KR100796369B1 - Recovery method of high purity cobalt, copper and recycled plastics from wasted lithium ion batteryes - Google Patents

Recovery method of high purity cobalt, copper and recycled plastics from wasted lithium ion batteryes Download PDF

Info

Publication number
KR100796369B1
KR100796369B1 KR20070040999A KR20070040999A KR100796369B1 KR 100796369 B1 KR100796369 B1 KR 100796369B1 KR 20070040999 A KR20070040999 A KR 20070040999A KR 20070040999 A KR20070040999 A KR 20070040999A KR 100796369 B1 KR100796369 B1 KR 100796369B1
Authority
KR
South Korea
Prior art keywords
steel
recovering
lithium ion
cobalt
separator
Prior art date
Application number
KR20070040999A
Other languages
Korean (ko)
Inventor
이정주
Original Assignee
주식회사 리싸이텍코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 리싸이텍코리아 filed Critical 주식회사 리싸이텍코리아
Priority to KR20070040999A priority Critical patent/KR100796369B1/en
Application granted granted Critical
Publication of KR100796369B1 publication Critical patent/KR100796369B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

A method for recovering high-purity valuable metals and recycled plastics from waste lithium ion batteries is provided to recycle all of positive electrodes, negative electrodes, and separators and concentrate and to recover high-purity cobalt efficiently. A method for recovering high-purity valuable metals and recycled plastics from waste lithium ion batteries includes: a pre-treatment step of separating positive electrodes, separators, and negative electrodes from waste lithium ion batteries; and a recovery step of recovering valuable metals or recycled plastics from the separated positive electrodes, separators, and negative electrodes. The pre-treatment step(S100) includes the steps of: (S110) cutting steel cans of the wasted lithium ion batteries; and (S120) separating jelly rolls from the cut steel cans. In the recovery step, the step(S400) of recovering recycled plastics from the separators includes the steps of: grinding the separators; washing the ground separators; and extruding the washed separators into pellets to obtain recycled resins. In the recovery step, the step(S300) of recovering coppers from the negative electrodes includes: grinding the negative electrodes; mixing the ground negative electrodes with a CaO-based solvent containing SiO2, and then melting the mixture at 1000 °C or higher; keeping the molten material under partial oxygen pressure for 30 minutes to a hour, and then naturally cooling the resultant to separate coppers from impurities. In the step of cutting the steel can, both length-directional ends of the steel can are cut and opened. In the step of separating out the jelly roll, the jelly roll is pushed from one opening of the steel can and separated from the steel can.

Description

폐리튬이온전지로부터 유가금속 및 재생플라스틱의 회수방법{RECOVERY METHOD OF HIGH PURITY COBALT, COPPER AND RECYCLED PLASTICS FROM WASTED LITHIUM ION BATTERYES}Recovery of valuable metals and recycled plastics from waste lithium ion batteries {RECOVERY METHOD OF HIGH PURITY COBALT, COPPER AND RECYCLED PLASTICS FROM WASTED LITHIUM ION BATTERYES}

도 1은 본 발명에 따른 폐리튬이온전지로부터 유가금속 및 재생플라스틱의 회수공정을 개략적으로 보인 흐름도.1 is a flow chart schematically showing a recovery process of valuable metals and recycled plastics from waste lithium ion batteries according to the present invention.

본 발명은 폐리튬이온전지로부터 유가금속(코발트, 구리 등)을 회수하는 방법에 관한 것으로, 더욱 상세하게는 원통형 폐리튬이온전지의 양극, 음극 및 격리막을 모두 재활용하기 위해 원통형 폐리튬이온전지의 스틸캔과 젤리롤을 효율적으로 분리하고, 젤리롤을 구성하고 있는 양극, 음극 및 격리막에서 코발트, 구리, 플라스틱을 회수하는 토탈 리싸이클링이 가능한 폐리튬이온전지로부터 유가금속 및 재생플라스틱의 회수방법에 관한 것이다.The present invention relates to a method for recovering valuable metals (cobalt, copper, etc.) from waste lithium ion batteries, and more particularly, to recycling all of the positive electrode, the negative electrode, and the separator of the cylindrical waste lithium ion battery. The present invention relates to a method for recovering valuable metals and recycled plastics from waste lithium ion batteries capable of efficiently separating steel cans and jelly rolls, and recovering cobalt, copper, and plastic from the anode, cathode, and separator constituting the jelly rolls. .

일반적으로 폐리튬이온전지는 휴대전화, 노트북컴퓨터, 초소형 영상, 음향가 전기기 등의 전기화학적 전원으로서 널리 사용되고 있다. 리튬이온전지는 구리(copper), 코발트(cobalt), 리튬(lithium) 및 격리막, 유기계전해질 등 다량의 화학물질로 구성되어 있다. In general, the waste lithium ion battery is widely used as an electrochemical power source for mobile phones, notebook computers, ultra-small images, and acoustic electronic devices. Lithium ion battery is composed of a large amount of chemicals such as copper (copper), cobalt (cobalt), lithium (lithium) and separators, organic electrolytes.

폐리튬이온전지의 재활용 기술은 코발트(cobalt), 구리(copper) 등의 회수와 환경오염 방지의 두 가지 측면에서 접근하는 것으로 귀결된다. 폐리튬이온전지의 가장 간단하고 경제적인 처리방법은 Zhang 등에 의해 최초로 개발되었으며, 이는 폐전지로부터 먼저 LiCoO2가 코팅되어 있는 양극을 분리하고, LiCoO2를 알루미늄 기재에서 박리해낸 다음 염산을 이용해 용출시킨 후 유기용제(PC-88A)를 이용해 코발트를 분리하고 리튬은 카보네이트로 침전시키는 방법이다.The recycling technology for waste lithium ion batteries results in two approaches: cobalt and copper recovery and environmental pollution prevention. The simplest and most economical treatment method for waste lithium-ion batteries was first developed by Zhang et al., Which first separated LiCoO 2 coated anodes from the waste batteries, separated LiCoO 2 from the aluminum substrate, and then eluted with hydrochloric acid. After the cobalt is separated using an organic solvent (PC-88A) and lithium is precipitated with carbonate.

Lee는 어떠한 전처리 공정 없이 LiOH 수용액을 이용하여 200℃에서 수열합성법으로 LiCoO2를 분리하여 새로운 양극활물질로 동시 재생하는 기술을 개발하였으며 Contestabile는 폐전지를 100℃의 NMP(N-methylpyrrolidone)에서 1시간 동안 처리하여 LiCoO2를 효과적으로 분리해내고 기재인 알루미늄과 구리를 동시에 얻는 기술을 개발하였다. Lee developed a technique to separate LiCoO 2 by hydrothermal synthesis at 200 ° C using LiOH aqueous solution without any pretreatment process and to simultaneously regenerate it with a new cathode active material. The treatment has been developed to effectively separate LiCoO 2 and to obtain substrates aluminum and copper simultaneously.

전술한 종래기술을 요약하면 폐리튬이온전지의 재활용은 리튬이온전지에 포함된 부가가치가 높은 유가금속을 회수하는 것이며, 일반적으로 폐리튬이온전지를 파쇄한 후 자력선별로 철 성분을 제거하고 비중차, 공기분급 등 다양한 방법을 이용해 비금속 성분 및 구리, 알루미늄 등을 분리하여 1차적으로 코발트 성분을 농축하고 이를 산 침출공정을 거쳐 침전법, 전해채취법, 용매추출법 등으로 코발트를 회수하는 습식회수기술이 주류를 이루고 있다. 그러나 습식회수기술은 전처리 공정인 파쇄 및 분리 공정에서 분말상의 코발트의 손실율이 크고, 습식농축과정에서 고순도의 코발트 회수는 가능하나 대량처리가 곤란하고 폐산 등에 의한 2차 환경오염의 문제점이 있다. 최근에 이러한 문제로 고온용융에 의한 건식처리방법이 연구되고 있는데 대량처리가 가능하고 폐산 등의 처리문제가 발생하지 않는 장점이 있지만 산을 이용해 선택적으로 코발트를 침출시키는 습식공정과는 달리 용융상태에서 코발트 이외의 금속을 분리하는데 한계가 있어 코발트의 순도가 낮아 습식처리에 의한 2차 정련 과정이 필요한 단점이 있다. 이러한 문제를 극복하기 위해서는 폐리튬이온전지 전체를 파쇄하여 분리하는 전처리 공정보다는 효율적인 분리공정이 필요하나 아직 개발되지 못하고 있는 실정이다.Summarizing the above-mentioned prior art, recycling of waste lithium ion batteries is to recover valuable metals having high added value included in lithium ion batteries, and generally, after crushing waste lithium ion batteries, iron components are removed by magnetic lines and specific gravity difference, Wet recovery technology that separates non-metallic components, copper, aluminum, etc. by using various methods such as air classification, concentrates cobalt first, and recovers cobalt by precipitation, electrolytic extraction, solvent extraction, etc. through acid leaching. To achieve. However, the wet recovery technique has a high loss rate of cobalt in powder in the crushing and separation process, which is a pretreatment process, and recovers high-purity cobalt in the wet concentration process, but it is difficult to process large quantities and has a problem of secondary environmental pollution due to waste acid. Recently, a dry treatment method by high temperature melting has been studied due to this problem, but there is an advantage that a large amount of treatment is possible and treatment problems such as waste acid do not occur. Since there is a limit in separating metals other than cobalt, there is a disadvantage in that the purity of the cobalt is low and a secondary refining process by wet treatment is required. In order to overcome such a problem, an efficient separation process is required rather than a pretreatment process of crushing and separating the entire waste lithium ion battery, but it is not yet developed.

본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 제안된 것으로서, 폐리튬이온전지의 친환경적인 재활용 기술을 개발하기 위해 건식용융공정에 적합한 전처리기술(분리기술)을 적용함으로써 공정이 간단하기는 하나 유가금속의 손실율이 커서 경제성에 문제가 있는 기존의 방법을 혁신적으로 개선하여 양극, 음극, 격리막 소재를 모두 재활용할 수 있고 특히, 건식용융공정의 대량처리, 공정속도의 장점을 가지면서도 순도가 높은 코발트를 효율적으로 농축, 회수할 수 있는 폐리튬이온전지로부터 유가금속 및 재생플라스틱의 회수방법을 제공하려는데 그 목적이 있다.The present invention has been proposed in order to solve the above problems, by applying a pretreatment technology (separation technology) suitable for dry melting process to develop an environmentally friendly recycling technology of waste lithium ion battery, but the process is simple It is possible to recycle anode, cathode, and separator materials by innovatively improving the existing methods that are economically problematic due to the large loss rate of metals. Especially, high-purity cobalt with the advantages of bulk treatment of dry melting process and process speed It is an object of the present invention to provide a method for recovering valuable metals and recycled plastics from spent lithium ion batteries, which can efficiently concentrate and recover the same.

전술한 목적을 달성하기 위한 폐리튬이온전지로부터 유가금속(코발트, 구리)과 플라스틱을 회수하는 방법은, 각각 유연성 있는 시트 형태로 이루어져 서로 겹쳐지는 코발트 함유 양극과 폴리프로필렌 격리막 및 구리 포일에 흑연이 코팅된 음극으로 이루어진 젤리롤, 내부에 상기 젤리롤이 수용된 밀폐형 스틸 캔으로 구성된 폐리튬이온전지로부터 상기 양극과 격리막 및 음극을 분리하는 전처리 단계와; 그리고, 상기 전처리 단계를 거쳐 분리된 양극, 격리막 및 음극으로부터 유가금속 또는 재생플라스틱을 회수하는 단계를 포함하여 이루어진 것을 특징으로 한다.To recover valuable metals (cobalt, copper) and plastics from spent lithium ion batteries to achieve the above object, graphite is formed on a cobalt-containing anode, a polypropylene separator, and a copper foil, each formed in a flexible sheet form. A pretreatment step of separating the positive electrode, the separator and the negative electrode from a waste lithium ion battery composed of a jelly roll made of a coated negative electrode and a sealed steel can containing the jelly roll therein; And recovering the valuable metal or the recycled plastic from the anode, separator and cathode separated through the pretreatment step.

이하, 첨부 도면에 의거하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 폐리튬이온전지로부터 유가금속(코발트, 구리)과 플라스틱을 회수하는 과정을 개략적으로 보인 흐름도로서, 이에 도시된 바와 같이, 본 발명은 다음과 같다. 1 is a flow chart schematically showing a process of recovering valuable metals (cobalt, copper) and plastics from a spent lithium ion battery according to the present invention. As shown in the drawing, the present invention is as follows.

(S100) 전처리. 폐리튬이온전지는 각각 유연성 있는 시트 형태로 이루어진 코발트 함유 양극과 폴리프로필렌 격리막 및 구리 포일에 흑연이 코팅된 음극으로 이루어져 감긴 젤리롤, 내부에 상기 젤리롤이 수용된 원통의 밀폐형 스틸 캔으로 구성된다. 이러한 구성의 폐리튬이온전지는 완전 방전시키는 과정이 필요하다. 이는 분리공정 및 용융과정에서 발생할 수 있는 화재 및 폭발을 방지하기 위함이며, 방전방법으로는 미방전상태의 전지를 소금물에 침전시키는 습식방전방법 또는 저항 및 콘덴서로 구성된 적절한 회로장치를 이용해 잔여 전류를 방전시키는 건식방전방법 등이 적용될 수 있다. 방전이 완료된 폐리튬이온전지는 다음의 공정을 거쳐 스 틸캔과 젤리롤이 분리된다.(S100) pretreatment. The waste lithium ion battery is composed of a cobalt-containing anode formed of a flexible sheet, a polypropylene separator and a cathode coated with graphite on a copper foil, and a rolled jelly roll, and a cylindrical sealed steel can in which the jelly roll is accommodated. The waste lithium ion battery of such a structure needs a process of complete discharge. This is to prevent fire and explosion that may occur during the separation process and melting process.The discharge method is a wet discharge method in which undischarged batteries are precipitated in salt water, or an appropriate circuit device composed of a resistor and a capacitor is used to discharge residual current. A dry discharge method for discharging may be applied. In the discharged waste lithium ion battery, the steel can and the jelly roll are separated through the following process.

(S110) 스틸 캔 절단. 상기 스틸캔은 내부에 상기 젤리롤이 삽입된 후 밀봉된 구조로서, 상기 스틸캔에 내부에 삽입된 젤리롤을 분리하기 위해 스틸 캔을 절단하여 상기 스틸 캔의 양측 단부가 개방되도록 한다. 상기 스틸 캔의 절단은 상기 젤리롤을 상기 스틸 캔에서 분리할 수 있는 모든 방법이 가능할 것이며, 예컨대, 바람직하게 상기 스틸 캔의 길이 방향을 양측을 절단하여 상기 스틸 캔의 길이 방향 양측이 개방되도록 하는 방법이나 상기 스틸 캔을 길이방향으로 절단하는 방법 등이 있다. 상기 스틸 캔의 길이 방향 양측을 절단하는 것은 다양한 방법이 가능할 것이며, 예를 들어, 회전형 절단기가 상기 스틸 캔의 둘레를 따라 절단하는 방법이나 절단기가 직선 왕복 운동하면서 상기 스틸 캔의 양측을 절단하는 방법 등이 있다.(S110) steel can cutting. The steel can is a sealed structure after the jelly roll is inserted therein, and the steel can is cut to separate the jelly roll inserted therein so that both ends of the steel can are opened. The cutting of the steel can may be any method capable of separating the jelly roll from the steel can, and preferably, for example, cutting both sides of the steel can in the longitudinal direction to open both sides of the steel can in the longitudinal direction. Or a method for cutting the steel can in the longitudinal direction. The cutting of both sides of the steel can in the longitudinal direction may be performed in various ways. For example, a rotary cutter may cut along the circumference of the steel can or the cutter may cut both sides of the steel can while linearly reciprocating. Method and the like.

(S120) 젤리롤 분리. 상기 단계를 통해 상기 스틸 캔의 길이 방향 양측이 절단되면 상기 스틸 캔의 길이방향 양측 중 일측에서 푸셔를 통해 상기 스틸 캔 내부의 젤리롤을 밀어 상기 스틸 캔에서 분리한다.(S120) Jelly Roll Separation. When both sides of the steel can are cut in the longitudinal direction through the above step, the jelly roll in the steel can is pushed through the pusher at one of the two sides in the longitudinal direction of the steel can to separate the steel can from the steel can.

이상의 공정을 통해 폐리튬이온전지를 스틸 캔과 젤리롤로 분리하며, 분리된 젤리롤은 각각 시트지 형태인 양극, 격리막, 음극이 감겨 있는 상태이며, 상기 양극, 격리막, 음극을 분리하여 각각의 회수공정을 거치게 된다.Through the above process, the waste lithium ion battery is separated into a steel can and a jelly roll, and the separated jelly roll is in a state in which a positive electrode, a separator, and a cathode are wound in a sheet form, and the recovery process is performed by separating the positive electrode, the separator, and the negative electrode. Will go through.

(S200) 양극으로부터 코발트 회수. (S200) Cobalt recovery from the anode.

(S210) 분쇄. 분리된 양극을 분쇄기에 투입하여 파쇄한다. 파쇄공정은 코발트의 분리 효율을 높이기 위한 것이다. 베이스 메탈이 용해되어 있는 용탕에 투입 되는 양극이 용탕에 원활하게 용해되기 위해서는 비표면적을 증가시켜야 하므로 양극의 분쇄입도는 40~80mm인 것이 바람직하다. 40mm이하로 분쇄할 경우는 분쇄비용의 증가 및 loss량이 증가하므로 바람직하지 아니하다.(S210) crushed. The separated anode is put into a grinder and crushed. The crushing process is to increase the separation efficiency of cobalt. In order to smoothly dissolve the anode into the molten metal in which the base metal is melted, the specific surface area must be increased, so the grinding grain size of the anode is preferably 40 to 80 mm. Grinding below 40mm is not preferable because of the increase of grinding cost and loss.

(S220) 용융. 파쇄된 리튬코발트옥사이드와 알루미늄으로 구성된 파쇄된 양극을 코우크스, CaO계 용제와 혼합한 후 가열로에 장입시켜 1,300∼1,550℃에서 용융 처리한다(배터리에 따라 조성의 차이가 있기 때문에 용융시간을 구체적으로 한정하지 않으며, 1시간∼1시간 30분 정도로 한다). 구체적으로 설명하면, 용융로는 일반적인 전기로에 비해 승온속도가 빠른 유도로(Induction furnace)가 적합하며 양극물질은 전기전도도가 낮은 산화물과 유기물이 다량 존재하기 때문에 금속 코발트를 먼저 용해하여 용융상태의 베이스 메탈(base metal)을 제조하고 분쇄된 양극물질을 투입함으로써 유도로의 성능을 극대화 시킬 수 있다. 알루미늄 포일에 코발트 산화물과 카본계(전도성 카본블랙) 물질이 코팅되어 있는 양극물질로부터 금속상의 순수 코발트를 회수하기 위해서는 산화물 상태인 코발트 산화물의 환원과 알루미늄 및 카본의 제거가 필요하다. 분석결과 양극물질은 약 14∼16%의 알루미늄, 34∼36%의 카본, 49∼51%의 코발트로 구성되어 있어 양극물질 전체중량의 50%에 달하는 이물질의 효율적인 제거와 산화물의 환원을 위해서는 첨가제의 투입이 바람직하다.(S220) melt. The crushed anode composed of crushed lithium cobalt oxide and aluminum is mixed with coke and CaO solvents, charged into a heating furnace and melted at 1,300 ~ 1,550 ℃ (the melting time is specific because the composition varies depending on the battery). It does not limit to 1 hour-about 1 hour 30 minutes). Specifically, the induction furnace is faster than the general electric furnace, and the induction furnace is suitable, and since the anode material contains a large amount of oxide and organic material with low electrical conductivity, the metal cobalt is dissolved first to melt the base metal. It is possible to maximize the performance of induction furnace by manufacturing (base metal) and injecting crushed anode material. In order to recover pure cobalt on a metal from an anode material coated with a cobalt oxide and a carbon-based (conductive carbon black) material on an aluminum foil, reduction of oxide cobalt oxide and removal of aluminum and carbon are required. As a result of analysis, anode material is composed of about 14 ~ 16% aluminum, 34 ~ 36% carbon and 49 ~ 51% cobalt. The addition of is preferable.

용융상태의 코발트에 폐전지 양극 스크랩을 투입하면 페이스트 상태로 알루미늄 포일에 코팅되어 있던 코발트 산화물은 고분자 결착제가 분해되며 분말상으로 전도성 카본 분말과 함께 알루미늄 기재로부터 분리된다. 분리되면서 코발트 산화물은 고온의 환원분위기에서 코발트 용탕 속으로 용해되기 시작하는데 분말상의 코발트 산화물이 초미세 분말상으로 비중이 매우 낮아 용탕의 표면에 부유되면서 일부 환원반응을 하지 못한 코발트 산화물이 전도성 카본과 함께 슬래그화가 진행되어 금속 코발트의 회수율이 감소하는 점에 착안, 본 발명에서는 슬래그화되는 코발트 산화물의 양을 최소화하여 금속 코발트의 회수율을 극대화하기 위해 별도의 환원제로서 코우크스를 사용하였다. 상기 코우크스는 탄소함량 93% 이상의 것으로서 투입량은 폐리튬이온전지 양극물질 원료 기준으로 7∼12 중량%가 바람직하다. 상기 코우크스의 투입량이 7 중량% 미만에서는 슬래그로 혼입되는 코발트 산화물의 환원반응에 부족하며 12 중량% 초과일 경우에는 과다한 환원반응에 의해 알루미늄이 슬래그 중으로 정련되는 것이 방해되며 용탕의 버블현상에 의한 조업안전성의 저하와 회수된 코발트 금속 매트에 탄소의 잔존량이 많아진다는 점을 감안하여 본 발명에서는 코우크스의 투입량을 원재료 총량의 7∼12 중량%로 한정한 것이다.When the positive electrode scrap of the spent battery is added to the molten cobalt, the cobalt oxide coated on the aluminum foil in the paste state is decomposed into a polymer binder and separated from the aluminum substrate together with the conductive carbon powder in powder form. As it is separated, the cobalt oxide begins to dissolve into the cobalt molten metal in a high-temperature reducing atmosphere. The cobalt oxide powder is very fine powder and has a very low specific gravity. In view of the fact that slag is reduced and the recovery rate of the metal cobalt is reduced, coke was used as a separate reducing agent in order to minimize the amount of the cobalt oxide to be slag and maximize the recovery rate of the metal cobalt. The coke is 93% or more of carbon content, the input amount is preferably 7 to 12% by weight based on the raw material of the lithium ion battery cathode material. If the coke amount is less than 7% by weight, it is insufficient for the reduction reaction of cobalt oxide mixed into slag. If the amount of coke is more than 12% by weight, refining of aluminum into the slag is prevented due to excessive reduction reaction. In view of the decrease in the safety of operation and the increased amount of carbon remaining in the recovered cobalt metal mat, the amount of coke input is limited to 7 to 12% by weight of the total amount of raw materials.

용융온도가 1,560℃에 이르는 코발트의 용융온도 저하 및 알루미늄, 탄소 등 불순물의 제거를 위해 코우크스와 함께 용제(flux)를 투입하는 것이 바람직하며 양극물질에 14∼16 중량% 혼합되어 있는 알루미늄에 대한 제거효율이 높으면서 용융조업 온도에서 충분한 점성을 가지는 SiO2가 포함된 CaO계 슬래그를 가공하여 사용한다. 바람직하게는 CaO와 SiO2의 비율인 염기도(CaO/SiO2)가 1.5 ∼ 3.0인 용제를 사용하는 것이 바람직하다. 상기 염기도가 1.5 미만일 경우 유동성이 저하되어 슬래그화가 원활히 이루어지지 않으며 3.0을 초과할 경우 융점이 높아져 노 벽체의 마모도를 증가시킬 수 있다.In order to reduce the melting temperature of cobalt with a melting temperature of 1,560 ℃ and to remove impurities such as aluminum and carbon, a flux is added together with coke. CaO-based slag containing SiO 2 with high removal efficiency and sufficient viscosity at melting operation temperature is used. Preferably, it is preferred to use a solvent of 1.5 to 3.0 the basicity (CaO / SiO 2) ratio of CaO and SiO 2. When the basicity is less than 1.5, the fluidity is lowered, so that slag is not smoothly formed, and when the basicity is higher than 3.0, the melting point is increased to increase the wear of the furnace wall.

상기 장입되는 SiO2, CaO 조합 용제의 양은 폐리튬이온전지 양극물질의 불순물로 작용하는 알루미늄, 탄소와 같은 불순물 제거효율과 생산되는 코발트 금속의 순도를 고려하여 용융 후 분리되는 금속중량과 발생되는 슬래그 중량과의 비율인 슬래그비에 의해 결정되는데, 본 발명에서는 슬래그비(슬래그 중량/금속중량)가 0.05 이상이 되도록 투입되는 원재료의 양에 맞추어 정량 후 장입한다. 슬래그비가 0.05 미만일 경우 알루미늄이 산화되어 슬래그 내로 혼입되는 반응이 원활이 이루어지지 않으므로 슬래그비는 최소한 0.05 이상이 되도록 하는 것이 바람직하다.The amount of the SiO 2 and CaO combination solvent charged is the weight of the metal and the slag generated after melting in consideration of the impurities removal efficiency such as aluminum and carbon acting as impurities of the lithium ion battery anode material and the purity of the cobalt metal produced. It is determined by the slag ratio, which is a ratio with the weight. In the present invention, the slag ratio (slag weight / metal weight) is charged after quantification in accordance with the amount of the raw materials to be added to be 0.05 or more. If the slag ratio is less than 0.05, it is preferable that the slag ratio is at least 0.05 or more because aluminum is oxidized and the reaction into the slag is not smoothly performed.

상기와 같이 원통형 폐리튬이온전지의 양극 원료와 코우크스 및 용제가 혼합된 혼합물은 기 용융되어 있는 코발트 용탕에 투입되어 가열하여 용융시킨다. 이때, 양극원료물질 내 알루미늄 포일의 반응이 시작되면 격렬한 산화반응에 의해 용탕의 온도가 상승되기 때문에 이를 감안한 온도 세팅이 요구된다. 용융온도가 너무 높아지면 알루미늄 등 불순물의 제거 성능의 저하와 로벽체의 손상되는 문제점이 있기 때문에 1,350℃ 이상의 온도 범위 내에서 용융되도록 하며 최소한의 반응시간을 고려하여 양극 원료 물질의 투입이 완료된 후 1시간 정도 반응시간을 유지하는 것이 바람직하다.As described above, the mixture of the cathode raw material, the coke and the solvent of the cylindrical waste lithium ion battery is added to a pre-melted cobalt molten metal to be melted by heating. At this time, when the reaction of the aluminum foil in the positive electrode material is started, the temperature of the molten metal is increased by the violent oxidation reaction, and thus a temperature setting is required. If the melting temperature is too high, there is a problem of deterioration of the removal of impurities such as aluminum and damage of the furnace wall, so that the melting is performed within a temperature range of 1,350 ° C or higher. It is desirable to maintain the reaction time for about an hour.

(S230) 불순물 분리. 용융처리된 원료물질을 공기분압하에서 일정시간 동안 유지시킨 후 자연상태에서 냉각시켜 불순물이 함유된 슬래그 층과 코발트 금속매트 층이 분리 형성되도록 한다. 여기에서 산소부하를 이용할 경우 탄소의 제거효율 증 가에 따른 코발트의 농축효과는 증가하지만, 산소분압이 과도할 경우 환원된 코발트 금속이 재산화되는 현상이 발생하기 때문에 고순도 코발트 제조를 위한 2차 건식정련 공정을 고려하여 공기분압하에서 유지시키는 것이 바람직하다.(S230) Impurity Separation. The molten raw material is maintained under a partial pressure of air for a predetermined time and then cooled in a natural state so that the slag layer and the cobalt metal mat layer containing impurities are separately formed. When oxygen load is used here, the cobalt concentration increases with increasing carbon removal efficiency, but when the oxygen partial pressure is excessive, reduced cobalt metal is regenerated, which leads to secondary dry type for high purity cobalt production. It is preferable to keep it under the partial pressure of air in consideration of the refining process.

(S240) 2차 용융. 마지막으로, 1차 건식제련 공정을 통해 제조된 코발트 금속매트는 알루미늄이 제거되고 약 3∼4 중량%의 탄소만이 함유된 매트상이며 고순도의 코발트 금속매트 제조를 위해 2차 정련공정에 1차 가공된 매트를 투입하고 용제 등의 첨가제 없이 산소분압하에서 상기 제련공정과 같은 용융조건으로 용융시켜 특수 제작된 몰드에 출탕함으로써 99.5% 이상의 고순도 금속코발트 잉고트를 제조할 수 있다.(S240) Secondary Melting. Finally, the cobalt metal mat produced through the first dry smelting process is a mat form containing aluminum with only about 3 to 4% by weight of carbon and the first step in the second refining process to produce high purity cobalt metal mat. A high-purity metallic cobalt ingot of 99.5% or more can be produced by adding a processed mat and melting it under the same conditions of melting as in the smelting process under oxygen partial pressure without additives such as a solvent.

(S300) 음극으로부터 구리 회수.(S300) Copper recovery from the cathode.

(S310) 분쇄. 분리된 음극을 분쇄기에 투입하여 분쇄한다. 분쇄공정은 구리의 분리 효율을 높이기 위한 것이다. 음극은 양극과 마찬가지로 40~80mm로 분쇄된다.(S310) crushed. The separated negative electrode is put into a grinder and pulverized. The crushing process is to increase the separation efficiency of copper. The cathode, like the anode, is ground to 40-80 mm.

(S320) 용융. 음극은 SiO2가 포함된 CaO계 용제와 혼합한 후 가열로에 장입시켜 1,000∼1,300℃의 온도에서 용융처리한다.(S320) Melt. The negative electrode is mixed with a CaO-based solvent containing SiO 2 and charged into a heating furnace to be melted at a temperature of 1,000 ~ 1,300 ℃.

(S330) 불순물 분리. 공기분압하에서 일정시간 동안 유지시킨 후 자연상태에서 냉각시켜 불순물이 함유된 슬래그 층과 구리 금속매트 층이 분리 형성되도록 한다.(S330) Impurity Separation. After maintaining for a certain time under the partial pressure of air and cooling in a natural state to form a separate slag layer and a copper metal mat layer containing impurities.

(S400) 격리막으로부터 플라스틱 회수.(S400) Recovery of plastic from separator.

(S410) 분쇄. 격리막의 원활한 투입을 위하여 10mm 정도로 분쇄한다.(S410) crushed. Grinding is about 10mm to smoothly insert the separator.

(S420) 세척. 분쇄된 격리막을 세척조에 투입하여 세척하여 격리막에 묻은 먼지 등의 이물질을 제거하고, 세척된 격리막을 탈수 건조한다.(S420) wash. The pulverized separator is put into a washing tank and washed to remove foreign substances such as dust from the separator, and the washed separator is dehydrated and dried.

(S430) 압출. 건조된 격리막을 단축 또는 2축 압출기를 이용해 마스터 배치 가공하여 펠릿화함으로써 재생플라스틱을 획득한다.(S430) extrusion. The dried separator is masterbatched and pelletized using a single screw or twin screw extruder to obtain recycled plastics.

이하, 구체적인 실시예를 통하여 본 발명을 더욱 상세히 살펴본다.Hereinafter, the present invention will be described in more detail with reference to specific examples.

<실시예><Example>

노트북 등에 다양하게 활용되는 원통형 폐리튬이온전지와 전지를 습식 또는 건식방전방법으로 방전시킨다.Discharge cylindrical waste lithium ion batteries and batteries that are used in a variety of ways, such as notebooks by a wet or dry discharge method.

다음으로 코발트산화물, 탄소, 알루미늄으로 구성된 양극 원료물질을 코우크스 및 CaO계 용제와 혼합한 다음, 25℃/분 이상의 가열속도로 1,500℃ 이상의 고온으로 가열하여 금속코발트를 기 용해한 용탕에 장입 후 1,350℃ 이상의 온도가 유지되도록 가열한다.Next, the cathode raw material consisting of cobalt oxide, carbon, and aluminum is mixed with coke and CaO solvents, and then heated to a high temperature of 1,500 ° C. or higher at a heating rate of 25 ° C./min or higher, and charged into a molten metal cobalt-containing melt 1,350. Heat to maintain a temperature above &lt; RTI ID = 0.0 &gt;

본 발명을 위한 분리장치를 통해 다른 물질은 완벽하게 분리하여 철, 니켈, 구리 등의 불순물이 없는 양극 원료물질 80kg에 코우크스 6kg, SiO2와 CaO를 염기도 1.5 ∼ 3.0에 맞게 혼합하여 가공한 용제 4kg를 혼합하여 베이스메탈용 금속코발트 10∼20kg이 용해되어 있는 유도로의 용탕에 장입하고 물질의 반응공정에 따른 최적 온도제어 하에서 공기투입과 함께 1시간∼2시간 동안 유지한 후 자연 냉각하였다.Through the separation device for the present invention, the other material is completely separated and processed by mixing 80 kg of coke 6kg, SiO 2 and CaO to a basic degree of 1.5 to 3.0 to 80kg of positive electrode raw material without impurities such as iron, nickel, copper, etc. 4 kg of the mixture was charged into a molten metal in an induction furnace in which 10 to 20 kg of base metal metal cobalt was dissolved, and after cooling for 1 to 2 hours with air input under optimum temperature control according to the reaction process of the material, the mixture was naturally cooled.

위와 같이 코우크스와 용제를 혼합한 상태에서 고온으로 가열하여 용융시키 면, 코발트 산화물은 용융되어 용탕을 형성하게 되며, 알루미늄과 탄소성분은 융점이 매우 높은 산화물의 형태로 용제에 흡수되어 낮은 비중에 의해 용탕의 상부에 부유하게 된다. 특히 상기 코우크스는 미세분말상으로 매우 낮은 비중에 의해 부유하려는 성향을 갖는 코발트 산화물이 용제에 흡수되지 않고 금속 매트상으로 환원하도록 하는 역할을 하게 되며 이러한 상태에서 용융된 코발트 금속과 산화물상이 분리된다.When the coke and the solvent are heated and melted at a high temperature in the mixed state, the cobalt oxide is melted to form a molten metal, and the aluminum and carbon components are absorbed in the solvent in the form of an oxide having a high melting point and thus have a low specific gravity. As a result, it floats on the upper portion of the molten metal. In particular, the coke serves to reduce the cobalt oxide having a tendency to float with a very low specific gravity in the form of fine powder, and not to be absorbed by the solvent, to the metal mat, in which the molten cobalt metal and the oxide phase are separated.

상기 방법으로 회수된 코발트 금속매트를 다시 유도로에 장입하고 산소분압하에서 30℃/분의 가열속도로 1,550℃까지 가열하여 카본을 제거하면 고순도의 코발트 금속매트를 제조할 수 있다.The cobalt metal mat recovered by the above method is charged to the induction furnace again, and heated to 1,550 ° C. at a heating rate of 30 ° C./min under oxygen partial pressure to remove carbon, thereby preparing a high purity cobalt metal mat.

상기의 금속매트와 슬래그를 냉각한 후 금속매트 각각의 화학성분을 분석하여 폐리튬이온전지, 폐리튬이온전지 전체를 분쇄하여 양극, 음극을 따로 분리하지 않고 Fe 성분을 제거한 후 건식처리한 경우, 본 발명의 효율적인 분리장치를 이용하여 양극물질만을 건식처리한 경우의 성분의 비교를 아래 <표 1>에 나타내었다.When the metal mat and the slag are cooled, the chemical composition of each metal mat is analyzed, and the entire lithium ion battery and the waste lithium ion battery are pulverized to remove the Fe component without separating the positive electrode and the negative electrode, and then dry treatment is performed. Table 1 shows a comparison of components when only the positive electrode material is dried by using the efficient separator of the present invention.

<표 1>TABLE 1

Figure 112007031765575-pat00001
Figure 112007031765575-pat00001

위 <표 1>에서 나타낸 바와 같이, 전체 분쇄 후 steel 성분만을 제거한 후 건식제련을 통해 제조된 금속매트는 코발트와 구리 성분이 각각 91.81 중량%와 6.85 중량%로 합금상태의 금속매트이나 본 발명에 의해 전처리된 양극물질만을 효과적으로 분리하여 건식제련 한 본 발명의 금속매트는 코발트 함량 99.5 중량% 이상의 고순도 금속매트로 분리됨을 알 수 있었다.As shown in Table 1, the metal mat produced through dry smelting after removing only the steel component after the entire grinding is cobalt and copper components of 91.81% by weight and 6.85% by weight, respectively. It was found that the metal mat of the present invention, which was effectively smelted only by pretreatment of the positive electrode material, was separated into a high purity metal mat having a cobalt content of 99.5 wt% or more.

따라서, 상기와 같은 본 발명의 처리조건에 의하여 폐리튬이온전지로부터 효과적으로 고가의 코발트를 분리 농축하여 회수할 수 있었으며, 음극물질의 경우 양극물질의 회수방법과 같은 방법으로 고순도 구리를 회수할 수 있었다.Therefore, by using the treatment conditions of the present invention as described above, it was possible to effectively recover and recover the expensive cobalt from the waste lithium ion battery, and in the case of the anode material, it was possible to recover the high-purity copper by the same method as the cathode material recovery method. .

부가적으로 효율적인 분리장치를 이용해 분리된 양극과 음극 물질로부터 코발트와 구리를 회수하고 남은 폴리프로필렌 재질의 격리막 또한 간단한 세척 공정을 통해 카본, 소량 잔존하는 코발트 산화물등의 이물질을 제거하고 압출기를 이용해 마스터배치 가공함으로써 백색도가 높아 경제적 가치가 높은 재생플라스틱 펠렛을 회수할 수 있어 폐리튬이온전지의 토탈 물질재활용기술을 실현할 수 있었다.Additionally, cobalt and copper are recovered from the separated anode and cathode materials using an efficient separator, and the remaining polypropylene separator is also cleaned to remove foreign substances such as carbon and small amount of cobalt oxide remaining through a simple washing process, and then extruded into a master. By batch-processing, recycled plastic pellets with high whiteness and high economic value can be recovered, and the total material recycling technology of waste lithium ion batteries can be realized.

이상에서 살펴본 바와 같이 본 발명에 의한 폐리튬이온전지로부터 유가금속 및 재생플라스틱의 회수방법에 의하면, 원통형 폐리튬이온전지의 건식용융방식을 이용한 재활용기술에 있어 기존의 습식 회수방법과 비교해 공정이 간단하고, 대량처리가 가능하며 특히, 효율적인 분리공정을 이용해 양극, 음극, 격리막을 분리하여 물질을 각각 회수함으로써 전체를 분쇄하여 유가금속을 회수할 경우 발생되는 금속의 순도 저하와 열처리에 의해 소실되는 격리막에 의한 환경오염의 최소화뿐만 아니라 재활용 가능자원의 손실을 최소화 할 수 있어 경제적 측면의 효과가 매우 크다.As described above, according to the recovery method of valuable metals and recycled plastics from the waste lithium ion battery according to the present invention, the process is simpler than the conventional wet recovery method in the recycling technique using dry melting of the cylindrical waste lithium ion battery. It is possible to process in large quantities, and in particular, by separating the positive electrode, the negative electrode, and the separator using an efficient separation process, each material is recovered to crush the whole to recover valuable metals. As it can minimize the environmental pollution and the loss of recyclable resources, it is very economically effective.

이상에서 본 발명은 상기 언급된 바람직한 실시 예와 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위는 본 발명의 요지에 속하는 이러한 수정이나 변형을 포함할 것이다.    Although the present invention has been described above with reference to the above-mentioned preferred embodiments, it is possible to make various modifications or changes without departing from the spirit and scope of the invention. Accordingly, the appended claims will cover such modifications and variations as fall within the spirit of the invention.

Claims (8)

삭제delete 삭제delete 각각 유연성 있는 시트 형태로 이루어진 코발트 함유 양극과 폴리프로필렌 격리막 및 구리 포일에 흑연이 코팅된 음극으로 이루어져 감긴 젤리롤, 내부에 상기 젤리롤이 수용된 밀폐형 스틸 캔으로 구성된 폐리튬이온전지로부터 상기 양극과 격리막 및 음극을 분리하는 전처리 단계와; 그리고, The anode and the separator from a waste lithium ion battery composed of a cobalt-containing anode each made of a flexible sheet, a polypropylene separator and a cathode coated with graphite on a copper foil, and a rolled jelly roll and a sealed steel can containing the jelly roll therein. And a pretreatment step of separating the cathode; And, 상기 전처리 단계를 거쳐 분리된 양극, 격리막 및 음극으로부터 유가금속 또는 재생플라스틱을 회수하는 단계를 포함하고,Recovering the valuable metal or recycled plastic from the anode, separator and cathode separated by the pretreatment step, 상기 전처리 단계는, 상기 폐리튬이온전지의 스틸 캔을 절단하는 단계, 상기 절단된 스틸 캔으로부터 상기 젤리롤을 분리하는 단계를 포함하고,The pretreatment step includes cutting a steel can of the waste lithium ion battery, separating the jelly roll from the cut steel can, 상기 회수단계 중 격리막으로부터 재생플라스틱을 회수하는 단계는, 상기 격리막을 분쇄하는 단계, 상기 분쇄된 격리막을 세척하는 단계, 상기 세척된 격리막을 펠릿형태로 압출하여 재생수지를 구하는 단계를 포함하며,Recovering the recycled plastic from the separator during the recovery step includes the step of crushing the separator, washing the crushed separator, extruding the washed separator in the form of pellets to obtain a recycled resin, 상기 회수단계 중 음극으로부터 구리를 회수하는 단계는, 상기 음극을 분쇄하는 단계, 상기 분쇄된 음극을 SiO2가 포함된 CaO계 용제와 혼합한 후 1,000℃ 이상의 온도에서 용융하는 단계, 상기 용융물을 산소분압 하에서 30분에서 1시간 동안 유지시킨 후 자연 냉각하여 금속 구리와 불순물로 분리하는 단계로 이루어진 폐리튬이온전지로부터 유가금속 및 재생플라스틱의 회수방법에 있어서,In the recovering step, recovering copper from the negative electrode may include: pulverizing the negative electrode, mixing the pulverized negative electrode with a CaO-based solvent containing SiO 2 , and melting at a temperature of 1,000 ° C. or higher, and the melt is oxygen In the method of recovering valuable metals and recycled plastics from a waste lithium ion battery consisting of the steps of maintaining for 30 minutes to 1 hour under partial pressure and then naturally cooling to separate the metallic copper and impurities. 상기 스틸 캔 절단단계에서는 상기 스틸 캔의 길이 방향 양측 단부를 각각 절단하여 상기 스틸 캔의 양측 단부가 개방되도록 하며, 상기 젤리롤 분리단계에서는 상기 길이 방향 양측이 개방된 상기 스틸 캔의 개방부 중 일측에서 상기 젤리롤을 밀어 상기 스틸 캔에서 분리하는 것을 특징으로 하는 폐리튬이온전지로부터 유가금속 및 재생플라스틱의 회수방법.In the steel can cutting step, both ends of the steel can are cut in the longitudinal direction, respectively, so that both ends of the steel can are opened, and in the jelly roll separation step, one side of the openings of the steel can in which both sides of the steel can are opened A method for recovering valuable metals and recycled plastics from spent lithium ion batteries, comprising: pushing the jelly roll to separate the steel can from the steel can. 삭제delete 삭제delete 제 3 항에 있어서, 상기 회수단계 중 양극으로부터 코발트를 회수하는 단계는, 양극을 파쇄하는 단계, 상기 파쇄된 양극과 용제를 혼합하여 용융하는 단계, 상기 용융된 혼합물을 공기분압하에서 1시간 내지 2시간 동안 냉각하여 코발트가 포함된 유가금속과 불순물을 분리하는 단계, 상기 유가금속 매트를 산소부하만이 존재하는 조건에서 2차 용융하여 코발트 매트를 회수하는 단계를 포함하고,4. The method of claim 3, wherein recovering cobalt from the positive electrode during the recovering step comprises: crushing the positive electrode, mixing the crushed positive electrode with a solvent to melt the melt, and then mixing the melted mixture under air pressure for 1 hour to 2 hours. Separating the cobalt-containing valuable metal and impurities by cooling for a time, and recovering the cobalt mat by secondary melting the valuable metal mat in a condition in which only an oxygen load is present. 상기 용융단계에서는 유도로에 코발트 금속을 용해한 용탕, 코우크스 및 SiO2가 포함된 CaO계 용제 및 파쇄된 양극을 혼합하여 용융하며, In the melting step, by melting and mixing the molten cobalt metal in the induction furnace, coke and CaO-based solvent containing SiO 2 and the crushed anode, 상기 코우크스는 탄소함량 93% 이상의 것으로서 상기 양극 전체 100중량%에 대하여 7∼12 중량%가 혼합되고, 상기 용제는 염기도(CaO/SiO2 비율)가 1.5∼3.0 이내이며 슬래그비(슬래그 중량/금속중량)가 0.05 이상이 되도록 배합된 것을 특징으로 하는 폐리튬이온전지로부터 유가금속 및 재생플라스틱의 회수방법.The coke is 93% or more of carbon content, 7 to 12% by weight relative to the total 100% by weight of the positive electrode, the solvent has a basicity (CaO / SiO 2 ratio) within 1.5 to 3.0 and slag ratio (slag weight / A method for recovering valuable metals and recycled plastics from a spent lithium ion battery, wherein the metal weight) is formulated to be 0.05 or more. 삭제delete 삭제delete
KR20070040999A 2007-04-26 2007-04-26 Recovery method of high purity cobalt, copper and recycled plastics from wasted lithium ion batteryes KR100796369B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20070040999A KR100796369B1 (en) 2007-04-26 2007-04-26 Recovery method of high purity cobalt, copper and recycled plastics from wasted lithium ion batteryes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20070040999A KR100796369B1 (en) 2007-04-26 2007-04-26 Recovery method of high purity cobalt, copper and recycled plastics from wasted lithium ion batteryes

Publications (1)

Publication Number Publication Date
KR100796369B1 true KR100796369B1 (en) 2008-01-21

Family

ID=39218675

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20070040999A KR100796369B1 (en) 2007-04-26 2007-04-26 Recovery method of high purity cobalt, copper and recycled plastics from wasted lithium ion batteryes

Country Status (1)

Country Link
KR (1) KR100796369B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011035915A1 (en) * 2009-09-25 2011-03-31 Umicore Process for the valorization of metals from li-ion batteries
EP2601323A1 (en) * 2009-10-14 2013-06-12 SGL Carbon SE METHOD AND REACTOR FOR PROCESSING BULK MATERIAL CONTAINING Li
DE102014116378A1 (en) 2014-11-10 2016-05-12 Schott Ag Method for producing a glass-ceramic ion conductor
KR101621312B1 (en) 2015-10-15 2016-05-16 이치헌 Method Of Recycling Resource for lithium ion secondary battery
KR101808121B1 (en) 2016-08-24 2017-12-14 안동대학교 산학협력단 Waste lithium battery rare metal recovery method
CN109449525A (en) * 2018-12-21 2019-03-08 湖南锐异资环科技有限公司 The innoxious recovery and treatment method and device of waste lithium cell electrolyte
CN111403838A (en) * 2019-12-23 2020-07-10 余姚市鑫和电池材料有限公司 Recycling method of retired power lithium battery diaphragm paper
KR102188889B1 (en) 2019-07-25 2020-12-10 주식회사 대일이앤씨 Method For Recovering Valuable Materials From Waste Lithium Secondary Batteries
CN114024049A (en) * 2020-12-22 2022-02-08 深圳清研装备科技有限公司 Regeneration method of graphite cathode of waste cobalt acid lithium battery
CN115921503A (en) * 2022-11-21 2023-04-07 宁德卓高新材料科技有限公司 Recovery processing method of lithium ion battery diaphragm waste material
CN117305604A (en) * 2023-11-29 2023-12-29 湖南五创循环科技股份有限公司 Method for recovering valuable metals in lithium cobalt oxide battery by cooperation of reduction gasification and continuous membrane separation technology
WO2024080557A1 (en) * 2022-10-12 2024-04-18 포스코홀딩스 주식회사 Method for recycling waste batteries

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287967A (en) * 1995-04-18 1996-11-01 Sumitomo Metal Mining Co Ltd Method of recovering cobalt, copper, and lithium from used lithium secondary battery
JPH1177011A (en) 1997-09-02 1999-03-23 Mitsui Mining & Smelting Co Ltd Recovery of valuables from waste battery
JP2000067935A (en) 1998-08-25 2000-03-03 Mitsui Mining & Smelting Co Ltd Valuable matter recovering method from waste nickel- hydrogen secondary battery
KR20010106562A (en) * 2000-05-22 2001-12-07 김인석 recycling method of lithium ion secondary battery
KR100448273B1 (en) 2002-02-25 2004-09-10 한국지질자원연구원 Recovery Method of Cobalt from spent lithium ion battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08287967A (en) * 1995-04-18 1996-11-01 Sumitomo Metal Mining Co Ltd Method of recovering cobalt, copper, and lithium from used lithium secondary battery
JPH1177011A (en) 1997-09-02 1999-03-23 Mitsui Mining & Smelting Co Ltd Recovery of valuables from waste battery
JP2000067935A (en) 1998-08-25 2000-03-03 Mitsui Mining & Smelting Co Ltd Valuable matter recovering method from waste nickel- hydrogen secondary battery
KR20010106562A (en) * 2000-05-22 2001-12-07 김인석 recycling method of lithium ion secondary battery
KR100448273B1 (en) 2002-02-25 2004-09-10 한국지질자원연구원 Recovery Method of Cobalt from spent lithium ion battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011035915A1 (en) * 2009-09-25 2011-03-31 Umicore Process for the valorization of metals from li-ion batteries
US8840702B2 (en) 2009-09-25 2014-09-23 Umlcore Process for the valorization of metals from Li-ion batteries
EP2601323A1 (en) * 2009-10-14 2013-06-12 SGL Carbon SE METHOD AND REACTOR FOR PROCESSING BULK MATERIAL CONTAINING Li
DE102014116378A1 (en) 2014-11-10 2016-05-12 Schott Ag Method for producing a glass-ceramic ion conductor
KR101621312B1 (en) 2015-10-15 2016-05-16 이치헌 Method Of Recycling Resource for lithium ion secondary battery
KR101808121B1 (en) 2016-08-24 2017-12-14 안동대학교 산학협력단 Waste lithium battery rare metal recovery method
CN109449525A (en) * 2018-12-21 2019-03-08 湖南锐异资环科技有限公司 The innoxious recovery and treatment method and device of waste lithium cell electrolyte
CN109449525B (en) * 2018-12-21 2023-09-26 中南大学 Harmless recovery treatment method and device for waste lithium battery electrolyte
KR102188889B1 (en) 2019-07-25 2020-12-10 주식회사 대일이앤씨 Method For Recovering Valuable Materials From Waste Lithium Secondary Batteries
CN111403838A (en) * 2019-12-23 2020-07-10 余姚市鑫和电池材料有限公司 Recycling method of retired power lithium battery diaphragm paper
CN114024049A (en) * 2020-12-22 2022-02-08 深圳清研装备科技有限公司 Regeneration method of graphite cathode of waste cobalt acid lithium battery
CN114024049B (en) * 2020-12-22 2024-04-16 深圳清研锂业科技有限公司 Regeneration method of graphite cathode of waste lithium cobalt oxide battery
WO2024080557A1 (en) * 2022-10-12 2024-04-18 포스코홀딩스 주식회사 Method for recycling waste batteries
CN115921503A (en) * 2022-11-21 2023-04-07 宁德卓高新材料科技有限公司 Recovery processing method of lithium ion battery diaphragm waste material
CN117305604A (en) * 2023-11-29 2023-12-29 湖南五创循环科技股份有限公司 Method for recovering valuable metals in lithium cobalt oxide battery by cooperation of reduction gasification and continuous membrane separation technology
CN117305604B (en) * 2023-11-29 2024-02-23 湖南五创循环科技股份有限公司 Method for recovering valuable metals in lithium cobalt oxide battery by cooperation of reduction gasification and continuous membrane separation technology

Similar Documents

Publication Publication Date Title
KR100796369B1 (en) Recovery method of high purity cobalt, copper and recycled plastics from wasted lithium ion batteryes
Yu et al. Pretreatment options for the recycling of spent lithium-ion batteries: A comprehensive review
JP7249781B2 (en) Method for recovering metals from used Li-ion batteries
CN105375077B (en) Method for recycling electrode material of lithium ion battery
Dobó et al. A review on recycling of spent lithium-ion batteries
KR100717389B1 (en) A valuable material recovery method of a scrapped Lithium ion battery
CN101519726B (en) Method for directly roasting and treating waste lithium ion battery and recycling valuable metal
EP2312686B1 (en) Method for implementing full cycle regeneration of waste lead acid battery
WO2017145099A1 (en) Process for recovery of pure cobalt oxide from spent lithium ion batteries with high manganese content
CN111261968B (en) Method for lossless recovery of waste lithium iron phosphate battery electrode material
CN104810566B (en) A kind of waste lithium iron phosphate electrokinetic cell green reclaim processing method
WO2018047147A1 (en) Process for recovering pure cobalt and nickel from spent lithium batteries
CN102637921A (en) Novel high-efficient comprehensive utilization method for recycling waste lithium-ion battery
KR20120126946A (en) Pretreatment method for recycling of lithium ion batteries
CN101603126B (en) Process for efficiently leaching anode active material of waste lithium battery
EP4199184B1 (en) Method for processing waste lithium battery separator paper
Traore et al. Characteristics of spent lithium ion batteries and their recycling potential using flotation separation: A review
CN110828888A (en) All-dry purification method of lithium ion battery anode material and lithium ion battery anode material obtained by purification
JP7271833B2 (en) Lithium recovery method
KR100358528B1 (en) recycling method of lithium ion secondary battery
CN107317048A (en) The method that copper foil and graphite are reclaimed from negative electrode material of waste lithium ion battery
CN104183887A (en) Green method for dismantling, separation and recovery of waste LiCoO2 battery
CN108550940A (en) The resource utilization reuse method of waste and old lithium ion battery lithium iron phosphate positive material
CN113921931B (en) Method for recycling lithium carbonate from retired lithium ion battery black powder through carbothermic reduction
Wang et al. A review of processes and technologies for the recycling of spent lithium-ion batteries

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20130114

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140114

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150114

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee