KR100791712B1 - Method for forming gate oxide of semiconductor device - Google Patents

Method for forming gate oxide of semiconductor device Download PDF

Info

Publication number
KR100791712B1
KR100791712B1 KR1020060135988A KR20060135988A KR100791712B1 KR 100791712 B1 KR100791712 B1 KR 100791712B1 KR 1020060135988 A KR1020060135988 A KR 1020060135988A KR 20060135988 A KR20060135988 A KR 20060135988A KR 100791712 B1 KR100791712 B1 KR 100791712B1
Authority
KR
South Korea
Prior art keywords
gate electrode
semiconductor device
forming
oxide film
gate
Prior art date
Application number
KR1020060135988A
Other languages
Korean (ko)
Inventor
최정현
Original Assignee
동부일렉트로닉스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부일렉트로닉스 주식회사 filed Critical 동부일렉트로닉스 주식회사
Priority to KR1020060135988A priority Critical patent/KR100791712B1/en
Application granted granted Critical
Publication of KR100791712B1 publication Critical patent/KR100791712B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out

Abstract

A method for forming a gate oxide of a semiconductor device is provided to obtain reliable model characteristics by modifying polysilicon and an active region. A field oxide layer(102) is formed on an isolation layer of a semiconductor device(100). A well(104) is formed within a substrate of an active region defined by a field oxide layer by performing an ion implantation process. A gate electrode is formed by depositing and patterning sequentially a gate oxide layer and a conductive material. A photoresist pattern is formed. A contact hole is formed on the gate electrode by performing a dry-etching process. A contact(110) and a wiring(108) are formed to be connected to the gate electrode. The well region has a modified pattern in order to be included in the inside of the gate electrode.

Description

반도체 소자의 게이트 전극 형성 방법{METHOD FOR FORMING GATE OXIDE OF SEMICONDUCTOR DEVICE}METHOOD FOR FORMING GATE OXIDE OF SEMICONDUCTOR DEVICE

도 1은 종래의 반도체 소자의 게이트 전극 형성 방법을 설명하는 공정 단면 및 평면도,1 is a cross-sectional view and a plan view illustrating a method of forming a gate electrode of a conventional semiconductor device;

도 2는 본 발명의 바람직한 실시예에 따른 반도체 소자의 게이트 전극 형성 방법을 설명하는 공정 단면 및 평면도,2 is a cross-sectional view and a plan view illustrating a method of forming a gate electrode of a semiconductor device according to a preferred embodiment of the present invention;

도 3a 및 도 3b는 종래의 게이트 전극 형성 방법에 의한 모델링 결과를 나타낸 그래프,3A and 3B are graphs showing modeling results by a conventional method of forming a gate electrode;

도 4a 및 도 4b는 본 발명에 따른 게이트 전극 형성 방법에 의한 모델링 결과를 나타낸 그래프.4A and 4B are graphs showing modeling results by a method of forming a gate electrode according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

100 : 반도체 소자 102 : 필드 산화막100 semiconductor device 102 field oxide film

104 : 웰 106 : 게이트전극용 폴리실리콘104: well 106: polysilicon for gate electrode

108 : 금속배선 110 : 컨택108: metal wiring 110: contact

본 발명은 반도체 소자의 게이트 전극 형성 기술에 관한 것으로, 특히 게이트 전극의 주변성분조건을 균일화하는데 적합한 반도체 소자의 게이트 전극 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for forming a gate electrode of a semiconductor device, and more particularly to a method of forming a gate electrode of a semiconductor device suitable for equalizing peripheral component conditions of the gate electrode.

반도체 장치가 고집적화 됨에 따라 각각의 셀은 미세해져 내부의 전계 강도가 증가된다. 이러한 전계 강도의 증가는 소자 동작시 드레인 부근의 공핍층에서 채널영역의 캐리어를 가속시켜 게이트 산화막으로 주입시키는 핫-캐리어 효과(hot-carrier effect)를 일으킨다. 게이트 산화막에 주입된 캐리어는 반도체 기판과 게이트 산화막의 계면에 준위를 생성시켜 문턱전압(threshold voltage : VTH)을 변화시키거나 상호 컨덕턴스를 저하시켜 소자 특성을 저하시킨다. 그러므로 핫-캐리어 효과에 의한 소자 특성의 저하를 감소시키기 위해 LDD 등과 같이 드레인 구조를 변화시킨 구조를 사용하여야 한다.As semiconductor devices become highly integrated, each cell becomes finer, and the internal electric field strength increases. This increase in electric field strength causes a hot-carrier effect in which the carrier of the channel region is accelerated and injected into the gate oxide layer in the depletion layer near the drain during operation of the device. The carrier injected into the gate oxide film generates a level at the interface between the semiconductor substrate and the gate oxide film, thereby changing the threshold voltage (VTH) or lowering the mutual conductance, thereby degrading device characteristics. Therefore, in order to reduce the deterioration of device characteristics due to the hot-carrier effect, a structure in which the drain structure is changed such as LDD should be used.

이와 같은 LDD 구조를 포함하는 전형적인 반도체 소자의 제조 공정을 도 1을 참조하여 설명하기로 한다.A manufacturing process of a typical semiconductor device including such an LDD structure will be described with reference to FIG. 1.

먼저, 반도체 소자(10)의 소자분리영역에 일반적인 LOCOS(local oxidation of silicon) 공정을 통해 약 3600Å정도 두께의 필드산화막(12)을 형성한 후, 이온주입에 의해 상기 필드산화막(12)에 의해 정의된 활성영역(active area)의 기판내 웰(well)(14)을 형성한다.First, a field oxide film 12 having a thickness of about 3600 μs is formed in a device isolation region of the semiconductor device 10 by a general LOCOS (local oxidation of silicon) process, and then the field oxide film 12 is formed by ion implantation. A well 14 in the substrate of the defined active area is formed.

다음에 반도체 소자(10) 상에 게이트산화막을 약 70Å정도의 두께로 형성하고, 그 상부에 게이트전극 형성을 위한 도전물질로서, 예컨대 폴리실리콘을 약 2000Å정도의 두께로 증착한다.Next, a gate oxide film is formed on the semiconductor device 10 to a thickness of about 70 GPa, and polysilicon, for example, polysilicon is deposited on the upper portion as a conductive material for forming a gate electrode.

이후, 폴리실리콘층 및 게이트산화막을 사진식각공정을 통해 소정의 게이트패턴으로 패터닝하여 게이트 전극(16)을 형성한다.Thereafter, the polysilicon layer and the gate oxide film are patterned into a predetermined gate pattern through a photolithography process to form the gate electrode 16.

이와 같이 소자 분리막이 형성된 실리콘 기판에 반도체 소자로서, 예를 들면 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)를 형성할 수 있는데, 이때 MOSFET는 게이트 전극, 스페이서, 소스/드레인 접합으로 구성된다.As a semiconductor device, for example, a metal oxide semiconductor field effect transistor (MOSFET) may be formed on the silicon substrate on which the device isolation layer is formed. In this case, the MOSFET includes a gate electrode, a spacer, and a source / drain junction.

그런 다음, 포토레지스트 패턴을 형성하고 이를 이용한 건식 식각 공정을 진행하여 컨택홀을 형성한다. 그리고 포토레지스트 패턴을 제거한 후에 배선 공정을 진행하여 층간 절연막에 도전막으로서 도프트 폴리실리콘 또는 금속을 증착하고 이를 패터닝하여 모스전계효과 트랜지스터의 게이트 전극 및 소스/드레인 영영역과 연결되는 컨택(20) 및 금속배선(18)을 형성한다.Then, a photoresist pattern is formed and a dry etching process using the same is used to form contact holes. After removing the photoresist pattern, a wiring process is performed to deposit doped polysilicon or metal as a conductive film on the interlayer insulating film and pattern the contact 20 to be connected to the gate electrode and the source / drain region of the MOS field effect transistor. The metal wiring 18 is formed.

이상과 같은 MOSFET는 게이트 전극의 형태로 인한 주변성분의 영향으로 모델링 정확도가 떨어질 수 있다. 즉, 도 1에 도시한 바와 같이, MOSFET는 P2과 P2 두 변을 기준으로 보았을 때 게이트전극용 폴리실리콘(16)과 활성영역(14)의 맞닿는 부분에서 주변성분의 영향이 다르게 나타난다.As described above, the MOSFET may have poor modeling accuracy due to the influence of peripheral components due to the shape of the gate electrode. That is, as shown in FIG. 1, when the MOSFET is viewed based on two sides of P2 and P2, the influence of peripheral components is different at the contact portion between the gate electrode polysilicon 16 and the active region 14.

이로 인해, 종래의 반도체 소자의 게이트 전극 형성 공정에서는, 소자에 대한 정확한 모델링 설정이 불가능하다는 문제가 있다.For this reason, in the gate electrode formation process of the conventional semiconductor element, there exists a problem that accurate modeling setting with respect to an element is impossible.

본 발명은 상술한 종래 기술의 문제를 해결하기 위한 것으로, 게이트 전극용 폴리실리콘의 모양을 변형하여 게이트 전극의 주변성분조건을 균일화함으로써, 소자에 대한 정확한 모델링 설정을 가능하게 하여 반도체 소자 제조의 신뢰성을 높일 수 있는 반도체 소자의 게이트 전극 형성 방법을 제공하는데 그 목적이 있다.The present invention is to solve the above-described problems of the prior art, by modifying the shape of the polysilicon for the gate electrode to equalize the peripheral component conditions of the gate electrode, enabling accurate modeling settings for the device to ensure the reliability of semiconductor device manufacturing It is an object of the present invention to provide a method for forming a gate electrode of a semiconductor device capable of increasing the voltage.

본 발명의 목적을 달성하기 위한 바람직한 실시예에 따르면, 반도체 소자의 소자분리영역에 필드산화막을 형성한 후 이온주입에 의해 상기 필드산화막에 의해 정의된 활성영역의 기판내에 웰을 형성하는 단계와, 게이트산화막 및 도전물질을 순차 증착한 후 패터닝하여 상기 웰 영역을 모두 포함하도록 게이트 전극을 형성하는 단계와, 포토레지스트 패턴을 형성한 후 건식 식각 공정을 진행하여 상기 게이트 전극 상부에 컨택홀을 형성한 다음 상기 게이트 전극과 연결되는 컨택 및 배선을 형성하는 단계를 포함하는 반도체 소자의 게이트 전극 형성 방법을 제공한다.According to a preferred embodiment for achieving the object of the present invention, forming a well in the substrate of the active region defined by the field oxide film by ion implantation after forming a field oxide film in the device isolation region of the semiconductor device, Forming a gate electrode so as to include all of the well regions by sequentially depositing and patterning a gate oxide film and a conductive material, and performing a dry etching process after forming a photoresist pattern to form contact holes on the gate electrode. Next, a method of forming a gate electrode of a semiconductor device comprising forming a contact and a wiring connected to the gate electrode.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the present invention.

도 2는 본 발명의 바람직한 실시예에 따른 반도체 소자의 게이트 전극 형성 방법을 설명하는 공정 단면 및 평면도이다.2 is a cross-sectional view and a plan view illustrating a method of forming a gate electrode of a semiconductor device according to an exemplary embodiment of the present invention.

먼저, 도 2에 도시한 바와 같이, 반도체 소자(100)의 소자분리영역에 LOCOS 공정을 통해 약 3600Å정도 두께의 필드산화막(102)을 형성한 후, 이온주입에 의해 상기 필드산화막(102)에 의해 정의된 활성영역의 기판내에 웰(104)을 형성한다. 이때, 웰(104)은 종래의 게이트 전극 형성 영역을 포함하도록 형성되는 것을 특징으로 한다.First, as shown in FIG. 2, a field oxide film 102 having a thickness of about 3600 μs is formed in a device isolation region of the semiconductor device 100 by a LOCOS process, and then implanted into the field oxide film 102 by ion implantation. A well 104 is formed in the substrate of the active region defined by the. In this case, the well 104 is formed to include a conventional gate electrode formation region.

다음에, 반도체 소자(100) 상에 게이트산화막을 형성하고, 그 상부에 게이트 전극 형성을 위한 도전물질로서, 예컨대 폴리실리콘을 증착한다.Next, a gate oxide film is formed on the semiconductor device 100, and polysilicon is deposited thereon as a conductive material for forming the gate electrode.

이후, 폴리실리콘 및 게이트산화막을 사진식각공정을 통해 소정의 게이트패턴으로 패터닝하여 게이트 전극(106)을 형성한다. 이때, 본 실시예에 따른 게이트 전극(106)은 상기 웰(104) 영역을 모두 포함하도록 형성되는 것을 특징으로 한다. 즉, 활성영역인 웰(104) 영역이 게이트 전극(106) 내부에 포함되도록 패턴이 변형되며, 도 2에서의 패턴 P1과 P2는 그 주변성분이 서로 동일한 조건이 된다.Thereafter, the polysilicon and the gate oxide film are patterned into a predetermined gate pattern through a photolithography process to form the gate electrode 106. In this case, the gate electrode 106 according to the present embodiment is formed to include all of the wells 104. That is, the pattern is modified such that the region of the well 104, which is an active region, is included in the gate electrode 106, and the peripheral conditions of the patterns P1 and P2 in FIG. 2 are the same.

따라서 전체적인 측정 소자의 크기는 활성영역인 웰(104) 영역이 기준이 된다.Therefore, the size of the overall measuring element is based on the well 104 region, which is an active region.

이와 같이 소자 분리막이 형성된 실리콘 기판에 반도체 소자로서, 예를 들면 MOSFET(Metal Oxide Semiconductor Field Effect Transistor)를 형성할 수 있는데, 이때 MOSFET는 게이트 전극, 스페이서, 소스/드레인 접합으로 구성된다.As a semiconductor device, for example, a metal oxide semiconductor field effect transistor (MOSFET) may be formed on the silicon substrate on which the device isolation layer is formed. In this case, the MOSFET includes a gate electrode, a spacer, and a source / drain junction.

그런 다음, 포토레지스트 패턴을 형성하고 이를 이용한 건식 식각 공정을 진행하여 게이트 전극(106) 상부에 컨택홀을 형성한다. 그리고 포토레지스트 패턴을 제거한 후에 배선 공정을 진행하여 층간 절연막에 도전막으로서 도프트 폴리실리콘 또는 금속을 증착하고 이를 패터닝하여 모스전계효과 트랜지스터의 게이트 전극 및 소스/드레인 영영역과 연결되는 컨택(110) 및 금속배선(108)을 형성한다.Then, a photoresist pattern is formed and a dry etching process using the same is performed to form a contact hole on the gate electrode 106. After removing the photoresist pattern, a wiring process is performed to deposit a doped polysilicon or metal as a conductive layer on the interlayer insulating film and pattern the contact 110 to be connected to the gate electrode and the source / drain region of the MOS field effect transistor. Metal wiring 108 is formed.

도 3a 및 도 3b는 종래의 게이트 전극 형성 방법에 의한 모델링 결과를 나타낸 그래프이고, 도 4a 및 도 4b는 본 발명에 따른 게이트 전극 형성 방법에 의한 모델링 결과를 나타낸 그래프이다.3A and 3B are graphs showing modeling results by a conventional gate electrode forming method, and FIGS. 4A and 4B are graphs showing modeling results by a gate electrode forming method according to the present invention.

도 3a 및 도 3b에서는, 종래의 방법에 의해 형성된 패턴을 측정한 결과를 모델링(scalable modeling)하여 최소 크기와 최대 크기를 기준으로 측정 결과와 모델 링 결과의 오차 비율을 그래프로 나타냈으며, 측정 결과와 모델링 결과의 오차 비율이 크다는 것을 알 수 있다.In FIGS. 3A and 3B, the results of measuring the pattern formed by the conventional method are modeled, and the error ratios between the measurement results and the modeling results are represented graphically based on the minimum and maximum sizes. It can be seen that the error ratio of the modeling result is large.

도 4a 및 도 4b에서는, 본 발명에 따른 방법에 의해 형성된 패턴을 측정한 결과를 모델링하여 최소 크기와 최대 크기를 기준으로 측정 결과와 모델링 결과의 오차 비율을 그래프로 나타냈으며, 측정 결과와 모델링 결과의 오차 비율이 적다는 것을 알 수 있다.4A and 4B, the results of measuring the pattern formed by the method according to the present invention are modeled, and the error ratios between the measurement results and the modeling results are represented graphically based on the minimum size and the maximum size. It can be seen that the ratio of errors is small.

따라서 본 실시예에서는 종래에 비해 반도체 소자에 대한 정확한 모델링 설정이 가능하다.Therefore, in the present exemplary embodiment, accurate modeling of the semiconductor device can be set.

본 발명에 의하면, 반도체 소자의 폴리실리콘과 활성영역을 주변성분이 균일한 영향을 갖도록 변형함으로써, 소자에 대한 정확한 모델링 설정이 가능하여 신뢰성 높은 모델 특성을 구현할 수 있다.According to the present invention, by modifying the polysilicon and the active region of the semiconductor device to have a uniform influence on the peripheral components, it is possible to set accurate modeling for the device to implement a highly reliable model characteristics.

한편, 본 발명은 상술한 실시예에 국한되는 것이 아니라 후술되는 청구범위에 기재된 본 발명의 기술적 사상과 범주내에서 당업자에 의해 여러 가지 변형이 가능하다.On the other hand, the present invention is not limited to the above-described embodiment, various modifications are possible by those skilled in the art within the spirit and scope of the present invention described in the claims to be described later.

Claims (3)

반도체 소자의 소자분리영역에 필드산화막을 형성한 후 이온주입에 의해 상기 필드산화막에 의해 정의된 활성영역의 기판내에 웰을 형성하는 단계와,Forming a well in the substrate of the active region defined by the field oxide film by ion implantation after forming a field oxide film in the device isolation region of the semiconductor device; 게이트산화막 및 도전물질을 순차 증착한 후 패터닝하여 상기 웰 영역을 모두 포함하도록 게이트 전극을 형성하는 단계와,Forming a gate electrode to include all of the well regions by sequentially depositing and patterning a gate oxide film and a conductive material; 포토레지스트 패턴을 형성한 후 건식 식각 공정을 진행하여 상기 게이트 전극 상부에 컨택홀을 형성한 다음 상기 게이트 전극과 연결되는 컨택 및 배선을 형성하는 단계Forming a contact hole on the gate electrode by performing a dry etching process after forming the photoresist pattern, and then forming a contact and a wire connected to the gate electrode 를 포함하는 반도체 소자의 게이트 전극 형성 방법.Gate electrode forming method of a semiconductor device comprising a. 제 1 항에 있어서,The method of claim 1, 상기 웰 영역은 상기 게이트 전극 내부에 포함되도록 패턴이 변형되는 것을 특징으로 하는 반도체 소자의 게이트 전극 형성 방법.And the pattern is modified so that the well region is included in the gate electrode. 제 1 항에 있어서,The method of claim 1, 상기 반도체 소자의 크기는 상기 웰 영역이 기준이 되는 것을 특징으로 하는 반도체 소자의 게이트 전극 형성 방법.The size of the semiconductor device is a gate electrode forming method of the semiconductor device, characterized in that the reference to the well region.
KR1020060135988A 2006-12-28 2006-12-28 Method for forming gate oxide of semiconductor device KR100791712B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060135988A KR100791712B1 (en) 2006-12-28 2006-12-28 Method for forming gate oxide of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060135988A KR100791712B1 (en) 2006-12-28 2006-12-28 Method for forming gate oxide of semiconductor device

Publications (1)

Publication Number Publication Date
KR100791712B1 true KR100791712B1 (en) 2008-01-04

Family

ID=39216742

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060135988A KR100791712B1 (en) 2006-12-28 2006-12-28 Method for forming gate oxide of semiconductor device

Country Status (1)

Country Link
KR (1) KR100791712B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990065531A (en) * 1998-01-14 1999-08-05 구본준 Semiconductor device and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990065531A (en) * 1998-01-14 1999-08-05 구본준 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US9711611B2 (en) Modified self-aligned contact process and semiconductor device
US9018048B2 (en) Process for manufactuirng super-barrier rectifiers
JP2007258330A (en) Semiconductor device, and its manufacturing method
US8476680B2 (en) Semiconductor device and method for manufacturing the same
JP2010157588A (en) Semiconductor device and method of manufacturing same
KR100558064B1 (en) Method of fabricating test pattern for junction leakage current
CN107026128B (en) Method for manufacturing semiconductor device and semiconductor device
CN101022105B (en) Semiconductor device testing device and substrate for producing tester
US20090236665A1 (en) Semiconductor device and fabrication method thereof
KR100954907B1 (en) Test pattern of semiconductor device and method for fabricating the same
JP2007194562A (en) Semiconductor device and its fabrication process
US9012985B2 (en) Semiconductor device having a trench whose upper width is wider than a lower width thereof, and a method for fabricating the same
KR100791712B1 (en) Method for forming gate oxide of semiconductor device
KR100741882B1 (en) Highvoltage device and Method for fabricating of the same
KR100960444B1 (en) The Method for Manufacturing Semiconductor Device
US7659597B2 (en) Integrated circuit wire patterns including integral plug portions
KR20200024327A (en) Manufacturing Method of Top Gate Thin Film Transistor
KR100602093B1 (en) Semiconductor device and method of manufacturing the same
KR100958625B1 (en) monitoring pattern of semiconductor device and Method for fabricating of the same
JP2007258568A (en) Method of manufacturing semiconductor device
KR20110002978A (en) Semiconductor device and method for fabricating the same
KR100414231B1 (en) Method of fabricating semiconductor device
KR101004494B1 (en) Method for manufacturing semiconductor device
KR20100074479A (en) Semiconductor device and method for manufacturing the same
KR100557224B1 (en) Method for fabricating semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111121

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee