said pre-cast segment
JP2012026222A (en) Method of detecting presence/absence of filling defective part of tunnel secondary lining concrete using ri moisture meter and improvement method
JP6179767B2 (en) Tunnel lining arch concrete stop management method
Biswal et al. Measurement of existing prestressing force in concrete structures through an embedded vibrating beam strain gauge
CN203981124U (en) Ship lock structural strain and stress distribution formula optical fiber monitoring device
Tarozzi et al. Identification of damage-induced frequency decay on a large-scale model bridge
CN108802188B (en) Grouting fullness detection method and system based on sleeve surface excitation
CN106932254B (en) Light-gauge steel section and foam concrete interface sliding method for testing performance
KR20200037948A (en) Concrete filled steel pile for dynamic pile load test and pile load test method thereof
CN110197015B (en) Dam foundation pre-stressed anchor cable effective tensile stress measuring method
JP2019015084A (en) Concrete filling confirming method
US10254194B2 (en) Instrumented concrete structural element
KR100602832B1 (en) Amentment method of differential shortenint of vertical member in reinforced-concrete structures
CN215374306U (en) Structural stress testing device for submarine tunnel composite lining
CN115164796A (en) Method for determining loosening ring and ultimate displacement of tunnel surrounding rock through actual measurement
CN103940914B (en) Method for manufacturing calibration model of pipeline grouting quality detection instrument and calibration model
JP6993066B2 (en) Diagnostic method for concrete structures
KR100572990B1 (en) Verification method optimum spacing distance between excavation and concrete lining in tunnel construction
Osman1&2 et al. Evaluating the stresses in a supertall structure: Field monitoring and numerical analysis
KR101482052B1 (en) method for measuring displacement ahead of tunnel

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130102

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140106

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160106

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161226

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 13